最新人版2015-2016年七年级下期末考试数学试题及答案

合集下载

2015-2016年七年级数学期末试卷及答案

2015-2016年七年级数学期末试卷及答案

七年级期末质量监测数学答案
一、 选择题
二、 填空题
、 ; 、—31; 、 ; 、 ; 、 2
5
; 、 °; 、 ;

三、计算题
.解:( )原式 ( ) ( ) ( )
( )
( )原式 ( )
( )解:去括号得:
移项得: 合并同类项得: 系数化为 得:
( )解: 去分母得: ( ) ( )
去括号得:
移项得:
合并同类项得:
系数化为 得:
解:原式
( ) (

当 ,
时, 原式 ( )
( )如图: 如图
∴ 射线 为所求
( )或
、解∵
又∵

∵点 、 是 、 的中点
∴ ∵

、解:设共需 天,根据题意得:
( )
解这个方程:
答:共需 天
、解:( )∵ ,
又∵



∵ 平分


解:( )用方案一返现为: 元
用方案二返现为:( ) 元 (元)
∴选择方案二划算,能便宜 元。

( )根据题意得:当 时,
解得:
∴当总件数不足 件,即 时,选方案一划算
当 时,
∴当 时,方案一返现为: · ( )·
( )
方案二返现为:·
∵( )( )
∴方案二划算。

当 时, 商品选方案一, 商品选方案二,此时返现为:
· ( )· 综上所述:当 时,选方案一划算
当 时选方案二划算
当 时, 商品选方案一, 商品选方案二划算。

人教版2015-2016学年七年级下册期末考试数学试卷(含答案)

人教版2015-2016学年七年级下册期末考试数学试卷(含答案)

2015-2016学年下学期初中七年级期末考试数学试卷一、精心选一选(本题共10小题,每小题3分,共30分) 1.19的平方根是 A.13B. 13±C. 13-D. 181± 2. 下列调查中,适合用全面调查方式的是A. 了解某班学生“50米跑”的成绩B. 了解一批灯泡的使用寿命C. 了解一批袋装食品是否含有防腐剂D. 了解一批炮弹的杀伤半径 3. 点(-2,1)在平面直角坐标系中所在的象限是 A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知a<b ,则下列不等式一定成立的是 A. 55a b +>+ B. 22a b -<- C.3322a b >D. 770a b -<5. 将点A(2,1)向左..平移2个单位长度得到点A',则点A'的坐标是 A. (2,3)B. (2,-1)C. (4,1)D. (0,1)6. 若下列各组值代表线段的长度,则不能构成三角形的是 A. 3,8 ,4 B. 4,9,6C. 15,20,8D. 9,15,87. 如图,下列条件中,不能判断直线1l ∥2l 的是A. ∠2=∠3B. ∠1=∠3C. ∠4=∠5D. ∠2+∠4 =180°8. 估算19的值是在 A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间9. 若不等式组12x x k<≤⎧⎨>⎩无解,则k 的取值范围是A. k ≤2B. k<1C. k ≥2D. 1≤k<210. 如图,三边均不等长的锐角△ABC,若在此三角形内找一点O,使得△OAB、△OBC、△OCA的面积均相等. 下列作法中正确的是A. 作中线AD,再取AD的中点OB. 分别作AB、BC的高线,再取此两高线的交点OC. 分别作中线AD、BE,再取此两中线的交点OD. 分别作∠A、∠B的角平分线,再取此两角平分线的交点O二、认真填一填(本题共8小题,每小题2分,共16分)11. 在实数227,0.13∙,π,49-,7-,1.131131113……(每两个3之间依次多一个1)中,无理数的个数是___________个.12. 已知在平面直角坐标系中,点P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为__________.13. 不等式31122xx-+≥的非负整数解.....是_______________.14. 如图所示,直线AB与CD相交于点O,已知∠1=30°,OE是∠BOC的平分线,则∠2=_____________,∠3=___________________.15. 一个多边型的每一个外角都等于18°,它是__________边形.16. 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=___°17. 一副三角板如图所示叠放在一起,则图中∠α的度数是________________.18. 如图,在第1个△ABA 1中,∠B=20°,∠BAA 1=∠BA 1A ,在A 1B 上取一点C ,延长AA 1到A 2,使得在第2个△A 1CA 2中,∠A 1CA 2=∠A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得在第3个△A 2DA 3中,∠A 2DA 3=∠A 2A 3D ;……,按此做法进行下去,第三个三角形中,以A 3为顶点的内角的度数为_________;第n 个三角形中以A n 为顶点的内角的度数为_____________.三、仔细算一算(本题共2小题,每小题5分,共10分) 19. 计算234492712(1)3-+-+-.20. 解不等式组3(2)42113x x x x --<⎧⎪+⎨≥-⎪⎩,并把解集在数轴上表示出来.四、积极想一想(本题共8小题,共44分) 21.(本小题4分)按图填空,并注明理由. 已知:如图,∠1=∠2,∠3=∠E. 求证:AD ∥BE.证明:∵∠1=∠2(已知)∴_______________∥__________________().∴∠E=∠_______________。

河北省保定市七年级数学下学期期末试卷(含解析) 新人教版-新人教版初中七年级全册数学试题

河北省保定市七年级数学下学期期末试卷(含解析) 新人教版-新人教版初中七年级全册数学试题

2015-2016学年某某省某某市七年级(下)期末数学试卷一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣12.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20° B.30° C.40° D.50°3.2的平方根是()A.±B.±4 C.D.44.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣5.﹣是的()A.绝对值B.相反数C.倒数 D.算术平方根6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠47.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.88.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客 D.正在荡秋千的小明9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30° B.40° C.50° D.60°11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2016的值等于()A.﹣1 B.1 C.52016D.﹣5201612.在下列各式中,正确的是()A. =±2 B. =﹣0.2 C. =﹣2 D.(﹣)2+()3=013.不等式x<2的解集在数轴上表示为()A.B.C.D.14.若关于x的一元一次的不等式组有解,则m的取值X围是()A.m>B.m C.m>1 D.m≤115.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是,最小的值是.在画频数分布直方图时,如果设组距为1.5,则应分成组.三、解答题21.(10分)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.22.(10分)解方程组或不等式组①;②.23.(10分)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.24.(12分)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?25.(12分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是,明年年底电动车的数量是万辆.(用含x的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)26.(12分)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:次数60≤x<90 90≤x<120 120≤x<150 150≤x<180 180≤x<210 频数16 25 9 7 3(1)全班有多少同学?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180X围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.2015-2016学年某某省某某市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣1【考点】实数.【分析】根据小于零的数是负数,可得答案.【解答】解:由于﹣1<0,所以﹣1为负数.故选D.【点评】本题考查了实数,小于零的数是负数.2.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20° B.30° C.40° D.50°【考点】垂线.【分析】根据OA⊥OB,可知∠BOC和∠AOC互余,即可求出∠BOC的度数.【解答】解:∵AO⊥OB,∴∠AOB=90°.又∵∠AOC=50°,∴∠BOC=90°﹣∠AOC=40°.故选C.【点评】本题考查了垂线,余角的知识.要注意领会由垂直得直角这一要点.3.2的平方根是()A.±B.±4 C.D.4【考点】平方根.【分析】依据平方根的性质求解即可.【解答】解:2的平方根是±.故选:A.【点评】本题主要考查的是平方根的性质,掌握平方根的性质是解题的关键.4.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣【考点】实数与数轴.【分析】根据数轴得:点P表示的数大于﹣1且小于﹣2,<﹣2,B、﹣2<﹣<﹣1,C、>1,D、﹣<﹣2.【解答】解:由数轴可知:点P在﹣2和﹣1之间,即点P表示的数大于﹣1且小于﹣2,故选B.【点评】本题考查了实数和数轴,实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.5.﹣是的()A.绝对值B.相反数C.倒数 D.算术平方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣是的相反数,故选:B.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠4【考点】同位角、内错角、同旁内角.【分析】根据图象可以得到各个角与∠1分别是什么关系,从而可以解答本题.【解答】解:由图可知,∠1与∠5是同旁内角、∠2与∠5没有直接关系,∠3与∠5是内错角、∠4与∠5是邻补角,故选A.【点评】本题考查同位角、内错角、同旁内角,解题的关键是明确题意,利用数形结合的思想解答.7.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】先找出与60最为接近的两个完全平方数,然后分别求得它们的算术平方根,从而可求得n的值.【解答】解:∵49<60<64,∴7<<8.∴n=7.故选:C.【点评】本题主要考查的是估算无理数的大小,明确被开放数越大,对应的算术平方根也越大是解题的关键.8.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客 D.正在荡秋千的小明【考点】生活中的平移现象.【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,可得答案.【解答】解:根据平移的性质,D正在荡秋千的小明,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻折.9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角【考点】命题与定理.【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,不是,因为可以判定这是个假命题;B,不是,因为可以判定其是假命题;C,是,因为可以判定其是真命题;D,不是,因为可以判定其是假命题;故选C.【点评】此题主要考查学生对命题的理解及运用,难度较小,属于基础题.10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】两直线平行,内错角相等.根据平行线的性质进行计算.【解答】解:∵AB∥CD,∴∠B=∠C,又∵∠C=30°,∴∠B的度数是30°,故选(A).【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2016的值等于()A.﹣1 B.1 C.52016D.﹣52016【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解答】解:∵|a+b+5|+(2a﹣b+1)2=0,∴,解得,∴(a﹣b)2016=1.故选B.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,每一项必为0是解答此题的关键.12.在下列各式中,正确的是()A. =±2 B. =﹣0.2 C. =﹣2 D.(﹣)2+()3=0【考点】立方根;算术平方根.【分析】分别利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=2,故此选项错误;B、无法化简,故此选项错误;C、=﹣2,正确;D、(﹣)2+()3=4,故此选项错误.故选:C.【点评】此题主要考查了立方根以及算术平方根,正确把握定义是解题关键.13.不等式x<2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示方法可画出图形.【解答】解:不等式x<2的解集在数轴上表示方法应该是:2处是空心的圆点,向左画线.故应选B.【点评】本题考查在数轴上表示不等式的解集,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.14.若关于x的一元一次的不等式组有解,则m的取值X围是()A.m>B.m C.m>1 D.m≤1【考点】不等式的解集.【分析】根据不等式有解,可得关于m的不等式,根据解不等式,可得答案.【解答】解:解不等式组,得3﹣m<x<2m.由题意,得3﹣m<2m,解得m>1,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,然后解答即可.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,∴a﹣2<0,∴点N(b,a﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查市场上某灯泡的质量情况适宜采用抽样调查方式;调查某市市民对伦敦奥运会吉祥物的知晓率适宜采用抽样调查方式;调查某品牌圆珠笔的使用寿命适宜采用抽样调查方式;调查乘坐飞机的旅客是否携带了违禁物品适宜采用全面调查方式,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是0,1 .【考点】一元一次不等式的整数解.【分析】求出不等式2x+1>3x﹣2的解集,再求其非负整数解.【解答】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣10,系数化为1得,x<2.故其非负整数解为:0,1.【点评】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是(4,2).【考点】坐标与图形变化-平移.【分析】根据点的坐标平移规律求解.【解答】解:点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,则所得到的对应点的坐标为(4,2)故答案为(4,2).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是同位角相等,两直线平行.【考点】作图—复杂作图;平行线的判定.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是54 ,最小的值是48 .在画频数分布直方图时,如果设组距为1.5,则应分成4 组.【考点】频数(率)分布直方图.【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在51,52,49,50,54,48,50,51,53,48中最大的值是54,最下的值是48,在画频数分布直方图时,如果设组距为1.5,则应分成=4,故答案为:54,48,4.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.三、解答题21.(10分)(2016春•某某期末)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.【考点】实数的运算.【分析】(1)原式利用绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)原式利用平方根、立方根定义计算即可得到结果.【解答】解:(1)原式=6+9=15;(2)原式=7﹣(﹣4)=7+4=11.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(10分)(2016春•某某期末)解方程组或不等式组①;②.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)①×﹣②得出7y=14,求出y,把y的值代入②求出x即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:①①×2﹣②得:7y=14,解得:y=2,把y=2代入②得:2x﹣6=6,解得:x=6,所以原方程组的解为:;②∵解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4.【点评】本题考查了解一元一次不等式组和解二元一次方程组的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.23.(10分)(2016春•某某期末)将一副三角尺拼图,并标点描线如图所示,然后过点C 作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【考点】平行线的判定.【分析】(1)根据内错角相等,两直线平行进行判定即可;(2)根据三角形EFC的内角和为180°,求得∠EFC的度数.【解答】解:(1)∵CF平分∠DCE,且∠DCE=90°,∴∠ECF=45°,∵∠BAC=45°,∴∠BAC=∠ECF,∴CF∥AB;(2)在△FCE中,∵∠FCE+∠E+∠EFC=180°,∴∠EFC=180°﹣∠FCE﹣∠E,=180°﹣45°﹣30°=105°.【点评】本题主要考查了平行线的判定以及三角形内角和定理的运用,解题时注意:内错角相等,两直线平行.解题的关键是熟知三角板的各角度数.24.(12分)(2016春•某某期末)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设需购买甲种树苗x棵,需购买乙种树苗y棵,根据“购买两种树苗的总金额为85000”列二元一次方程组求解即可得;(2)设购买甲种树苗a棵,则需购买乙种树苗(400﹣a)棵,根据“购买甲种树苗的金额≥购买乙种树苗的金额”列不等式求解可得.【解答】(1)解:设需购买甲种树苗x棵,需购买乙种树苗y棵,根据题意得:,解得:,答:需购买甲种树苗350棵,需购买乙种树苗50棵;(2)解:设购买甲、乙树苗的棵数分别是x,y.根据题意得:,解得:x≤240.答:至多应购买甲种树苗240棵.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,根据题意抓住相等关系与不等关系列出方程或不等式是解题的关键.25.(12分)(2016春•某某期末)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是10(1﹣10%)+x ,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x 万辆.(用含x 的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)【考点】一元二次方程的应用;近似数和有效数字.【分析】(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.【解答】解:(1)今年年底电动车数量是10(1﹣10%)+x万辆,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x万辆;根据题意得:[10(1﹣10%+x)](1﹣10%)+x≤12.85,解得:x≤2.5,答:每年新增电动车的数量最多是2.5万辆;(2)今年年底电动车的拥有量是10(1﹣10%)+设今年年底到明年年底电动车拥有量的年增长率是y,则11.5(1+y)=12.85,解得:y≈11.7%,答:今年年底到明年年底电动车拥有量的年增长率是11.7%.【点评】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.26.(12分)(2016春•某某期末)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:次数60≤x<90 90≤x<120 120≤x<150 150≤x<180 180≤x<210 频数16 25 9 7 3(1)全班有多少同学?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180X围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)将各组频数相加即可得;(2)由频率分布表即可知组数和组距;(3)将120≤x<180X围的两分组频数相减可得,再将其人数除以总人数即可得百分比;(4)根据各分组频数可制成条形图.【解答】解:(1)全班有同学16+25+9+7+3=60(人);(2)组距是30,组数是5;(3)跳绳次数x在120≤x<180X围的同学有9+7=16人,占全班同学的×100%≈26.7%;(4)如下图所示:【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.。

2015-2016人教版七年级数学下册期末考试卷及答案

2015-2016人教版七年级数学下册期末考试卷及答案

第 1 页 共 4 页七年级数学下册期末考试卷C2014-2015人教版七年级数学下册期末考试卷C 及答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x a x4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图(1),在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图(2),△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( ) A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 2 10.课间操时,小华、小军、小刚的位置如图3,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____.第 2 页 共 4 页七年级数学下册期末考试卷C12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________. (将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2015-2016(下)七年级期末试题及答案

2015-2016(下)七年级期末试题及答案

2015~2016学年度下期期末测试题七年级 数学〔总分值150分,考试时间120分钟〕题号 一 二 三 四 五 总分 得分得分 评卷人 一、选择题:〔本大题12个小题,每题4分,共48分)在每题给出的四个选项中,只有一项符合题意.1.下面的每组图形中,平移左图可以得到右图的是〔 〕A .B .C .D . 2. 4的算术平方根是〔 〕 A .2±B . 2C . 2±D .23. 以下调查方式合适的是〔 〕A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式4. ⎩⎨⎧==72y x 是方程23=-y ax 的一个解,则a 为〔 〕A .8B .223 C .223- D .219-5. 以下各数中,介于6和7之间的数是〔 〕A . 28B . 43C . 58D .3396. 不等式组⎩⎨⎧≥+<-01123x x 的解集在数轴上表示正确的选项是〔 〕A .B .C .D .7.如图,CF 是∠ACM 的平分线,且CF ∥AB ,∠ACM=80°,则∠B的度数为〔 〕A .80°B .40°C .60°D .50° 8. 小明从点O 出发,先向西走20米,再向南走30米到达点M ,如果 点M 的位置用〔-20,-30〕表示,那么〔10,20〕表示的位置是〔 〕 A .小明从点O 出发,先向西走10米,再向南走20米 B .小明从点O 出发,先向东10米,再向南走20米 C .小明从点O 出发,先向西10米,再向北走20米 D .小明从点O 出发,先向东10米,再向北走20米9. 已知点A 〔-3,2m-1〕在x 轴上,点B 〔n+1,4〕在y 轴上,则点C 〔m ,n 〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限10. 商店为了促销,将定价为3元的商品,以以下方式优惠销售:假设购买不超过5件,按原价付款;假设一次性购买5件以上,超过部分打六折.现有27元钱,最多可以购买该商品的件数是( ).A .9B .11C .13D .1511.如图,动点P 在直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点〔1,1〕,第二次运 动到点〔2,0〕,第三次接着运动到点〔3,2〕,…按这样的运动规律,经过第2015次运动后,动 点P 的纵坐标是〔 〕A .0B .1C .2D .10 12. 假设不等式组⎩⎨⎧≤-<-0321a x x 有两个正整数解,则式子a a 232---的值( )A .a -1B .53-aC .1-aD .52-a7题图11题图13. 如图,直线a ,b 相交于点O ,假设∠1等于50°,则∠2= . 14. 已知1.1001.102=,则=0201.1 .15. 某校为了了解七年级学生的体能情况,随机抽查了其中的30名学生,测试了一分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则 仰卧起坐的次数在20~25次之间的频数是 . 16. 已知AB 垂直于x 轴,点A 的坐标为〔3 ,-2〕,并且AB=4,则点B 的 坐标为 .17. “六·一”儿童节前夕,某超市用3360元购进A 、B 两种童装共120套, 其中A 型童装每套24元,B 型童装每套36元.假设设购买A 型童装x 套,B 型童装y 套,依题意列方程组是 .18. 树人中学七年级一班的一个研究性学习小组对学生中午在学校食堂的就餐时间进行了调查.发现在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到外出就餐的人数各是一个固定数.并且发现假设开1个窗口,50分钟可使等待的学生都能买到午餐;假设同时开2个窗口,则需35分钟.还发现,假设在25分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少70%.在学校学生总人数不变且人人都要就餐 的情况下,为了方便学生就餐,调查小组建议学校食堂20分钟内卖完午餐.则至少要同时开 个窗口. 19.计算:23)2(212716------得分 评卷人 二、填空题:〔本大题6个小题,每题4分,共24分〕得分 评卷人 三、解答题:〔本大题2个小题,每题7分,共14分〕解答时每题必须写出必要的演算过程.13题图15题图20.请在括号或横线上,填写以下命题的证明过程中的推理或依据.如图,A 、B 、C 三点在同一直线上,且∠1=∠2,∠3=∠D ,求证:BD ∥CE . 证明:∵∠1=∠2 〔 〕∴AD ∥ 〔 〕, ∴∠DBE= 〔两直线平行,内错角相等〕, 又∵∠3=∠D 〔已知〕,∴∠3= 〔 〕, ∴BD ∥CE 〔 . 得分 评卷人 四、解答题:〔本大题4个小题,每题10分,共40分〕解答时每题必须写出必要的演算过程或推理过程.21.〔1〕解方程组⎪⎩⎪⎨⎧=-=-132353y x y x〔2〕解不等式组⎪⎪⎩⎪⎪⎨⎧-<-->+814311532x x x x ,并写出它的非负整数解.20题图22.如图,方格纸中每个小方格都是边长为1个单位长 度的正方形,在建立平面直角坐标系后,△ABC 的顶点 在格点上.且A 〔2,-4〕,B 〔5,-4〕,C 〔4,-1〕 〔1〕画出△ABC ;〔2〕求出△ABC 的面积;〔3〕假设把△ABC 向上平移2个单位长度,再向左平移4个单位长度得到△A′B′C′,在图中画出△A′B′C′,并写出B′ 的坐标.23.某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答以下问题:(1)求样本容量及表格中a ,b ,c 的值,并补全统计图;重视 一般 不重视 说不清楚 类别人数 57910 30 40 50 60 20 0某校初中生阅读数学教科书情况统计图表重视 一般 不重视 说不清楚a 57b 9c类别 人数 占总人数比例 22题图(2)假设该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?24.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.〔1〕求∠DOF的度数;〔2〕试说明OD平分∠AOG.24题图五、解答题:〔本大题2个小题,每题12分,共24分〕解答时每题必须写出必要的演算过程或推理过程.12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.〔1〕问:年降水量为多少万立方米?每人年平均用水量多少立方米?〔2〕政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?〔3〕某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为元,政府补贴元.企业将淡化水以元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本〔结果精确到个位〕?26. .如图1,在平面直角坐标系中,A 〔a ,0〕,B 〔b ,3〕,C 〔4,0〕,且满足06=+-++b a b a , 线段AB 交y 轴于F 点. 〔1〕求点A 、B 的坐标.〔2〕点D 为y 轴正半轴上一点,假设ED ∥AB ,且AM ,DM 分别平分∠CAB ,∠ODE ,如图2, 求∠AMD 的度数. 〔3〕如图3,〔也可以利用图1〕点P 为x 轴上一点,假设△ABP 的三角形和△ABC 的面积相等?假设存在,求出P 点坐标.26题图2015~2016学年度下期期末测试题七年级数学参考答案一、选择题:1.D 2. D 3.C 4. B 5. B 6. D 7. B 8. D 9. D 10. B 11. C 12. A 二、填空题:13. 50° 14. 1.01 15. 12 16. 〔3,2〕或〔3,-6〕 17. ⎩⎨⎧=+=+33603624120y x y x 18. 6三、解答题:〔本大题2个小题,每题7分,共14分〕解答时每题必须写出必要的演算过程. 19.解:原式=221)3(4--+-- ………………4分=22134--++ =26- ………………7分20.已知, BE ,内错角相等,两直线平行,∠D ,∠DBE , 等量代换,内错角相等,两直线平行.〔每空1分〕四、解答题:〔本大题4个小题,每题10分,共40分〕解答时每题必须写出必要的演算过程或推理过程.21.〔1〕解:⎪⎩⎪⎨⎧=-=-132353yx y x ②×6,得623=-y x ③③-①,得33=y∴1=y .把1=y 代入①,得353=-x .∴38=x . ∴方程组的解为⎪⎩⎪⎨⎧==138y x ………………5分①②〔2〕解:⎪⎪⎩⎪⎪⎨⎧-<-->+814311532x x x x , 由①得,512->x , 由②得:27<x , 故此不等式组的解集为:27512<<-x ,………………9分 它的非负整数解为:0,1,2,3. ………………10分22. 解:〔1〕如下图:………………3分〔2〕过C 作CD ⊥AB 于D , 则S △ABC =21AB•CD=21×3×3=29………………6分 〔3〕如图:………………9分B′〔1,-2〕. ………………10分23.解:(1)由统计表可知,样本容量为=150. ∴a ==45,c =1---=,b ==39. ………………4分①②补全统计图如图4所示.………………6分 (2)2300×0.26=598,∴可估计该校“不重视阅读数学教科书”的初中生人数约为598人. ………………8分(3)①从该校初中生重视阅读数学教科书的人数比例来看,该校初中生对阅读数学教科书的重视程度不够,建议数学教师在课内外加强引导学生阅读数学教科书,逐步提高学生数学阅读能力,重视数学教材在数学学习过程中的作用;②考虑到样本具有的随机性、代表性和广泛性,要了解全省初中生阅读数学教科书的情况,抽样时要选择城市、乡镇不同层次的学校. ……………………10分(只要给出合理建议即可给分)24. 解:〔1〕∵AE ∥OF ,∴∠FOB =∠A =30°,∵OF 平分∠BOC ,∴∠COF =∠FOB =30°,∴∠DOF =180°-∠COF =150°; ……………………5分〔2〕∵OF ⊥OG ,∴∠FOG =90°,∴∠DOG =∠DOF -∠FOG =150°-90°=60°,∵∠AOD =∠COB =∠COF +∠FOB =60°,∴∠AOD =∠DOG ,∴OD 平分∠AOG . ……………………10分五、解答题:〔本大题2个小题,每题12分,共24分〕解答时每题必须写出必要的演算过程或推理过程.25.解:〔1〕设年降水量为x 万3m ,每人年平均用水量为y 3m ,根据题意得 ⎩⎨⎧⨯=+⨯=+y y y x 1520151200020162012000,解得:⎩⎨⎧==50200y x 答:年降水量为200万3m ,每人年平均用水量为503m .……………………4分〔2〕设该城镇居民年平均用水量为z 3m 才能实现目标,根据题意得 z 25202002512000⨯=⨯+,解得:34=z ,图4∴163450=-答:该城镇居民人均每年需要节约163m 的水才能实现目标.……………………8分 〔3〕设n 年后企业能收回成本,由题意得 10004010000300]5000)3.05.1(7050002.3[00≥-⨯⨯--⨯⨯n n ,解得29188≥n 答:至少9年后企业能收回成本.……………………12分26. 解:〔1〕∵06=+-++b a b a ,∴0=+b a ,06=+-b a ,∴3-=a ,3=b ,∴A 〔-3,0〕,B 〔3,3〕; ……………………2分〔2〕如图2,∵AB ∥DE ,∴∠ODE +∠DFB =180°,而∠DFB -∠AFO =90°-∠FAO ,∴∠ODE +90°-∠FAO =180°,∵AM ,DM 分别平分∠CAB ,∠ODE ,∴∠OAN =21∠FAO ,∠NDM =21∠ODE , ∴∠NDM -∠OAN =45°,而∠OAN =90°-∠ANO =90°-∠DNM ,∴∠NDM -〔90°-∠DNM 〕=45°,∴∠NDM +∠DNM =135°,∴180°-∠NMD =135°,∴∠NMD =45°,即∠AMD =45°;……………………7分〔3〕存在.……………………8分S △ABC =21×7×3=221, ∵P 点在x 轴上时,设P 〔x ,0〕, 则21|x +3|×3=221 ,解得x =-10或x =4,∴满足条件的P 点坐标为〔4,0〕;〔-10,0〕.……………………12分。

2015-2016年第二学期期末初一数学试题带答案 (3)

2015-2016年第二学期期末初一数学试题带答案 (3)

2015—2016学年第二学期期末统一测试初一数学 2016.7学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 在实数-3、0、3中,最小的实数是 A .-3B .0C .D .32. 64的立方根是 A . 4B .±4C .8D . ±83. 若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .4. ±2是4的 A . 平方根 B .相反数 C .绝对值 D .算术平方根5 .将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30° B.45° C.60° D.65°6. 一个多边形的内角和是1080°,则这个多边形的边数是A. 5B. 6C. 7D. 87. “健步走”越来越受到人们的喜爱.一个健步走小组将自己的活动场地定在奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方),如图. 假设在奥林匹克公园设计图上规定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为A.(–2,–4)B.(–1,–4)C.(–2,4)D.(–4,–1)8. 任取长度分别为4cm,5cm,6cm,7cm四支细木棍中的三条,首尾顺次相接组成三角形,则三角形的个数最多A. 1个B. 2个C. 3个D. 4个9. 由于油价下调,从2015年1月22日起,北京市取消出租车燃油附加费.出租车的收费标准是:起步价13元(即行驶距离不超过3千米都需付13元车费),超过3千米以后,每增加1千米,加收2.3元(不足1千米按1千米计).上周某人从北京市的甲地到乙地,经过的路程是x千米,出租车费为36元,那么x的最大值可能是A.11 B.12 C.13 D.1410.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为A.9,10B. 9, 91C. 10, 91D. 10, 110二、填空题(本题共30分,每小题3分)11. = .12. 若点(2,m-1)在第四象限,则实数m的取值范围是 .13. 请写出三个无理数: .14.在△ABC中,边AB与BC的中点分别是D,E,连接AE,CD交于点G.连接BG交边AC于点F. 若AB=4,BC=6,AC=8,则线段FC的长度是 .15.正多边形的一个内角是108°,则这个多边形的边数是 .16.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理:直角三角形的两条直角边的平方和等于斜边的平方.在△ABC中,∠C=90°,斜边AB=13,AC=12,则BC的长度为 .x-有平方根,则实数x的取值范围是.17.若218.在在平面直角坐标系xOy中,点A(1,2),B(5,2),当点C在第一象限,且坐标为时,△ABC 为等腰直角三角形.19. 在数学课上,老师要求同学们利用一副三角板任作两条平行线.小明的作法如下:.20. 在平面直角坐标系xOy 中,已知点A (t ,0),B (t +2,0),M (3,4).以点M 为圆心,1为半径画圆.点P 是圆上的动点,则△ABP 的面积的最小值和最大值依次为 , .三、解答题(本题共40分,第21-25题,每小题4分,第26-29题,每小题5分)21. 计算:()2-2412+-⨯--.22. 在平面直角坐标系xOy 中,点A (1,1),B (3,2),将点A 向左平移两个单位,再向上平移4个单位得到点C .(1)写出点C坐标;(2)求△ABC的面积.23. 阅读下面材料:春节是中国最重要的传统佳节,而为期40天的春运被称为―人类规模最大的周期性迁徙‖.2016年春运40天,全国铁路客运量3.25亿人次,同比增长10.2%;全国公路客运量24.95亿人次,同比增长3%;全国水路客运量4260万人次,同比下降0.6%;全国民航客运量5140万人次,同比增长4.7%.今年春运在正月初七达到最高峰,铁路春运再创单日旅客发送人数新高,达到1034.4万人次.2015年春运40天,全国铁路客运量2.95亿人次,同比增长10.4%;全国公路客运量24.22亿人次;全国水路客运量4284万人次;全国民航客运量4914万人次.2014年春运40天,全国公路客运量32.6亿人次;全国民航客运量4407万人次;全国铁路客运量2.66亿人次,增长约12%.其中,2月6日全国铁路客运量达到835.7万人次,比去年春运最高峰日多发送93.1万人次.根据以上材料解答下列问题:(2)请你选择统计表或统计图,将2014~2016年春运40天全国铁路、公路客运量表示出来.24. 如图,AD⊥BC于点D,∠B=∠DAC,点E在BC上,△EAC是以EC为底的等腰三角形,AB=4,AE=3.(1)判断△ABC的形状;(2)求△ABC 的面积.25. 如图,AE 平分∠BAC 交BC 于点D ,∠C =∠EBC ,∠BAC =70°,∠ABC =30°,求∠E 和∠ADC 的度数.26. 解不等式组:426113x x x x >-⎧⎪+⎨-⎪⎩≥,把解集表示在数轴上,并写出所有非负整数解.27. 某品牌运动鞋专柜对第一季度A 、B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B 款运动鞋的销售量是A 款的45,则一月份B 款运动鞋销售了多少双?补全条形图;(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额;(3)结合第一季度的销售情况,请你就这两款运动鞋的进货、销售等方面提出一条建议.28.已知△ABC , EF ∥AC 交直线AB 于点E ,DF ∥AB 交直线AC 于点D . (1) 如图1,若点F 在边BC 上, ① 补全图形;② 判断BAC ∠与EFD ∠的数量关系,并给予证明;(2)若点F 在边BC 的延长线上,(1)中的结论还成立吗?若成立,给予证明;若不成立,说明理由.29. 如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①310x -=,②2103x +=,③()315x x -+=-中,不等式组2531-2x x x x -+-⎧⎨-+⎩>,> 的关联方程是 ;(填序号)(2)若不等式组1212x x x ⎧-⎪⎨⎪++⎩<1,>-3的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可) (3)若方程32x x -=,1322x x ⎛⎫+=+⎪⎝⎭都是关于x 的不等式组2x x m x m-⎧⎨-⎩<2,≤的关联方程,直接写出m 的取值范围.2015-2016学年第二学期期末统一检测初一数学试题参考答案及评分标准 2016.7一、选择题(本题共30分,每小题3分)二、填空题(本题共30分,每小题3分)三、解答题(本题共40分,第21-25题,每小题4分,第26-28题,每小题5分)42354=+-+=21.解:原式分分22. 解:(1)C (-1,5);---------1分(2))5ABC S =△.----------4分23.(1)733 ;………………………………………………………1分(2) ----------------------------------------------------------------------4分例如:统计表如下:2014~2016年春运40天全国铁路、公路24. 解: (1)△ABC 是直角三角形;证明∵AD ⊥BC , ∴∠AD B = 90°.∴∠B +∠BAD =90°. ----------------- 1分∵∠B = ∠DAC ,∴∠DAC +∠BAD =90°,即∠BAC =90°. ∴△ABC 是直角三角形. -----------------2分 (2)∵△EAC 是等腰三角形,∴AC =AE =3. -----------------3分∴1143622ABC S AB AC ==⨯⨯= △.-----------------4分 25. 解:∵DE 平分∠BAC ,∴∠1=∠2=35°. -----------------1分∵∠C=∠3,∴AC∥BE. -----------------2分∴∠E=∠2.∴∠E=35°. -----------------3分∵∠4=∠ABC+∠1,∴∠4=35°+30°=65°. -----------------4分26. 解:42611.3x xxx>-⎧⎪⎨+-⎪⎩,①≥②解得,3.xx>-⎧⎨⎩,≤2------------------2分------------------3分∴不等式组的解集为3x-<≤2. ------------------4分∴非负整数解为0,1,2. ------------------5分27. 解:(1)∵450405⨯=,∴一月份B款运动鞋销售了40双. -----------------1分1112图1 -----------------2分(2)设A 、B 两款运动鞋的销售单价分别为,x y 元,根据题意,得504040000605250000x y x y +=⎧⎨+=⎩,解得400500.x y =⎧⎨=⎩, ∴三月份的总销售额为400655002639000⨯+⨯=(元). -----------------4分(3)答案不唯一,如: -----------------5分从销售量来看,A 款运动鞋销售量逐月上升,比B 款运动鞋销售量大,建议多进A 款运动鞋,少进或不进B 款运动鞋.从总销售额来看,由于B 款运动鞋销售量逐月减少,导致总销售额减少,建议采取一些促销手段,增加B 款运动鞋的销售量.28. 解:(1)①见图1;--------------1分②BAC ∠=EFD ∠. --------------2分证明:∵EF ∥AC , ∴∠EFB =∠C .∵DF ∥AB ,∴∠DFC =∠B .∴∠EFD =180°﹣(∠EFB +∠DFC )=180º -(∠C+∠B).13在△ABC 中,∠BAC =180º -(∠C+∠B),∴∠B A C =∠EFD . --------------3分 (2)当点F 在边BC 的延长线上时,∠BAC +∠EFD =180°; 证明:如图2, ∵DF ∥AB , ∴∠D =∠1. ∵EF ∥AC ,∴∠EFD +∠D =180°.∴∠EFD +∠1=180°.即∠B AC +∠EFD =180°. --------------5分29.解:(1)③; --------------1分(2)答案不唯一,只要解为1即可; -------------- 3分(3))01m ≤<. --------------5分。

2015-2016学年度第二学期期末检测七年级数学试题及答案

2015-2016学年度第二学期期末检测七年级数学试题及答案

abb(1) (2) (3)2015-2016学年度第二学期期末检测七年级数学试题考试时间:90分钟 班级: 姓名: 一、选择题:(每小题3分,共36分。

每小题四个选项中,只有一个是正确的,请将正确的选项序号填在右边的括号内。

)1.如图,下列条件中不一定能推出a ∥b 的是( ) A.∠1=∠3 B. ∠2=∠4 C. ∠1=∠4 D. ∠2+∠3=180°2.在平面直角坐标系中,若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A.(3,3)B.(3,-3)C.(-3,3)D.(-3,-3) 3.下列各式中计算正确的是( ) A.()532x x= B. 422743x x x =+C. ()()639x x x =-÷- D. ()x x x x x x ---=+--23214.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为0.0000000001m ,把这个数值用科学记数法表示为( )A.1×10 9B. 1×1010C. 1×10 -9D. 1×10 -105.已知三角形两边的长分别为2a 、3a ,则第三边的长可以是( ) A. a B. 3 a C. 5 a D. 7 a6.如图,将等边三角形ABC 剪去一个角后,则∠1+∠2的大小为( ) A. 120° B. 180° C. 200° D. 240°7.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 C.正四边形 B.正六边形 D.正八边形 8.以5厘米的长为半径作圆,可以作( ) A. 1个 B. 2个 C. 3个 D. 无数个9.用如图所示的卡片拼成一个长为(2a+3b ),宽为(a+b )的长方形,则需要(1)型卡片、(2)型卡片和(3)型卡片的张数分别是( )A.2,5,3B.2,3,5C.3,5,2D.3,2,510.等腰三角形的周长为13cm ,其中一边的长为3cm ,则该等腰三角形的腰长为( )A.7cmB.3cmC.7cm 或3cmD.5cm11.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A.5 B.6 C.7 D.812.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的有( )A.1个B.2个C.3个D.4个 二、填空题(每空3分,共30分)13.已知点A 到x 轴的距离为3,到y 轴的距离为4,且它在第二象限内,则点A 的坐标为 . 14.若2 m=3,,2 n=4,则22m-n= .15.若25-+=+÷+)()()(y x y x y x m ,则m 的值为 . 16.计算:=⨯+--2331(5)2( .17.一个长方形的面积是)(2269ab b a -平方米,其长为3ab 米,则宽为 米(用含a 、b 的式子表示)18.一个多边形的内角和等于108019.如图,已知∠A=20°, ∠B=45° AC ⊥DE 于点则∠D= ,∠BED= . 20.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有 个正三角形和 个正四边形.三、解答题(共54分,解答应写出必要的计算过程、推演步骤或文字说明) 21(15分) (1)223102)2(a a a a ÷-+∙(2))2()12)(2(--++-a a b a b a (3))1)(2(2)3(3)2(2-+++-+x x x x xa b1243c22(6分)解方程组⎩⎨⎧-=+=-22382y x y x23(7分)如图,AD 是△ABC 的中线,BE 是△ABD 的中线 (1) 若∠ABE=15°,∠BAD=30°,求∠BED 的度数; (2) 画出△BED 的BD 边上的高线EF ;(3) 若△ABC 的面积为40,BD=5,求BD 边上的高EF 。

2015-2016人教版七年级数学下册期末考试卷及答案(1)

2015-2016人教版七年级数学下册期末考试卷及答案(1)

2014-2015人教版七年级数学下册期末考试卷C及答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的...是()A.6m>-6 B.-5m<-5 C.m+1>0 D.1-m<22.下列各式中,正确的是( )±4 B.=-43.已知a>b>0,那么下列不等式组中无解..的是()A.⎩⎨⎧-><bxaxB.⎩⎨⎧-<->bxaxC.⎩⎨⎧-<>bxaxD.⎩⎨⎧<->bxax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图(1),在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.1000 B.1100 C.1150D.1200PCBA(1) (2)(3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A.4 B.3 C.2D.18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是()A.5 B.6 C.7D.89.如图(2),△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为()A.10 cm2B.12 c m2 C.15cm2 D.17 cm210.课间操时,小华、小军、小刚的位置如图3,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________. 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2015-2016学年七年级下期末考试数学试题及答案

2015-2016学年七年级下期末考试数学试题及答案

FEDCBA一、选择题(本大题共10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1. 下列数中,是无理数的是A. 0B. 71-C. 3D. 2 2. 下面4个图形中,∠1与∠2是对顶角的是21212121A. B. C. D.3、已知点P 在第四象限,且P 到x 轴的距离为3,到y 轴的距离为4,则P 点的坐标为( ) A .(3,-4) B .(-3,4) C .(4,-3) D .(-4,3) 4.下列调查中,适宜采用全面调查方式的是 A. 了解全国中学生的视力情况 B. 调查某批次日光灯的使用寿命 C. 调查市场上矿泉水的质量情况D. 调查机场乘坐飞机的旅客是否携带了违禁物品 5.已知正方形的面积是17,则它的边长在( ) A .5与6之间 B .4与5之间 C .3与4之间 D .2与3之间 6.下列说法错误..的是 A. 1的平方根是1 B. 0的平方根是0 C. 1的算术平方根是1 D. -1的立方根是-1 7.若a >b ,则下列不等式变形错误的是( )A .a+1>b+1B .C .3a ﹣4>3b ﹣4D .4﹣3a >4﹣3b8.如图1,下列条件能判定AD ∥BC 的是A. ∠C =∠CBEB. ∠C +∠ABC =180°C. ∠FDC =∠CD. ∠FDC =∠A 9.下列命题中,是真命题的是A . 若b a >,则a >b B. 若a >b ,则b a >C. 若b a =,则22b a = D. 若22b a =,则b a = 10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是A. ⎪⎩⎪⎨⎧+=+=1215.4x y x yB. ⎪⎩⎪⎨⎧-=+=1215.4x y x yC. ⎪⎩⎪⎨⎧+=-=1215.4x y x yD. ⎪⎩⎪⎨⎧-=-=1215.4x y x y图111.关于x 的不等式组21111x x a-⎧⎨+⎩≤>恰好只有两个整数解,则a 的取值范围为A. 56a ≤<B. 56a <≤C. 6a 4≤<D. 46a <≤ 12.已知点P (x ,y )的坐标满足|x|=3,y =2,且xy <0,则点P 的坐标是( )A .(3,-2)B .(-3,2)C .(3,-4)D .(-3,4) 二、填空题(本大题有8小题,每小题3分,共24分)12.不等式2x+5>4x ﹣1的正整数解是 .11. 若36.25=5.036,6.253=15.906,则253600=__________。

学15—16学年下学期七年级期末考试数学试题(附答案)

学15—16学年下学期七年级期末考试数学试题(附答案)

2015-2016学年第二学期期末联考试卷七年级数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行2.如果a>b,那么下列不等式中一定成立的是()A.a2>b2B.1﹣a>1﹣b C.1+a>1﹣b D.1+a>b﹣13.在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率5.若是方程kx﹣2y=2的一个解,则k等于()A.B.C.6 D.﹣6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A.B.C.D.9.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>310.已知方程组和有相同的解,则a,b的值为()A.B.C.D.11.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为()A.B.C.D.12.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0. 4元、0.5元C.0.3元、0.4元D.0.6元、0.7元第6题图第7题图第12题图二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中横线上.13.的整数部分是.14.某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为.15.已知2x﹣3y﹣1=0,请用含x的代数式表示y:.16.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.17.若不等式组的解集是﹣1<x <1,则b a 212 的立方根为 . 18.如图,正方形ABCD 的顶点B 、C 都在直角坐标系的x 轴上,若点D 的坐标是(3,4),则点A 的坐标是 .第14题图 第16题图 第18题图三、解答题:本大题共6小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤.19.(5分)解方程组:20.(6分)解不等式组请结合题意填空,完成本题的解答. (1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .21.(7分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.证明:AD∥BE.证明:∵AB∥CD(已知)∴∠4=①(②)∵∠3=∠4(已知)∴∠3=③(④)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等量代换)即∠BAF=∠DAC∴∠3= ⑤(等量代换)∴AD∥BE(⑥)23.(9分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表)和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m=,n=;(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.24.(11分)在南宁市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和1台电子白板共需要2万元,购买2台电脑和1台电子白板共需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过32万元,但不低于30万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2015-2016学年第二学期期末联考七年级数学评分细则一、选择题(本题共12小题,每小题3分,共36分)1-5 CDBBC 6-10 DBBAD 11-12 AA二、填空题(本题共6小题,每小题3分,共18分)13. 4 14. 0.4 15. y=16. 35 17. 2 18. (﹣1,4)三、解答题(本大题共6小题,共46分)注:解答题解法多样,非本细则所述的其他正确解法请阅卷老师酌情给分19. 解:,①+②×2得:7x=7,即x=1,------- 3分把x=1代入①得:y=1,------- 4分则方程组的解为------- 5分20. 解:(1)x<2,------- 1分(2)x≥﹣1,------- 3分(3)------- 5分(4)-1≤x<2.------- 6分21. 解:(1)设魔方的棱长为x cm,可得:x3=216,------- 2分解得:x=6.------- 3分(2)设该长方体纸盒的长为y cm,6y2=600,------- 5分y2=100,即y=10.------- 6分答:魔方的棱长6 cm,长方体纸盒的长为10 cm.------- 7分22. 解:①∠BAE ,------- 1分②(两直线平行,同位角相等),------- 3分③∠BAE ------- 4分④(等量代换),------- 5分⑤∠DAC ,------- 6分⑥(内错角相等,两直线平行).------- 8分23. 解:(1)m= 500 ,------- 2分n= 0.05 ;------- 3分(2)自然科学:2000×0.20=400 册如图,------- 5分(3)10000×0.05=500(册),即估算“哲学”类图书应采购500册较合适;------- 7分(4)鼓励学生多借阅哲学类的书.------- 9分24. 解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,------- 3分解得,即每台电脑0.5万元,每台电子白板1.5万元;------- 5分(2)设需购进电脑a台,则购进电子白板(30﹣a)台,根据题意得:,------- 7分解得:13≤a≤15,∵a只能取整数,∴a=13,14,15,------- 9分∴有三种购买方案,方案1:需购进电脑13台,则购进电子白板17台,13×0.5+1.5×17=32(万元),方案2:需购进电脑14台,则购进电子白板16台,14×0.5+1.5×16=31(万元),方案3:需购进电脑15台,则购进电子白板15台,15×0.5+1.5×15=30(万元),∵30<31<32,∴购买电脑15台,电子白板15台最省钱.------- 11分。

2015-2016学年第二学期7下数学期末试题与答案

2015-2016学年第二学期7下数学期末试题与答案

七年级数学试题与答案 第1页(共2页)2015—2016学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题3分,计30分. 1.下列命题中是假命题的是A.对顶角相等B.邻补角是互补的角C.同旁内角互补D.垂线段最短2.23的算术平方根是A.3B. ±3.已知点A (a +3,a -2)位于第四象限,则a 的取值范围是 A .a <-3B .a > 2C .-3<a <2D .-2<a <34.在平面直角坐标系中,将点P (-2,1)向左平移3个单位长度,再向上平移4个单位长度得到点P ′的坐标是A .(1,5)B .(-5,5)C .(1,-3)D .(-5,-3) 5.若x >y ,则下列式子错误的是A. x ﹣3>y ﹣3B.﹣3x >﹣3yC. x +3>y +3D. 3x >3y6.若a b +=3,a b -=7,则22a b +的值是A.5B.21C.29D. 857.下列调查:①调查某批次汽车的抗撞击能力;②了解某班学生的身高情况;③调查春节联欢晚会收视率;④选出某校短跑最快的学生参加全市比赛.其中适宜抽样调查的是A. ①②B. ①③ 错误!未找到引用源。

C. ②③错误!未找到引用源。

2015-2016学年七年级下学期期末数学测试题(含答案)

2015-2016学年七年级下学期期末数学测试题(含答案)

第 1 页 共 4 页AB C D E (第10题)2015-2016学年度第二学期七年级期末试题数 学一、 选择题:(共12小题,每小题3分,共36分。

下列各题的四个选项中只有一个正确,请将正确答案填入下表。

)A B C D 121212122.下列说法正确的是( ) A 、有且只有一条直线与已知直线平行B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

D 、平行于同一条直线的两条直线互相平行3.下列说法不正确的是( ) A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 4.电视剧《铁血将军》在我市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A . 2 400名学生B .100名学生C .所抽取的100名学生对 “民族英雄范筑先”的知晓情况D .每一名学生对 “民族英雄范筑先”的知晓情况 5.估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和96.下列各组数中,互为相反数的组是( )A 、-2与2)2(-B 、-2和38-C 、-21与2 D 、︱-2︱和2 7.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。

其中适合用抽样调查的个数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个8.下列现象属于平移的是( )① 打气筒活塞的反复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上直线行走 A 、③ B、②③ C、①②④ D、①②⑤9.两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩⎨⎧-==23y x ,乙同学因把C 写错了解得 ⎩⎨⎧=-=22y x ,那么a 、b 、c 的正确的值应为( ) A 、a =4,b =5,c =-1 B 、a =4,b =5,c =-2 C 、a =-4,b =-5,c =0 D 、a =-4,b =-5,c =2 10.直线AB∥CD,∠B=23°,∠D=42°,则∠E=( ) A 、23° B、42° C 、65° D、19°11.在-2,4,2,3.14, 327-,5π,2.010010001。

最新人教版【解析版】2015-2016年七年级下期末数学试卷

最新人教版【解析版】2015-2016年七年级下期末数学试卷

2015-2016学年七年级(下)期末数学试卷一、选择题:每小题2分,共16分.1.9的算术平方根是()A.±3 B.﹣3 C.3 D.92.方程2x﹣1=5的解是()A.x=3 B.x=2 C.x=﹣3 D.x=﹣2 3.下列四个图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形5.把不等式组的解集表示在数轴上,正确的是()A. B.C.D.6.设m为正整数,且n<<n+1,则n的值为()A.2 B.3 C.4 D.57.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为()A.60°B.75°C.85°D.95°二、填空题:每小题3分,共21分.9.﹣27的立方根是.10.当x= 时,代数式2(x﹣2)﹣3的值等于﹣9.11.在一个直角三角形中,有一个锐角等于30°,则另一个锐角的大小为度.12.已知三角形的三边长分别为2、a、4,那么a的取值范围是.13.在五边形ABCDE中,如果∠A+∠B+∠C+∠D=430°,则∠E的大小为度.14.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是6,则图中阴影部分的面积为.15.如图,∠BAC=40°,直线l⊥AC,l与AB交于点D,将∠BAC沿直线l翻折,点A落在AC边上点F处,则∠BDF的大小为度.三、解答题:共9小题,共63分.16.在数轴上画出表示下列各数的点:,,.17.如图,在8×8的正方形网格中,每个小正方形的边长为1,△ABC的三个顶点均在格点上.(1)作△ABC关于直线MN的对称图形A′B′C′.(2)求△ABC的面积.18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组10人,这样比原来减少4组.问这些学生共有多少人?19.已知方程组的解是方程3x+my=33的一个解.(1)求x,y的值.(2)求m的值.20.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.21.如图,在△ABC中,∠ACB=90°,D为AB边上一点,∠BCD=35°,∠BDC=80°.求∠A的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵∠BCD+∠BDC+∠B=180°()∴∠B=180°﹣∠BCD﹣∠BDC(等式性质)=180°﹣35°﹣= .∵在△ABC中,∠ACB=90°(已知).∴∠A+ =90°()∴∠A=90°﹣= .22.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.23.如图,长方形ABCD中,AB=CD=10cm,BC=AD=8侧面,动点P从点A出发,沿A→B→C→D路线运动到D停止,动点Q从点D出发,沿D→C→B→A路线运动到A停止.若P、Q同时出发,点P速度为2cm/s,点Q速度为1cm/s,6s后点Q改变速度为2cm/s,点P速度不变.(1)求点P出发几秒后到达终点D.(2)求点Q出发几秒后到达终点A.(3)直接写出当点Q出发几秒时,点P、Q在运动路线上相距的路程为25cm.24.将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB= 度,∠DBC+∠DCB= 度,∠ABD+∠ACD= 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.2014-2015学年吉林省长春汽车开发区七年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共16分.1.9的算术平方根是()A.±3 B.﹣3 C.3 D.9考点:算术平方根.专题:常规题型.分析:根据算术平方根的定义求解.解答:解:∵32=9,∴9的算术平方根是3.故选C.点评:本题考查了算术平方根的定义,算术平方根是正数的正的平方根,0的算术平方根是0,负数没有算术平方根.2.方程2x﹣1=5的解是()A.x=3 B.x=2 C.x=﹣3 D.x=﹣2考点:解一元一次方程.专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=5,移项合并得:2x=6,解得:x=3,故选A点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.下列四个图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形考点:平面镶嵌(密铺).专题:应用题;压轴题.分析:正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺.正七边形,正八边形同理可知不能密铺.正六边形的每个内角是120°,能整除360°,能密铺.解答:解:正六边形的每个内角是120°,能整除360°,能密铺;正五边形,正七边形,正八边形的一个内角不能整除360°,所以都不能单独进行密铺.故选:B.点评:根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.5.把不等式组的解集表示在数轴上,正确的是()A. B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组的解集,再在数轴上表示出来即可.解答:解:,由①得,x<1,由②得,x>0.5,故不等式组的解集为:0.5<x<1.在数轴上表示为:.故选C.点评:本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.6.设m为正整数,且n<<n+1,则n的值为()A.2 B.3 C.4 D.5考点:估算无理数的大小.分析:首先得出,进而求出的取值范围,即可得出n的值.解答:解:∵,∴3<<4,∵n<<n+1,∴n=3,故选:B.点评:此题主要考查了估算无理数,得出出是解题关键.7.已知,如图,△ABC中,∠B=∠DAC,则∠BAC和∠ADC的关系是()A.∠BAC<∠ADC B.∠BAC=∠ADC C.∠BAC>∠ADC D.不能确定考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADC=∠B+∠BAD,再根据∠BAC=∠BAD+∠DAC即可得解.解答:解:由三角形的外角性质,∠ADC=∠B+∠BAD,∵∠BAC=∠BAD+∠DAC,∠B=∠DAC,∴∠BAC=∠ADC.故选B.点评:本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.8.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为()A.60°B.75°C.85°D.95°考点:旋转的性质.分析:先根据旋转的性质得∠C=∠E=60°,∠BAC=∠DAE,再根据垂直的定义得∠AFC=90°,则利用互余计算出∠CAF=90°﹣∠C=30°,所以∠DAE=∠CAF+∠EAC=95°,于是得到∠BAC=95°.解答:解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=60°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°﹣∠C=90°﹣60°=30°,∴∠DAE=∠CAF+∠EAC=30°+65°=95°,∴∠BAC=∠DAE=95°.故选:D.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二、填空题:每小题3分,共21分.9.﹣27的立方根是﹣3 .考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.10.当x= ﹣1 时,代数式2(x﹣2)﹣3的值等于﹣9.考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:2(x﹣2)﹣3=﹣9,去括号得:2x﹣4﹣3=﹣9,解得:x=﹣1,故答案为:﹣1点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.在一个直角三角形中,有一个锐角等于30°,则另一个锐角的大小为60 度.考点:直角三角形的性质.分析:根据直角三角形的两个锐角互余求出另一个锐角的度数即可.解答:解:∵三角形是直角三角形,一个锐角等于30°,∴另一个锐角为90°﹣30°=60°,故答案为:60.点评:本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.12.已知三角形的三边长分别为2、a、4,那么a的取值范围是2<a<6 .考点:三角形三边关系.分析:根据三角形的三边关系列出不等式即可求出a的取值范围.解答:解:∵三角形的三边长分别为2、a、4,∴4﹣2<a<4+2,即2<a<6.点评:解答此题的关键是熟知三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.13.在五边形ABCDE中,如果∠A+∠B+∠C+∠D=430°,则∠E的大小为110 度.考点:多边形内角与外角.分析:首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.解答:解:正五边形的内角和为(5﹣2)×180°=540°,∵∠A+∠B+∠C+∠D=430°,∴∠E=540°﹣430°=110°,故答案为:110.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.如图,在△ABC中,∠B=90°,AB=10.将△ABC沿着BC的方向平移至△DEF,若平移的距离是6,则图中阴影部分的面积为60 .考点:平移的性质.专题:计算题.分析:先根据平移的性质得AC=DF,AD=CF=6,于是可判断四边形ACFD为平行四边形,然后根据平行四边形的面积公式计算即可.解答:解:∵直角△ABC沿BC边平移6个单位得到直角△DEF,∴AC=DF,AD=CF=6,∴四边形ACFD为平行四边形,∴S平行四边形ACFD=CF•AB=6×10=60,即阴影部分的面积为60.故答案为60.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的面积公式.15.如图,∠BAC=40°,直线l⊥AC,l与AB交于点D,将∠BAC沿直线l翻折,点A落在AC边上点F处,则∠BDF的大小为80 度.考点:翻折变换(折叠问题).分析:由折叠的性质可知∠DFA=∠A=40°,再根据三角形外角和定理即可求出∠BDF的大小.解答:解:∵将∠BAC沿直线l翻折,点A落在AC边上点F处,∴∠DFA=∠A=40°,∴∠BDF=∠A+∠DFA=80°,故答案为:80.点评:本题考查了折叠的性质以及三角形外角和定理的运用,解题的关键是熟练掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题:共9小题,共63分.16.在数轴上画出表示下列各数的点:,,.考点:实数与数轴.分析:先进行化简,再在数轴上进行找点,即可解答.解答:解:=2,=4,=3,如图,点评:本题考查了实数与数轴,解决本题的关键是先把各式化简.17.如图,在8×8的正方形网格中,每个小正方形的边长为1,△ABC的三个顶点均在格点上.(1)作△ABC关于直线MN的对称图形A′B′C′.(2)求△ABC的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质画出图形即可;(2)根据三角形的面积公式即可得出结论.解答:解:(1)如图;(2)S△ABC==3.点评:本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组10人,这样比原来减少4组.问这些学生共有多少人?考点:一元一次方程的应用.分析:设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.解答:解:设这些学生共有x人,根据题意,得﹣=4.解得x=60.答:这些学生共有60人.点评:此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.19.已知方程组的解是方程3x+my=33的一个解.(1)求x,y的值.(2)求m的值.考点:二元一次方程组的解;二元一次方程的解.分析:(1)利用代入法解方程组即可求得x、y的值;(2)把x、y的值代入方程3x+my=33,可求得m的值.解答:解:(1),将①代入②,得5x﹣2x=9,解得x=3.把x=3代入①,得y=6.∴方程组的解;(2)把x=3,y=6代入3x+my=33,得3×3+6m=33.解得m=4.点评:本题主要考查方程组的解法及方程组解的定义,掌握解方程组的两种消元方法是解题的关键,即加减法和代入法.20.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.考点:多边形内角与外角.分析:(1)设这个多边形的每一个外角的度数为x度,根据题意列出方程解答即可;(2)根据多边形的外角和计算即可.解答:解:(1)设这个多边形的每一个外角的度数为x度.根据题意,得:3x+x=180,解得x=45.故这个多边形的每一个外角的度数为45°;(2)360°÷45°=8.故这个多边形的边数为8.点评:此题考查多边形的外角和内角,关键是根据多边形的内角和和外角和定理计算.21.如图,在△ABC中,∠ACB=90°,D为AB边上一点,∠BCD=35°,∠BDC=80°.求∠A的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵∠BCD+∠BDC+∠B=180°(三角形的内角和等于180°)∴∠B=180°﹣∠BCD﹣∠BDC(等式性质)=180°﹣35°﹣80°= 65°.∵在△ABC中,∠ACB=90°(已知).∴∠A+ ∠B =90°(直角三角形的两个锐角互余)∴∠A=90°﹣65°= 25°.考点:三角形内角和定理.专题:推理填空题.分析:首先能够准确叙述定理,再根据所给的证明过程说明理由即可.解答:解:∵∠BCD+∠BDC+∠B=180°(三角形的内角和等于180°),∴∠B=180°﹣∠BCD﹣∠BDC(等式的性质)=180°﹣35°﹣80°=65°.∵在△ABC中,∠ACB=90°(已知),∴∠A+∠B=90°(直角三角形的两个锐角互余).∴∠A=90°﹣65°(或填∠B)=25°.点评:本题考查了三角形内角和定理以及直角三角形两个锐角互余的性质,解题的关键是熟记三角形内角和定理:三角形内角和是180°.22.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.考点:全等三角形的性质.分析:(1)根据全等求出∠EBA的度数,根据邻补角的定义求出即可;(2)根据全等三角形的性质得出AC=AB=9,AE=AD=6,即可求出答案.解答:解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.点评:本题考查了全等三角形的性质的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.23.如图,长方形ABCD中,AB=CD=10cm,BC=AD=8侧面,动点P从点A出发,沿A→B→C→D路线运动到D停止,动点Q从点D出发,沿D→C→B→A路线运动到A停止.若P、Q同时出发,点P速度为2cm/s,点Q速度为1cm/s,6s后点Q改变速度为2cm/s,点P速度不变.(1)求点P出发几秒后到达终点D.(2)求点Q出发几秒后到达终点A.(3)直接写出当点Q出发几秒时,点P、Q在运动路线上相距的路程为25cm.考点:四边形综合题.分析:(1)根据路程÷速度=时间,用点P到达终点D时运动的路程除以它的速度,求出点P出发几秒后到达终点D即可.(2)首先设点Q出发x秒后到达终点A,则以1cm/s的速度运动了6秒,以2cm/s的速度运动了x﹣6秒,然后根据点Q运动的路程和等于DC、CB、BA的长度和,列出方程,再根据一元一次方程的求解方法,求出点Q出发几秒后到达终点A即可.(3)根据题意,分两种情况:①当点P、Q相遇前在运动路线上相距的路程为25cm时;②当点P、Q相遇后在运动路线上相距的路程为25cm时;然后分类讨论,求出当点Q出发几秒时,点P、Q 在运动路线上相距的路程为25cm即可.解答:解:(1)∵(10+8+10)÷2=28÷2=14(秒).∴点P出发14秒后到达终点D.(2)设点Q出发x秒后到达终点A,则1×6+2(x﹣6)=10+8+10,整理,可得2x﹣6=28,解得x=17,∴点Q出发17秒后到达终点A.(3)①如图1,,当点P、Q相遇前在运动路线上相距的路程为25cm时,即当点P到达点E,点Q到达点F时,∵(10+8+10﹣25)÷(2+1)=3÷3=1(秒)∴当点Q出发1秒时,点P、Q在运动路线上相距的路程为25cm.②如图2,,当点P、Q相遇后在运动路线上相距的路程为25cm时,由(1),可得点P出发14秒后到达终点D,由(2),可得点Q出发17秒后到达终点A,∴当点P到达终点D,点Q运动的路程是25cm时,即点Q到达点E,点P、Q在运动路线上相距的路程为25cm,设点Q运动t秒后运动的路程是25cm,则1×6+2(t﹣6)=25,整理,可得2x﹣6=25,解得x=15.5,∴当点Q出发15.5秒时,点P、Q在运动路线上相距的路程为25cm.综上,可得当点Q出发1秒或15.5秒时,点P、Q在运动路线上相距的路程为25cm.点评:(1)此题主要考查了四边形综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.24.将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB= 140 度,∠DBC+∠DCB= 90 度,∠ABD+∠ACD= 50 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.考点:三角形内角和定理;三角形的外角性质.分析:(1)根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠DBC+∠DCB=180°﹣∠DBC=90°,进而可求出∠ABD+∠ACD的度数;(2)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°﹣∠A.(3)由(1)(2)的解题思路可得:∠ACD﹣∠ABD=90°﹣∠A.解答:解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A.(3)∠ACD﹣∠ABD=90°﹣∠A.点评:本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.。

七年级(下)期末数学试卷(含答案)

七年级(下)期末数学试卷(含答案)

2015-2016学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10题,每小题3分,共30分)1.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.为了描述温州市某一天气温变化情况,应选择()A.扇形统计图B.折线统计图C.条形统计图D.直方图【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.故选B.3.利用数轴确定不等式组的解集,正确的是()A.B.C.D.4.若a>b,则下列不等式变形错误的是()A.a+1>b+1 B.C.3a﹣4>3b﹣4 D.4﹣3a>4﹣3b选D.5.已知正方形的面积是17,则它的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间6.将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°7.点A(﹣3,﹣2)向上平移2个单位,再向右平移2个单位到点B,则点B的坐标为()A.(1,0)B.(1,﹣4)C.(﹣1,0)D.(﹣5,﹣1)8.如图,一个60°的角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120° B.180° C.240° D.300°9.以下五个条件中,能得到互相垂直关系的有()①对顶角的平分线;②邻补角的平分线;③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线;⑤平行线截得的一组同旁内角的平分线.A.1个B.2个C.3个D.4个10.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7 B.x﹣y=2 C.x2﹣y2=4 D.4xy+4=49故选:C.【点评】本题主要考查根据数形结合列二元一次方程的能力,解答需结合图形,利用等式的变形来解决问题.二、填空题(本题共6题,每小题4分,共24分)11.化简:=3.12.不等式2x+5>4x﹣1的正整数解是1,2.13.已知,若B(﹣2,0),A为象限内一点,且点A坐标是二元一次方程x+y=0的一组解,请你写出一个满足条件的点A坐标(﹣1,1)(写出一个即可),此时△ABO的面积为1.14.如图,直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=50°.15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD 的周长为10.16.一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有3个点时,此时有7个小三角形;当三角形内有n个点时,此时有2n+1个小三角形.【解答】解:观察图形发现有如下规律:∴当三角形内有3个点时,此时有7个小三角形;当三角形内有n个点时,此时有2n+1个小三角形.故答案为:7,2n+1.三、解答题(一)(本题共3题,每小题6分,共18分,)17.计算:+4×+(﹣1).【解答】解:原式=10+4×(﹣)+2﹣=10﹣2+2﹣=10﹣.18.解方程组:.【解答】解:(1),②×2得,2x﹣2y=2,③①﹣③得,x=﹣2;把x=﹣2代入①得,﹣6﹣2y=0,解得:y=﹣3,∴方程组的解是.19.求不等式组的整数解.【解答】解:,由①得x<3;由②得x≥;不等式组的解集为:≤x<3.故不等式组的整数解为1,2.四、解答题(二)(本题共3题,每小题7分,共21分)20.如图,将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A′B′C′,请画出平移后的图形,并写出△A′B′C′各顶点的坐标.【解答】解:如图所示:由图可知,A′(4,0),B′(1,3),C′(2,﹣2).21.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为多少厘米?【解答】解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为:3x=78,答:行李箱的长的最大值为78厘米.22.某文具店有单价为10元、15元和20元的三种文具盒出售,该商店统计了2014年3月份这三种文具盒的销售情况,并绘制统计图(不完整)如下:(1)这次调查中一共抽取了多少个文具盒?(2)求出图1中表示“15元”的扇形所占圆心角的度数;(3)在图2中把条形统计图补充完整.【解答】解:(1)90÷15%=600(个);(2)360×(1﹣15%﹣25%)=216°;(3)单价是10元的笔袋销售的数量是:600×25%=150(个),则统计图如下图:【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(本题共3题,每小题9分,共27分)23.如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.【解答】(1)证明:∵∠ABC=180°﹣∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)解:∵AD∥BC,∠1=36°,∴∠3=∠1=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠2=∠3=36°.24.某公式为了扩大生产,决定购进6台机器,但所用资金不能超过68万元,现有甲、乙两种机器供选择,其中甲种机器每台14万元,乙种机器每台10万元,现按该公司要求有哪几种购买方案,并说明理由.【解答】解:设甲型号的机器x台,则乙种型号的机器为(6﹣x).依题意得:14x+10(6﹣x)≤68,解得:x≤2,∵x≥0,且x为整数,∴x=0,或x=1或x=2,∴该公司共有三种购买方案如下:方案一:甲种机器0台,则购买乙种机器6台;方案二:甲种机器1台,则购买乙种机器5台方案三:甲种机器2台,则购买乙种机器4台.25.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)由三角形内角和定理可得∠BAC=100°,∠CAD=40°,由角平分线的性质易得∠EAC的度数,可得∠EFD;(2)由角平分线的性质和三角形的内角和得出∠BAE=90°﹣(∠C+∠B),外角的性质得出∠AEC=90°+(∠B﹣∠C),在△EFD中,由三角形内角和定理可得∠EFD;(3)与(2)的方法相同.【解答】(1)解:∵∠C=50°,∠B=30°,∴∠BAC=180°﹣50°﹣30°=100°.∵AE平分∠BAC,∴∠CAE=50°.在△ACE中∠AEC=80°,在Rt△ADE中∠EFD=90°﹣80°=10°.(2)∠EFD=(∠C﹣∠B)证明:∵AE平分∠BAC,∴∠BAE==90°﹣(∠C+∠B)∵∠AEC为△ABE的外角,∴∠AEC=∠B+90°﹣(∠C+∠B)=90°+(∠B﹣∠C)∵FD⊥BC,∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B)(3)∠EFD=(∠C﹣∠B).如图,∵AE平分∠BAC,∴∠BAE=.∵∠DEF为△ABE的外角,∴∠DEF=∠B+=90°+(∠B﹣∠C),∵FD⊥BC,∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B).【点评】本题主要考查了三角形的内角和定理,综合利用角平分线的性质和三角形内角和定理是解答此题的关键.。

2015-2016学年七年级第二学期期末考试数学试题带答案

2015-2016学年七年级第二学期期末考试数学试题带答案

2015-2016学年度初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D.33ba <3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A .1种 B .2种 C .3种 D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )A .∠BAC <∠ADCB .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = .第6题图第7题图10.不等式93-x <0的最大整数....解是 . 11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE = ______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)解方程:62221+-=--y y y19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x第16题图DEA BCB第12题图第13题图第14题图第17题图21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD沿AD 折叠得到△AED ,AE 与BC 交于点F . (1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA -的值最大.24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)ACDB E F25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元; 假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,∠②BDC ∠α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示).(3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).BACBAA图1图22015-2016学年度初一年下学期期末质量检测数学试卷参考答案说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数.一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B 二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11;(2)120.三、解答题:(89分) 18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分 212336--=+-y y y ………………5分 321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来. 解:1335+≤-x x ……………………2分 42≤x ………………………4分 2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分 20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x方法一:用代入法解的得分步骤解:由(1)得 3+=y x (3)……3分 把(3)代入(2)得1633(2=++y y ) 解得2=y ………6分把2=y 代入(3) 得5=x ……8分方法二:用加减法解的得分步骤解:由(2)-(1)×2得 105=y …………………4分 2=y ……………6分 把2=y 代入(1)得5=x ……………………8分21.(9分)解:由(1)得13≥x ……………………3分由(2)得2->x ……………………6分在数轴上表示两个解集(略)………7分所以原不等式组的解是:13≥x …………9分 22.(9分)解:(1)110; ………………………………………… 3分(2)解法一:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分解法二: ∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到, ∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角, ∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分) 23.(9分)解:作图如下:24.(9分)答案不惟一.P ACD BEF (1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分 (3)正确画出点P . ……………………9分(注:画对一个得5分,两个得9分)∵只能为正整数 ∴m 最小为434答:他当月至少要卖434件.………………………………………………10分 (3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a 则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分26.(13分)解:(1)①125;②α2190+;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠ ∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分(3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190………………12分 ∴α4190+=∠BMC .……………………………………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年度第二学期期终考试七年级数学试卷第Ⅰ卷(选择题,共36分)一、选择题(每小题3分,共36分)1. 要反映某一周每天的最高气温的变化趋势,宜采用( )A.条形统计图.B.扇形统计图.C.折线统计图.D.频数分布直方图. 2.下列调查适合全面调查的是( )A .了解市民消费水平.B .了解全班同学每周体育锻炼的时间C .了解市中学生的眼睛视力情况.D .了解一批节能灯的使用寿命情况. 3.下列各组数中互为相反数的是( )A. -2与2.B. -2与3-8.C. -2与21-. D. -2与()2-2. 4.下列无理数中,在﹣2与1之间的是( ) A .﹣5B . ﹣3C .3D .55.如图,能判定EB ∥AC 的条件是( ) A .∠C =∠ABEB. ∠A =∠EBD C .∠C =∠ABCD. ∠A =∠ABE6.若m <n ,则下列不等式中,正确的是( ) A. m -4>n -4 B.5m >5nC. -3m <-3nD. 2m +1<2n +1 7.不等式 的解集在数轴上表示正确的是( ) A .B .C .D .8.方程5x +2y =﹣9与下列方程构成的方程组的解为⎪⎩⎪⎨⎧=-=212y x 的是( )A .x +2y =1B . 3x +2y =﹣8C . 5x +4y =﹣3D . 3x ﹣4y =﹣89.直角坐标系中点P(a+2,a -2)不可能所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.解方程组⎩⎨⎧-=-=+246y cx by ax 时,小强正确解得⎩⎨⎧==22y x ,而小刚只看错了C ,解得⎩⎨⎧=-=42y x ,则当x = -1时,ax 2+bx +c 的值是( )第5题图A.6B.2C.0D.-811.若关于x 的不等式mx -n >0的解集是51x<,则关于x 的不等式(m +n )x >n -m 的解集是( )A .32-x< B .32>x C .32->x D .32x< 12.在平面直角坐标系中,小明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A . (66,34)B . (67,33)C . (100,33)D . (99,34)第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分) 13.若42=x ,则x 的值为 . 14.64的立方根是 .15. 已知a ,b ,c 为平面三条不同直线,若a ⊥b ,c ⊥b ,则a 与c的位置关系是 . 16.如图所示的是某年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是 . 17.已知关于x 的不等式组⎩⎨⎧≥5-2x>1x-a 整数解只有四个,则实数a 的取值围是 .18.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是 .三、解答题(共8小题,共66分) 19.(本题满分8分)解下列方程组(1)⎩⎨⎧2x-y=13x+y=4 (2)⎩⎨⎧5x-6y=333x+4y=1620.(本题满分8分)解不等式(组),并在数轴上表示它的解集第14题图(1)373+>-x x (2)⎪⎩⎪⎨⎧-≥+->+215244762x x x x21.(本题满分8分)如图,AB ∥DC ,AC 和BD 相交于点O , E 是CD 上一点,F 是OD 上一点,且∠1=∠A . (1)求证FE ∥OC ;(2)若∠B OC 比∠DFE 大20°,求∠OFE 的度数. 22.(本题满分8分)某校学生会为了解该校同学对乒乓球、羽毛球、排球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能从中选择一项),随机选取了若干名同学进行抽样调查,并将调查结果绘制成了如图(1),图(2)所示的不完整的统计图.(1)参加调查的同学一共有______名,图(2)中乒乓球所占的百分比为 ;(2)在图(1)中补全条形统计图(标上相应数据);(3)若该校共有2400名同学,请估计该校同学中喜欢羽毛球运动的人数.23.(本题满分8分)如图直角坐标系中,A (-2,1),B (-3,-2),平移线段AB ,使B 点的对应点刚好与坐标原点O 重合.(1)在图中画出平移后的对应线段O A 1; (2)若线段AB 上有点M (a ,b ),用a,b 表示平移后的第21题图 图(1)图(2)第22题图对应点1M 的坐标是 ;(3)求出线段AB 在平移过程中扫过的面积.24.(本题满分10分)小林在某商店购买商品A 、B 共三次. 只有一次购买时,商品A 、B 同时打折;其余两次均按标价购买. 三次购买商品A 、B 的数量和费用如下表: 购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元) 第一次购物 6 5 1140 第二次购物 3 7 1110 第三次购物 7 8 1113 (1)小林以折扣价购买商品A 、B 是第 次购物; (2)求出商品A 、B 的标价;(3)若商品A 、B 的折扣相同,问商店是打几折出售这两种商品的?25.(本题满分10分)某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.(1) 现有正方形纸板162,长方形纸板340.若要做两种纸盒共l00个,有哪几种生产方案?(2)若有正方形纸板162,长方形纸板a ,做成上述两种纸盒,纸板恰好用完.已知290<a <306.求a 的值.26.(本题满分6分) 对非负实数x “四舍五入”到个位的值记为[]x . 即当n 为非负整数时,若21x<n-21n-≤,则[]x =n . 如:[][]=43.5 =3,3.4,…根据以上材料,解决下列问题: (1)填空①若[]=3x ,则x 应满足的条件: ; ②若[]=33x+1,则x 应满足的条件: ; (2)求满足[]x-135=x 的所有非负实数x 的值.第25题图 图甲 图乙七年级数学参考答案及评分标准一、选择题(共12小题,每小题3分,共36分) 二、填空题(共6小题,每小题3分,共18分)13, 2± ; 14. 2; 15.平行; 16.12;17.-3<a ≤2;18.⎩⎨⎧==105y x三、解答下列各题(本大题共9小题,共72分)19.解:(1)⎩⎨⎧==11y x (4分) (2)⎪⎩⎪⎨⎧-==216y x …………8分20. (1)x >5 数轴表示略 …………5分(2)解①得 x <2;②得 x ≥-3 ……8分 ∴ 不等式组的解集为-3≤x <2 数轴表示略21. (1)证明: ∵AB ∥DC ∴∠C=∠A ∵∠1=∠A ∴∠1=∠C ∴FE ∥OC (2)∵FE ∥O ∴∠F OC+∠OFE =180° ∵∠F OC+∠BOC =180°, ∠DFE +∠OFE =180° ∴∠B OC+∠DFE =180° ∵∠B OC-∠DFE =20° 解得∠DFE=80° ∴∠OFE=100° 22.(1)200;20﹪ (2)图略 排球20人,足球50人 (3)20024×2400=288(人) 答:23.(1)略…6分 (2)(a+3,a+2) (3)213 24.(1)三(2)设商品A 的标价为x 元,商品B 的标价为y 元, 根据题意,得, 解得:.答:商品A 的标价为90元,商品B 的标价为120元;(3)设商店是打a 折出售这两种商品, 由题意得,(7×90+8×120)×=1113,解得:a=7.答:商店是打7折出售这两种商品的.25. 解:(1)设生产竖式纸盒x 个,则生产横式纸盒(100-x )个.由题意得题号 1 234567891011 12 答案C BD B D D A D B BAC⎩⎨⎧≤-+≤-+340)100(34162)100(2x x x x 解得4038≤≤x 答,共有三种生产方案,方案一:生产竖式纸盒38个,横式纸盒62个; 方案二:生产竖式纸盒39个,横式纸盒61个; 方案三:生产竖式纸盒40个,横式纸盒60个.(2)设生产竖式纸盒x 个,则生产横式纸盒y 个.由题意得⎩⎨⎧=+=+a y x y x 341622 解得y=5648a- ∵290<a <306,∴ 342<648-a<358∵y 是整数,∴648-a=345,350,355.此时⎪⎩⎪⎨⎧===7120293y x a ;⎪⎩⎪⎨⎧===7022298y x a ;⎪⎩⎪⎨⎧===6924303y x a∴a=303,298,293.26题:⑴①27x<25≤;② 65x<21≤ ⑵设x-135=m,m 为整数,则x =53m+3∴ []=m 53m+3=x ⎥⎦⎤⎢⎣⎡, ∴21<m+53m+321m-≤ ∴411<m 41≤, ∵m 为整数,∴m =1,或m =2,∴59或x=56x=。

相关文档
最新文档