旋转的计算与证明

合集下载

旋转在几何计算、证明中的运用

旋转在几何计算、证明中的运用

旋转在几何计算、证明中的运用一、旋转在解三角形中的应用(一)正三角形类型在正ΔABC 中,P 为ΔABC 内一点,将ΔABP 绕A 点按逆时针方向旋转600,使得AB 与AC 重合。

经过这样旋转变化,将图(1-1-a )中的PA 、PB 、PC 三条线段集中于图(1-1-b )中的一个ΔP'CP 中,此时ΔP'AP也为正三角形。

例.1. ..如图:(....1.-.1.):设...P .是等边...Δ.ABC ...内的一点,.....PA=3....,. PB=4....,.PC=5....,∠..APB ...的度数是....________........... 练习,二等腰直角三角形类型在等腰直角三角形ΔABC 中, ∠C=Rt ∠ , P 为ΔABC 内一点,将ΔAPC 绕C 点按逆时针方向旋转900,使得AC 与BC 重合。

经过这样旋转变化,在图(3-1-b )中的一个ΔP' CP 为等腰直角三角形。

1.如图1所示,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。

例2.如图,在ΔABC 中,∠ ACB =900,BC=AC ,P 为ΔABC 内一点,且PA=3,PB=1,PC=2。

求∠ BPC 的度数。

11.如图,在△ABC中,∠C=90°,AC=BC ,M 、N 是斜边AB 上的点,且∠MCN=45°,AM=3,BN=5,则MN= .三、旋转在正方形中的运用类比练习:如图,在△ABC 中,∠BAC=90°,AB=AC ,D 是BC 上的任意一点,求证:BD 2+CD 2=2AD 2.D CBA例.如图4,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与'CBP 重合,若PB=3,求'PP 的长。

如图5, P 是正方形ABCD 内一点,且满足PA :PD :PC=1:2:3,则∠APD= .图5、家庭作业1(青岛市)如图,P 是正三角形 ABC 内的一点,且PA =6,PB =8,PC =10.若将△PAC 绕点A 逆时针旋转后,得到△P'AB ,则点P 与点P' 之间的距离为多少,∠APB ?2、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .3如图,E 、F 分别是正方形ABCD 的边BC 、CD 上一点,且BE +DF =EF ,求∠EAF 、4、如图,有边长为1的等边三角形ABC 和顶角为120°的等腰△DBC ,•以D 为顶点作∠MDN=60°角,两边分别交AB 、AC 于M 、N 的三角形,连结MN ,(1)、求证MN=BM+CN ;(2)、试说明△AMN 的周长为2.(3)、若M,N 分别在AB,CA 的延长线上,则(1)中结论还成立吗?如果不成立,MN,BM,CN 又满足什么关系?A B C D 图9CA5如图,已知正方形ABCD ,点E 、F 分别在BC 、CD 上,且AE=BE+FD ,请说出AF 平分∠DAE 的理由。

计算旋转曲面面积的公式及几种证法

计算旋转曲面面积的公式及几种证法
3.期刊论文 徐龙封 关于曲线积分和曲面积分教学中几个难点的突破 -安徽工业大学学报(社会科学版)2003,20(3)
加强曲线、曲面积分概念讲解,标准化曲线、曲面积分的计算程序,沟通有关积分之间关系,以消除学生对斯托克斯等公式的深奥感,有效地突破了曲 线、曲面积分教学中的几个难点.
4.期刊论文 赵清波.李文潮.赵东涛.张辉 曲线积分与曲面积分的一题多解 -数理医药学杂志2008,21(3)
8.期刊论文 纪荣芳.娄本平 对称性在曲线积分及曲面积分计算中的应用 -泰山学院学报2004,26(3)
给出了利用对称性简化曲线积分和曲面积分计算的一些定理和方法,并对定理的结论予以证明.
9.期刊论文 彭一鸣.马新科.宁荣健 第一型曲面积分转为第一型曲线积分的算法 -高等数学研究2010,13(2)
2.期刊论文 刘富贵.鲁凯生.Liu Fugui.Lu Kaisheng 利用对称性计算第二类曲线积分与曲面积分的方法 -武汉理
工大学学报(交通科学与工程版)2006,30(6)
由于第二类曲线积分与曲面积分涉及到方向性问题,因此利用对称性来计算较为困难.文中给出了利用对称性计算第二类曲线积分与曲面积分的方法 ,并证明了方法的可行性,并通过实例表明,此方法有时能起到简化计算的作用.
=l。ira石乏{[,(参)+,(最)】√l+,”(参)△xi+
∑口f A x。}
砌烛喜聪)F丽
=2n e,(x)√l+,“∽dx=2兀ef(x)ds.
1.2用微元法证明计算旋转曲面面积公式 证:在[a.b】上的任意小区间【x,x+dx]的
小截锥面积近似于小旋转曲面的面积. 从而得面积元素dA=2矽(石)ds所以旋
6.期刊论文 李育强.石瑞民 曲线积分在曲面积分中的应用 -大学数学2003,19(3)

有关旋转的证明题

有关旋转的证明题
容,以确保旋转轴在各种工况下的安全性和可靠性。
物理学中的旋转运动
要点一
总结词
涉及旋转运动在物理学中的应用,包括角动量守恒定律、 科里奥利力等。
要点二
详细描述
在物理学中,旋转运动是一种重要的运动形式,涉及到许 多物理定律和效应。例如,角动量守恒定律是描述旋转系 统的一个重要定律,它指出在没有外力矩作用的情况下, 系统的角动量保持不变。此外,科里奥利力是描述旋转参 考系中物体运动受到的力,它在地球自转的影响下会导致 大气和洋流的偏转。
示例
在三角形ABC和三角形DEF中,已知AB=DE, BC=EF, 且角BAC=角EDF。证明三角形ABC 全等于三角形DEF。可以通过将三角形DEF绕点D逆时针旋转一定的角度,使得角EDF与 角BAC重合,然后利用边角边全等定理证明三角形ABC全等于三角形DEF。
圆形的旋转证明题
要点一
总结词
通过旋转圆形,利用圆周角定理和圆 的性质进行证明。
在四边形ABCD中,已知AB=CD, AD=BC, 且角BAD=角BCD。证明四 边形ABCD是平行四边形。可以通过 将四边形ABCD绕点A逆时针旋转一 定的角度,使得角BAD与角BCD重合 ,然后利用平行四边形的性质和旋转 的性质进行证明。
Part
05
练习题与答案
基础练习题
题目
证明三角形绕其重心旋转180度后与原图 形重合。
VS
答案
设三角形为$triangle ABC$,其重心为 $G$。将$triangle ABC$绕$G$旋转180度, 得到$triangle A'B'C'$。由于旋转中心是 重心,根据旋转性质,线段$AG=A'G$、 $BG=B'G$、$CG=C'G$。由于重心将中 线分为2:1的比例,因此$triangle ABC$和 $triangle A'B'C'$的三边对应相等,从而 证明两个三角形重合。

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。

2、旋转的性质(1)对应点到旋转中心的距离相等。

(旋转中心就是各对应点所连线段的垂直平分线的交点。

)(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后的图形全等。

3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。

4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。

5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

旋转的计算与证明

旋转的计算与证明

旋转的计算与证明旋转是几何学中非常重要的一个概念,它可以用来描述物体绕一些中心轴或中心点旋转的过程。

在计算与证明旋转相关的问题时,我们需要使用到一系列的数学工具和方法。

本文将从旋转的定义开始,逐步介绍旋转的计算与证明过程。

旋转的定义旋转可以定义为平面上一个点或一个物体绕一些中心点或中心轴旋转的过程。

旋转可以使点或物体的位置、形状或方向发生变化。

旋转可以分为顺时针旋转和逆时针旋转两种。

旋转的中心旋转的中心可以是平面上的一个点或一个物体。

以点为中心进行旋转时,可以通过计算旋转中心与待旋转点之间的距离和角度来确定旋转后的新位置。

以物体为中心进行旋转时,可以通过计算物体自身的几何信息(例如边界点、顶点等)和旋转角度来确定旋转后的新形状。

旋转的角度旋转的角度通常用弧度来表示。

弧度是一种角度的计量单位,定义为角度所对应的弧长与半径的比值。

旋转的角度可以是正值、负值或零。

旋转的方向旋转的方向可以是顺时针或逆时针。

顺时针旋转是指从从正方向看旋转的物体顺时针方向旋转;逆时针旋转是指从从正方向看旋转的物体逆时针方向旋转。

在计算旋转时,需要根据具体的问题条件确定旋转的方向。

点的旋转是指一个点绕旋转中心进行旋转。

点的旋转可以通过以下公式进行计算:x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)其中,(x,y)为原始点的坐标,(x',y')为旋转后点的坐标,θ为旋转角度。

物体的旋转是指一个物体绕旋转中心进行旋转。

物体的旋转可以通过以下步骤进行计算:1.将物体的每个点(顶点或边界点)的坐标通过点的旋转公式计算旋转后的位置。

2.根据计算得到的新位置,重新构建物体的形状。

旋转的证明旋转的证明可以通过使用向量和矩阵的方法进行推导。

以下是旋转的一般证明方法:1.定义旋转矩阵旋转矩阵是一个正交矩阵,用于描述旋转的变换。

旋转矩阵可以通过旋转角度来确定,其中旋转角度可以是弧度或角度。

2020届中考数学总复习课件:微专题十五 巧用旋转进行证明与计算 (共29张PPT)

2020届中考数学总复习课件:微专题十五 巧用旋转进行证明与计算 (共29张PPT)

(2)MN2=ND2+DH2.理由如下: 由旋转可知,∠BAM=∠DAH, ∵∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN. 在△AMN 与△AHN 中,A∠MM=AANH=,∠HAN,
AN=AN,
∴△AMN≌△AHN(SAS),∴MN=HN. ∵∠BAD=90°,AB=AD, ∴∠B=∠ADB=45°, ∴∠HDN=∠HDA+∠ADB=90°, ∴NH2=ND2+DH2,∴MN2=ND2+DH2;
(3)如答图①,∵∠AEB=∠ACB=90°, ∴A,B,C,E 四点共圆, ∴∠CEB=∠CAB=30°,∠ABD=∠ACE, ∵∠DAE=∠BAC=30°,∴∠BAD=∠CAE, ∴△BAD∽△CAE,∴BEDC=AACB=cos30°= 23, ∴EC= 23BD, 在 Rt△ABE 中,∵AB=5,AE=3,
∴PP′2+P′D2=PD2,∴∠PP′D=90°,
中考变形4答图
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
∴∠APB=∠AP′D=135°. ∵∠APB+∠AP′P=135°+45°=180°, ∴P′,P,B 三点共线. 过点 A 作 AE⊥PP′于点 E,则 AE=PE=12PP′=2, ∴BE=PE+PB=2+1=3, 在 Rt△ABE 中,AB= AE2+BE2= 22+32= 13.
3.如图 Z15-4,已知 AC⊥BC,垂足为 C,AC=4,BC=3 3,将线段 AC 绕点 A 按 逆时针方向旋转 60°,得到线段 AD,连结 DC,DB. (1)线段 DC=__4__; (2)求线段 DB 的长度.
图 Z15-4
解:(1)∵AC=AD,∠CAD=60°, ∴△ACD 是等边三角形,∴DC=AC=4; (2)如答图,作 DE⊥BC 于点 E. ∵△ACD 是等边三角形, ∴∠ACD=60°,又∵AC⊥BC, ∴∠DCE=∠ACB-∠ACD=90°-60°=30°. 在 Rt△CDE 中,DE=12DC=2,CE= 23DC=2 3, ∴BE=BC-CE=3 3-2 3= 3. 在 Rt△BDE 中,BD= DE2+BE2= 22+( 3)2= 7.

旋转的证明与计算(等边三角形)

旋转的证明与计算(等边三角形)

旋转的证明与计算模块一:旋转应用之等边旋转类型二:正方形中的旋转 例题1.正方形ABCD 内一点到三顶点距离分别是1,2,3,则正方形的面积等于考点:旋转的性质;正方形的性质分析:把△PAB 绕A 点逆时针旋转90°得△EAD ,把△CPB 绕C 点顺时针旋转90°得△CFD ,连PE ,PF ,则∠1=∠2,∠3=∠4,得到∠2+∠4=90°,∠EDF=180°,即E ,D ,F 共线,且ED=PB=2,DF=PB=2,△APE ,△CPF 均为等腰直角三角形,所以211121=⨯⨯=∆APE S ;293321=⨯⨯=∆CPF S ,再在△PEF 中,PE=2,PF=23,EF=4,利用勾股定理的逆定理得到△PEF 为直角三角形,∠PEF=90°,则22422121=⨯⨯=⨯⨯=∆EF EP S PEF 最后利用S 正方形A B C D =S 五边形A P C F E =S △P E F +S △A P E +S △C P F ,即可得到答案.跟踪训练:2,PC=4,则∠APC的大小是多1、如图点P是等边三角形ABC内部一点,且PA=2,PB=3少度?考点:旋转的性质;勾股定理的逆定理分析:由于△ABC为等边三角形,所以将△ABP绕A点逆时针旋转60°得△ACP′,根据旋转的性质得到AB与AC重合,∠PAP′=60°,2AP′=AP=2,P′C=PB=3,则△APP′是等边三角形,得到PP′=2;在△PPC中,利用勾股定理的逆定理可得到∠PP′C=90°,同时得到∠P′CP=30°,因此∠P′PC=60°,即可得APC=∠APP′+∠P′PC.2、把两块边长为4的等边三角板ABC和DEF先如图1放置,使三角板DEF的顶点D与三角板ABC的AC边的中点重合,DF经过点B,射线DE与射线AB相交于点M,接着把三角形板ABC 固定不动,将三角形板DEF由图11-1所示的位置绕点D按逆时针方向旋转,设旋转角为α.其中0°<α<90°,射线DF与线段BC相交于点N(如图2示).(1)当0°<α<60°时,求AM•CN的值;(2)当0°<α<60°时,设AM=x,两块三角形板重叠部分的面积为y,求y与x的函数解析式并求定义域;(3)当BM=2时,求两块三角形板重叠部分的面积.考点:相似三角形的判定与性质;三角形的面积;等边三角形的性质;旋转的性质分析:(1)根据等边三角形的性质得到∠A=∠C=∠EDF=60°,则∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,可得∠AMD=∠NDC ,根据相似三角形的判定定理得到△AMD ∽△CDN ,有相似的性质得到AM :DC=AD :CN ,即AM •CN=DC •AD ,然后把DC=AD=2代入计算即可;(2)分别过D 点作DP ⊥AB 于P ,DQ ⊥BC 于Q ,连DB ,根据等边三角形的性质得∠A=∠C=60°,而DA=DC=2,根据含30°的直角三角形三边的关系得到AP=CQ=1,DP=DQ=3,由AM=x ,得CN=x 4,MB=4-x ,BN=x44 ,两块三角形板重叠部分为四边形DMBN ,则y=S △D B M +S △D B N ,然后根据三角形的面积公式计算即可,易得到当0°<α<60°时,x 的取值范围为1<x <4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,把x=2代入(2)的关系式中计算即可.当M 点在线段AB 的延长线上,过D 作DH ∥BC 交AB 于H ,BP=21DH=1,由△AMD ∽△CDN ,则AM :DC=AD :CN ,即AM •CN=DC •AD ,可计算出CN ,然后根据三角形的面积公式可计算出S △D P N ,即两块三角形板重叠部分的面积.3、如图,已知△ABC为等边三角形,M为三角形外任意一点.(1)请你借助旋转知识说明AM≤BM+CM;(2)线段AM是否存在最大值?若存在,请指出存在的条件;若不存在,请说明理由.考点:旋转的性质;三角形三边关系;等边三角形的性质.分析:(1)应把AM和BM所在的三角形旋转,与AM组成三角形,将△BMC绕B点逆时针方向旋转,使C点与A点重合,得△BM′A,易得△BMM′为正三角形,根据三角形三边关系即可证明.(2)由(1)得线段AM存在最大值,M′在AM上时4、如图,P是正△ABC内一点,PA=3,PB=4,PC=5,将线段PA以点A为旋转中心逆时针旋转60°得到线段AP1,连结P1C.(1)判断△APB与△AP1C是否全等,请说明理由;(2)求∠APB的度数;(3)求△APB 与△APC的面积之和;(4)直接写出△BPC的面积,不需要说理.考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.分析:(1)根据正三角形的性质求出AB=AC,∠BAC=60°,再根据旋转的性质可得AP1=AP,然后求出∠CAP1=∠BAP,再利用“边角边”证明△APB与△AP1C全等即可;(2)连结PP1,求出△PAP1是等边三角形,根据等边三角形的性质可得PP1=AP=3,∠AP1P=60°,再利用勾股定理逆定理求出∠CP1P=90°,然后计算即可得解;(3)根据全等三角形的面积相等求出△APB与△APC的面积之和等于四边形APCP1的面积,然后根据等边三角形的面积与直角三角形的面积列式计算即可得解;(4)同理求出△ABP和△BPC的面积的和,△APC和△BPC的面积的和,从而求出△ABC的面积,然后根据△BPC的面积=△ABC的面积-△APB与△APC的面积的和计算即可得解.参考答案:1、解:四边形ABCD为正方形,PA=1,PB=2,PC=3,把△PAB绕A点逆时针旋转90°得△EAD,把△CPB绕C点顺时针旋转90°得△CFD,连PE,PF,如图,∴∠1=∠2,∠3=∠4,而∠1+∠3=90°,∴∠2+∠4=90°,而∠ADC=90°,∴∠EDF=180°,即E,D,F共线;由旋转的性质得到△APE,△CPF均为等腰直角三角形,并且ED=PB=2,DF=PB=2,2、3、解答:(1)∵△ABC和△DEF都是边长为4的等边三角形,∴∠A=∠C=∠EDF=60°,∴∠AMD+∠ADM=120°,∠ADM+∠NDC=120°,∴∠AMD=∠NDC,∴△AMD∽△CDN,∴AM:DC=AD:CN,即AM•CN=DC•AD,而D点为AC的中点,∴DC=AD=2,∴AM•CN=4;(2)分别过D点作DP⊥AB于P,DQ⊥BC于Q,连DB,如图∵∠A=∠C=60°,DA=DC=2,∴AP=CQ=1,∴DP=DQ=3,∵BD为等边三角形的高,∴点D到EF的距离为DB,∴两块三角形板重叠部分为四边形DMBN,在图(1)中,AM=1,∴当0°<α<60°时,x的取值范围为1<x<4;(3)当M 在线段AB 上,BM=2时,x=4-2=2,当M 点在线段AB 的延长线上,如图(备用图),过D 作DH ∥BC 交AB 于H ,∴DH=21BC=2,BH=2, ∵BM=2,∴BP=21DH=1,与①一样可证得△AMD ∽△CDN , ∴AM :DC=AD :CN ,即AM •CN=DC •AD ,4、解答:(1)将△BMC 绕B 点逆时针方向旋转,使C 点与A 点重合,得△BM ′A , ∵∠MBM ′=60°,BM=BM ′,AM ′=MC .∴△BMM ′为正三角形.∴MM ′=BM .①若M ′在AM 上,则AM=AM ′+MM ′=BM+MC ,②若M ′不在AM 上,连接AM ′、MM ′,在△AMM ′中,根据三角形三边关系可知:AM <AM ′+MM ′,∴AM <BM+MC ,综上所述:AM ≤BM+CM ;(2)线段AM 有最大值.当且仅当M ′在AM 上时,AM=BM+MC ;存在的条件是:∠BMC=120°.5、解答:解:(1)∵△ABC 是正三角形,∴AB=AC ,∠BAC=60°,∵线段AP 以点A 为旋转中心逆时针旋转60°得到线段AP 1,∴AP=AP 1,∠PAP 1=60°,∵∠BAP+∠PAC=∠BAC=60°,∠CAP 1+∠PAC=∠PAP 1=60°,∴∠BAP=∠CAP 1,∵在△APB 与△AP 1C 中,∴△APB≌△AP1C(SAS);(2)连结PP1,∴AP=AP1,∠PAP1=60°,∴△PAP1是等边三角形,∴PP1=AP=3,∠AP1P=60°,∵△APB≌△AP1C,∴CP1=BP=4,∵CP=5,∴PP12+CP12=CP2,∴△CP1P是直角三角形,∠CP1P=90°,∴∠APB=∠AP1P+∠CP1P=60°+90°=150°;。

旋转中的三种全等模型(手拉手、半角、对角互补模型)—2023-2024学年九年级数学上册(解析版)

旋转中的三种全等模型(手拉手、半角、对角互补模型)—2023-2024学年九年级数学上册(解析版)

旋转中的三类全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BFD。

3)双等腰三角形型条件:△ABC和△DCE均为等腰三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠ACM=∠BFM;④CF平分∠BFD。

4)双正方形形型条件:△ABCFD和△CEFG都是正方形,C为公共点;连接BG,ED交于点N。

结论:①△△BCG≌△DCE;②BG=DE;③∠BCM=∠DNM=90°;④CN平分∠BNE。

【答案】(1)40;(2)60;(3)【分析】(1)证明△COD是等边三角形,得到∠ODC=60°,即可得到答案;∠=∠ADC-∠ODC求出答案;(3)由△BOC≌△ADC,推出∠ADC=∠BOC=150°,AD=OB=8,根据(2)利用ODA△COD 是等边三角形,得到∠ODC=60°,OD=4OC =,证得△AOD 是直角三角形,利用勾股定理求出.【详解】(1)解:∵CO=CD ,∠OCD=60°,∴△COD 是等边三角形;∴∠ODC=60°,∵∠ADC=∠BOC=100α=︒,∴ODA ∠=∠ADC -∠ODC=40°,故答案为:40;(2)∵∠ADC=∠BOC=120α=︒,∴ODA ∠=∠ADC -∠ODC=60°,故答案为:60;(3)解:当150α=︒,即∠BOC=150°,∴△AOD 是直角三角形.∵△BOC ≌△ADC ,∴∠ADC=∠BOC=150°,AD=OB=8,又∵△COD 是等边三角形,∴∠ODC=60°,OD=4OC =,∴∠ADO=90°,即△AOD 是直角三角形,∴OA =故答案为:【点睛】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力. 备用图【答案】(1)△BEF 是等边三角形(2)证明见解析(3)131−【分析】(1)根据旋转即可证明△BEF 是等边三角形;(2)由△EBF 是等边三角形,可得FB=EB ,再证明∠FBA=∠EBC ,又因为AB=BC ,所以可证明△FBA ≌△EBC ,进而可得AF=CE ;(3)当点D ,E ,F 在同一直线上时,过B 作BM ⊥EF 于M ,再在Rt △BMD 中利用勾股定理列方程求解即可.(1)∵将线段EB 绕点E 顺时针旋转60°得到线段EF ,∴EB=EF ,60FEB =︒∠∴△BEF 是等边三角形(2)∵等边△ABC 和△BEF ∴BF=BE ,AB=BC ,60EBF ABC ∠=∠=︒∴EBF ABE ABC ABE ∠+∠=∠+∠即∠FBA=∠EBC∴△FBA ≌△EBC (SAS )∴AF=CE(3)图形如图所示:过B 作BM ⊥EF 于M ,∵△BEF 是等边三角形∴2BE EM =,BM =∵点D 是AB 的中点,∴142BD AB == 在Rt △BMD 中,222BM DM BD +=∵DE=2∴222)(2)4EM ++=解得EM 或EM =(舍去)∴21BE EM == 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理的运用,旋转的性质,等边三角形的判定和性质,解一元二次方程,利用手拉手模型构造全等三角形是解题的关键.例3.(2022·吉林·九年级期末)如图①,在ABC 中,90C ∠=︒,AC BC ==点D ,E 分别在边AC ,BC 上,且CD CE =AD BE =,AD BE ⊥成立.(1)将CDE △绕点C 逆时针旋转90︒时,在图②中补充图形,并直接写出BE 的长度;(2)当CDE △绕点C 逆时针旋转一周的过程中,AD 与BE 的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将CDE △绕点C 逆时针旋转一周的过程中,当A ,D ,E 三点在同一条直线上时,请直接写出AD 的长度.【答案】(1)补充图形见解析;BE =(2)AD BE =,AD BE ⊥仍然成立,证明见解析;(3)1AD或1=AD .【分析】(1)根据旋转作图的方法作图,再根据勾股定理求出BE 的长即可;(2)根据SAS 证明E ACD BC ≅∆∆得AD=BE ,∠1=∠2,再根据∠1+∠3+∠4=90°得∠2∠3+∠4=90°,从而可得出结论;(3)分两种情况,运用勾股定理求解即可.【详解】解:(1)如图所示,根据题意得,点D 在BC 上,∴BCE ∆是直角三角形,且由勾股定理得,BE ==(2)AD BE =,AD BE ⊥仍然成立. 证明:延长AD 交BE 于点H ,∵90ACB DCE ∠=∠=︒,ACD ACB BCD ∠=∠−∠,BCE DCE BCD ∠=∠−∠,∴ACD BCE ∠=∠,又∵CD CE =,AC BC =,∴ACD BCE ≅△△,∴AD BE =,12∠=∠,在Rt ABC 中,13490∠+∠+∠=︒,∴23490∠+∠+∠=︒,∴90AHB ∠=︒,∴AD BE ⊥.(3)①当点D 在AC 上方时,如图1所示,同(2)可得ACD BCE ≅△△∴AD=BE 同理可证BE AE ⊥在Rt △CDE 中,CD CE =2=在Rt △ACB 中,AC BC =AB ==设AD=BE=x ,在Rt △ABE 中,222BE AE AB +=∴222(2)x x ++=解得,1x ∴ 1AD =②当点D 在AC 下方时,如图2所示,同(2)可得ACD BCE ≅△△∴AD=BE 同理可证BE AE ⊥在Rt △CDE 中,CD CE =2=在Rt △ACB 中,AC BC =AB ==设AD=BE=x ,在Rt △ABE 中,222BE AE AB +=∴222(2)x x +−=解得,x = ∴ 1AD .所以,AD 1【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等知识,熟练解答本题的关键.例4.(2022·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B ,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF ∆≅∆得CD=BE ,再证明BDE ∆为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF ∆≅∆得CD=BE ,再证明BDE ∆为直角三角形,由勾股定理可得结论.【详解】解:(1)CD2+DB2=2DF2证明:∵DF=EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF =连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =, CF AB ⊥,即90CFB ∠=︒ ∴45FCB FBC ∠=∠=︒,90CFD DFB ∠+∠=︒又90DFB EFB ∠+∠=︒ ∴CFD EFB ∠=∠在CFD ∆和BFE ∆中CF BF CFD BFE DF EF =⎧⎪∠=∠⎨⎪=⎩ ∴CFD ∆≅BFE ∆∴CD BE =,45EBF FCB ∠=∠=︒ ∴454590DBF EBF ∠+∠=︒+︒=︒ ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接BE∵CF=BF ,DF=EF 又∵∠DFC+∠CFE=∠EFB+∠CFB=90°∴∠DFC=∠EFB ∴△DFC ≌△EFB ∴CD=BE ,∠DCF=∠EBF=135°∵∠EBD=∠EBF -∠FBD=135°-45°=90° 在Rt △DBE 中,BE2+DB2=DE2∵ DE2=2DF2 ∴ CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例5.(2022·山西大同·九年级期中)综合与实践:已知ABC 是等腰三角形,AB AC =.(1)特殊情形:如图1,当DE ∥BC 时,DB ______EC .(填“>”“<”或“=”);(2)发现结论:若将图1中的ADE 绕点A 顺时针旋转α(0180α︒<<︒)到图2所示的位置,则(1)中的结论还成立吗?请说明理由.(3)拓展运用:某学习小组在解答问题:“如图3,点P 是等腰直角三角形ABC 内一点,90BAC ∠=︒,且1BP =,2AP =,3CP =,求BPA ∠的度数”时,小明发现可以利用旋转的知识,将BAP △绕点A 顺时针旋转90°得到CAE V ,连接PE ,构造新图形解决问题.请你根据小明的发现直接写出BPA ∠的度数.【答案】(1)=;(2)成立,理由见解析;(3)∠BPA=135°.【分析】(1)由DE ∥BC ,得到∠ADE=∠B ,∠AED=∠C ,结合AB=AC ,得到DB=EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)由旋转构造出△APB ≌△AEC ,再用勾股定理计算出PE ,然后用勾股定理逆定理判断出△PEC 是直角三角形,在简单计算即可.【详解】解:(1)∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∵AB=AC ,∴∠B=∠C ,∴∠ADE=∠AED AD=AE ,∴DB=EC ,故答案为:=;(2)成立.证明:由①易知AD=AE ,∴由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAB ≌△EAC (SAS ),∴DB=CE ;(3)如图,将△APB 绕点A 旋转90°得△AEC ,连接PE ,∴△APB ≌△AEC ,∴AE=AP=2,EC=BP=1,∠PAE=90°,∴∠AEP=∠APE=45°,在Rt △PAE 中,由勾股定理可得,在△PEC 中,PE2=(2=8,CE2=12=1,PC2=32=9,∵PE2+CE2=PA2,∴△PEC 是直角三角形,∴∠PEC=90°,∴∠AEC=135°,又∵△APB ≌△AEC ,∴∠BPA=∠CEA=135°.【点睛】本题主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.【答案】(1)见解析;(2)48;(3)15︒【分析】(1)通过边角边判定三角形全等;(2)连接,BD GE ,设,BG DE 交于点O ,,DE CG 交于点M ,先证明DE BG ⊥,由勾股定理可得2222DG BE DB GE +=+;(3)作CK GE ⊥于点K ,则122CK GE ==,且1452GCK GCE ∠=∠=︒,由含30度角的直角三角形的性质求解.【详解】(1)四边形ABCE 与CEFG 为正方形,CG CE =,90BCG DCE ∠=∠=︒,90BCG α=∠︒+,90DCE α∠=︒+,BCG DCE ∴∠=∠,在BCG 和DCE △中,BC DC BCG DCECG CE =⎧⎪∠=∠⎨⎪=⎩BCG DCE ∴≌ (SAS), (2)连接,BD GE ,设,BG DE 交于点O ,,DE CG 交于点M ,90BCG α=∠︒+,90DCE α∠=︒+,BCG DCE ∴∠=∠, 在△BCG 和DCE △中,BC DC BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩()SAS BCG DCE ∴△≌,BGC DEC ∠=∠,GMO EMC ∠=∠,18090GOM GMO BGC EMC DEC GCE ∴∠=︒−∠−∠=︒−∠−∠=∠=︒DE BG ∴⊥,由勾股定理得222DG DO GO =+,222BE OB OE =+,22222222DG BE DO GO OB OE DB GE ∴+=+++=+,4,AB CG ==,BD ∴==4GE ==,2222(448DG BE ++∴==,(3)作CK GE ⊥于点K ,如图,△CEG 为等腰直角三角形,122CK GE ==,且1452GCK GCE ∠=∠=︒,在Rt CDK 中,12CK CD =,30CDK ∴∠=︒,903060DCK ∴∠=︒−︒=︒, 604515DCG DCK GCK =∠−∠=︒−︒=︒∠.∴15α=︒.【点睛】本题考查四边形与三角形的综合问题,解题关键是熟练掌握正方形与直角三角形的性质,通过添加辅助线求解.模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④∆AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

小专题(七) 旋转中的计算与证明

小专题(七) 旋转中的计算与证明

,进而得出结论.
1.已知在△ABC 中,AB=AC,D,E 是 BC 边上的点,将△ABD 绕点 A 旋转,得到△ACD′,连接 D′E.
(1)如图 1,当∠BAC=120°时,∠DAE=60°时,求证:DE=D′E;
(2)如图 2,当 DE=D′E 时,∠DAE 与∠BAC 有怎样的数量关系?请写出,并说明理由.
【思路点拨】 将△APC 绕点 A 顺时针旋转 60°,得△ADB.连接 DA,DP,DB,得 AD=AP,DB=PC= 3, ∠DAP=60°.从而可证△ADP 为等边三角形,所以 DP=AP=2,∠DPA=60°.在△DPB 中,利用勾股定理逆定 理可得∠DBP=90°,∠DPB=60°.从而可得∠APB=120°.
小专题(七) 旋转中的计算与证明
类型 1 基于“半角”的旋转 在很多题目中都有这样的题设条件:一个大角中有一个共顶点的小角,小角正好是大角的一半(如例 1).当面
对这样的信息时,往往可以考虑使用旋转变换,并且旋转后,多半还有一对轴对称的全等三角形出现,此时,很 多问题即可迎刃而解了.总结此类问题解题的思路即是:半角信息——带形旋转——轴对称的全等三角形.
参考答案
【例 1】 AE2+BF2=EF2.证明:将△OFB 绕点 O 顺时针旋转 90°,得△OHA.连接 HE,∴OH=OF,AH=BF, ∠BOF=∠AOH,∠HOF=90°.∵四边形 ABCD 是正方形,∴∠DAB=90°,∠AOB=90°.∵∠EOF=45°, ∴∠AOE+∠BOF=∠AOB-∠EOF=90°-45°=45°.∴∠AOE+∠AOH=∠EOH=45°.∴∠EOH=∠EOF. 在△EOH 和△EOF 中,OH=OF,∠EOH=∠EOF,OE=OE,∴△EOH≌△EOF(SAS).∴EF=EH.∵在 Rt△ AEH 中,由勾股定理得 EH2=AH2+AE2,AH=BF,∴AE2+BF2=EF2. 1.(1)证明:∵△ABD 绕点 A 旋转得到△ACD′,∴AD=AD′,∠CAD′=∠BAD.∵∠BAC=120°,∠DAE=60 °,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°.∴∠DAE= ∠D′AE.在△ADE 和△AD′E 中,AD=AD′,∠DAE=∠D′AE,AE=AE,∴△ADE≌△AD′E(SAS).∴DE= D′E. (2)∠DAE= 12∠BAC.理由如下:在△ADE 和△AD′E 中,AD=AD′,AE=AE,DE=D′E,∴△ADE≌△AD′ E(SSS).∴∠DAE=∠D′AE.∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE.∴∠DAE= ∠BAC.12 (3)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°.∴∠D′CE=45°+45°=90°.∵△D′EC 是等 腰直角三角形,∴D′E= 2CD′.由(2)可得 DE=D′E,∵△ABD 绕点 A 旋转得到△ACD′,∴BD=CD′.∴DE= 2 BD. 【例 2】 ∵△ABC 为等边三角形,∴AB=AC,∠BAC=60°.将△APC 绕点 A 顺时针旋转 60°,得△ADB.连 接 DA,DP,DB,得 AD=AP=2,DB=PC= 3,∠DAP=60°.∴△ADP 为等边三角形,所以 DP=AP=2,∠ DPA=60°.在△DPB 中,DB= 3,BP=1,DP=2,∴DP2+BP2=DB2.∴∠DBP=90°,∠DPB=60°.∴∠APB =∠DPB+∠DPA=60°+60°=120°. 2.将△APC 绕点 C 按逆时针旋转 60°,使 CA 移至 CB 处,PC 移到 P′C,PA 移到 P′B.∵∠PCP′=60°,∴△ PCP′是等边三角形.∴∠P′PC=60°,PP′=PC=1.∵∠BPC=150°,∴∠BPP′=90°.在 Rt△BP′P 中,BP =2,PP′=PC=1,由勾股定理得 P′B= 22+1= 5=PA.∴PA= 5. 3.因为△ABC 为等边三角形,△DBC 为等腰三角形,∠BDC=120°,所以以 D 为旋转中心,按顺时针方向将△ DBM 旋转 120°如图,且 N、C、E 三点在同一条直线上.所以 DM=DE,CE=BM,∠BDM=∠CDE.因为 ∠MDN=60°,所以∠BDM+∠NDC=60°.所以∠NDE=60°.在△DMN 和△DEN 中,DM=DE,∠MDN= ∠EDN,DN=DN,所以△DMN≌△DEN.所以 NE=MN.所以△AMN 的周长=AM+MN+AN=AM+NE+AN= AM+NC+CE+AN=AM+NC+MB+AN.即△AMN 的周长=AB+AC.因为 AB=AC=1,故△AMN 的周长为 2.

专题(九) 利用旋转证明或计算课件(人教版)

专题(九) 利用旋转证明或计算课件(人教版)

解:(1)∠ABD=30°-α2 (2)△ABE 是等边三角形.证明:连 接 AD,CD,∠DBC=60°,BD=BC,∴△BDC 是等边三角 形,∠BDC=60°,BD=DC,又∵AB=AC,AD=AD,∴△ ABD≌△ACD,∴∠ADB=∠ADC,∴∠ADB=150°,∵∠ ABE=∠DBC=60°,∴∠ABD=∠EBC,又∵BD=BC,∠ADB =∠ECB=150°,∴△ABD≌△EBC,∴AB=EB,∴△ABE 是等边三角形 (3)∵BDC 是等边三角形,∴∠BCD=60°,∴ ∠DCE=∠BCE-∠BCD=90°,又∵∠DEC=45°,∴CE= CD=BC,∴∠EBC=15°.∵∠EBC=∠ABD=30°-α2,∴α =30°
解:(1)由旋转可知,AB=AF,∠BAM=∠FAN,∠B=∠F= 60°,∴△ABM≌△AFN(ASA),∴AM=AN (2)当旋转角α= 30°时,四边形ABPF是菱形.理由:连接AP,∵∠α=30°, ∴∠FAN=30°,∴∠FAB=120°,∵∠B=60°,∴AF∥BP, ∴∠F=∠FPC=60°,∴∠FPC=∠B=60°,∴AB∥FP,∴四 边形ABPF是平行四边形,∵AB=AF,∴平行四边形ABPF是 菱形
2.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段 BC绕点B逆时针旋转60°得到线段BD. (1)如图①,直接写出∠ABD的大小;(用含α的式子表示) (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状 并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
4.(1)如图①,△ABC 中,BA=BC,D,E 是 AC 边上的两
点,且满足∠DBE=1∠ABC(0°<∠CBE<1∠ABC).以点 B

初中数学辅助线添加技巧:旋转

初中数学辅助线添加技巧:旋转

初中数学辅助线添加技巧:旋转方法总结1.旋转是中考压轴题中常见题型,在解这类题目时,什么时候需要构造旋转,怎么构造旋转.下面,就不同类型的旋转问题,给出构造旋转图形的解题方法:遇中点,旋转180°,构造中心对称; 遇90°,旋90°,造垂直; 遇60°,旋60°,造等边; 遇等腰,旋等腰.综上四点得到旋转的本质特征:等线段,共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旋转全等中的难点实际上是倒角.下面给出旋转常用倒角,只要是旋转,必然存在这两个倒角之一.如图1,若AOB COD ∠=∠,必有AOC BOD ∠=∠,反之亦然. 如图2,若A D ∠=∠,必有B C ∠=∠.图2图1OABCDDCB AO倒角是在初中数学学习中常用的名词,其意思是通过角之间的等量关系,得到我们所需要的角度的关系的过程.典例精析例1.(1)如图1,边长为1的正方形ABCD ,绕点A 逆时针旋转30°到正方形AB'C'D',图中我们阴影部分的面积是( )A.1-BC.1 D .12(2)正方形ABCD 在坐标系中的位置如图2所示,将正方形ABCD 绕点D 顺时针旋转90°后,B 点的坐标为 .图2图1D'C'BA解:(1)A ;(2)(4,0).点拨:本例第2小问是在平面直角坐标系中考查旋转变换的作图,是数形结合的完美体现.首先要确定旋转中心是点D 而不是坐标原点O ,此处易出现错误,然后利用平面直角坐标系的特征确定正方形ABCD 绕点D 旋转90°后B'的位置,这类题型常见于正方形网格中的旋转作图.例2.如图,E 、F 分别是正方形ABCD 的边BC 、DC 上的点,且∠EAF =45°,求证:EF =BE +DF .FED CBA证明:延长CB 到点G ,使得BG =DF ,连接AG .GF ED CBA∵四边形ABCD 是正方形, ∴90,D ABG AB AD ∠=∠=︒=. ∴ADF ABG △≌△. ∴,AF AG DAF BAG =∠=∠. ∵45EAF ∠=︒, ∴45DAF BAE ∠+∠=︒.∴45DAG BAE ∠+∠=︒,即45EAG ∠=︒. ∵AE AE =, ∴AFE AGE △≌△.∴EF EG EB BG BE DF ==+=+.点拨:旋转图形可将分散的条件集中到一个图形中,从而可充分利用已知条件,找到有效的解题方法.这种方法在正方形、正三角形以及其它正多边形中都有着广泛的应用.本题是旋转一个经典模型(半角模型),其中结论较多.例3.如图,以ABC △的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连接EC 交AB 于点H ,连接BG 交CE 于点M ,求证:BG ⊥CE .MH GFEDCBA证明:∵四边ABDE 、ACFG 是正方形, ∴,,90AE AB AC AG EAB GAC ==∠=∠=︒. ∴EAB BAC GAC BAC ∠+∠=∠+∠. ∴EAC GAB ∠=∠. ∴EAC GAB =△△. ∴AEC ABG ∠=∠.∵90,AEC AHE AHE BHM ∠+∠=︒∠=∠, ∴90ABG BHM ∠+∠=︒. ∴90EMB ∠=︒. ∴BG CE ⊥.点拨:本题旋转的基本模型,充分体现了利用旋转全等解题,本题是以ABC △为基本,以其两边分别向外构造正方形,构成旋转全等(其中用到了8字倒角),和其类似的还可以构造正三角形以及正五边形.例4.如图,在等腰ABC △中,,AB AC ABC α=∠=,在四边形BDEC 中,DB =DE ,2BDE α∠=,M 为CE 的中点,连接AM 、DM .M EDCB A(1)在图中画出DEM △关于点M 成中心对称的图形; (2)求证:AM DM ⊥;(3)当α= 时,AM DM =. 解:(1)M FEDCB A(2)在(1)中连接AD 、AF .M FEDCB A由(1)中的中心对称可知,DEM FCM △≌△, ∴,,DE FC BD DM FM DEM FCM ===∠=∠, ∵2BDE α∠=,∴ABD ABC CBD ∠=∠+∠360BDE DEM BCE α=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠.∵360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠. ∵AB AC =, ∴ABD ACF =△△. ∴AD AF =. ∵DM FM =, ∴AM DM ⊥. (3)45α=︒.∵,,AB AC AD AF BAC DAF ==∠=∠, ∴ADF ABC α∠=∠=.若AM DM =,则ADM △为等腰直角三角形,即45ADM ∠=︒, ∴45α=︒点拨:本题中第(1)问已经作出了中心对称图形,所以利用中心对称证全等的思路很清晰.本题的难点是利用周角和四边形的内角和为的有关知识倒角.初中几何常用的倒角是平行线的三线八角、对顶角、等边对等角等.例5.已知:在△ABC 中,BC =a ,AC =b ,以AB 为边作等边三角形ABD . 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a =b =3,且∠ACB =60°,则CD = ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a =b =6,且∠ACB =90°,则CD = ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.D CBAA B CDABCD图1 图2 图3(1)(2)(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.例6.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.ABCDMN AB CD M NN M 图3图2图1D CBA解:(1)=证明:∵AC 平分∠MAN ,∠MAN =120°, ∴∠CAB =∠CAD =60°, ∵∠ABC =∠ADC =90°, ∴∠ACB =∠ACD =30°, ∴12AB AD AC ==, ∴AB +AD =A C . (2)成立.证法一:如图,过点C 分别作AM ,AN 的垂线,垂足分别为E ,F ,ABCD M N F E∵AC 平分∠MAN , ∴CE =CF ,∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, ∴∠CDE =∠ABC , ∵∠CED =∠CFB =90°, ∴△CED ≌△CFB , ∴ED =FB ,∴AB +AD =AF +BF +AE -ED =AF +AE ,由(1)知AF +AE =AC , ∴AB +AD =AC ,证法二:如图,在AN 上截取AG =AC ,连接CG ,AB CD M NG∵∠CAB =60°,AG =AC ,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC , ∴△CBG ≌△CDA , ∴BG =AD ,∴AB +AD =AB +BG =AG =AC ;(3)①证明:由(2)知,ED =BF ,AE =AF ,ABC D M N FE在Rt △AFC 中,cos AFCAF AC∠=, 即cos2AFACα=, ∴cos2AF AC α=,∴AB +AD =AF +BF +AE -ED =AF +AE =2AF 2cos 2AC α=.把α=60°,代入得AB AD +=. ②2cos2α点拨:在第(2)小题中,由题意可知,60BCD ∠=︒,有60°角就可把有关图形旋转60°,所以我们作,CE AM CF AN ⊥⊥的实质,就是将CBF △以顶点C 为旋转中心顺时针旋转了60°,从而构造了全等三角形,使此题有了解题思路.例7.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明; (2)当α=30°时,求证:△AOE 1为直角三角形.AB CDE 1F 1O FE 图2图1O DC BA解:(1)AE 1=BF 1.证明:∵O 为正方形ABCD 的中心, ∴OA =OD ,∵OF =2OA ,OE =2OD , ∴OE =OF ,∵将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1 ∴OE 1=OF 1,∵∠F 1OB =∠E 1OA ,OA =OB , ∴△E 1AO ≌△F 1BO , ∴AE 1=BF 1;(2)证明:取OE 1中点G ,连接AG ,ABCDE 1F 1O G∵∠AOD =90°,α=30°, ∴∠E 1OA =90°-α=60°, ∵OE 1=2OA , ∴OA =OG ,∴∠E 1OA =∠AGO =∠OAG =60°,∴AG =GE 1,∴∠GAE 1=∠GE 1A =30°, ∴∠E 1AO =90°,∴△AOE 1为直角三角形.例8.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点.D'C'MFE DCBA(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD')与AB 交于一点E ,MC 即MC')同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQ D'C'M FE DCBA∵∠C =∠B =60°∴12CP BQ AB ==,CP +BQ =AB 又∵ADPQ 是矩形,AD =PQ ,故BC =2AD , 由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°,故△MDC 是等边三角形. (2)解:△AEF 的周长存在最小值,理由如下:连接AM ,由(1)平行四边形ABMD 是菱形,△MAB ,△MAD 和△MC'D'是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ).在△BME 与△AMF 中,BM =AM , ∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ).∴BE =AF , ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF . ∵MF 的最小值为点M 到ADEFAEF 的周长=AE +AF +EF =AB +EF , △AEF的周长的最小值为2. 跟踪训练1.如图,在△ABC 中,AB =AC ,90BAC ∠=︒,点D 是BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论.CBA2.如图,P 是等边△ABC 内一点,若AP =3,PB =4,PC =5,求APB ∠的度数.PCBA3.如图1,在ABCD □中,AE BC ⊥于点E ,E 恰为BC 的中点,tan 2B =.(1)求证:AD AE =;(2)如图2,点P 在线段BE 上,作EF DP ⊥于点F ,连结AF .求证:DF EF -=;(3)请你在图3中画图探究:当P 为线段EC 上任意一点(P 不与点E 重合)时,作EF 垂直直线DP ,垂足为点F ,连结AF .线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EDCBA图2PF ABCDE图3ABCDE4.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连接E ′D ,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,直接写出你的猜想; (2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE =30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图3图2图1CE ADBCE AD BEDCBA5.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6.在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连接EC ,取EC 的中点M ,连接DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,探索BM 、DM 的关系并给予证明;(2)如果将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCG PAB EF图2DAB EF CPG图1图2图1AEBMD CMEDB CA7.已知正方形ABCD 和等腰Rt △BEF ,EF =BE ,∠BEF =90°,按图1旋转,使点F 在BC 上,取DF 中点G ,连接EG 、CG .(1)探索EG 、CG 的关系,并说明理由;(2)将图1中△BEF 绕点B 顺时针旋转45°得图2,连接DF ,取DF 的中点G .问(1)中的结论是否成立?并说明理由.(3)将图1中△BEF 绕点B 转动任意度数(旋转角在0到90°之间)得图3,连接DF ,取DF 的中点G ,问(1)中的结论是否成立,请说明理由.图3BF DC GEABFDCGE AG F图2图1E DBCA中考前瞻将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111A B C D ,如图1所示. (1)当45α=︒时,如图2,若线段OA 与边11A D 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立①EOP FOP △≌△,②1PA PA =,试选择一个证明;(2)当090α︒<<︒时,第(1)小题的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程,记正方形1111A B C D 与AB 边交于P 、Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ 的度数.PQ PD 1AA 1BB 1CC 1DD 1C 1B 1A 1F E F图2图1EDBCA。

解题技巧专题:巧用旋转进行计算或证明

解题技巧专题:巧用旋转进行计算或证明

解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。

初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题

初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。

本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。

旋转是指一个图形绕着某一点转动一定的角度。

在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。

旋转的角度一般用角度或者弧度来表示。

中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。

绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。

旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。

旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。

旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。

旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。

例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。

求证:EF平分∠AEB。

证明:我们可以通过旋转证明。

把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。

因为CF=2AF,所以FG=2FE。

所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。

例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。

求证:EF^2=AE^2+BF^2。

证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。

专题04 几何证明之三角形中的旋转综合问题(解析版)

专题04 几何证明之三角形中的旋转综合问题(解析版)

专题04 几何证明之三角形中的旋转综合问题1、如图,点P是∠MON内的一点,过点P作PA⊥OM于点A,PB⊥ON于点B,且OA=OB.(1)求证:PA=PB;(2)如图②,点C是射线AM上一点,点D是线段OB上一点,且∠CPD+∠MON=180°,若OC=8,OD=5.求线段OA的长.(3)如图③,若∠MON=60°,将PB绕点P以每秒2°的速度顺时针旋转,12秒后,PA开始绕点P以每秒10°的速度顺时针旋转,PA旋转270°后停止,此时PB也随之停止旋转.旋转过程中,PA所在直线与OM所在直线的交点记为G,PB所在直线与ON所在直线的交点记为H.问PB旋转几秒时,PG=PH?(1)证明:如图①中,连接OP.∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°,∵OA=OB,OP=OP,∴Rt△OPA≌Rt△OPB(HL),∴PA=PB.(2)如图②中,∵∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠CPD+∠AOB=180°,∴∠CPD=∠APB,∴∠APC=∠BPD,∵PA=PB,∠PAC=∠PBD=90°,∴△PAC≌△PBD(ASA),∴AC=BD,∴OC+OD=OA+AC+OB﹣BD=2OA=13,∴OA=6.5.(3)设点P的旋转时间为t秒.①当0<t<12时,不存在.②当12≤t<21时,如图3﹣1中,∠APG=(10t﹣120)°,∠BPH=2t°,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣120=2t,t=15.③当21≤t<30时,如图3﹣2中,∠APG=180°﹣∠APA′=180°﹣(10t﹣120)°=(300﹣10t)°,∠BPH =2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时300﹣10t=2t,t=25.④当30≤t<39时,如图3﹣3中,∠APG=(10t﹣300)°,∠BPH=2t,当∠APG=∠BPH时,△PAG≌△PBH,可得PG=PH,此时10t﹣300=2t,t=37.5,综上所述,满足条件的t的值为15s或25s或37.5s.2、(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.3、已知在平面直角坐标系中,A(a,0),B(b,0)、C(0,c),其中a、b、c满足=0.(1)求△ABC的面积;(2)将线段BC向右平移至AD(点B对应点A,点C对应点D).①当点M为x轴上任意点(不与原点重合),ME、CF分别平分∠CMO与∠DCM,若∠AME=α,∠DCF=β,试用含α的代数式表示β;②点P为线段CD上一点(不与点C、D重合),P的横坐标为t,连接BP、AC,BP交y轴于点E,交AC于点Q,若△CQE与△PQA的面积分别为S1,S2,试用含t的代数式表示S2﹣S1.解:(1)如图1中,∵=0,又∵≥0,|b+2|≥0,(c﹣4)2≥0,∴a=5,b=﹣2,c=4,∴A(5,0),B(﹣2,0),C(0,4),∴OA=5,OB=2,OC=4,∴AB=OB+OA=2+5=7,∴S△ABC=•AB•OC=×7×4=14.(2)①如图2﹣1中,当点E在射线OB上时,α+β=90°理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∵∠DCF=∠DCM=β,∠AME=∠AMC=α,∴α+β=90°.当点M在线段AB上时,如图2﹣2中,α+β=180°.理由:∵CD∥AM,∴∠DCM+∠AMC=180°,∠DCM=∠CMB,∵∠DCM=2∠DCF=2β,∠FCM=∠DCM,∠EMC=∠CMB,∴∠FCM=∠EMC=β,∴∠AMC=180°﹣2β,∵∠AME=∠AMC+∠EMC,∴α=β+180°﹣2β,∴α+β=180°.当点M在线段OA的延长线上时,如图2﹣3中,α=β.理由::∵CD∥AM,∴∠DCM=∠CMB,∵∠DCF=∠DCM,∠AME=∠CMB,∴∠DCF=∠AME,∴α=β.②如图3中,设E(0,m).由题意:P(t,4),A(5,0),B(﹣2,0),C(0,4),∴S△BCP=S△BCE+S△ECP,∴×t×4=×(4﹣m)×2+×(4﹣m)×t,∴m=,∴S2﹣S1=S△PCA﹣S△PCE′=×t×4﹣×t×(4﹣)=.4、如图,在平面直角坐标系中,O为原点,点A(0,4),B(﹣4,0),C(4,0).(Ⅰ)如图①,若∠BAD=15°,AD=3,求点D的坐标;(Ⅱ)如图②,AD=2,将△ABD绕点A逆时针方向旋转得到△ACE,点B,D的对应点分别为C,E.连接DE,BD的延长线与CE相交于点F.①求DE的长;②证明:BF⊥CE.(Ⅲ)如图③,将(Ⅱ)中的△ADE绕点A在平面内旋转一周,在旋转过程中点D,E的对应点分别为D1,E1,点N,P分别为D1E1,D1C的中点,请直接写出△OPN面积S的变化范围.解:(Ⅰ)∵OA=OB=4,∠AOB=90°,∴∠OAB=∠ABO=45°.∴∠DAO=∠OAB﹣∠DAB=30°.如图①中,过点D作DG⊥OA,垂足为G.在Rt△ADG中,∠DAG=30°,∴,,∴,∴点D的坐标为.(Ⅱ)①如图②中,∵∠DAE=∠BAC=90°,AD=AE=2,∴在Rt△DAE中,,②∵OA=OB=OC=4,∠AOB=∠AOC=90°,∴∠OAB=∠ABO=∠ACO=∠OAC=45°,∴∠BAC=90°,∵△ABD旋转得到△ACE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△BFC中,则有∠FBC+∠FCB=∠FBC+∠BCA+∠ACE=∠FBC+∠BCA+∠ABD=∠ABC+∠BCA=90°,∴BF⊥CE.(Ⅲ)如图③中,∵OB=OC,PC=PD1,NE1=ND1,∴OP=BD1,PN=E1C,OP∥BD1,PN∥CE1∵BD1⊥E1C,BD1=E1C,∴OP⊥PN,OP=PN,∴△OPN是等腰直角三角形,∵AB=4,AD1=2,∴4﹣2≤BD1≤4+2,∴2﹣1≤OP≤2+1,∴△OPN面积的最小值=(2﹣1)2=﹣2,△OPN的面积的最大值=+2,∴.5、问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.6、已知△ABC是等边三角形,D是BC上一点,△ABD绕点A逆时针旋转到△ACE的位置.(1)如图,旋转中心是,∠DAE=°;(2)如图,如果M是AB的中点,那么经过上述旋转后,点M转动了度;(3)如果点D为BC边上的三等分点,且△ABD的面积为3,那么四边形ADCE的面积为.解:(1)∵△ABC为等边三角形,∴∠BAC=60°∵△ABD绕点A逆时针旋转到△ACE的位置,∴旋转中心是点A,∠DAE=∠BAC=60°;(2)∵AB和AC为对应边,∴经过上述旋转后,点M转到了AC的中点位置,如图,∴∠MAM′=60°,∴点M转动了60°;(3)∵△ABD绕点A逆时针旋转到△ACE的位置,∴△ABD≌△ACE,∵BD=BC,或BD=BC,∴CD=2BD,或CD=BD,∴S△ABC=3S△ABD=3×3=9,或S△ABC=S△ABD=3×=,∴S=S△ABC=9或.四边形ADCE故答案为点A,60;60;9或.7、如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN=2+5=7,最大∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.8、如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若AC=BC=13,DE=10,当A、E、D三点在直线上时,请直接写出AD的长.解:(1)如图1中,延长AE交BD于H.∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为AE=BD,AE⊥BD.(2)结论:AE=BD,AE⊥BD.理由:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,∵AC=CB,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD.(3)①当射线AD在直线AC的上方时,作CH⊥AD用H.∵CE=CD,∠ECD=90°,CH⊥DE,∴EH=DH,CH=DE=5,在Rt△ACH中,∵AC=13,CH=5,∴AH==12,∴AD=AH+DH=12+5=17.②当射线AD在直线AC的下方时时,作CH⊥AD用H.同法可得:AH=12,故AD=AH﹣DH=12﹣5=7,综上所述,满足条件的AD的值为17或7.9、如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.(1)问题发现当α=0°时,=;β=°.(2)拓展探究试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.解:(1)如图1中,∵∠B=90°,BA=BC,∴∠A=45°,AC=AB,∵点D、E分别是边AB、AC的中点,∴BD=AB,EC=AC,∴=,β=45°,故答案为,45°.(2)结论:和β的大小无变化.理由:如图2中,延长CE交AB于点O,交BD于K.∵AE=AD,AC=AB,∴==,∴=,∵∠DAE=∠BAC,∴∠DAB=∠EAC,∴△DAB∽△EAC,∴==,∠OBK=∠OCA,∵∠BOK=∠COA,∠BKO=∠CAO=45°,∴和β的大小无变化.(3)当点E在线段AB上时,S△BCE=×4×(4﹣2)=8﹣4,当点E在线段BA的延长线上时,S△BCE=×4×(4+2)=8+4.综上所述,△BCE的面积为8﹣4或8+4.10、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个.(回答直接写序号)①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)(2)若AB=6,AD=3,把△ADE绕点A旋转:①当∠CAE=90°时,求PB的长;②直接写出旋转过程中线段PB长的最大值和最小值.(1)解:如图甲:①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∴①正确.②∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠AFB=90°,∴∠ACE+∠AFB=90°.∵∠DFC=∠AFB,∴∠ACE+∠DFC=90°,∴∠FDC=90°.∴BD⊥CE,∴②正确.③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,∴③正确.④∵BD⊥CE,∴BE2=BD2+DE2,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2,∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2),∴④错误.故答案为①②③.(2)①解:a、如图乙﹣1中,当点E在AB上时,BE=AB﹣AE=3.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=.b、如图乙﹣2中,当点E在BA延长线上时,BE=9.∵∠EAC=90°,∴CE===3,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=.综上,PB=或.②解:a、如图乙﹣3中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=2,∴PB=BD+PD=3+3.综上所述,PB长的最大值是3+3.b、如图乙﹣4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===3,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=3,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=4,∴PB=BD﹣PD=3﹣3.综上所述,PB长的最小值是3﹣3.11、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是.解:(1)如图1中,连接EC,BD.结论:BD=CE.理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS).∴BD=CE.(2)如图2中,由题意:∠CAE=45°,∵AC=AB,∠CAB=90°,∴∠ACB=∠ABC=45°,∴AE∥BC.∴△CBE的面积与△ABC的面积相等.∵△ABC的面积为4.5,∴△CBE的面积4.5.(3)如图3中,延长AM到N,使得MN=AM,连接CN,DM.∵AM=MN,CM=MD,∴四边形ADNC是平行四边形,∴AD=CN=1,∵AC=3,∴3﹣1≤AN≤3+1,∴2≤2AM≤4,∴1≤AM≤2,∴AM的最小值为1.故答案为1.12、综合与实践问题情境数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题(1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;探索发现(3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;(4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)解:(1)如图①中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)如图②中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC.(3)如图③中,作CH⊥AD于H.∵∴AC=CD=AB=2,∵B,A,E共线,∴∠BAC+∠EAC=180°,∴∠EAC=120°,∵∠EDC=60°,∴∠EAC+∠EDC=180°,∴A,E,D,C四点共圆,∴∠CAD=∠CED=30°,∠BAD=90°,∵CA=CD,CH⊥AD,∴AH=DH=AC•cos30°=,∴AD=2,∴BD===2.(4)如图①中,设DE交BC于T.因为含有30°的直角三角形的三边之比为1::2,由(1)可知△BDT,△DCT,△ECT都是含有30°的直角三角形,∴△BDT,△DCT,△ECT符合条件.。

几何中的旋转问题

几何中的旋转问题

熟练运用旋转解决平面几何中的问题平面几何的证题方法多种多样.利用旋转来解决平面几何问题,有时能收到事半功倍的效果.例图1中以△ABC的边AB、AC为一边向外作正方形ABDE及正方形ACFG,连结BG、CE.求证:(1)BG=CE;(2)BG⊥CE.分析:一般的证法是证明△ABG与△AEC全等,然后应用全等三角形的性质。

而如果采用旋转,则可以如下证明:由已知可知,点E绕点A逆时针旋转90°为点B,点C绕点A 逆时针旋转90°为点G,从而知线段EC绕点A逆时针旋转90°为线段BG,故有BG=CE,BG ⊥CE.本文将从最常见的两种旋转出发,谈谈旋转在平面几何中的应用。

一、按旋转的角度进行区分1、90°角旋转例1 如图2,E、F分别是边长为1的正方形ABCD的BC、CD—上的点,且△CEF的周长是2.求∠EAF的大小。

解:将△ABE绕点A作逆时针旋转90°,则AB边与AD边重合,设旋转后E→E′,由条件△CEF的周长为2,即CE+EF+CF=2,又BE+CE+CF+ DF=2,且显然有BE=DE′,故CE+ CF+FE′=2.从而必有EF=FE′,又AE= AE′,AF=AF,故△AEF≌△AE'F,∴∠EAF=E'AF,又从作图知∠EAE′=90°,故∠EAF=45°。

例2(北京东城2010年上学期期末)如图,P 为正方形ABCD 内一点,若PA =1,PB =2,PC =3 ,求:(1)∠APB 的度数;(2)正方形ABCD 的面积.分析:三条已知的线段PA 、PB 、PC 具有一个共公顶点,且它们不能构成三角形.但是当把△ABP 按顺时针方向旋转90°后,即会出现等腰直角三角形,于是PA 旋转后的线段与PC 构成了一个新的三角形.解:(1)将△ABP 绕点B 顺时针方向旋转90°得△CBQ . 则△ABP ≌ △CBQ 且PB ⊥QB .于是PB =QB =2a ,PQ =22PB QB =22a . 在△PQC 中,∵PC 2=9a 2,PQ 2+QC 2=9a 2. ∴PC 2=PQ 2+QC 2. ∴∠PQC =90°. ∵△PBQ 是等腰直角三角形, ∴∠BPQ =∠BQP =45°.故∠APB =∠CQB =90°+45°=135°.(2)∵∠APQ =∠APB +∠BPQ =135°+45°=180°, ∴三点A 、P 、Q 在同一直线上.在Rt △AQC 中,AC 2=AQ 2+QC 2=(a +22a )2+a 2=(10+42)a 2.故S 正方形ABCD =12AC 2=(5+22)a 2. 思考 例2中,如果把△CBP 绕点B 逆时针方向旋转90°得△ABM ,怎样解以上问题?(答: (1)△PBM 是等腰直角三角形, 且由勾股定理的逆定理得∠APM =90°;(2)过点B 作BN ⊥AP ,垂足为N .则PN =BN =2a ,于是在△ABN 中可求出边长AB 的平方,即得正方形的面积.)2、60°角旋转.例1 如图3,分别以△ABC的边AB、AC为一边向外作等边三角形ABD及等边三角形ACE。

罗德里格斯旋转公式的证明及应用

罗德里格斯旋转公式的证明及应用

第28期2020年10月No.28October ,2020罗德里格斯旋转公式的证明及应用江苏科技信息Jiangsu Science &Technology Information刘锋(湖南工学院,湖南衡阳421002)摘要:文章从罗德里格斯公式在旋转矩阵的轴角表示法、指数表示法及刚体螺旋运动中不同表示形式的推导过程,揭示了它是一个计算刚体绕任意轴旋转的旋转矩阵的有效方法,从而为研究机器人的运动学提供了方便。

关键词:罗德里格斯公式;轴角表示法;指数表示法;螺旋运动中图分类号:O29文献标志码:A 作者简介:刘锋(1980—),男,湖北十堰人,助教,学士;研究方向:应用数学。

引言在刚体旋转问题中,有很多不同的方式表示刚体旋转后的姿态,例如旋转矩阵、欧拉角、四元数和轴角表示法。

其中轴角表示法中只要知道旋转轴和旋转角就可写出刚体的姿态矩阵。

轴角表示法来源于欧拉定理:刚体作定点运动的任何位移都可以通过绕固定点的某个轴的一次转动实现。

欧拉定理等价于旋转矩阵有等于1的特征值,其对应特征向量x 就是表示旋转轴的方向。

1轴角表示法和罗德里格斯公式假设刚体坐标系为B (Oxyz )绕单位向量ω 所表示的轴旋转θ角,可以推导出其对应的旋转矩阵。

首先假设刚体坐标系B 的z 轴与ω 所表示的任意轴重合,然后B 坐标系绕参考坐标系A (OXYZ )的Z 轴旋转-α角使z 轴在XOY 平面的投影与X 轴重合,然后再绕-β角,使z 轴和Z 轴重合,接着绕Z 轴旋转θ角,最后为了使z 重新回到与ω 轴重合的位置,可以绕Y 轴旋转β角和绕Z 轴旋转β角[1],如图1所示。

因为3次旋转都是绕固定轴旋转的,由基本旋转矩阵可得:R ()ω ,θ=R ()Z ,αR ()Y ,βR ()Z ,θR ()Y ,-βR ()Z ,-α(1)若ω =ωx i+ωy j +ωz k ,则:sin α=ω+ωα=sin β=ω2x +ω2y β=zsin αsin β=ωy ,sin αsin β=ωx(2)由公式(1)和(2)可得:R ()ω ,θ=æèçççöø÷÷÷ω2x (1-cos θ)+cos θωx ωy (1-cos θ)-ωz sin θωx ωz (1-cos θ)+ωy sin θωx ωy (1-cos θ)+ωz sin θω2y (1-cos θ)+cos θωy ωz (1-cos θ)-ωx sin θωx ωz (1-cos θ)-ωy sin θωy ωz (1-cos θ)+ωx sin θω2z (1-cos θ)+cos θ此矩阵可以分解为:R ()ω ,θ=cos θæèççöø÷÷100010001+(1-cos θ)æèççöø÷÷ωx ωy ωz(ωxωy ωz )+s in θæèççççöø÷÷÷÷0-ωz ωy ωz 0-ωx -ωy ωx 0即:R ()ω ,θ=E cos θ+ω ω T (1-cos θ)+S (ω )sin θ[2]其中S (ω )是由ω 生成的反对称矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
C
D
B
10.∆ABC绕C(-1,0)旋转1800后得∆A'B'C',若 A(a,b)则A'坐标为?用ab表示
A
B C B'
A'
A B
C
3、(1)正方形ABCD中,∠MAN=45°,探求线段MN BM、DN之间的数量关系。 (2) 若正方形的边长为1,△CMN周长为2,求 证: ∠MAN=45° A D A D
N
N'
N
B M C
B
M
C
(3)将∠MAN绕点A顺时针旋转,使点M、 N分别落在射线CB、DC上,猜想:线段 MN、BM、DN之间的数量关系。 A D
D C
A
F B
G
7.Rt∆ABC中,四边形DECF为正方形,当 AD=5,BD=6时,设∆ADE ∆BDF的面积 分别为S1S2 求S1+S2
A
D
E
C A' F
B
8.将三角板ABC逆时针旋转150到∆AB'C',其中 AC=1.求重叠部分的面积。
A
C C'
C'
D B
B'
9.Rt∆ABC中∠C=900 ∠B=500 D在BC上 BD=2DC将线段DB绕D旋转,使B落在 ∆ABC边上时的旋转角为?
N'
M
B
C N
4、两块等腰三角板如图放置,探求线段AM、 MN、BN之间的关系。
C N' A M N
B
5、两块等腰三角板如图放置,其中点D为AB 中点(1)AM与CN数量关系如何? (2)四边形MDNC面积如何变化? (3)MN、AM、BN之间的数量关系如何?
C M A N
D
B

6.四边形ABCD中,AD//BC, ∠C=900 AD=5 BC=9,以A为中心将AB逆时针旋转900 至AE,连 E DE,求∆ADE的面积
旋转的计算与证明
1、如图,正方形ABCD和正方形CEFG,图中是否 存在通过旋转能互相重合的三角形? 将正方形CEFG绕点C逆时针旋转,在旋转的过程 中,能否找到一条线段的长始终与DE相等?
A G B C D F E B C
A
D G F
E
2、P为正三角形内任意一点。求证:以AP、 BP、CP为边可以构成一个三角形。 若PA=3,PB=4,PC=5,求∠APB的度数。
相关文档
最新文档