最新人教版高一数学必修1第一章《函数的概念》教案1

合集下载

人教版必修1函数的概念教案(第一课时)

人教版必修1函数的概念教案(第一课时)

1.2.1 函数的概念第一课时一,教材的地位与作用函数是描述客观世界变化规律的重要数学模型。

高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终。

函数的概念是抽象概括出的概念,通过大量的实例,培养学生从“特殊到一般”的综合归纳的能力,培养学生分析问题的能力,引导学生如何发现事物的本质,如何找到问题的突破口来解决问题。

二,教学目标1,知识与技能:(1)理解函数的概念及其符号表示,能够辨别函数的例证和反例(2)会求简单函数的定义域与值域(3)掌握构成函数的三要素,学会判别两个函数是否相等,理解函数的整体性2,过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力3,情感态度与价值观让学生体会现实世界充满变化,感受数学的抽象概括之美。

三,教学重点与难点1,教学重点:函数的概念,构成函数的三要素2,教学难点:函数符号y=f(x)的理解四,教学方法分析1,教法分析:遵循建构主义观点的教学方式,即通过大量实例,按照从“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向分组研究尝试验证,归纳总结,通过搭建新概念与学生原有认识结构间的桥梁,使学生在心理上得到认同,建立新的认识结构。

2,学法分析:倡议学生主动观察,积极思考,提出问题,大胆猜测,从而自主归纳小结。

在学习中培养自我的从“特殊到一般”的分析问题能力,感受数学的抽象概括之美。

五、教学过程1,复习回顾回顾初中所学函数(如一次函数y=ax+b a≠0等)及函数的概念:(传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量);指出用函数可以描述变量之间的依赖关系;强调函数是描述客观世界变化规律的重要数学模型。

高一数学教案《函数概念》

高一数学教案《函数概念》

高一数学教案《函数概念》高一数学教案《函数概念》篇1一、教材分析函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。

函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。

在初中,只停留在详细的几个简洁类型的函数上,把函数看成变量之间的依靠关系,而高中阶段不仅把函数看成变量之间的依靠关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步熟悉,也是学生熟悉上的一次飞跃。

这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。

概念是数学的根底,只有对概念做到深刻理解,才能正确敏捷地加以应用。

本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。

也为进一步学习函数这一章的其它内容供应了方法和依据。

二、重难点分析二、重难点确实定依据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应当是本章的难点。

三、学情分析1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并详细讨论了几类最简洁的函数,对函数已经有了肯定的感性熟悉;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了根底。

2、不利因素:函数在初中虽已讲过,不过较为浅薄,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的力量比拟高,学生学起来有肯定的难度。

四、目标分析1、理解函数的概念,会用函数的定义推断函数,会求一些最根本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培育学生抽象、概括、归纳学问以及规律思维、建模等方面的力量。

3、通过对函数概念形成的探究过程,培育学生发觉问题,探究问题,不断超越的创新品质。

五、教法学法本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参加者,我一方面细心设计问题情景,引导学生主动探究。

高一数学教案《函数概念》

高一数学教案《函数概念》

高一数学教案《函数概念》一、教学目标1.了解函数的定义;2.掌握函数的图像、定义域和值域的概念;3.能够分析并应用函数的性质。

二、教学内容1.函数的定义和符号表示;2.函数的图像、定义域和值域的概念;3.函数的性质:奇偶性、单调性和周期性;4.应用函数分析问题。

三、教学准备1.教材:《高中数学》教材(必修一);2.教辅资料:《高中数学教程》;3.工具:黑板、白板、彩色笔、课件。

四、教学过程第一步:导入1.引入问题:你们有没有听过“函数”这个概念?你们了解函数是什么吗?2.引导学生思考函数的含义。

第二步:函数的定义和符号表示1.讲解函数的定义:函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

2.讨论函数的符号表示:函数通常用字母 f、g 或 h 来表示,例如:f(x)、g(x) 或 h(x)。

第三步:函数的图像、定义域和值域的概念1.解释函数的图像是指函数在坐标系中的图形表示。

2.定义函数的定义域为自变量的取值范围,值域为因变量的取值范围。

3.给出一些例子让学生理解图像、定义域和值域的概念。

第四步:函数的性质1.奇偶性:讲解函数的奇偶性定义和判断方法。

2.单调性:介绍函数的单调性定义和判断方法。

3.周期性:解释函数的周期性定义和判断方法。

4.分组讨论并总结函数的性质。

第五步:应用函数分析问题1.给出一些具体问题,如:某电商平台的销售额随时间的变化关系,某产品的价格和销量的关系等。

2.让学生通过分析问题,找出函数的定义、图像和性质,进而解决问题。

第六步:应用拓展1.让学生以小组形式进行项目合作,选择一个实际问题,设计一个与函数相关的调查并分析。

2.学生展示调查结果并进行讨论。

五、教学总结1.复习函数的定义和符号表示;2.梳理函数的图像、定义域和值域的概念;3.总结函数的性质:奇偶性、单调性和周期性;4.强调函数在解决实际问题中的应用。

六、课后作业1.教材上的相关练习题;2.在家自行选择一个实际问题,应用函数的概念进行分析和解答。

人教课标版高中数学必修一《函数的概念(第1课时)》教案(1)-新版

人教课标版高中数学必修一《函数的概念(第1课时)》教案(1)-新版

1.2.1函数的概念(第1课时)一、教学目标 (一)核心素养通过这节课学习,了解构成函数的基本要素,理解并掌握函数的概念,熟悉用“区间”、“无穷大”等符号表示取值范围,在数学抽象、数学建模中体会对应关系在刻画函数概念中的作用. (二)学习目标 1.通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.学习用集合语言和对应关系刻画函数,并明确函数的基本要素,掌握判别两个函数是否相同的方法.3.会求一些简单函数的定义域,并能正确使用“区间”表示.(三)学习重点 1.体会函数的重要模型化思想,了解构成函数的要素并理解函数的概念.2.会求一些简单函数的定义域,并能正确使用“区间”表示.(四)学习难点1.体会并理解函数概念中的“任意性”和“唯一性”.2.符号“y=f (x )”的含义. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第15页至第18页,填空:设B A ,是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作()x f y =,A x ∈.其中,x 叫做自变量,x 的取值范围A 叫做定义域,与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域. (2)写一写:区间(设a <b )定义名称区间数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ){x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b } 半开半闭区间 (a ,b ] {x |x ≥a } 半开半闭区间 [a ,+∞) {x |x >a } 开区间 (a ,+∞) {x |x ≤a } 半开半闭区间 (-∞,a ] {x |x <a } 开区间(-∞,a )2.预习自测(1)()x f 与()a f 的区别与联系?答:()a f 表示当a x =时函数()x f 的值,是一个常量,而()x f 是自变量x 的函数,在一般情况下,它是一个变量;()a f 是()x f 的一个特殊值.(2)通过学习函数的概念,你觉得函数的基本要素有哪些?定义两个函数是否相等时,是否需要函数的几个基本要素必须都相同?答:基本要素有定义域、对应关系、值域。

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

人教版高中数学必修一《函数概念》教学设计

人教版高中数学必修一《函数概念》教学设计

《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。

培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。

情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。

二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。

难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。

高中数学 第一章 集合与函数概念(函数的概念)教案 新人教版必修1-新人教版高一必修1数学教案

高中数学 第一章 集合与函数概念(函数的概念)教案 新人教版必修1-新人教版高一必修1数学教案

§1.2.1函数的概念一、教学目标1、知识与技能:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2、过程与方法:(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。

二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .2、教学用具:投影仪 .四、教学思路(一)创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)研探新知1、函数的有关概念(1)函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域(range ).注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . (2)构成函数的三要素是什么?定义域、对应关系和值域 (3)区间的概念 ①区间的分类:开区间、闭区间、半开半闭区间; ②无穷区间;③区间的数轴表示.(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0) y =ax 2+b x +c (a ≠0) y =xk(k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

人教版高中数学必修1第一章集合与函数的概念-《1.2.1函数的概念》教案(1)

人教版高中数学必修1第一章集合与函数的概念-《1.2.1函数的概念》教案(1)

函数的概念》的教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本( A 版)》的第一章 1.2.1 函 数的概念。

函数是中学数学中最重要的基本概念之一, 它贯穿在中学代数的始终, 从初一字 母表示数开始引进了变量, 使数学从静止的数的计算变成量的变化, 而且变量之间也是相互 联系、 相互依存、相互制约的, 变量间的这种依存性就引出了函数。

在初中已初步探讨了函 数概念、 函数关系的表示法以及函数图象的绘制。

到了高一再次学习函数, 是对函数概念的 再认识, 是利用集合与对应的思想来理解函数的定义, 从而加深对函数概念的理解。

函数与 数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、 互相转化。

函数的学习也 是今后继续研究数学的基础。

在中学不仅学习函数的概念、性质、 图象等知识,尤为重要的 是函数的思想要更广泛地渗透到数学研究的全过程。

函数是中学数学的主体内容, 起着承上启下的作用。

函数又是初等数学和高等数学衔接 的枢纽, 特别在应用意识日益加深的今天, 函数的实质是揭示了客观世界中量的相互依存又 互有制约的关系。

因此对函数概念的再认识, 既有着不可替代的重要位置, 又有着重要的现 实意义。

本节的内容较多,分二课时。

本课时的内容为:函数的概念、函数的三要素、简单 函数的定义域及值域的求法、区间表示等。

(第二课时内容为:函数概念的复习、较复杂函 数的定义域及值域的求法、分段函数、函数图象等)【学情分析】 学生在学习本节内容之前, 已经在初中学习过函数的概念, 并且知道可以用函数描述变 量之间的依赖关系。

然而, 函数概念本身的表述较为抽象, 学生对于动态与静态的认识尚为 薄弱,对函数概念的本质缺乏一定的认识, 对进一步学习函数的图象与性质造成了一定的难 度。

初中是用运动变化的观点对函数进行定义, 虽然这种定义较为直观, 但并未完全揭示出 函数概念的本质。

例如,对于函数如果用集合与对应的观点来解释,就十分自然。

高一数学必修1函数教案

高一数学必修1函数教案

高一数学必修1函数教案一、教学目标1、能掌握函数的基本概念,理解函数的概念,以及函数的形式表示。

2、掌握函数在几何意义上的解释和函数图像的概念,并能画出函数图像。

3、熟悉函数一般形式表达式,能利用特殊形式求函数的乘方式。

4、具备解决实际问题中涉及函数类型和函数解释等问题的能力。

二、教学内容1、函数的基本概念函数,即把一个或多个具有某种特点的自变量对应的函数值的集合,表示为函数关系式,简称函数式。

它是一种规律性的映射关系,可以表示为y=f(x)或者是y=f(x,y)形式的函数关系式。

2、函数的几何意义函数的几何意义,就是把函数的关系式画成一个可视的图形,如果图形符合函数的定义,这样就可以理解函数的实际意义了。

图形又称为函数图像,函数图像有可能是折线图、圆弧图或曲线图,也可能是平行多边形和平面网状图等。

3、函数的一般形式根据函数的几何意义,一般将函数表示为一般形式的公式,常有的函数形式有:一次函数:y=ax+b;二次函数:y=ax2+bx+c;三次函数:y=ax3+bx2+cx+d;……及指数函数:y=axb;y=eax;……4、特殊形式求函数乘方式函数乘方式是指当函数经过一定操作,得到另一种函数的过程,比如当一次函数经过翻转操作,就可以得到它的乘方式。

同样,指数函数可以得到它的一般形式,反之亦然。

因此,学习函数乘方式,除了要掌握函数的一般形式,还必须要掌握函数的特殊形式求函数的乘方式的技巧。

5、解决实际问题学习完函数的具体知识之后,就要掌握解决实际问题中涉及函数类型和函数解释等问题的能力,这就要求学生要在实际问题中辨析函数式、绘图、并求解,这有利于学生在学习函数的同时,提高学生对数学知识运用的能力。

高中数学 第一章《函数的概念》(第一课时)教案 新人教A版必修1

高中数学 第一章《函数的概念》(第一课时)教案 新人教A版必修1

1.2.1函数的概念(共两课时)1.2.2教学时间:2010年9月9日星期四教学班级:高一(11、12)班教学目标:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。

2.了解对应关系在刻画函数概念中的作用。

3.了解构成函数的三要素,会求一些简单函数的定义域和值域。

教学重点:函数概念和函数定义域及值域的求法。

教学难点:函数概念的理解。

教学方法:自学法和尝试指导法教学过程:(Ⅰ)引入问题问题 1 初中我们学过哪些函数?(正比例函数、反比例函数、一次函数和二次函数)问题2 初中所学函数的定义是什么?(设在某变化过程中有两个变量x和y,,如果给定了一个x的值,相应地确定唯一的一个y值,那么就称y是x的函数,其中x是自变量,y是因变量)。

(Ⅱ)函数感性认识教材例子(1):炮弹飞行时间的变化范围是数集,炮弹距地面的高度h的变化范围是数集,对应关系(*)。

从问题的实际意义可知,对于数集A中的任意一个时间t,按照对应关系(*),在数集B中都有唯一确定的高度h和它对应。

例子(2)中数集,,并且对于数集A中的任意一个时间t,按图中曲线,在数集B中都有唯一确定的臭氧层空洞面积S和它对应。

例子(3)中数集,且对于数集A中的每一个时间(年份),按表格,在数集B 中都有唯一确定的恩格尔系数和它对应。

(III)归纳总结给函数“定性”归纳以上三例,三个实数中变量之间的关系都可以描述为两个数集A、B间的一种对应关系:对数集A中的每一个x,按照某个对应关系,在数集B中都有唯一确定的y 和它对应,记作。

(IV)理性认识函数的定义设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称为从集合A到集合B的一个函数(function),记作,其中x叫做自变量,x的取值范围A叫做函数的定义域(domain),与x的值相队对应的y的值叫做函数值,函数值的集合叫做函数的值域(range)。

高一数学教案:函数的概念4篇

高一数学教案:函数的概念4篇

高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。

教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。

教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。

步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。

步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。

步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。

步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。

步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。

教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。

教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。

在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。

在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。

高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。

高一必修一函数教案(精心整理)

高一必修一函数教案(精心整理)

高一必修一函数教案(精心整理)高一必修一函数教案完整版(精心整理)一、教学目标- 理解函数的定义和性质,掌握函数的表示方法;- 运用函数概念解决实际问题;- 掌握函数的基本性质,如奇偶性、单调性等;- 学会绘制函数图像并分析函数的特点;- 掌握函数的运算,如函数的复合、逆运算等;- 进一步认识数学与实际生活的联系。

二、教学内容1. 函数的概念- 函数的定义和特点;- 函数的表示方法。

2. 函数的性质- 奇偶性;- 单调性。

3. 函数的图像与分析- 函数图像的绘制;- 函数图像的特点分析。

4. 函数的运算- 函数的复合;- 函数的逆运算。

5. 数学与实际生活的联系- 函数在实际问题中的应用。

三、教学过程1. 函数的概念- 介绍函数的定义和性质;- 讲解函数的表示方法。

2. 函数的性质- 解释奇偶性的概念和判断方法;- 讲解单调性的概念和判断方法。

3. 函数的图像与分析- 演示如何绘制函数的图像;- 分析函数图像的特点。

4. 函数的运算- 演示函数的复合运算方法;- 讲解函数的逆运算概念及求解方法。

5. 数学与实际生活的联系- 通过实际问题案例,引导学生理解函数的实际应用。

四、教学评价- 开展相应的小组活动和讨论,检验学生对函数概念的掌握程度;- 布置作业,要求学生独立解决实际问题,并将解答方法和结果展示;- 针对学生的解答进行评价和指导。

五、教学反思本次教学中,注重理论与实际应用的结合,培养学生对函数的认识和应用能力。

通过多种教学方法的运用,激发学生的研究兴趣,提高研究效果。

同时,通过评价和反思教学过程,不断改进教学策略,进一步提升教学效果。

以上是针对高一必修一函数教案的完整版本,希望能够帮助到您。

如有任何问题,请随时与我联系。

谢谢!。

高中数学必修一(人教A版) 函数的概念 教案1

高中数学必修一(人教A版)  函数的概念 教案1

必修一 1.2.1 函数概念
【教学目标】
1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
2、了解构成函数的要素;
3、会求一些简单函数的定义域和值域;
4、能够正确使用“区间”的符号表示某些函数的定义域.
【重点难点】
重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;函数的概念,函数的三要素.
【教学策略与方法】
讲述法、讲练结合法
【教学过程】
的取值范围:数集A={t|0≤t≤26}
t的取值范围:数集A={t|1979≤t≤2001} S的取值范围:数集B={S|0≤S≤26} (3) 国际上常用恩格尔系数反映一个国家
思考:你能从图表中看出自变量和因变量么?它们的关系怎样?
(二)典型例题
例1、已知函数2
13)(+++=x x x f
(1)求函数的定义域;(2)求f(-3), f(3
2
)
练习、 下列各组中的两个函数是否为相等 的函数?
到再到后到理器。

高一数学教案《函数概念》

高一数学教案《函数概念》

高一数学教案《函数概念》高一数学教案《函数概念》作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

教案应该怎么写才好呢?下面是店铺为大家收集的高一数学教案《函数概念》,仅供参考,欢迎大家阅读。

高一数学教案《函数概念》1教学目标:使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.教学重点:函数的概念,函数定义域的求法.教学难点:函数概念的理解.教学过程:Ⅰ.课题导入[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:问题一:y=1(xR)是函数吗?问题二:y=x与y=x2x 是同一个函数吗?(学生思考,很难回答)[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).Ⅱ.讲授新课[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B 中都有一个数2n和它对应.在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.请同学们观察3个对应,它们分别是怎样形式的对应呢?[生]一对一、二对一、一对一.[师]这3个对应的共同特点是什么呢?[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.现在我们把函数的概念进一步叙述如下:(板书)设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.记作:y=f(x),xA其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.[师]理解函数的定义,我们应该注意些什么呢?(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)注意:①函数是非空数集到非空数集上的一种对应.②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.③集合A中数的任意性,集合B中数的惟一性.④f表示对应关系,在不同的函数中,f的具体含义不一样.⑤f(x)是一个符号,绝对不能理解为f与x的乘积.[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示Ⅲ.例题分析[例1]求下列函数的定义域.(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.解:(1)x-20,即x2时,1x-2 有意义这个函数的定义域是{x|x2}(2)3x+20,即x-23 时3x+2 有意义函数y=3x+2 的定义域是[-23 ,+)(3) x+10 x2这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).注意:函数的定义域可用三种方法表示:不等式、集合、区间.从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11注意:f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a时的函数值.下面我们来看求函数式的值应该怎样进行呢?[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢![生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.[师]生乙的回答完整吗?[生]完整!(课本上就是如生乙所述那样写的).[师]大家说,判定两个函数是否相同的依据是什么?[生]函数的定义.[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)(无人回答)[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!(生恍然大悟,我们怎么就没想到呢?)[例2]求下列函数的值域(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}(3)y=x2+4x+3 (-31)分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.解:(1)yR(2)y{1,0,-1}(3)画出y=x2+4x+3(-31)的图象,如图所示,当x[-3,1]时,得y[-1,8]Ⅳ.课堂练习课本P24练习17.Ⅴ.课时小结本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳) Ⅵ.课后作业课本P28,习题1、2. 文章来高一数学教案《函数概念》2教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期222324252627282930新增确诊病例数10610589103113126981521013.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的'有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

人教版高中数学必修第一册函数的概念教案

人教版高中数学必修第一册函数的概念教案

函数的概念一、课题:函数的概念二、教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三、教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法那么是核心,定义域是灵魂.四、教学过程:〔一〕主要知识:1.对应、映射、像和原像、一一映射的定义;2.函数的传统定义和近代定义;3.函数的三要素及表示法.〔二〕主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键;3.理解函数和映射的关系,函数式和方程式的关系.〔三〕例题分析:例1.〔1〕A R =,{|0}B y y =>,:||f x y x →=;〔2〕*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;〔3〕{|0}A x x =>,{|}B y y R =∈,:f x y →=上述三个对应〔2〕是A 到B 的映射.例2.集合{}(,)|1M x y x y =+=,映射:f M N →,在f 作用下点(,)x y 的象是(2,2)x y ,那么集合N = 〔 D 〕()A {}(,)|2,0,0x y x y x y +=>>()B {}(,)|1,0,0x y xy x y =>>()C {}(,)|2,0,0x y xy x y =<<()D {}(,)|2,0,0x y xy x y =>>解法要点:因为2x y +=,所以2222x y x y +⋅==.例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,那么映射f 的个数是 〔 D 〕()A 8个 ()B 12个 ()C 16个 ()D 18个解法要点:∵()x f x +为奇数,∴当x 为奇数1-、1时,它们在N 中的象只能为偶数2-、0或2,由分步计数原理和对应方法有239=种;而当0x =时,它在N 中的象为奇数1-或1,共有2种对应方法.故映射f 的个数是9218⨯=.例4.矩形ABCD 的长8AB =,宽5AD =,动点E 、F 分别在BC 、CD 上,且CE CF x ==,〔1〕将AEF ∆的面积S 表示为x 的函数()f x ,求函数()S f x =的解析式;〔2〕求S 的最大值.解:〔1〕2111()408(5)5(8)222ABCD CEF ABE ADF S f x S S S S x x x ∆∆∆==---=--⨯⨯--⨯⨯-22113113169()22228x x x =-+=--+. ∵CE CB CD ≤≤,∴05x <≤,∴函数()S f x =的解析式:2113169()()(05)228S f x x x ==--+<≤; 〔2〕∵()f x 在(]0,5x ∈上单调递增,∴max (5)20S f ==,即S 的最大值为20.例5.函数()f x 对一切实数x ,y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =, 〔1〕求(0)f 的值;〔2〕对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求a 的取值X 围. 解:〔1〕由等式()()(21)f x y f y x y x +-=++,令1x =,0y =得(1)(0)2f f -=, 又∵(1)0f =,∴(0)2f =-.〔2〕由()()(21)f x y f y x y x +-=++,令0y =得()(0)(1)f x f x x -=+,由〔1〕知(0)2f =-,∴2()2f x x x +=+. ∵11(0,)2x ∈,∴22111111()2()24f x x x x +=+=+-在11(0,)2x ∈上单调递增,∴13()2(0,)4f x +∈. 要使任意11(0,)2x ∈,21(0,)2x ∈都有12()2log a f x x +<成立,当1a >时,21log log 2a a x <,显然不成立.当01a <<时,21log log 2a a x >,∴0113log 24a a <<⎧⎪⎨≥⎪⎩,解得14a ≤<∴a 的取值X围是4.〔四〕巩固练习:1.给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是11(,)32-或12(,)43-.2.以下函数中,与函数y x =相同的函数是 〔 C 〕()A 2x y x =()B 2y =()C lg10x y =()D 2log 2x y =3.设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,那么(5)f =8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 函数及其表示我们生活的世界时刻都在发生变化,变化无处不在.这些变化着的现象都可以用数学有效地描述它们的变化规律.函数正是描述客观世界变化规律的重要数学模型,通过函数模型可以帮助我们科学地预测将发生什么,进而解决实际问题.因此,学习函数知识对研究客观世界、掌握事物变化规律具有重要的意义.教科书采用了从实际例子中抽象概括出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打了感性基础,而且注重培养了学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.函数的表示是本节的主要内容之一.学生在学习用集合与对应的语言刻画函数之前,比较习惯的是用解析式表示函数,但这是对函数很不全面的认识.在本节中,教科书从引进函数概念开始就比较注重函数的不同表示方法:解析法、图象法、列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在数与形两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象直观的作用;在研究图象时,又要注意代数刻画以求思考和表述的精确性.本教科书将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,并让学生将更多的精力集中于理解函数的概念,同时,也体现了特殊到一般的思维过程.1.2.1 函数的概念(1)从容说课函数是中学数学的一个重要概念,也是高中数学的一条主线.函数在初中已学过,不过较肤浅,本课主要是从两集合间对应来描绘函数的概念,是一个抽象过程,学生学习可能有所不适应.教学中宜逐步设计合理的阶梯,从实际问题逐步建构函数的初步定义,对于“对应”二字宜进行适当解释.函数概念的引入,一般有两种方式,一种方式是先学习映射,再学习函数;另一种方式是通过具体实例,体会两个非空数集之间的一种特殊的对应关系(单值对应),即函数.考虑到多数高中学生的认知特点,为了有助于他们对函数概念本质的理解,教材采用后一种方式,从学生已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念.《标准》对函数概念的处理方式是强调函数是刻画现实世界中一类重要变化规律(运动变化)的模型,一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型.并要求结合实际问题,感受运用函数概念建立模型的过程与方法.三维目标一、知识与技能1.了解函数是特殊的数集之间的对应,理解函数的概念,了解构成函数的要素.2.了解“区间”“无穷大”等概念,掌握区间的符号表示.二、过程与方法1.进一步体会函数是描述变量之间的依赖关系的重要数学模型,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用.2.通过现实事物本质,进行数学抽象与概括,重视其经历,总结经验,体会由具体逐步过渡到符号化、代数式化的数学思想.三、情感态度与价值观1.能对以往学过的知识理性化思考,对事物间的联系有一种数学化的思考.2.函数知识是学好数学后继知识的基础和工具,通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主义观点.教学重点在对应的基础上理解函数的的概念.教学难点对函数概念的理解.教具准备多媒体.教学过程一、创设情景,引入新课师:我们生活在这个世界上,每时每刻都在感受其变化,请大家看(多媒体播放:把教科书上的三个实例制成多媒体)镜头1:教科书P17实例(1).(旁白:随着时间t的变化,炮弹距地面的高度h在变化)镜头2:教科书P17实例(2).(旁白:南极上空臭氧层空洞的面积随着时间的变化而变化)镜头3:教科书P18实例(3).(旁白:我国城镇居民家庭恩格尔系数在逐年减少)……师:这些都说明了当时间变化时,另一个量也随之变化.(多媒体播放)镜头4:某人1元钱买1件商品,另一个人2元钱买1件商品.(旁白:不同的钱数买不同量的商品)镜头5:一只盒子有6只乒乓球,拿出10盒子,再拿出20盒子.(旁白:盒子增多球量增大)师:这些变化着的现象,说明当一个变量变化时,另一个变量随之变化.同学们能否再举出类似事例来?生1:我们的身高随着我们的岁数变化.生2:不对,20岁后,我们身高不长了.师:不错,但身高随着年龄的变化而变化是一个事实,这里变化是一个抽象的概念,说对应更确切.其实在初中我们已初步用函数来刻画和描述两个变量之间的依赖关系,今天我们进一步研究函数的知识.(板演函数的概念)二、讲解新课与学生共同分析、归纳上面的几个例子,寻求它们的共性,发现:对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y和它对应,记作f:A→B.由此得出函数的概念.1.函数的概念(1)函数的传统定义设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.(2)函数的近代定义设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.我们所熟悉的一次函数y =ax +b (a ≠0)的定义域是R ,值域也是R .对于R 中的任意一个数x ,在R 中都有唯一的数y =ax +b (a ≠0)和它对应.二次函数y =ax 2+bx +c (a ≠0)的定义域是R ,值域是B .当a >0时,B ={y |y ≥ab ac 442-};当a <0时,B ={y |y ≤ab ac 442-}.对于R 中的任意一个数x ,在B 中都有唯一的数y =ax 2+bx +c(a ≠0)和它对应.对函数概念的理解(老师和学生共同探讨得出以下结论):①函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合与对应的观点出发.这样,就不难得知函数实质是从非空数集A 到非空数集B 的一个特殊的对应.函数的近代定义更具有一般性,例如函数f (x )=⎩⎨⎧,0,1 ,,是无理数时当是有理数时当x x 如果用运动变化的观点来解释,会显得十分勉强,但用集合、对应的观点来解释,就十分自然.②函数的三要素:定义域、值域和对应关系f .其中核心是对应关系f ,它是函数关系的本质特征.y =f (x )的意义是:y 等于x 在关系f 下的对应值,而f 是“对应”得以实现的方法和途径,是联系x 与y 的纽带,所以是函数的核心.至于用什么字母表示自变量、因变量和对应关系,这是无关紧要的.两个函数相同当且仅当它们的定义域与对应关系在实质上(不必在形式上)分别相同.③函数的定义域是自变量x 的取值范围,它是构成函数的一个不可缺少的组成部分.忽视了函数的定义域,我们将寸步难行,由此,我们也往往把函数的定义域称之为函数的“灵魂”.【例1】 判断下列对应是否为函数:(1)x →x2,x ≠0,x ∈R ; (2)x →y ,这里y 2=x ,x ∈N ,y ∈R . 解:(1)对于任意一个非零实数x ,x 2被唯一确定,所以当x ≠0时,x →x2是函数,这个函数也可以表示为f (x )=x2(x ≠0). (2)当x =4时,y 由y 2=4给出,得y =2和y =-2,即给定一个x =4,有两个y 的值(±2)和它对应,所以x →y (y 2=x )不是函数.(自己输入一个x 的值试一试)方法引导:判断函数的标准可以简记成:两个非空数集A 、B ,一个对应关系f ,A 中任一对B 中唯一.【例2】 求下列函数的定义域:(1)f (x )=1-x ;(2)g (x )=11+x . 解:(1)因为当x -1≥0,即x ≥1时,1-x 有意义;当x -1<0,即x <1时,1-x 没有意义,所以这个函数的定义域是{x |x ≥1}.(2)因为当x +1≠0,即x ≠-1时,11+x 有意义;当x +1=0,即x =-1时,11+x 没有意义,所以这个函数的定义域是{x |x ≠-1,且x ∈R }.方法引导:求函数的定义域开偶次方其根号里面需非负,分母不为零. 2.区间研究函数时常用到区间的概念. (1)区间的概念设a 、b 是两个实数,而且a <b ,我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为;[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做开区间,表示为(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为;[a ,b ],(a ,b ).注意:按照国际标准前闭后开区间记作;[a ,b ),前开后闭区间记作(a ,b ].区间符号里面两个字母(或数字)之间用“,”间隔开.(2)区间的端点和长度区间定义中的实数a 与b 叫做相应区间的端点,其中a 叫左端点,b 叫右端点.称b -a 为区间长度.注意:①区间是集合的又一种表示方法,这样某些以实数为元素的集合就有三种表示法:集合表示法(列举法,描述法)、不等式表示法和区间表示法.例如大于-1小于2的实数的集合可以表示为如下三种形式:{x |-1<x <2};-1<x <2;(-1,2),至于用哪一种形式,可根据习惯或简明的原则来选用.在数轴上,区间可以用一条以a 和b 为端点的线段来表示,(如下表)在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.(3)无穷大的概念①实数集R 也可以用区间表示为(-∞,+∞),其中“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.注意:无穷大是一个符号,不是一个数.②关于用-∞,+∞作为区间的一端或两端的区间称为无穷区间,它的定义和符号如下表:特别说明: ①区间是集合;②区间的左端点必小于右端点;③区间中的元素都是点,可以用数字表示; ④任何区间均可在数轴上表示出来;⑤以“-∞”或“+∞”为区间的一端时,这一端必须是小括号. 三、课堂练习 1.反比例函数y =xk(k ≠0)的定义域、对应关系和值域各是什么?请用上面的函数定义描述这个函数.2.教科书P 22练习题1.答案:1.定义域为(-∞,0)∪(0,+∞),对应关系f :y =xk(k ≠0),值域为(-∞,0)∪(0,+∞).对于任意一个非零实数x ,x k 被唯一确定,所以当x ≠0时,y =xk(k ≠0)是函数.2.(1)因为4x +7≠0,得x ≠-47,所以,函数f (x )=741+x 的定义域为{x ∈R |x ≠-47}. (2)因为1-x ≥0,且x +3≥0,得-3≤x ≤1,所以,函数f (x )=x -1+3+x -1的定义域为{x ∈R |-3≤x ≤1},定义域用区间也可表示为[-3,1].四、课堂小结1.本节学习的数学知识:(1)函数的概念和函数的定义域、值域等概念;(2)区间与无穷大的概念. 2.本节学习的数学方法:观察与归纳的思想方法、定义法、渗透了静与动的辩证唯物主义观点. 五、布置作业1.教科书P 28习题1.2 A 组第1题.2.求下列函数的定义域.(1)f (x )=21-x ; (2)f (x )=23+x ; (3)f (x )=1+x +x-21.板书设计1.2.1 函数的概念(1)函数的概念函数的传统定义函数的近代定义对函数概念的理解例1例2区间的有关概念课堂练习课堂小结。

相关文档
最新文档