抽样方法(一)――简单随机抽样
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法(一)――简单随机抽样
教学目的:1.理解简单随机抽样的概念.
⒉会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本
教学重点:简单随机抽样的概念.抽签法、随机数表法
教学难点:进行简单随机抽样时,“每次抽取一个个体时任一个体a被抽到的概率”与“在整个抽样过程中个体a被抽到的概率”的不同
教学过程:
一、复习回顾、创设情境:
⑴在一次考试中,考生有2万名,为了得到这些考生的数学平均成绩,将他们的成绩全部相加再除以考生总数,那将是十分麻烦的,怎样才能了解到这些考生的数学平均成绩呢?
⑵现有某灯泡厂生产的灯泡10000只,怎样才能了解到这批灯泡的使用寿命呢?
要解决这两个问题,就需要掌握一些统计学知识.在初中阶段,我们学习过一些统计学初步知识,了解了统计学的一些基本概念.学习了总体、个体、样本、样本的容量、总体平均数、样本平均数的意义:
在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数.
统计学的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况.因此,样本的抽去是否得当,对于研究总体来说就十分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映总体的情况?本节课开始,我们就来学习几种常用的抽样方法
二、基础知识学习与研究:
假定一个小组有6个学生,要通过逐个抽取的方法从中取3个学生参加一项活动,第1次抽取时每个被抽到的概率是?(),第2次抽取时,余下的每个被抽到的概率都是?(),第3次抽取时,余下的每个被抽到的概率都是?()。这样的抽样就是简单随机抽样。
一般地,设一个总体的个体总数为n,如果通过逐个抽取的方法从中抽取样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
每次抽取时各个个体被抽到的概率是相等的,那么在整个抽样过程中每个个体被抽到的概率是否确实相等?
例如,从含有6个体的总体中抽取一个容量为2的样本,在整个抽样过程中,总体中的任意一个个体,在第一次抽取时,它被抽到的概率是?();若它第1次未被抽到而第2次被抽到的概率是?()。
由于个体第1次被抽到与第2次被抽到是?(填互斥,独立)事件,根据互斥事件的概率加法公式,在整个抽样过程中,个体被抽到的概率p=?(+=)。又由于个体的任意性,说明在抽样过程中每个体被抽到的概率相等,都是?()。
事实上:用简单随机抽样的方法从个体数为n的总体中逐次抽取一个容量为的样本,那么每个个体被抽到概率都等于。
由于简单随机抽样体现了抽样的客观性和公平性,且这种抽样方法比较简单,所以成为一种基本的抽样方法。
如何实施简单抽样呢?下面介绍两种常用方法
(1)抽签法
先将总体中的所有个体编号(号码可以从1到n),并把号码写在形状、大小相同的号签上,
号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取次,就得到一个容量为的样本,对个体编号时,也可以利用已有的编号,例如从全班学生中抽取样本时,可以利用学生的学号、座位号等。抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。
(2)随机数表法
下面举例说明如何用随机数表来抽取样本。
为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,在利用随机数表抽取这个样本时,可以按下面的步骤进行:
第一步,先将40件产品编号,可以编为00,01,02,,38,39。
第二步,在附录1随机数表中任选一个数作为开始,例如从第8行第5列的数59开始,为便于说明,我们将附录1中的第6行至第10行摘录如下。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28
第三步,从选定的数59开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34。至此,10个样本号码已经取满,于是,所要抽取的样本号码是
16 19 10 12 07 39 38 33 21 34
注将总体中的n个个体编号时可以从0开始,例如n=100时编号可以是00,01,02, 99,这样总体中的所有个体均可用两位数字号码表示,便于运用随机数表。
当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在上面每两位、每两位地读数过程中,得到一串两位数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。由于随机数表中每个位置上出现哪一个数字是等概率的,每次读到哪一个两位数字号码,即从总体中抽到哪一个个体的号码也是等概率的。因而利用随机数表抽取样本保证了各个个体被抽取的概率相等。
三、知识应用与解题研究:
例1 对总数为n的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则n的值为()
解:因为从含有n个个体的总体中抽取一个容量为30的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;所以=0.25,从而有n=120. 故选a
四、巩固练习:p7练习1、2
五、总结提炼:统计的基本思想,简单随机抽样,什么样的总体适宜用简单随机抽样,如何用抽签法或随机数表法获取样本简单随机抽样的常用方法:⑴抽签法、⑵随机数表法简单随机抽样是不放回抽样,是一种等概率抽样方法.
六、课后作业:p9习题1-3
七、检验反馈:
* 1 . 下列说法正确的是:
(a)甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样
(b)期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好