LS-DYNA的前后处理及其运行方式

合集下载

4-ANSYS-LS-DYNA模型前处理技巧(spaceclaim介绍)

4-ANSYS-LS-DYNA模型前处理技巧(spaceclaim介绍)

© 2015 ANSYS, Inc.
27
面检测工具
错误的面
检查模型中拓扑损坏的面
重叠面
检查模型中重复的面
间隙
检查装配体中零件之间的小间隙
© 2015 ANSYS, Inc.
28
短边修复
专门用于修复模型中短边的工具,以优化模型拓扑
根据给定的基准,自动探测
© 2015 ANSYS, Inc.
© 2015 ANSYS, Inc.
12
简单易用的零件装配
搭配强大的移动功能,装配更加易用 装配好的部件不受相互约束,避免模型出错 支持多层部件关系,不怕零件图丢失
© 2015 ANSYS, Inc.
13
丰富的实用功能
工程图纸的制作 种类多样的零件库 强大的图形渲染功能 多种测量工具
在workbench中启动SpaceClaim
在SpaceClaim中启动workbench
21
目录
1 SpaceClaim的简介 2 SpaceClaim的功能特点 3 SpaceClaim 16.0的新功能
What’s new in SpaceClaim 16.0?
© 2015 ANSYS, Inc.
25
制造准备工具
特征线抽取
去毛刺工具路径
车削轮廓
止裂槽
© 2015 ANSYS, Inc.
26
STL小平面工具
编辑功能,对stl模型进行拉动、布尔运算等操作 检查和修复功能,检查stl模型的错误问题并对其进行修复 调整优化功能,通过合并、平滑等对stl模型进行优化 转换功能,进行stl模型与实体模型的相互转换
7spaceclaim的功能特点?灵活高效的直接建模?强大的模型快速修改?全面兼容的数据接口?独特的钣金设计?简单易用的零件装配?丰富的实用功能直接建模功能?模型错误的检查?破损模型的修复?模型特征的简化?优化拓扑质量的工具?特定仿真模型的建立?完美集成于ansysworkbench专门面向cae的模型处理?2015ansysinc

ANSYS中Ls-dyna应用指导

ANSYS中Ls-dyna应用指导

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。

使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。

也可以在ANSYS 和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。

1.1 显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。

没有详细论述上面的三个步骤。

如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。

如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。

多数情况下,这些设置适合于所要求解的问题。

1.2 显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。

同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。

然而,在显式动态分析中有一些独特的命令,如下:EDADAPT :激活自适应网格EDASMP :创建部件集合EDBOUND :定义一个滑移或循环对称界面EDBVIS :指定体积粘性系数EDBX :创建接触定义中使用的箱形体EDCADAPT :指定自适应网格控制EDCGEN :指定接触参数EDCLIST :列出接触实体定义EDCMORE :为给定的接触指定附加接触参数EDCNSTR :定义各种约束EDCONTACT :指定接触面控制EDCPU :指定CPU时间限制EDCRB :合并两个刚体EDCSC :定义是否使用子循环EDCTS :定义质量缩放因子EDCURVE :定义数据曲线EDDAMP :定义系统阻尼EDDC :删除或杀死/重激活接触实体定义EDDRELAX :进行有预载荷几何模型的初始化或显式分析的动力松弛 EDDUMP :指定重启动文件的输出频率(d3dump)EDENERGY :定义能耗控制EDFPLOT :指定载荷标记绘图EDHGLS :定义沙漏系数EDHIST :定义时间历程输出EDHTIME :定义时间历程输出间隔EDINT :定义输出积分点的数目EDIS :定义完全重启动分析的应力初始化EDIPART :定义刚体惯性EDLCS :定义局部坐标系EDLOAD :定义载荷EDMP :定义材料特性EDNB :定义无反射边界EDNDTSD :清除噪声数据提供数据的图形化表示EDNROT :应用旋转坐标节点约束EDOPT :定义输出类型,ANSYS或LS-DYNAEDOUT :定义LS-DYNA ASCII输出文件EDPART :创建,更新,列出部件EDPC :选择、显示接触实体EDPL :绘制时间载荷曲线EDPVEL :在部件或部件集合上施加初始速度EDRC :指定刚体/变形体转换开关控制EDRD :刚体和变形体之间的相互转换EDREAD :把LS-DYNA的ASCII输出文件读入到POST26的变量中 EDRI :为变形体转换成刚体时产生的刚体定义惯性特性 EDRST :定义输出RST文件的时间间隔EDSHELL :定义壳单元的计算控制EDSOLV :把“显式动态分析”作为下一个状态主题EDSP :定义接触实体的小穿透检查EDSTART :定义分析状态(新分析或是重启动分析)EDTERM :定义中断标准EDTP :按照时间步长大小绘制单元EDVEL :给节点或节点组元施加初始速度EDWELD :定义无质量焊点或一般焊点EDWRITE :将显式动态输入写成LS-DYNA输入文件PARTSEL :选择部件集合RIMPORT :把一个显式分析得到的初始应力输入到ANSYSREXPORT :把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM :相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。

第五章 LS-DYNA后处理软件lsprepost功能介绍..

第五章 LS-DYNA后处理软件lsprepost功能介绍..

XY 图形窗口
XY 图形窗口
XY 图形窗口包含 XY 画曲线和按钮,可改变画图的各种参数
Curve list and buttons – 选择执行的曲线 Grid – 显示格栅或关闭 Tick – 在X和Y轴上显示记号或关闭 Frame – 显示曲线图框或关闭 Legend – 显示文字或关闭 Autofit – 自动调整所有的曲线到图形窗口 Timeline – 到做动画时显示时间线或关闭 Invert – 改变背景为黑色或白色 Maxgraph –使文字位于图形框内
Fringe 组件选择
动态范围—范围由各个帧计算获得 静态范围 – 范围由所有帧计算获得 用户定义 – 用户输入范围的最大和最小值 显示范围 – 显示仅在范围之内的单元 整个模型 –范围基于整个模型计算 仅对激活的 part –范围基于激活的 parts计算
(可见的 parts) 不平均–每一个单元一个颜色
菜单和按钮
主菜单按钮 – 主菜单区域的每一个按钮 在动态区激活一个新的界面,该动态区 位于主菜单区的下面
主菜单区域
•Part – 是一个独特的实体,由一单元类型和材料常数 组成。
•Beam(B), Shell(S), Solid(H), Tshell(T), Rsurf(R), Sphnd(P), Fluid(F) 按钮选择或不选择该单元类型 •Singl – 使用左键单击拾取一 part •Area – 在一封闭窗口区域拾取多个 parts •Poly – 在一个封闭的多边形区域拾取多个parts •Part Id list –拾取和拖动而块选择或按住CTRL键进行
ASCII 输出文件
全局统计
*DATABASE_GLSTAT
• 全局能量信息

LS-DYNA使用指南

LS-DYNA使用指南

TBDATA , 6, Mn Time (自动删除单元的最小步长,仅用于壳单元)
例题参看 B.2.15,Strain Rate Dependent Plasticity Example;4140 Steel。 7.2.3.11 复合材料破坏模型
此材料模型是由 Chang & Chang 发展的复合材料失效模型,模型采用如下 5 个参数:
来选择各向同性或随动硬化。应变率用 Cowper-Symonds 模型来考虑,用与应变 率有关的因数表示屈服应力,如下所示:
这里 —初始屈服应力, —应变率,C 和 P-Cowper Symonds 为应变率参 数。 —有效塑性应变, —塑性硬化模量,由下式给出:
应力应变特性只能在一个温度条件下给定。用 MP 命令输入弹性模量(Exx), 密度(DENS)和泊松比(NUXY)。用 TB ,PLAW,,,,1 和 TBDATA 命令中的
下,这些设置适合于所要求解的问题。
is 1.2 显式动态分析采用的命令
在显式动态分析中,可以使用与其它 ANSYS 分析相同的命令来建立模型、执 行求解。同样,也可以采用 ANSYS 图形用户界面(GUI)中类似的选项来建模和
g 求解。 e 然而,在显式动态分析中有一些独特的命令,如下:
EDADAPT :激活自适应网格
例题参看 B.2.13,Barlat Anisotropic Plasticity Example:2008-T4 Aluminum。
7.2.3.9 应变率敏感的幂函数式塑性模型
与应变率相关的塑性模型,主要用于超塑性成形分析,该模型遵循 Ramburgh -Osgood 本构关系:
这里 ε-应变; -应变率;m-硬化系数;k-材料常数;n-应变率敏感

LS-DYNA使用指南中文版本

LS-DYNA使用指南中文版本

LS-DYNA使用指南中文版本第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。

使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。

也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。

1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。

没有详细论述上面的三个步骤。

如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。

如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYSBaicAnalyiGuide·ANSYSModelingandMehingGuide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。

多数情况下,这些设置适合于所要求解的问题。

1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。

同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。

然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDB某:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELA某:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNAASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSRE某PORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型1.3本手册使用指南本手册包含过程和参考信息,可从前到后选择性阅读。

(完整word版)ls-dyna命令帮助手册(中文)

(完整word版)ls-dyna命令帮助手册(中文)

(完整word版)ls-dyna命令帮助⼿册(中⽂)Fini(退出四⼤模块,回到BEGIN层)/cle (清空内存,开始新的计算)1.定义参数、数组,并赋值.2./prep7(进⼊前处理)定义⼏何图形:关键点、线、⾯、体定义⼏个所关⼼的节点,以备后处理时调⽤节点号。

设材料线弹性、⾮线性特性设置单元类型及相应KEYOPT设置实常数设置⽹格划分,划分⽹格根据需要耦合某些节点⾃由度定义单元表3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通⽤后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语⾔8.理论⼿册Fini(退出四⼤模块,回到BEGIN层)/cle (清空内存,开始新的计算)1 定义参数、数组,并赋值.u dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type:array 数组,如同fortran,下标最⼩号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableimax,jmax, kmax 各维的最⼤下标号var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时) 2 /prep7(进⼊前处理)2.1 定义⼏何图形:关键点、线、⾯、体u csys,kcnkcn , 0 迪卡尔坐标系1 柱坐标2 球4 ⼯作平⾯5 柱坐标系(以Y轴为轴⼼)n 已定义的局部坐标系u numstr, label, value设置以下项⽬编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将⾃动设置节点、单元开始号为最⾼号,这时如需要⾃定义起始号,重发numstr u K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最⼩号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0” 如果附有节点及单元,则⼀起拷贝。

LS-DYNA使用指南中文版本

LS-DYNA使用指南中文版本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。

使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。

也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。

1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。

没有详细论述上面的三个步骤。

如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。

如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。

多数情况下,这些设置适合于所要求解的问题。

1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。

同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。

然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。

LSDYNA使用指南中文本

LSDYNA使用指南中文本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。

使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。

也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。

1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。

没有详细论述上面的三个步骤。

如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。

如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。

多数情况下,这些设置适合于所要求解的问题。

1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。

同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。

然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。

LS-DYNA使用指南第五章

LS-DYNA使用指南第五章

LS-DYNA使用指南第五章2007-11-29 作者:安世亚太点击进入论坛第五章求解特性5.1求解过程当模型建好后(即,单元、实常数、材料性质的定义,建立模型、网格划分、边界/初始条件指定以及加载、结束控制),执行SOLVE命令即可以开始求解过程。

(在GUI中,菜单路径为Main Menu>Solution>Solve)。

此时,ANSYS/LS-DYNA程序将运行以下几步:1.标题记录:包括几何特性(如节点和单元等),都写到相应的两个结果文件Jobname.RST和Jobname.HIS中。

(此时ANSYS/LS-DYNA数据库中包含全部相应的信息。

即在运行SOLVE命令前,必须执行SAVE命令,把所有的模型信息都写入到文件Jobname.DB)。

2.将所有输入的信息写出LS-DYNA程序的输入文件Jobname.K 。

3.控制权由ANSYS程序转移给LS-DYNA程序。

LS-DYNA求解器运行的结果写入到结果文件Jobname.RST和Jobname.HIS中。

如果执行SOLVE命令前给定命令EDOPT,ADD,,BOTH,则也将输出用于LS-POST后处理程序的结果文件(d3plot和d3thdt文件)。

当求解结束后,ANSYS/LS-DYNA GUI将提醒用户求解已完成,控制权重新转回到ANSYS/LS-DYNA程序。

可以通过ANSYS/LS-DYNA程序的POST1和POST26后处理器来查看结果。

如果产生了错误或警告,输出窗口将自动显示弹出信息,表明有几个错误和警告。

可以参考LS-DYNA的信息文件,其中详细记录了错误和警告。

这些信息也同时被写入到LS-DYNA d3hsp文件。

5.2 LS-DYNA终止控制LS-DYNA求解终止点与建模时设定的终止控制有关。

主要有以下几种终止控制类型:·终止时间-用T IME命令定义分析结束时间。

时间步累积达到结束时间时计算就会停止。

LS-DYNA的前后处理及其运行方式

LS-DYNA的前后处理及其运行方式

LS-DYNA的前后处理及其运行方式何海洋辽宁工程技术大学机械工程学院,辽宁阜新(123000)E-mail:hhy2026@摘要:LS-DYNA 作为显示瞬态动力分析的权威软件,加上其开放的结构体系,很多公司为LS-DYNA开发了通用的前后处理器,使得LS-DYNA可以与大多数CAD/CAE软件集成并有接口。

但很多初学者对如何将K文件在DYNA中执行分析计算的问题不太清楚。

该文介绍了LS-DYNA的常用前后处理器和运行方式,对LS-DYNA学习者非常有帮助。

关键词:LS-DYNA,K文件,前后处理,运行方式1. 引言LS-DYNA 是LSTC公司开发的、世界上最著名的通用显式动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。

由于其强大的数值模拟功能,受到美国能源部的大力资助,二十多年来一直是非线性动力分析的核心软件,在民用和国防领域有广泛的应用[1]。

LS-DYNA 作为显示瞬态动力分析的权威软件,掌握并使用它非常不容易。

但目前市面上的相关书籍还比较少,可能有些书籍还没有网络上的内容丰富。

不管用什么软件作LS-DYNA的前后处理器,最终向LS-DYNA求解器递交的都是K文件,但每个人使用的软件环境不同,进行LS-DYNA的分析运算有所不同,因此,本文结合自己学习的经验进行总结,介绍LS-DYNA的常用前后处理器及在不同软件环境下运行方式。

这对LS-DYNA的学习者有一定的指导作用[2-3]。

2. LS-DYNA常用前后处理器介绍LS-DYNA利用ANSYS、LS-INGRID、Oasys LS-DYNA Environment、ETA/FEMB、TRUEGRID、PATRAN、HYPERMESH及LS-PREPOST等强大的前后处理模块,具有多种自动网格划分选择,并可与大多数的CAD/CAE软件集成并有接口。

LS-DYNA的中文教程

LS-DYNA的中文教程

第二部分 ANSYS/LS-DYNA 程序的使用方法一、概述ANSYS/LS-DYNA 程序系统是将非线性动力分析程序LS-DYNA 显式积分部分与ANSYS 程序的前处理PREP7和后处理POST1、POST26连接成一体。

这样既能充分运用LS-DYNA 程序强大的非线性动力分析功能,又能很好地利用ANSYS 程序完善的前后处理功能来建立有限元模型与观察计算结果,它们之间的关系如下。

Jobname.DBJobname.RST d3plotJobname.HIS d3thdtANSYS/LS-DYNA 程序系统的求解步骤为:(一)前处理Preprocessor 建模(用PREP7前处理解算器)1.设置Preference(Main Menu:Preference)选项置Structural LS-DYNA explicit 。

这样,以后显示的菜单完全被过滤成ANSYS/LS-DYNA 的输入选项。

再定义一种显式单元类型,即可激活LS-DYNA 求解。

GUI: Main Menu>Preferencesa.选择Structural.b.选择LS-DYNA Explicit.c.OK.2.定义单元类型Element Type 和Option (算法)和实常数Real Constant 。

3.定义材料性质Material Properties 。

4.建立结构实体模型Modeling 。

5.进行有限元网格剖分Meshing 。

6.定义接触界面Contact 。

(二)加载和求解Solution1.约束、加载和给定初始速度。

2.设置求解过程的控制参数。

ANSYS 前处理PREP7 ANSYS/LS-DYNA ANSYS 后处理POST1,POST26 后处理LS-TAURUS Jobname.k3.选择输出文件和输出时间间隔。

4.求解Solve(调用LS-DYNA)。

(三)后处理POST1(观察整体变形和应力应变状态)和POST26(绘制时间历程曲线),也可连接LSTC公司的后处理程序LS-TAURUS。

LS-DYNA使用指南中文版本

LS-DYNA使用指南中文版本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。

使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。

也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。

1.1显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。

没有详细论述上面的三个步骤。

如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。

如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。

多数情况下,这些设置适合于所要求解的问题。

1.2显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。

同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。

然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。

LSDYNA使用指南中文版本

LSDYNA使用指南中文版本

第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

用LS-DYNA 的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。

使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。

也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。

显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。

没有详细论述上面的三个步骤。

如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。

如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic A nalysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。

多数情况下,这些设置适合于所要求解的问题。

显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。

同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。

然而,在显式动态分析中有一些独特的命令,如下:EDADAPT:激活自适应网格EDASMP:创建部件集合EDBOUND:定义一个滑移或循环对称界面EDBVIS:指定体积粘性系数EDBX:创建接触定义中使用的箱形体EDCADAPT:指定自适应网格控制EDCGEN:指定接触参数EDCLIST:列出接触实体定义EDCMORE:为给定的接触指定附加接触参数EDCNSTR:定义各种约束EDCONTACT:指定接触面控制EDCPU:指定CPU时间限制EDCRB:合并两个刚体EDCSC:定义是否使用子循环EDCTS:定义质量缩放因子EDCURVE:定义数据曲线EDDAMP:定义系统阻尼EDDC:删除或杀死/重激活接触实体定义EDDRELAX:进行有预载荷几何模型的初始化或显式分析的动力松弛EDDUMP:指定重启动文件的输出频率(d3dump)EDENERGY:定义能耗控制EDFPLOT:指定载荷标记绘图EDHGLS:定义沙漏系数EDHIST:定义时间历程输出EDHTIME:定义时间历程输出间隔EDINT:定义输出积分点的数目EDIS:定义完全重启动分析的应力初始化EDIPART:定义刚体惯性EDLCS:定义局部坐标系EDLOAD:定义载荷EDMP:定义材料特性EDNB:定义无反射边界EDNDTSD:清除噪声数据提供数据的图形化表示EDNROT:应用旋转坐标节点约束EDOPT:定义输出类型,ANSYS或LS-DYNAEDOUT:定义LS-DYNA ASCII输出文件EDPART:创建,更新,列出部件EDPC:选择、显示接触实体EDPL:绘制时间载荷曲线EDPVEL:在部件或部件集合上施加初始速度EDRC:指定刚体/变形体转换开关控制EDRD:刚体和变形体之间的相互转换EDREAD:把LS-DYNA的ASCII输出文件读入到POST26的变量中EDRI:为变形体转换成刚体时产生的刚体定义惯性特性EDRST:定义输出RST文件的时间间隔EDSHELL:定义壳单元的计算控制EDSOLV:把“显式动态分析”作为下一个状态主题EDSP:定义接触实体的小穿透检查EDSTART:定义分析状态(新分析或是重启动分析)EDTERM:定义中断标准EDTP:按照时间步长大小绘制单元EDVEL:给节点或节点组元施加初始速度EDWELD:定义无质量焊点或一般焊点EDWRITE:将显式动态输入写成LS-DYNA输入文件PARTSEL:选择部件集合RIMPORT:把一个显式分析得到的初始应力输入到ANSYSREXPORT:把一个隐式分析得到的位移输出到ANSYS/LS-DYNAUPGEOM:相加以前分析得到的位移,更新几何模型为变形构型关于ANSYS命令按字母顺序排列的详细资料(包括每条命令的特定路径),请参阅《ANSYS Commands Reference》。

LS-DYNA使用指南

LS-DYNA使用指南

ANSYS/LS-DYNA 使用指南前言本资料来源于互联网,据说来源于安世亚太,基本上是ANSYS 的帮助文件的翻译。

本人遂排版整理,对原文中的公式进行了编辑排版,并对部分错误进行了修改,当然,错误在所难免,仅供自己查阅学习。

版权归原作者所有!如有人非法用于商业用途,与本人无关。

人就一个字2009-5-7目录第一章引言 (1)1.1 显式动态分析求解步骤概述 (1)1.2 显式动态分析采用的命令 (1)1.3 本手册使用指南 (4)1.4 何处能找到显式动态例题 (5)1.5 其它信息 (5)第二章单元 (6)2.1 实体单元和壳单元 (7)2.1.1 SOLID164 (7)2.1.2 SHELL163 (8)2.1.3 通用壳单元算法 (8)2.1.4 薄膜单元算法 (9)2.1.5 三角型薄壳单元算法 (9)2.1.6 PLANE162 (12)2.2 梁单元和杆单元 (13)2.2.1 BEAM161 (13)2.2.2 LINK160 (14)2.2.3 LINK167 (14)2.3 离散单元 (15)2.3.1 COMBI165弹簧-阻尼单元 (15)2.3.2 MASS166 (16)2.4 一般单元特性 (16)第三章建模 (17)3.1 定义单元类型和实常数 (17)3.2 定义材料特性 (18)3.3 定义几何模型 (18)3.4 网格划分 (18)3.5 定义接触面 (20)3.6 建模的一般准则 (20)3.7 PART的定义 (21)3.7.1 Part集合 (24)3.8 自适应网格划分 (24)第四章加载 (28)4.1 一般载荷选项 (28)4.1.1 组元 (29)4.1.2 数组参数 (30)4.1.3 施加载荷 (31)4.1.4 数据曲线 (34)4.1.5 在局部坐标系中定义载荷 (36)4.1.6 指定Birth和Death时间 (37)4.2 约束和初始条件 (37)4.2.1 约束 (37)4.2.2 焊接 (39)4.2.3 初始速度 (39)4.3 耦合和约束方程 (41)4.4 非反射边界 (42)4.5 温度载荷 (42)4.6 动力松弛 (44)第五章求解特性 (46)5.1 求解过程 (46)5.2 LS-DYNA终止控制 (46)5.3 共享存储器并行处理 (47)5.4 求解控制和监控 (48)5.5 显示小尺寸单元 (50)5.6 编辑LS-DYNA的输入文件 (50)5.6.1 方法A (51)5.6.2 方法B (51)5.6.3 使用预先存在的FILE.K (52)第六章接触表面 (54)6.1 接触的定义 (54)6.1.1 列表,显示和删除接触实体 (57)6.2 接触选项 (58)6.2.1 定义接触类型 (59)6.2.2 定义接触选项 (60)6.3 接触搜索方法 (63)6.3.1 网格连接跟踪 (63)6.3.2 批处理方法 (63)6.3.3 限制接触搜索域 (63)6.4 壳单元的特殊处理 (64)6.5 接触深度控制 (64)6.6 接触刚度 (65)6.6.1 罚因子的选择 (65)6.6.2 对称刚度 (66)6.7 2D接触选项 (66)第七章材料模型 (67)7.1 定义显示动态材料模型 (69)7.2 显式动态材料模型的描述 (70)7.2.1线弹性模型 (70)7.2.2非线性弹性模型 (72)7.2.3 非线性无弹性模型 (74)7.2.4 压力相关的塑性模型 (86)7.2.5 泡沫模型 (90)7.2.6 状态方程 (94)7.2.7 离散单元模型 (104)7.2.8 刚性体模型 (107)第八章刚性体 (109)8.1 定义惯性特性 (109)8.2 加载 (111)8.3 变形体和刚性体部件间的转换 (111)8.4 节点刚体 (112)第九章沙漏 (113)第十章质量缩放 (115)第十一章子循环 (117)第十二章后处理 (119)12.1 输出控制 (119)12.1.1 结果文件(Jobname.RST)和时间历程文件(Jobname.HIS)的比较 (119)12.1.2 生成POST26的ComponentS (120)12.1.3 为POST26记录输出文件 (120)12.2 使用ANSYS/LS-DYNA的POST1 (121)12.2.1 动画结果 (121)12.2.2 单元数据输出 (122)12.2.3 自适应网格划分的处理结果 (123)12.3 在ANSYS/LS-DYNA中使用POST26 (124)第十三章重启动 (125)13.1 重启动Dump文件 (125)13.2 EDSTART 命令 (125)13.2.1 新分析 (126)13.2.2 简单重启动 (126)13.2.3 小型重启动 (126)13.2.4 完全重启动 (128)13.3 输出文件的影响 (130)第十四章显式-隐式顺序求解 (132)14.1 显式-隐式顺序求解 (132)第十五章隐式-显式顺序求解 (137)15.1 预载荷结构的隐式-显式顺序求解 (137)第十六章跌落测试模块 (142)16.1 简介 (142)16.2 选择DTM模块启动ANSYS (142)16.3 典型的跌落分析步骤 (143)16.3.1 基本的跌落测试分析步骤 (143)16.3.2 屏幕坐标的定义 (146)第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。

ls-dyna命令帮助手册(中文)

ls-dyna命令帮助手册(中文)
定义一个截面号,并初步定义截面类型
ID:截面号
TYPE: BEAM:定义此截面用于梁
SUBTYPE: RECT矩形
CSOLID:圆形实心截面
CTUBE:圆管
I:工字形
HREC:矩形空管
ASEC:任意截面
MESH:用户定义的划分网格
NAME: 8字符的截面名称(字母和数字组成)
REFINEKEY:网格细化程度:0~5(对于薄壁构件用此控制,对于实心截面用SECDATA控制)
为线指定网格尺寸
NL1:线号,如果为all,则指定所有选中线的网格。
Size:单元边长,(程序据size计算分割份数,自动取整到下一个整数)?
Angsiz:弧线时每单元跨过的度数?
Ndiv:分割份数
Space: “+”:最后尺寸比最先尺寸
“-“:中间尺寸比两端尺寸
free:由其他项控制尺寸
kforc 0:仅设置未定义的线,
Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效
Reverse将已产生单元反向
Shape:空与所覆盖单元形状相同
Tri产生三角形表面的目标元
注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上
Nummrg,label,toler, Gtoler,action,switch合并相同位置的item
注意:MAT,REAL,TYPE将一起拷贝,不是当前的MAT,REAL,TYPE
u A, P1, P2, ……… P18由关键点生成面
u AL, L1,L2, ……,L10由线生成面
面的法向由L1按右手法则决定,如果L1为负号,则反向。(线需在某一平面内坐标值固定的面内)

LS-DYNA的前后处理及其运行方式

LS-DYNA的前后处理及其运行方式

LS-DYNA的前后处理及其运行方式何海洋辽宁工程技术大学机械工程学院,辽宁阜新(123000)E-mail:hhy2026@摘要:LS-DYNA 作为显示瞬态动力分析的权威软件,加上其开放的结构体系,很多公司为LS-DYNA开发了通用的前后处理器,使得LS-DYNA可以与大多数CAD/CAE软件集成并有接口。

但很多初学者对如何将K文件在DYNA中执行分析计算的问题不太清楚。

该文介绍了LS-DYNA的常用前后处理器和运行方式,对LS-DYNA学习者非常有帮助。

关键词:LS-DYNA,K文件,前后处理,运行方式1. 引言LS-DYNA 是LSTC公司开发的、世界上最著名的通用显式动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。

由于其强大的数值模拟功能,受到美国能源部的大力资助,二十多年来一直是非线性动力分析的核心软件,在民用和国防领域有广泛的应用[1]。

LS-DYNA 作为显示瞬态动力分析的权威软件,掌握并使用它非常不容易。

但目前市面上的相关书籍还比较少,可能有些书籍还没有网络上的内容丰富。

不管用什么软件作LS-DYNA的前后处理器,最终向LS-DYNA求解器递交的都是K文件,但每个人使用的软件环境不同,进行LS-DYNA的分析运算有所不同,因此,本文结合自己学习的经验进行总结,介绍LS-DYNA的常用前后处理器及在不同软件环境下运行方式。

这对LS-DYNA的学习者有一定的指导作用[2-3]。

2. LS-DYNA常用前后处理器介绍LS-DYNA利用ANSYS、LS-INGRID、Oasys LS-DYNA Environment、ETA/FEMB、TRUEGRID、PATRAN、HYPERMESH及LS-PREPOST等强大的前后处理模块,具有多种自动网格划分选择,并可与大多数的CAD/CAE软件集成并有接口。

LS-DYNA使用指南第五章

LS-DYNA使用指南第五章

LS-DYNA使用指南第五章2007-11-29 作者:安世亚太点击进入论坛第五章求解特性5.1求解过程当模型建好后(即,单元、实常数、材料性质的定义,建立模型、网格划分、边界/初始条件指定以及加载、结束控制),执行SOLVE命令即可以开始求解过程。

(在GUI中,菜单路径为Main Menu>Solution>Solve)。

此时,ANSYS/LS-DYNA程序将运行以下几步:1.标题记录:包括几何特性(如节点和单元等),都写到相应的两个结果文件Jobname.RST和Jobname.HIS中。

(此时ANSYS/LS-DYNA数据库中包含全部相应的信息。

即在运行SOLVE命令前,必须执行SAVE命令,把所有的模型信息都写入到文件Jobname.DB)。

2.将所有输入的信息写出LS-DYNA程序的输入文件Jobname.K 。

3.控制权由ANSYS程序转移给LS-DYNA程序。

LS-DYNA求解器运行的结果写入到结果文件Jobname.RST和Jobname.HIS中。

如果执行SOLVE命令前给定命令EDOPT,ADD,,BOTH,则也将输出用于LS-POST后处理程序的结果文件(d3plot和d3thdt文件)。

当求解结束后,ANSYS/LS-DYNA GUI将提醒用户求解已完成,控制权重新转回到ANSYS/LS-DYNA程序。

可以通过ANSYS/LS-DYNA程序的POST1和POST26后处理器来查看结果。

如果产生了错误或警告,输出窗口将自动显示弹出信息,表明有几个错误和警告。

可以参考LS-DYNA的信息文件,其中详细记录了错误和警告。

这些信息也同时被写入到LS-DYNA d3hsp文件。

5.2 LS-DYNA终止控制LS-DYNA求解终止点与建模时设定的终止控制有关。

主要有以下几种终止控制类型:·终止时间-用T IME命令定义分析结束时间。

时间步累积达到结束时间时计算就会停止。

LS-DYNA中文教程

LS-DYNA中文教程

第二部分 ANSYS/LS-DYNA 程序的使用方法1 概述ANSYS/LS-DYNA 程序系统是将非线性动力分析程序LS-DYNA 显式积分部分与ANSYS 程序的前处理PREP7和后处理POST1、POST26连接成一体。

这样既能充分运用LS-DYNA 程序强大的非线性动力分析功能,又能很好地利用ANSYS 程序完善的前后处理功能来建立有限元模型与观察计算结果,它们之间的关系如下。

ANSYS/LS-DYNA 程序系统的求解步骤为: 1.1 前处理Preprocessor 建模(用PREP7前处理解算器)1.设置Preference(Main Menu:Preference)选项置Structural LS-DYNA explicit 。

这样,以后显示的菜单完全被过滤成ANSYS/LS-DYNA 的输入选项。

再定义一种显式单元类型,即可激活LS-DYNA 求解。

GUI: Main Menu>Preferencesa.选择Structural.b.选择LS-DYNA Explicit.c.OK.2.定义单元类型Element Type和Option(算法)和实常数Real Constant。

3.定义材料性质Material Properties。

4.建立结构实体模型Modeling。

5.进行有限元网格剖分Meshing。

6.定义接触界面Contact。

1.2 加载和求解Solution1.约束、加载和给定初始速度。

2.设置求解过程的控制参数。

3.选择输出文件和输出时间间隔。

4.求解Solve(调用LS-DYNA)。

1.3 后处理POST1(观察整体变形和应力应变状态)和POST26(绘制时间历程曲线),也可连接LSTC公司的后处理程序LS-TAURUS。

在各程序模块之间传递数据的文件有:(1)A NSYS数据文件数据库文件(Database File)-Jobname.DB 二进制文件图形数据文件(Results File)-Jobname.RST 二进制文件时间历程数据文件-Jobname.HIS 二进制文件输出文件(Output File)-Jobname.OUT ASCII文件命令文件(Log File)-Jobname.LOG ASCII文件(2)L S-DYNA数据文件输入数据文件(Iuput file)-Jobname.K ASCII文件重起动文件(Dump File)-D3DUMP随机文件图形数据文件(Plot File)-D3PLOT随机文件时间历程文件-D3THDT随机文件由于ANSYS前处理程序还不能满足LS-DYNA程序系统的全部功能,用户可以生成LS-DYNA的输入数据文件Jobname.K,经过编辑、修改后,再直接调用LS-DYNA程序求解,其计算结果图形数据文件仍然可以连接ANSYS后处理程序POST1和POST26以及LS-DYNA的后处理程序LS-TAURUS观察计算结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LS-DYNA的前后处理及其运行方式何海洋辽宁工程技术大学机械工程学院,辽宁阜新(123000)E-mail:hhy2026@摘要:LS-DYNA 作为显示瞬态动力分析的权威软件,加上其开放的结构体系,很多公司为LS-DYNA开发了通用的前后处理器,使得LS-DYNA可以与大多数CAD/CAE软件集成并有接口。

但很多初学者对如何将K文件在DYNA中执行分析计算的问题不太清楚。

该文介绍了LS-DYNA的常用前后处理器和运行方式,对LS-DYNA学习者非常有帮助。

关键词:LS-DYNA K文件前后处理运行方式1.引言LS-DYNA 是LSTC公司开发的、世界上最著名的通用显式动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。

由于其强大的数值模拟功能,受到美国能源部的大力资助,二十多年来一直是非线性动力分析的核心软件,在民用和国防领域有广泛的应用[1]。

LS-DYNA 作为显示瞬态动力分析的权威软件,掌握并使用它非常不容易。

但目前市面上的相关书籍还比较少,可能有些书籍还没有网络上的内容丰富。

不管用什么软件作LS-DYNA的前后处理器,最终向LS-DYNA求解器递交的都是K文件,但每个人使用的软件环境不同,进行LS-DYNA的分析运算有所不同,因此,本文结合自己学习的经验进行总结,介绍LS-DYNA的常用前后处理器及在不同软件环境下运行方式。

这对LS-DYNA的学习者有一定的指导作用[2-3]。

2.LS-DYNA常用前后处理器介绍LS-DYNA利用ANSYS、LS-INGRID、Oasys LS-DYNA Environment、ETA/FEMB、TRUEGRID、PATRAN、HYPERMESH及LS-PREPOST等强大的前后处理模块,具有多种自动网格划分选择,并可与大多数的CAD/CAE软件集成并有接口。

前处理:有限元直接建模与实体建模;布尔运算功能,实现模型的细雕刻;模型的拖拉、旋转、拷贝、蒙皮、倒角等操作;完整、丰富的网格划分工具,自由网格划分、影射网格划分、智能网格划分、自适应网格划分等。

后处理:结果的彩色等值线显示、梯度显示、矢量显示、等值面、粒子流迹显示、立体切片、透明及半透明显示;变形显示及各种动画显示;图形的PS、TIFF及HPGL格式输出及转换等。

2.1 LS-INGRID/LS-POST/LS-PREPOSTLS-INGRID、LS-POST和LS-PREPOST分别为LSTC公司自开发的专用前后处理器。

LS-INGRID用于工作站上,功能强大,对LS-DYNA提供最完备的支持,LS-INGRID从1999年开始不再进行升级。

LS-POST作为后处理器操作简单,方便快捷,其最新版本为LS-PREPOST兼备前后处理功能。

LS-PREPOST(图1)具备绝佳的数值处理能力,可直接读取LS-DYNA的计算结果,进行计算数据的汇整和二次计算。

可以直接于曲线图当中进行四则运算、微积分、快速傅立叶变换、滤波等,同时可显示板壳厚度,输出各种力学数据,例如应力、应变、塑性应变、温度、位移、速度和加速度等。

2.2.FEMBFEMB是LS-DYNA程序PC版的前后处理器,由ETA 公司开发,是支持LS-DYN的功能较为完备的前后处理器,号称不需要手工修改LS-DYNA输入K文件。

FEMB(图2)具有人性化的窗口界面、直观的操作模式、丰富的CAD功能、自动网格划分功能、网格修正调整、方便的LS-DYNA Contact 以及材料设定、支持最新的LS-DYNA版本、与CAD软件整合度高、不需要额外指令输入、可以直接输出LS-DYNA专有的Input deck文件。

2.3.HyperMeshHyperMesh由Altair 公司开发,是一个针对有限元主流求解器的高性能有限元前后处理软件,工程设计人员可以在一个极佳的交互式可视环境下对多种设计条件进行分析。

HyperMesh的图形用户界面易于学习,可以直接使用CAD几何数据和现存的有限元模型,从而减少附加的冗余数据。

其先进的后处理工具可以很方便地显示复杂的模拟结果,并使之易于理解。

HyperMesh的速度、灵活性和用户化功能无与伦比,它的网格划分功能很强,在汽车行业非常有名。

2.4. ANSYSANSYS公司开发的针对LS-DYNA的前后处理器,秉承了ANSYS的传统,熟悉ANSYS 的用户用起来比较熟悉,特别是可以用APDL编写命令流。

但支持LS-DYNA的功能有限,一些材料模型如高能炸药引爆燃烧材料模型等不能从GUI中直接得到,往往需要手工添加Keyword,并且一些Keyword的具体参数不能在ANSYS/LS-DYNA直接输入。

2.5.MSC/PATRANMSC.PATRAN最早由美国宇航局(NASA)倡导开发的,是工业领域最著名的并行框架式有限元前后处理及分析系统,其开放式、多功能的体系结构可将工程设计、工程分析、结果评估和交互图形界面集于一身,是一个完整的CAE集成环境。

通过其全新的“并行工程概念”和无可比拟的工程应用模块可将世界著名的CAD/CAE/CAM/CAT(测试)软件系统及用户自编程序自然地融为一体。

MSC/PA TRAN独有的SGM(单一几何模型)技术可直接在几何模型一级访问导入的CAD软件数据库系统,包括Pro/ENGINEER、UG、CATIA、SolidWorks等。

2.6.TRUEGRIDTRUEGRID由XYZ Scientific 公司开发,在LS-INGRID的基础上发展而来。

TRUEGRID 是世界著名的、通用的专业网格生成器前处理软件,基于BLOCK网格生成方法,是有限元分析最好的建模工具,可以生成高质量的六面体和四边形网格,支持30多种求解器。

TRUEGRID采用全交互式、批处理、宏和关键字操作,可快速地建立复杂几何物体的网格。

支持CAD/CAM所输出的几何形体。

其他的前后处理器还有:EASi-CRASH、JVISION、FEMAP、Glview、I-DEAS、ME-DINA、Oasys LS-DYNA Environment等。

3.LS-DYNA运行方式3.1.ANSYS/LS-DYNA启动显式分析用户数最多的当数ANSYS软件,作为其中一个显式分析模块ANSYS/LS-DYNA,在ANSYS中可以调用LS-DYNA求解器读取K文件进行显式分析计算。

使用方法如下开始—所有程序—ANSYS—ANSYS Product Launcher进入如下界面:图1 ANSYS\LS-DYNA启动在启动ANSYS Product Launcher选项Simulation Environment中选择LS-DYNA Solver,在License选项中选择ANSYS LS-DYNA。

在分析类型(Analysis Type)有典型的LS-DYNA 分析,显式隐式分析,简单重启动/小型重启动以及完全重启动等。

一般首次K文件选择典型LS-DYNA分析。

图2 ANSYS\LS-DYNA文件管理在文件管理File Management选项指定工作路径以及需要计算的K文件,如下图所示在用户自定义Customization选项下可设定计算所需内存,文件大小以及CPU数量等,如图3所示。

图3 ANSYS\LS-DYNA用户自定义设定好以上参数后,点击最底下的RUN执行即可开始进行显式分析计算。

3.2.LS-DYNA Program manager启动显式分析独立的LS-DYNA求解器有自带的分析运算的工具软件LS-DYNA Program manager,使用该软件可进行显式分析计算参数设置以及对运算结果的后处理等,如图4所示为进行分析的启动界面。

图4 LS-DYNA Program manager启动图5为进行分析计算的参数设置,可指定K文件的位置,CPU数量和内存等,设置完成后点击OK即可进行显式分析计算。

图5 LS-DYNA Program manager参数设置3.3.使用FEMB前处理器直接进行分析FEMB是LS-DYNA最通用的前处理软件,可以很方便的在其中建立有限元分析模型,几乎包含了LS-DYNA所有的关键字,模型完成后可直接进行显式分析计算,软件界面如图6所示。

图6 FEMB软件界面在Analysis菜单下选择Setup Analysis,出现如图7所示对话框。

图7 FEMB参数设置在其中设置单位,求解器,文件输出路径,K文件编辑器并指定LS-DYNA求解器所在文件路径等。

设置完成后再使用Analysis菜单下Run Analysis,出现图8所示对话框。

图8 FEMB中LS-DYNA分析内存分配根据模型大小分配合适的分析计算所需内存,设定完成后点击Run Analysis即可开始进行显式分析计算。

ETA公司的其他产品诸如DYNAFORM,VPG等均为使用LS-DYNA求解器的前处理专用软件,在进行完模型前处理后均可进行显式分析的参数设置并调用LS-DYNA求解器进行分析计算,在此不作累叙。

3.4.使用批处理命令进行分析计算可建立一批处理文件,调用LS-DYNA求解器并进行相关参数的设置,进行显式分析计算时直接运行该批处理文件即可进行分析运算。

举例说明使用批处理命令的过程:首先建立一个批处理命令文件如lsyna.bat(后缀名为bat即可),然后用记事本打开,输入如下的命令行:CD /D "C:\test\LSdynatest""C:\Program Files\Ansys Inc\v90\ANSYS\bin\Intel\ls960.exe" PR=DYNAPC i="bend11.k"MEMORY=285000000其中第一行指定K文件所在文件夹以及计算结果存放路径,第二行则指定LS-DYNA 求解器所在路径,产品为DYNAPC,计算的K文件为bend1.k。

MEMORY则是指定计算所需内存。

对于重启动分析计算的命令输入可参考LS-DYNA手册,关于此处有较详细说明。

编辑完成后保存,鼠标双击该批处理命令即可开始进行分析计算。

3.5.LS-DYNA Jobs Submitter执行多个K文件分析前面所叙的几种方法仅仅可以执行一个K文件的分析运算,当有需要对多种方案进行长时间分析且在无人管理的情况下时,使用LS-DYNA Jobs Submitter是相当方便的,软件界面如图9所示。

图9 LS-DYNA Jobs Submitter界面设置LS-DYNA求解器所在位置,计算分配内存,每个分析计算之间的时间间隔等,再分别将需要计算的K文件添加到任务栏中,并且可自行调整运算的先后顺序等,而且计算完成后可直接查看message文件信息。

相关文档
最新文档