整式及其加减(去括号)专项训练(二)(人教版)(含答案)
《整式的加减》练习题2(有答案)
![《整式的加减》练习题2(有答案)](https://img.taocdn.com/s3/m/f0d89486d0f34693daef5ef7ba0d4a7302766c33.png)
《整式的加减》练习题2学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、单项式22xy2的次数是()A. 5B. 4C. 3D. 2参考答案: C【思路分析】本考点的主要内容是确定单项式的次数,一个单项式中所有字母的指数的和叫做单项式的次数,一个单项式的次数是几,通常称这个单项式为几次单项式。
【解题过程】解:单项式22xy2的次数是1+2=3.故选C.2、若单项式a m−1b2与12a2b n的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9参考答案: C【思路分析】此题考查的是确定单项式的次数根据单项式的次数求参数。
仔细读题,获取题中已知条件,结合确定单项式的次数根据单项式的次数求参数相关知识,即可解答此题。
【解题过程】解:∵单项式am-1b²与12a²bn的和仍是单项式,∴单项式am-1b²与a2b n是同类项,∴m-1=2,n=2,∴m=3,∴nm=8。
故选:C。
3、一块地有a公顷,平均每公顷产粮食m千克;另一块地有b公顷,平均每公顷产粮食n 千克,则这两块地平均每公顷的粮食产量为()A. m+n2B. a+b2C. am+bna+bD. am+bnm+n参考答案: C【思路分析】这道题是考查用代数式表示数量关系,用两块地的总产量除以总的公顷数,列式即可.【解题过程】解:两块地的总产量为ma+nb,.所以,这两块地平均每公顷的粮食产量为:am+bna+b故选C.4、计算2a2+a2的结果是()A. 1B. aC. 3a2D. 2a参考答案: C【思路分析】本考点的主要内容是求几个单项式的和,理解合并同类项的法则是关键,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
【解题过程】解:2a2+a2=(2+1)a2=3a2;故选:C。
人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)
![人教版七年级上册数学复习练习卷:整式的加减之去括号(附答案)](https://img.taocdn.com/s3/m/fce08a3b551810a6f42486c5.png)
七年级上册数学人教版整式的加减之去括号一、选择题1.李老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A. 6a+bB. 6aC. 3aD. 10a-b2.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S),则S1-S2的值为()2A. 5B. 4C. 3D. 23.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+2xy)-(2x2+4xy)=-x2□,此空格的地方被钢笔水弄污了,那么空格中的一项是()A. -2xyB. 6xyC. -6xyD. 2xy4.一种商品每件进价为a元,按进价增加40%定出售价,后因库存积压降价,按售价的八折出售,每件还盈利()A. 0.15a元B. 0.12a元C. 1.25a元D. 0.32a元,n=−1时,代数式3mn-2m2+(2m2-2mn)-(3mn-n2)的值是()5.当m=32A. 3B. 4C. 5D. 66.已知A=2a2-3a,B=2a2-a-1,当a=-4时,A-B等于()A. 8B. 9C. -9D. -77.已知a+b=5,ab=4,则代数式(3ab+5a+8b)+(3a-4ab)的值为()A. 36B. 40C. 44D. 468.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A. 3x2yB. -3x2y+xy2C. -3x2y+3xy2D. 3x2y-xy29.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,试求2a3-[a2-2(a+1)+a]-2的值()A. 2B. 0C. -2D. -410.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -411.有理数a、b在数轴上的位置如图所示,则化简|a-b|+|a+b|的结果为()A. -2aB. 2aC. 2bD. -2b二、填空题12.三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树___________棵.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米.问小明家楼梯的竖直高度(即:BC的长度)为___________米.14.某便民超市原有蒙牛牛奶(5a2+8a)箱,上午卖出(7a-5)箱,中午休息时又购进同样的牛奶(a2-a)箱,中午过后卖出牛奶(6a2-a).则超市下午满仓时有该种牛奶___________箱(用含有a的式子表示).15.如果代数式(3x2+mx-2y+4)-(3nx2-2x+6y-3)的值与字母x的取值无关,代数式m+n的值为___________.16.a 、b 在数轴上的位置如图所示,化简:|a +b |-2|b -a |=___________.17、当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--18、已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.三、解答题19、已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.20、计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?)4()2()242(33432242234y y x x y y x x y x y x x -+-++----答案解析1.【答案】B【解析】根据题意,长方形周长=2[(2a+b)+(a-b)]=2(2a+b+a-b)=2×3a=6a.2.【答案】A【解析】设空白部分的面积是S,因为两个正方形的面积分别为9,4,所以S1=9-S,S2=4-S,所以S1-S2=(9-S)-(4-S)=9-S-4+S=5.3.【答案】A【解析】左边=x2+2xy-2x2-4xy=-x2-2xy.4.【答案】B【解析】因为每件进价为a元,按进价增加40%定出售价,所以每件的售价为(1+40%)a元,所以按售价的八折出售时的价格是(1+40%)a×80%,所以每件盈利=(1+40%)a×80%-a=1.12a-a=0.12a(元).5.【答案】B【解析】3mn-2m2+(2m2-2mn)-(3mn-n2)=3mn-2m2+2m2-2mn-3mn+n2=-2mn+n2=-2×3×(-1)+(-1)22=4.6.【答案】B【解析】A-B=2a2-3a-(2a2-a-1)=2a2-3a-2a2+a+1=-2a+1,把a=-4代入原式,得-2a+1=-2×(-4)+1=9.7.【答案】A【解析】因为a+b=5,ab=4,所以原式=3ab+5a+8b+3a-4ab=8(a+b)-ab=40-4=36.8.【答案】B【解析】因为(a+1)2+|b-2|=0,所以a+1=0,b-2=0,即a=-1,b=2,则原式=-(x2y+xy2)-2(x2y-xy2)=-x2y-xy2-2x2y+2xy2=-3x2y+xy2.9.【答案】D【解析】(2ax2+3x-1)-(3x-2x2-3)=2ax2+3x-1-3x+2x2+3=2ax2+2x2+2=(2a+2)x2+2,多项式(2ax2+3x-1)-(3x-2x2-3)的值与x的取值无关,得2a+2=0.解得a=-1,2a3-[a2-2(a+1)+a]-2=2a3-(a2-2a-2+a)-2=2a3-a2+a,当a=-1时,原式=-2-1-1=-4.10.【答案】C【解析】因为多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含x的二次项,所以-8x2+2mx2=(2m-8)x2,所以2m-8=0,解得m=4.11.【答案】A【解析】根据数轴上点的位置得a<-1<0<b<1,所以a-b<0,a+b<0,则原式=b-a-a-b=-2a.12.【答案】4x+6【解析】依题意得:第二队种的树的棵数为2x+8,(2x+8)-6=x-2,第三队种的树的棵数为12所以三队共种树x+(2x+8)+(x-2)=(4x+6)棵.13.【答案】a-2b【解析】(3a-b)-(2a+b)=3a-b-2a-b=(a-2b)米.故小明家楼梯的竖直高度(即:BC的长度)为(a-2b)米.14.【答案】a+5【解析】由题意得(5a2+8a)-(7a-5)+(a2-a)-(6a2-a)=5a2+8a-7a+5+a2-a-6a2+a=a+5.15.【答案】-1【解析】原式=3x 2+mx -2y +4-3nx 2+2x -6y +3=(3-3n )x 2+(m +2)x -8y +7,由结果与x 取值无关,得到3-3n =0,m +2=0, 解得m =-2,n =1,则m +n =-2+1=-1.16.【答案】-3a +b【解析】通过数轴可以得出结论:a >0,b <0,且|a |<|b |,则原式=-(a +b )-2(a -b )=-a -b -2a +2b=-3a +b .17、【答案与解析】(1)把()p q -当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q -+-----=--+--=---- 又 211p q -=-=所以,原式=22222()()111333p q p q ----=-⨯-=- (2)先合并同类项,再代入求值.解:2283569p q q p -+-- 2(86)(35)9p q =-+-+-2229p q =+-当p =2,q =1时,原式=22229222191p q +-=⨯+⨯-=.18、【解析】解: 222222111338(3)38(3)38333x kxy y xy x kxy xy y x k xy y ----=+----=+---- 因为不含xy 项,所以此项的系数应为0,即有:1303k --=,解得:19k =-. ∴19k =-.19.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时,32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 20. 【解析】解:∵化简结果与x 无关∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242y x x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。
人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)
![人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)](https://img.taocdn.com/s3/m/91d6892c84254b35effd34d3.png)
1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练
![《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练](https://img.taocdn.com/s3/m/5c2b9d44ff4733687e21af45b307e87101f6f811.png)
整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2020•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】解: (1) 15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2) 3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444().x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?举一反三:【变式】(2020春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2提示:由图形可知阴影部分面积=长方形面积29--,而长方形的长为3+a,宽为3,从而使问a题获解.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三:【变式】(2020•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:x⨯=+40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。
人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)
![人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)](https://img.taocdn.com/s3/m/2eea791d4b73f242336c5fc9.png)
人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
2.2.2 整式加减(二)去括号添括号(解析版)
![2.2.2 整式加减(二)去括号添括号(解析版)](https://img.taocdn.com/s3/m/692c6c450a4e767f5acfa1c7aa00b52acfc79ce4.png)
2.2.2整式加减(二)去括号添括号去括号法则题型一:去括号法则【例题1】(2017·广东七年级期末)将x ﹣(y ﹣z )去括号,结果是( )A .x ﹣y ﹣zB .x+y ﹣zC .x ﹣y+zD .x+y+z【答案】C【分析】根据去括号规律:括号前是“-”号,去括号后时连同它前面的“-”号一起去掉,括号内各项都要变号可得答案.【详解】解:x ﹣(y ﹣z )= x ﹣y+z.故选:C【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.变式训练【变式1-1】(2019·珠海市第十一中学)()x y z --去括号后的值是()A .x y z--B .x y z -+C .x y z--+D .x y z ++【答案】B 【分析】利用去括号法则计算.去括号时括号前面是负号的括号里的各项符号都要改变.【详解】()x y z x y z --=-+.故选:B .【点睛】本题主要考查了去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.【变式1-2】(2020·浙江省象山县丹城中学七年级期中)将1(2)2y x --去括号,得( )A .1-22y x +B .1-22y x -C .-12y x +D .12y x --【变式1-3】(2020·江苏景山中学七年级期中)下列去括号中,正确的是 ()A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 【答案】B 【分析】根据去括号的法则,括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号进行各选项的判断.【详解】A.-(1-3m)=-1+3m ,故本选项错误;B.3x-(2y-1)=3x-2y+1,故本选项正确;C.-(a+b)-2c=-a-b-2c ,故本选项错误;D.m 2+(-1-2m)=m 2-1-2m ,故本选项错误.故选B【点睛】本题考查去括号的法则,难度不大,注意掌握括号外面是正则可直接去括号,括号外面是负则括号里面的各项要变号.【变式1-4】(2018·全国七年级单元测试)去掉下列各式中的括号:(1)8m –(3n +5); (2)n –4(3–2m ); (3)2(a –2b )–3(2m –n ).【答案】(1)8m –3n –5;(2)n –12+8m ;(3)2a –4b –6m +3n【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,对各式进行处理即可.【详解】(1)8m –(3n +5)=8m –3n –5.(2)n –4(3–2m )=n –(12–8m )=n –12+8m .(3)2(a –2b )–3(2m –n )=2a –4b –(6m –3n )=2a –4b –6m +3n .【点睛】考查去括号法则,去括号时,当括号前面为“-”时常出现错误,常常是括号内前面的项符号改变了,后面就忘记了,是易错点.题型二:去括号合并同类项【例题2】(2020·陕西七年级期中)先去括号,再合并同类项正确的是( )A .2x-3(2x-y)=-4x-yB .5x-(-2x+y)=7x+yC .5x-(x-2y)=4x+2yD .3x-2(x+3y)=x-y【答案】C选项A, 2x -3(2x -y )=2 x -6x +6y =-4x +6y.A 错.选项B, 5x -(-2x +y )=5x +2x -y =7x +y B 错.选项C, 5x -(x -2y )=5 x -x +2y=4x +2y,C 对.选项D, 3x -2(x +3y )=3x-2x-6y=x-6y,D 错.选C.变式训练【变式2-1】(2020·毕节三联学校七年级期中)先去括号,再合并同类项.(1)5(24)a a b --(2)2223(2)x x x +-【答案】(1)34a b +;(2)26x x-+【分析】(1)先去括号,因为括号前面是负号,要注意变号,再合并同类项;(2)先根据乘法分配律去括号,再合并同类项.【详解】解:(1)原式52434a a b a b =-+=+;(2)原式2222636x x x x x =+-=-+.【点睛】本题考查去括号和合并同类项,解题的关键是掌握去括号和合并同类项的方法.【变式2-2】(2018·全国七年级单元测试)去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(12a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-92a+1.【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(12a−3)+2a2]+4=3a2−(5a−12a+3+2a2)+4=3a2−5a+12a-3-2a2+4=a2-92a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.【变式2-3】(2018·全国七年级单元测试)去括号并合并:3(a-b)-2(2a+b)=___________.【答案】-a-5b【分析】根据乘法分配律去括号,再合并同类项.【详解】3(a-b)-2(2a+b)=3a-3b-4a-2b=-a-5b故答案为:-a-5b【点睛】本题考核知识点:整式的运算.解题关键点:正确去括号,合并同类项.【变式2-4】(2020·全国)先去括号,再合并同类项:(1)2(2b-3a)+3(2a-3b);(2)4a2+2(3ab-2a2)-(7ab-1).【答案】(1)-5b;(2)-ab+1【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【详解】(1)2(2b-3a)+3(2a-3b)=4b-6a+6a-9b=-5b;(2)4a2+2(3ab-2a2)-(7ab-1)=4a2+6ab-4a2-7ab+1=-ab+1.【点睛】本题考查了去括号与添括号,合并同类项,括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.题型三:去绝对值去括号【例题3】(2020·正安县思源实验学校七年级期中)有理数a 、b 、c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“=”或“<”填空:b ________0,+a b ________0,a c -________0,b c -________0;(2)化简a b a c b ++--.【答案】(1)<;=;>;<;(2)c -.【分析】(1)根据数轴判断a 、b 、c 的符号和绝对值,进而即可判断各式的符号;(2)先脱去绝对值,在去括号计算即可.【详解】解:(1)由数轴得a >0>c >b ,a b c =>,∴b <0;a+b =0;a-c >0;b-c <0;故答案为:<;=;>;<;(2)解:∵0a b +=,0a c ->,0b <,∴原式()()0a c b a c b c =+---=-+=-.【点睛】本题考查了根据数轴判断代数式的符号,绝对值的化简,有理数的运算法则,整式的计算等知识,根据数轴判断各式的符号是解题关键.变式训练【变式3-1】(2019·北京师范大学乌海附属学校七年级月考)有理数a 、b 、c 在数轴上的位置如图所示,则代数式a c a b b c +++--的值等于( )A .2aB .2bC .2cD .0【答案】D 【分析】根据数轴,分别判断a+c ,a+b ,b-c 的正负,然后去掉绝对值即可.【详解】解:由数轴可得,a+c>0,a+b<0,b-c<0,则|a+c|+|a+b|-|b-c|=a+c+(-a-b )-(c-b )=a+c-a-b+b-c=0.故选D.【点睛】本题考查了化简绝对值和整式的加减,解答本题的关键是结合数轴判断绝对值符号里面代数式的正负.【变式3-2】(2018·山东七年级期末)已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A .b ﹣2c+aB .b ﹣2c ﹣aC .b+aD .b ﹣a【答案】D 【分析】观察数轴,可知:c <0<b <a ,进而可得出b ﹣c >0、c ﹣a <0,再结合绝对值的定义,即可求出|b ﹣c |﹣|c ﹣a |的值.【详解】观察数轴,可知:c <0<b <a ,∴b ﹣c >0,c ﹣a <0,∴|b ﹣c |﹣|c ﹣a |=b ﹣c ﹣(a ﹣c )=b ﹣c ﹣a +c =b ﹣a .故选D .【点睛】本题考查了数轴以及绝对值,由数轴上a 、b 、c 的位置关系结合绝对值的定义求出|b ﹣c |﹣|c ﹣a |的值是解题的关键.【变式3-3】(2020·福州三牧中学九年级月考)有理数a ,b ,c 在数轴上的位置如图所示,化简a -a b +-c a -=________.【答案】a+b-c【分析】根据数轴,可以判断a ,b ,c 的正负情况,从而可以将所求式子的绝对值符号去掉,然后化简即可解答本题.【详解】解:由数轴可知,0,b a c b a c <<<>>,0,0a b c a \+<->∴原式()()a a b c a a a b c a a b c=-++--=-++-+=+-故答案为:a b c +-.【点睛】本题考查的知识点是数轴与绝对值的性质,根据绝对值的性质将所求式子绝对值符号去掉是解此题的关键.添括号法则题型四:添括号法则【例题4】(2019·全国)下列添括号错误的是()A .3-4x=-(4x-3)B .(a+b)-2a-b=(a+b)-(2a+b)C .-x 2+5x-4=-(x 2-5x+4)D .-a 2+4a+a 3-5=-(a 2-4a)-(a 3+5)【答案】D【分析】根据添括号法则, 当括号前添正号时直接添括号即可,当括号前添负号时括号里面的各项都要变号,即可解题.【详解】解:A,B,C 都是正确的,其中,D 项的右侧展开为-a 2+4a-a 3-5,与等号左侧不相等,故错误项选D.【点睛】本题考查了添括号的性质,属于简单题,熟悉去括号和添括号的性质与联系,特别的注意括号前为负号时要变号是解题关键.变式训练【变式4-1】(2020·全国七年级课时练习)不改变多项式3b 3﹣2ab 2+4a 2b ﹣a 3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是( )A .3b 3﹣(2ab 2+4a 2b ﹣a 3)B .3b 3﹣(2ab 2+4a 2b+a 3)C .3b 3﹣(﹣2ab 2+4a 2b ﹣a 3)D .3b 3﹣(2ab 2﹣4a 2b+a 3)【答案】D【分析】根据去括号法则:如果括号外面的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析.【详解】3b3﹣2ab2+4a2b﹣a3= 3b3﹣(2ab2﹣4a2b+a3).故选D.【点睛】本题考查了去括号,掌握去括号时符号改变规律是解决此题的关键.【变式4-2】(2019·辽宁抚顺市·八年级期末)2ab+4bc﹣1=2ab﹣( ),括号中所填入的整式应是( ) A.﹣4bc+1B.4bc+1C.4bc﹣1D.﹣4bc﹣1【答案】A【分析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【详解】解:2ab+4bc﹣1=2ab﹣(﹣4bc+1).故选:A.【点睛】本题考查了添括号法则,熟练掌握添括号的法则是关键.【变式4-3】(2019·上海市实验学校西校)下列各式添括号(1)2a-b-x-3y=2a-(b+x+3y);(2)2a-b-x-3y=(2a-b)-(x+3y);(3)2a-b-x-3y=-(x+3y)-(b-2a);(4)2a-b-x-3y=(2a-3y)-(b-x);错误的有几个()A.1个B.2个C.3个D.4个【答案】A【分析】根据添括号法则即可得出答案.【详解】(1)2a-b-x-3y=2a-(b+x+3y),故(1)正确;(2)2a-b-x-3y=(2a-b)-(x+3y),故(2)正确;(3)2a-b-x-3y=-(x+3y)-(-2a+b)= -(x+3y)-(b-2a),故(3)正确;(4)2a-b-x-3y=(2a-3y)-(b+x),故(4)错误;故答案选择:A.【点睛】本题考查的是添括号,需要熟练掌握添括号法则.题型五:利用添括号整体求值【例题5】(2019·泰州市第二中学附属初中九年级三模)已知x-3y=-3,则5-x+3y为()A.0B.2C.5D.8【答案】D【详解】解:∵x-3y=-3∴5-x+3y=5-( x-3y)=5+3=8故选D变式训练【变式5-1】若23a b -+的值等于5,则42a b -+的值为()A .2B .2-C .3D .3-【答案】A 【分析】根据题意可得22a b -=,然后利用整体代入法求值即可.【详解】解:∵23a b -+的值等于5∴22a b -=∴42a b-+=()42a b --=42-=2故选A .【点睛】此题考查的是求代数式的值,掌握利用整体代入法求代数式的值是解题关键.【变式5-2】(2020·北京北师大实验中学七年级期中)已232a a +=,则多项式22610a a +-的值为______.【答案】-6【分析】对原式添加括号变形,再整体代入条件即可.【详解】原式()2231022106a a =+-=´-=-,故答案为:-6.【点睛】本题考查添括号法则,以及整式求值,熟练运用添括号法则以及整体思想是解题关键.【变式5-3】(2019·安徽七年级期末)已知221x x +=-,则2364x x ++的值为______.【答案】1【分析】可将2364x x ++变形为23(2)4x x ++,再将221x x +=-整体代入即可.【详解】解:223643(2)4x x x x ++=++,因为221x x +=-,所以,原式=3(1)41´-+=.故答案为:1.【点睛】本题考查代数式求值——已知式子的值,求代数式的值,加括号法则.能利用加括号法则对需要求的代数式进行变形是解决此题的关键.【真题1】(2012·浙江温州市·中考真题)化简:2(a+1) -a=____【答案】a+2把括号外的2乘到括号内,去括号,然后合并同类项即可:原式=2a+2-a=a+2.【真题2】(2021·江苏中考真题)计算:()2222a a -+=__________.【答案】22a -【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2222a a --=22a -,故答案是:22a -.【点睛】本题主要考查整式的运算,掌握去括号法则以及合并同类项法则,是解题的关键.【拓展1】(2019·广州市第五中学七年级月考)已知,,a b c 在数轴上的位置如图所示,所对应的点分别为、、A B C .(1)在数轴上表示1-的点与表示3的点之间的距离为;由此可得点AB 、之间的距离为 (2)化简:2a b c b b a -++---(3)若24,c b =-的倒数是它本身,a 的绝对值的相反数是2-,M 是数轴上表示x 的一点,且20x a x b x c -+-+-=,求x 所表示的数.【答案】(1)4;-a b ;(2)222a b c -+-;(3)x 所表示的数为3-或193.【分析】(1)根据数轴的定义:两点之间的距离即可得;(2)根据数轴的定义,得出,,a b c 的符号、绝对值大小,再根据绝对值运算化简即可;(3)先根据平方数、倒数、相反数的定义求出,,a b c 的值,再根据绝对值运算化简求值即可得.【详解】(1)由数轴的定义得:在数轴上表示1-的点与表示3的点之间的距离为3(1)4--=;点,A B 之间的距离为-a b故答案为:4;-a b ;(2)由,,a b c 在数轴上的位置可知:0,c b a a b<<<>则2()2()()a b c b b a a b b c a b -++---=-++---22a b b c a b=--+--+222a b c =-+-;(3)由,,a b c 在数轴上的位置可知:0c b a<<<由24c =得,2c =-或2c =(舍去)由b -的倒数是它本身得,()1b b -×-=,解得1b =-或1b =(舍去)由a 的绝对值的相反数是2-得,2a -=-,解得2a =或2a =-(舍去)将2,1,2a b c ==-=-代入得21220x x x -++++=根据数轴的定义、绝对值运算分以下四部分讨论:①当2x -≤时,21220x x x -----=解得7x =-,符合题设②当21x -<£-时,21220x x x ---++=解得17x =-,不符题设,舍去③当12x -<£时,21220x x x -++++=解得15x =,不符题设,舍去④当2x >时,21220x x x -++++=解得193x =,符合题设综上,x 所表示的数为3-或193.【点睛】本题考查了数轴的定义、绝对值运算等知识点,熟记并灵活运用数轴的定义是解题关键.【拓展2】(2017·崇仁县第二中学七年级期中)数形结合是一种重要的数学方法,如在化简a 时,当a 在数轴上位于原点的右侧时,a a =;当a 在数轴上位于原点时,0a =;当a 在数轴上位于原点的左侧时,a a =-.当,,a b c 三个数在数轴上的位置如图所示,试用这种方法解决下列问题,(1)当 1.4a a a=时,求的值,(2)当 2.5b b b =-时,求的值.(3)请根据,,a b c 三个数在数轴上的位置, abca b c +求+的值.(4)请根据,,a b c 三个数在数轴上的位置,化简:a c c a b b c ++++--.【答案】(1) 1;(2)-1;(3)-1;(4)原式=-c.试题分析:(1)当 1.4a = 时,点A 在原点右边,由题意可知,此时a a =,代入a a即可求值;(2)当 2.5b =- 时,点B 在原点左边,由题意可知,此时b b =-,代入b b 即可求值;(3)由图中获取A 、B 、C 三点的位置信息后,结合题意即可求原式的值;(4)由图获取a b c 、、的正、负信息和三个数绝对值的大小后,就可确定原式中绝对值符号里面式子的值的符合,就可化简原式了.试题解析:(1)当 1.4a =时, 1.411.4aa ==;(2)当 2.5b =-时, 2.512.5bb ==--;(3)由图可知点A 在原点左边、点B 在原点右边、点C 在原点左边,∴由题意可得:a a b b c c =-==-,,,∴abca b c ++=11(1)1a b c a b c--++=-++-=-;(4)由图可知:0b c a <<<且c a b <<,∴000a c a b b c +>+<-<,,,∴a c c a b b c++++--()[()][()]a c c a b b c =++-+-+---a c c ab b c=+---+-c =-.点睛:在解第4小问这类题时,需注意以下两点:(1)根据在数轴上表示的数中,左边的总小于右边的,确定好所涉及数的大小关系及每个数的正、负信息(涉及异号两数相加的还要获取它们绝对值的大小关系);(2)根据有理数加、减法法则确定好需化简式子中绝对值符号里的式子的正、负,然后再根据绝对值的代数意义将绝对值符号去掉.。
第二章整式的加减(人教版)单元测试题(含答案)
![第二章整式的加减(人教版)单元测试题(含答案)](https://img.taocdn.com/s3/m/08a4aa256d175f0e7cd184254b35eefdc8d3150c.png)
第二章整式的加减(人教版)单元测试题(含答案)第二章整式的加减单元测试一、填空题(每题3分,共27分)1、单项式-3x减去单项式-4x2y+2x2y-5x2的和,列算式为,-5x2-4x2y-3x。
化简后的结果是-5x2-4x2y-3x。
2、当x=-2时,代数式-x+2x-1=1,x-2x+1=-x+1.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x^2+2x+1.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入为0.5b-0.4a元。
6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。
7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。
8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x+3x^2+7的值为10,则多项式6x+9x^2-7的值为26.10、若(m+2)2x^3yn^-2是关于x,y的六次单项式,则m≠0,n=2.11、已知a^2+2ab=-8,b^2+2ab=14,则a^2+4ab+b^2=6.12、多项式3x^3-2x^2-7x+1是三次多项式,最高次项是3x^3,常数项是1.二、选择题(每题3分,共18分)13、下列等式中正确的是(D)。
A、2x-5=-(5-2x)B、7a+3=7(a+3)C、-a-b=-(a-b)D、2x-5=-(2x-5)14、下面的叙述错误的是(A)。
A、(a+2b)的意义是a与b的2倍的和的平方。
B、a+2b的意义是a与b的2倍的和。
C、(a^2/2b)的意义是a的立方除以2b的商。
D、2(a+b)^2的意义是a与b的和的平方的2倍。
15、下列代数式书写正确的是(C)。
A、a48B、x÷yC、a(x+y)D、116、-(a-b+c)变形后的结果是(B)。
4.2 整式的加法与减法 第2课时 去括号-人教版(2024)数学七年级上册
![4.2 整式的加法与减法 第2课时 去括号-人教版(2024)数学七年级上册](https://img.taocdn.com/s3/m/d26fceb23086bceb19e8b8f67c1cfad6185fe95e.png)
=-6 x2+3 xy +6 x2+2 xy -10
=5 xy -10.
1
2
3
4
知识点2 利用去括号法则进行化简求值
若(3- x )2与| y +2|互为相反数,求3(2 x2-3 xy )-
2(3 xy -2 y2)-3(2 x2+3 y2)的值.
=90-20
=70.
1
2
3
4
变式2先化简,再求值:(-3 x -4 xy +3 y )-3(-2 x + xy ),
其中 x + y = , xy =- .
1
2
3
4
解:(-3 x -4 xy +3 y )-3(-2 x + xy )
=-3 x -4 xy +3 y +6 x -3 xy
=3 x -7 xy +3 y .
=-5 b .
1
2
3
4
(2)4 a2+2(3 ab -2 a2)-(7 ab -1).
解:(2)4 a2+2(3 ab -2 a2)-(7 ab -1)
=4 a2+6 ab -4 a2-7 ab +1
=- ab +1.
1
2
3
4
变式1[2023北京西城区期中]化简:
-3(2 x2- xy )+2(3 x2+ xy -5).
A. -(a- b )=- a - b
B. -2(x-4 y )=-2 x +4 y
C. 1+(- m +2)=1- m +2
D. x -(y-1)= x - y -1
1
2
3
4
)
3. [2024石家庄裕华区一模]去括号后等于 a - b + c 的是
_2、2 整式的加减 课后练习(含答案) 21--22学年人教版 七年级数学上册
![_2、2 整式的加减 课后练习(含答案) 21--22学年人教版 七年级数学上册](https://img.taocdn.com/s3/m/060f4eb0312b3169a551a4cc.png)
人教版七年级数学上册 2.2 整式的加减课后提升一、选择题1. 已知某个整式与2x2+5x-2的和为2x2+5x+4,则这个整式是()A.2 B.6C.10x+6 D.4x2+10x+22. 整式x2-3x的值是4,则3x2-9x+8的值是()A.20B.4C.16D.-43. 若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.次数不高于5的整式D.次数不低于5的多项式4. 已知M=4x2-3x-2,N=6x2-3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能5. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为()A.4B.5C.6D.76. 小李家住房的结构如图所示(单位:米),小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板()A.12ab B.10abC.8ab D.6ab7. 当a是整数时,整式a3-3a2+7a+7+(3-2a+3a2-a3)一定是()A.3的倍数B.4的倍数C.5的倍数D.10的倍数8. 已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为() A.9a-9b B.9b-9aC.9a D.-9a二、填空题9. 把x-1当作一个整体,则3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3化简后的结果是_______________________________________.10. 已知4a+3b=1,则8a+6b-3的值为________11. 化简:(7a-5b)-(4a-3b)=________.12. 已知当x=2时,多项式ax3-bx+1的值为-17,那么当x=-2时,多项式ax3-bx+1的值为________.13. 将连续的自然数1至36按图K-26-2所示的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数中中心的数为a,则圈出的9个数中,最小的数为________,最大的数为________,最大数与最小数的差为________.图K-26-214. 观察下列等式:第一行:3=4-1;第二行:5=9-4;第三行:7=16-9;第四行:9=25-16;… …按照上述规律,第n (n 为正整数)行的等式为________________.15. 已知2+23=22×23;3+38=32×38; 4+415=42×415;…若10+a b =102×a b (a ,b 为正整数),则a +b =________.三、解答题16. 先去括号,再合并同类项:(1)6x 2-2xy -2(3x 2+12xy );(2)7(a 2b -ab )-2(a 2b -3ab );(3)3+[3a -2(a -10)].17. 当x =-1,y =12时,求多项式2x 3y -4xy 2+5x 2-1的值.18. 有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =,y =-1.”甲同学把“x =”错抄成“x =-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.19. 有这样一道题:“当a =0.35,b =-0.28时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a3b-3a2b-10a3的值.”小明说:“本题中a=0.35,b=-0.28是多余的条件.”小强马上反对说:“这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?”谁的观点是正确的?请说明理由.20. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.21. 有四个数,第一个数是m+n2,第二个数比第一个数的2倍少1,第三个数是第二个数减去第一个数的差,第四个数是第一个数与m的和.(1)求这四个数的和;(2)当m=1,n=-1时,这四个数的和是多少?人教版七年级数学上册 2.2 整式的加减课后提升-答案一、选择题1. 【答案】B[解析] (2x2+5x+4)-(2x2+5x-2)=2x2+5x+4-2x2-5x+2=6.2. 【答案】A[解析] 原式=3(x2-3x)+8.因为x2-3x=4,所以原式=3×4+8=20.3. 【答案】C4. 【答案】A[解析] 因为M-N=(4x2-3x-2)-(6x2-3x+6)=4x2-3x-2-6x2+3x-6=-2x2-8<0,所以M<N.5. 【答案】D[解析] 因为两个六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),所以b-a=b+空白面积-(a+空白面积)=大六边形面积-小六边形面积=16-9=7.6. 【答案】A[解析] 客厅的面积为4b·2a=8ab(米2),卧室的面积为2a·2b=4ab(米2),所以需买木地板的面积为8ab+4ab=12ab(米2).故选A.7. 【答案】C[解析] a3-3a2+7a+7+(3-2a+3a2-a3)=a3-a3-3a2+3a2+7a-2a+7+3=5a+10.当a是整数时,5a是5的倍数,10是5的倍数,所以5a+10一定是5的倍数.故选C.8. 【答案】C[解析] 由题意可得,原数为10(a+b)+b,新数为10b+a+b,故原两位数与新两位数之差为10(a+b)+b-(10b+a+b)=9a.故选C.二、填空题9. 【答案】-6(x-1)3-2(x-1)2[解析] 3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3=(-4-2)(x-1)3+(3-5)(x-1)2=-6(x-1)3-2(x-1)2.10. 【答案】-1[解析] 先求出8a+6b的值为2,然后整体代入进行计算即可得解.11. 【答案】3a-2b[解析] 原式去括号、合并同类项即可得到结果,原式=7a-5b-4a+3b=3a-2b.故答案为3a-2b.12. 【答案】19[解析] 因为当x=2时,多项式ax3-bx+1的值为-17,所以8a-2b+1=-17.所以8a-2b=-18.当x=-2时,ax3-bx+1=-8a+2b+1=-(8a-2b)+1=18+1=19.13. 【答案】a-7a+71414. 【答案】2n +1=(n +1)2-n 215. 【答案】109 [解析] 仔细观察式子特点可知:3=22-1,8=32-1,15=42-1,故当a =10时,b =102-1=99,则a +b =10+99=109.三、解答题16. 【答案】解:(1)原式=6x 2-2xy -6x 2-xy =-3xy.(2)原式=7a 2b -7ab -2a 2b +6ab=5a 2b -ab.(3)原式=3+[3a -(2a -20)]=3+(3a -2a +20)=3+(a +20)=a +23.17. 【答案】解:当x =-1,y =12时,原式=2×(-1)3×12-4×(-1)×(12)2+5×(-1)2-1 =-1+1+5-1=4.18. 【答案】解:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3.因为化简后的结果中不含x ,所以原式的值与x 的取值无关.所以甲同学把“x =”错抄成“x =-”,但他计算的结果也是正确的.当x =,y =-1时,原式=-2×(-1)3=2.19. 【答案】解:小明的观点是正确的.理由:因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3=(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b =0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.20. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.21. 【答案】[解析] 先分别表示出第二、三、四个数,再求和.解:(1)第二个数是2(m+n2)-1=2m+2n2-1,第三个数是(2m+2n2-1)-(m+n2)=2m+2n2-1-m-n2=m+n2-1,第四个数是m+n2+m=n2+2m.所以这四个数的和为m+n2+(2m+2n2-1)+(m+n2-1)+(n2+2m)=m+n2+2m+2n2-1+m+n2-1+n2+2m=5n2+6m-2.(2)当m=1,n=-1时,5n2+6m-2=5×(-1)2+6×1-2=5+6-2=9.。
七年级数学上册第二单元《整式加减》-解答题专项经典测试(含答案解析)(2)
![七年级数学上册第二单元《整式加减》-解答题专项经典测试(含答案解析)(2)](https://img.taocdn.com/s3/m/93693c627ed5360cba1aa8114431b90d6c85898d.png)
一、解答题1.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.2.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x -+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm . 点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 3.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.4.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.5.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 6.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 解析:8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭.本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.8.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.9.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】 (1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.10.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n是11,12,13,…,20中的任何一个数,则:99999×n=(n-1)9998(20-n),其中(n-1)9998(20-n)是1个7位数,前2位是n-1,个位是20-n,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.11.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a,以15%的速度增长,表示在m的基础上增长a的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.12.上海与南京间的公路长为364km,一辆汽车以xkm/h的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h,可比原来早到几小时?解析:(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh ; (2)如果汽车的速度增加2km/h ,从上海到南京需3642x +h ; (3)如果汽车的速度增加2km/h ,可比原来早到3643642x x ⎛⎫-⎪+⎝⎭h . 【点睛】 本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.14.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积 解析:10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.15.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.16.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.17.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.18.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++- 0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.19.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2,∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解. 21.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.22.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.23.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,求出A、B的值,再计算4A﹣(3A﹣2B)的值即可;(2)把(1)结果变形,根据结果与a的值无关求出b的值即可.【详解】(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.24.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.25.已知:A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+314A)﹣(2b+37B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣312.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.26.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1.(1)求所挡的二次三项式;(2)若x=﹣2,求所挡的二次三项式的值.解析:(1)x2﹣8x+4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.27.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.解析:见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.28.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-=29.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
人教版七年级上册数学第二章整式的加减试题及答案(精华两份)
![人教版七年级上册数学第二章整式的加减试题及答案(精华两份)](https://img.taocdn.com/s3/m/b7d8160359fb770bf78a6529647d27284b7337ec.png)
整式的加减试题(一)及答案一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x +是多项式D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
《第3章整式及其加减》单元测试(2)含答案解析
![《第3章整式及其加减》单元测试(2)含答案解析](https://img.taocdn.com/s3/m/fefb13b54afe04a1b171de14.png)
《第3章整式及其加减》一、选择题1.下列各说法中,错误的是()A.代数式x2+y2的意义是x、y的平方和B.代数式5(x+y)的意义是5与(x+y)的积C.x的5倍与y的和的一半,用代数式表示为5x+D.比x的2倍多3的数,用代数式表示为2x+32.当a=3,b=1时,代数式的值是()A.3 B.C.2 D.13.下面的式子中正确的是()A.3a2﹣2a2=1 B.5a+2b=7abC.3a2﹣2a2=2a D.5xy2﹣6xy2=﹣xy24.代数式的值一定不能是()A.6 B.0 C.8 D.245.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.126.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a7.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣19.在排成每行七天的日历表中取下一个3×3方块(如图).若所有日期数之和为189,则n的值为()A.21 B.11 C.15 D.910.某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元二、填空题11.若x+y=4,a,b互为倒数,则(x+y)+5ab的值是.12.已知2a﹣3b2=5,则10﹣2a+3b2的值是.13.如图:(1)阴影部分的周长是:;(2)阴影部分的面积是:;(3)当x=5.5,y=4时,阴影部分的周长是,面积是.14.若a﹣2b=3,则2a﹣4b﹣5=.15.去括号:﹣6x3﹣[4x2﹣(x+5)]=.16.一个学生由于粗心,在计算35﹣a的值时,误将“﹣”看成“+”,结果得63,则35﹣a的值应为.17.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应是元/千克.三、解答题(共46分)19.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x﹣2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.20.化简关于x的代数式(2x2+x)﹣[kx2﹣(3x2﹣x+1)],当k为何值时,代数式的值是常数?21.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.22.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.23.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)证明你猜想的结论;(3)求和:+++…+.24.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?25.任意写出一个数位不含0的三位数,任取三个数字中的两个,组合成所有可能的两位数(6个).求出所有这些两位数的和,然后将它除以原三位数上的数字之和.例如对于三位数223,取其两个数字组成所有可能的两位数有:22,23,23,22,32,32.它们的和是154.三位数223各个数位上的数字之和为7,154÷7=22.再换几个数试一试,你发现了什么?运用代数式的知识说明你的发现是正确的.《第3章整式及其加减》参考答案与试题解析一、选择题1.下列各说法中,错误的是()A.代数式x2+y2的意义是x、y的平方和B.代数式5(x+y)的意义是5与(x+y)的积C.x的5倍与y的和的一半,用代数式表示为5x+D.比x的2倍多3的数,用代数式表示为2x+3【考点】列代数式;代数式.【分析】根据代数式的意义对各选项分析判断后利用排除法求解.【解答】解:A、代数式x2+y2的意义是x、y的平方和正确,故本选项错误;B、代数式5(x+y)的意义是5与(x+y)的积正确,故本选项错误;C、x的5倍与y的和的一半,用代数式表示为(5x+y),故本选项正确;D、比x的2倍多3的数,用代数式表示为2x+3正确,故本选项错误.故选C.【点评】本题考查了列代数式,是基础题.2.当a=3,b=1时,代数式的值是()A.3 B.C.2 D.1【考点】代数式求值.【专题】计算题.【分析】将a=3,b=1直接代入代数式,化简计算即可.【解答】解:当a=3,b=1,=.故选B.【点评】本题考查了求代数式的值,本题属于常规代入求值法,代数式求值,除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的.3.下面的式子中正确的是()A.3a2﹣2a2=1 B.5a+2b=7abC.3a2﹣2a2=2a D.5xy2﹣6xy2=﹣xy2【考点】合并同类项.【分析】根据合并同类项的定义,所含字母相同,且相同字母的指数也相同的项叫做同类项,将多项式中的同类项合并为一项,叫做合并同类项,合并时,将系数相加,字母和字母指数不变,再选出正确的选项.【解答】解:根据合并同类项时,将系数相加,字母和字母指数不变,A:3a2﹣2a2=a2,故A,C错误,B:5a+2b不是同类项,不能相加,故错误,D:5xy2﹣6xy2=﹣xy2,故选D.【点评】本题考查了同类项的定义,及合并时,将系数相加,字母和字母指数不变,难度适中.4.代数式的值一定不能是()A.6 B.0 C.8 D.24【考点】分式的值.【专题】计算题.【分析】可以假设式子的值等于各个选项的数值,判断a的值是否存在即可.【解答】解:A、当a=10时,=6,故选项错误;B、分式的值等于0的条件是分子等于0而分母不等于0,这个式子的分母不等于0,则式子的值一定不等于0,故选项正确;C、当a=4时,=8,故选项错误;D、当a=12时,=24,故选项错误.故选B.【点评】本题主要考查了分式的值是0的条件:分子等于0而分母不等于0,这两个条件必须同时具备.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【专题】计算题.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a【考点】列代数式.【分析】b原来的最高位是个位,现在的最高位是千位,扩大了100倍;a不变.【解答】解:两位数的表示方法:十位数字×10+个位数字;三位数字的表示方法:百位数字×100+十位数字×10+个位数字.a是两位数,b是一位数,依据题意可得b扩大了100倍,所以这个三位数可表示成100b+a.故选C.【点评】主要考查了三位数的表示方法,该题的易错点是表示百位数字b时忘了a是个2位数,错写成(10b+a).7.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.【考点】整式的加减.【分析】此题可先列出所求代数式的两倍,然后再除以2即可.【解答】解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.【点评】整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣1【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.【解答】解:由数轴可知﹣2<b﹣1,1<a<2,且|a|>|b|,∴a+b>0,则|a+b|﹣|a﹣1|+|b+2|=a+b﹣(a﹣1)+(b+2)=a+b﹣a+1+b+2=2b+3.故选B.【点评】此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.9.在排成每行七天的日历表中取下一个3×3方块(如图).若所有日期数之和为189,则n的值为()A.21 B.11 C.15 D.9【考点】一元一次方程的应用.【专题】应用题.【分析】观察图片,可以发现日历的排布规律,因此可得出日历每个方块的代数式,从而求出n的值.【解答】解:日历的排布是有一定的规律的,在日历表中取下一个3×3方块,当中间那个是n的话,它的上面的那个就是n﹣7,下面的那个就是n+7,左边的那个就是n﹣1,右边的那个就是n+1,左边最上面的那个就是n﹣1﹣7,最下面的那个就是n﹣1+7,右边最上面的那个就是n+1﹣7,最下面的那个就是n+1+7,若所有日期数之和为189,则n+1+7+n+1﹣7+n﹣1+7+n﹣1﹣7+n+1+n﹣1+n+7+n﹣7+n=189,9n=189,解得:n=21.故选A.【点评】此题的关键是联系生活实际找出日历的规律,所以学生平时要养成爱观察爱动脑的习惯.10.某种商品进价为a元,商店将价格提高30%作零售价销售.在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件该商品的售价为()A.a元B.0.8a元C.1.04a元D.0.92a元【考点】列代数式.【分析】根据题意列出等量关系,商品的售价=原售价的80%.直接列代数式求值即可.【解答】解:依题意可得:a(1+30%)×0.8=1.04a元.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意数字通常写在字母的前面.二、填空题11.若x+y=4,a,b互为倒数,则(x+y)+5ab的值是.【考点】代数式求值.【专题】整体思想.【分析】根据已知ab互为倒数,可知ab=1,再把ab=1,x+y=4同时代入所求代数式,计算即可.【解答】解:∵a,b互为倒数,∴ab=1,又∵x+y=4,∴(x+y)+5ab=×4+5×1=7.故答案是7.【点评】本题考查的是代数式求值、倒数的概念、整体代入的思想.12.已知2a﹣3b2=5,则10﹣2a+3b2的值是.【考点】代数式求值.【专题】计算题.【分析】先将10﹣2a+3b2进行变形,然后将2a﹣3b2=5整体代入即可得出答案.【解答】解:10﹣2a+3b2=10﹣(2a﹣3b2),又∵2a﹣3b2=5,∴10﹣2a+3b2=10﹣(2a﹣3b2)=10﹣5=5.故答案为:5.【点评】此题考查了代数式求值的知识,属于基础题,解答本题的关键是掌握整体思想的运用.13.如图:(1)阴影部分的周长是:;(2)阴影部分的面积是:;(3)当x=5.5,y=4时,阴影部分的周长是,面积是.【考点】代数式求值;列代数式.【分析】(1)将各段相加可得出周长.(2)先计算整个长方形的面积,然后减去空白的面积即可.(3)将x=5.5,y=4代入(1)(2)的关系式可得出答案.【解答】解:(1)周长=0.5x+y+0.5x+y+x+2y+2x+2y=4x+6y.(2)面积=4xy﹣0.5xy=3.5xy.(3)将x=5.5,y=4代入(1)(2)可得周长=46,面积=88﹣11=77.【点评】本题考查列代数式和代数式求值的知识,比较简单,关键是获取图形所反映的信息.14.若a﹣2b=3,则2a﹣4b﹣5=.【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.15.去括号:﹣6x3﹣[4x2﹣(x+5)]=.【考点】去括号与添括号.【分析】首先去掉小括号,然后去中括号即可求解.【解答】解:﹣6x3﹣[4x2﹣(x+5)]=﹣6x3﹣(4x2﹣x﹣5)=﹣6x3﹣4x2+x+5.故答案是:﹣6x3﹣4x2+x+5.【点评】本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.16.一个学生由于粗心,在计算35﹣a的值时,误将“﹣”看成“+”,结果得63,则35﹣a的值应为.【考点】代数式求值.【专题】计算题.【分析】根据题意列出等式,求出a的值,即可确定出所求式子的值.【解答】解:由题意可知35+a=63,即a=28,则35﹣a=35﹣28=7.故答案为:7.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价应是元/千克.【考点】列代数式(分式).【分析】此题要根据题意列出代数式.先求出20千克的甲种糖果和y千克乙种糖果的总价钱,即20x+12y,混合糖果的重量是20+y,由此我们可以求出20千克甲种糖果和y千克乙种糖果混合而成的什锦糖的单价.【解答】解:.【点评】本题考查列代数式.注意混合什锦糖单价=甲种糖果和乙种糖果的总价钱÷混合糖果的重量.三、解答题(共46分)19.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x﹣2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.化简关于x的代数式(2x2+x)﹣[kx2﹣(3x2﹣x+1)],当k为何值时,代数式的值是常数?【考点】整式的加减.【专题】计算题.【分析】代数式去括号合并得到最简结果,根据结果为常数即可求出k的值.【解答】解:(2x2+x)﹣[kx2﹣(3x2﹣x+1)]=2x2+x﹣kx2+(3x2﹣x+1)=2x2+x﹣kx2+3x2﹣x+1=2x2+x﹣kx2+3x2﹣x+1=(5﹣k)x2+1,若代数式的值是常数,则5﹣k=0,解得k=5.则当k=5时,代数式的值是常数.【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.【考点】整式的加减.【专题】数字问题.【分析】设原来的两位数是10a+b,则调换位置后的新数是10b+a.原来的两位数与新两位数的差为(10b+a)﹣(10a+b),可化为9b﹣9a=9(b﹣a),所以这个数一定能被9整除.【解答】解:设原来的两位数是10a+b,则调换位置后的新数是10b+a.∴(10b+a)﹣(10a+b)=9b﹣9a=9(b﹣a).∴这个数一定能被9整除.【点评】本题考查列代数式.要求会用代数式正确表示数与数之间的关系.22.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.【考点】规律型:图形的变化类.【分析】(1)根据图中所给的黑色棋子的颗数,找出其中的规律,即可得出答案;(2)根据(1)所找出的规律,列出式子,即可求出答案.【解答】解:(1)第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n 个图需棋子3(n+1)枚.答:第5个图形有18颗黑色棋子.(2)设第n 个图形有2013颗黑色棋子,根据(1)得3(n+1)=2013解得n=670,所以第670个图形有2013颗黑色棋子.【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.23.观察下面的变形规律:=1﹣; =﹣; =﹣;…解答下面的问题:(1)若n 为正整数,请你猜想= ; (2)证明你猜想的结论;(3)求和: +++…+. 【考点】分式的加减法.【专题】规律型.【分析】(1)观察规律可得: =﹣;(2)根据分式加减法的运算法则求解即可证得结论的正确性;(3)利用上面的结论,首先原式可化为:1﹣+﹣+﹣+…+﹣,继而可求得答案.【解答】解:(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.【点评】此题考查了分式的加减运算法则.此题难度适中,解题的关键是仔细观察,得到规律=﹣,然后利用规律求解.24.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?【考点】列代数式;代数式求值.【专题】应用题.【分析】(1)求出加工后的蔬菜重量和价格,即可求出代数式;(2)将数字代入(1)中代数式即可.【解答】解:(1)x千克这种蔬菜加工后重量为x(1﹣20%)千克,价格为y(1+40%)元.x千克这种蔬菜加工后可卖x(1﹣20%)•y(1+40%)=1.12xy元.(2)加工后可卖1.12×1000×1.5=1680元,1.12×1000×1.5﹣1000×1.5=180(元)比加工前多卖180元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要掌握销售问题的价格与重量之间的关系.25.任意写出一个数位不含0的三位数,任取三个数字中的两个,组合成所有可能的两位数(6个).求出所有这些两位数的和,然后将它除以原三位数上的数字之和.例如对于三位数223,取其两个数字组成所有可能的两位数有:22,23,23,22,32,32.它们的和是154.三位数223各个数位上的数字之和为7,154÷7=22.再换几个数试一试,你发现了什么?运用代数式的知识说明你的发现是正确的.【考点】列代数式.【专题】应用题.【分析】根据特例,首先猜想:所有组成的数的和除以这几个数字的和恒等于22,然后用字母表示数进行证明.注意用字母表示数的方法.【解答】解:猜想:所有可能的两位数的和除以这几个数字的和恒等于22.证明如下:设几个非零的数字是a,b,c.则所有的两位数是10a+b,10a+c,10b+a,10b+c,10c+a,10c+b.则(10a+b+10a+c+10b+a+10b+c+10c+a+10c+b)÷(a+b+c)=(22a+22b+22c)÷(a+b+c)=22(a+b+c)÷(a+b+c)=22.【点评】特别注意能够正确运用字母表示一个数.本题先根据题中材料猜想结论,然后用字母表示两位数计算可得出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减
8.化简 的结果为( )
A. B.
C. D.
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:整式的加减
9.化简 的结果为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:整式的加减
问题2:去括号法则是什么?
答:括号前面是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;
括号前面是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.
问题3:若关于 的多项式 合并同类项后不含 项,则常数 .
答:
整式及其加减(去括号)专项训练(二)(人教版)
一、单选题(共12道,每道8分)
4.化简 的结果为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:整式的加减
5.化简 的结果为( )
A. B.
C. D.
答案:B
解题思路:
故选B.
试题难度:三颗星知识点:整式的加减
6.化简 的结果为( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减
10.化简 的结果为( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减
11.化简 的结果为( )
A. B.
C. D.
答案:B
解题思路:
观察这个代数式:既含有小括号又含有中括号,
根据式子的特征选择先去小括号或者先去中括号,
要注意先去中括号时,要把小括号作为一个整体.
1.化简 的结果为( )
A. B.
C. D.
答案:B
解题思路:
故选B.
试题难度:三颗星知识点:整式的加减
2.化简 的结果为( )
A. B.
C. D.
答案:A
解题思路:
故选A.
试题难度:三颗星知识点:整式的加减
3.化简 的结果为( )
A. B.
C. D.
答案:D
解题思路:
故选D.
试题难度:三颗星知识点:整式的加减
学生做题前请先回答以下问题
问题1:什么是同类项?合并同类项法则是什么?
问题2:去括号法则是什么?
问题3:若关于 的多项式 合并同类项后不含 项,则常数 .
以下是问题及答案,请对比参考:
问题1:什么是同类项?合并同类项法则是什么?
答:所含字母相同,并且相同字母的指数也相同的项叫做同类项;
合并同类项法则:把同类项的系数相加,字母和字母的指数不变.
本整式的加减
12.化简 的结果为( )
A. B.
C. D.
答案:C
解题思路:
故选C.
试题难度:三颗星知识点:整式的加减