结构力学第四章
《结构力学》第四章静定拱
受力特点概述
静定拱在荷载作用下,拱身主要承受 压力作用,这使得拱具有较好的受压 性能。
拱身受压力作用
由于拱的曲线形状和荷载作用位置的 不同,拱身内力分布通常不均匀,需 要进行详细的内力分析。
内力分布不均匀
静定拱在荷载作用下,其变形主要以 压缩变形为主,弯曲变形相对较小。
变形以压缩为主
影响因素分析
面内失稳
1
拱在面内发生屈曲,导致承载力急剧下降。
面外失稳
2
拱在面外方向发生侧倾或扭转,失去原有形状。
局部失稳
3
拱的局部区域发生失稳,如拱脚的局部压曲等。
提高稳定性的措施
合理选择拱的轴线形式 使拱在受力时能够均匀分布荷载,避 免应力集中。
加强拱的横向联系
通过设置横撑、横系梁等构件,增强 拱的横向稳定性。
贰
静定拱的受力特点
受力分析基本假设
拱身是理想弹性体 在分析中,假设拱身材料符合胡克定律, 即应力与应变成正比关系。 荷载作用在拱的节点上 为简化计算,通常将荷载(如均布荷载、 集中力等)作用在拱的节点上进行分析。 忽略拱身自重影响 在分析中,通常忽略拱身自重对受力的影 响,或将其简化为等效荷载进行处理。
增加拱的刚度
采用高强度材料、增加截面尺寸等措 施,提高拱的整体刚度。
考虑施工方法和顺序
合理的施工方法和顺序可以有效减少 拱在施工过程中的变形和应力,有利 于提高稳定性。
陆
静定拱的工程应用
桥梁工程中的应用
拱桥
静定拱是拱桥的主要结构形式,能够承受较大的竖向荷载和水平推 力,具有良好的经济性和美观性。
习题一
某静定拱的跨度为L,矢高为f,承受均布 荷载q作用,试求其拱脚处的水平推力H和 竖向反力V。
《结构力学》第4章:静定结构的位移计算
4.1 结构位移计算的目的
计算结构位移的目的主要有如下几个方面:
01
03
02
材料的受力在弹性范围内,应力与应变的关系符合胡克定律; 结构的位移(或变形)是微小的。
应该指出的是本章研究的结构仅限于线弹性变形体结构,即结构必须具备如下条件:
4.2 变形体的虚功原理
添加标题
对于线性变形结构,在任一位置上的△x和作用力Px之间均保持线性关系,即有
4.5 图 乘 法
4.6 静定结构在支座移动时位移计算
4.7 功的互等定理
小 结
本章学习要求
理解静定结构位移计算的重要性。
了解实功、虚功、广义力、广义位移、虚功原理等概念和公式推导。
熟练掌握荷载作用下用单位荷载法,并采用图乘法计算结构位移;对于支座移动时结构位移计算只要求了解。
理解弹性体系的几个互等定理及其应用。
1
2
3
4
5
【例4.4】简支梁AB,作用有均布荷载如图4.6(a)所示,梁的EI为常数。求跨中C点的挠度△cr。
解:(1)画实际荷载作用下的弯矩图 如图4.6(b)所示。
图4.6
(2)在跨中C点加虚设单位力P=1,其弯矩图如图4.6(c)所示。
(3)计算ω,yc注意要分段。
(4)计算△cr。
符号规定如下:当 与实际支座位移c的方向一致时,所得乘积取正值,反之取负值。
由以上可见,不论属于哪种情况,虚设单位荷载必须是与所求广义位移相应的单位广义力。计算结构位移的基本步骤是:
(1)在欲求位移处沿所求位移方向虚设广义单位力,然后分别列出各杆段内力方程。
(2)列实际荷载作用下各杆段内力方程。
(3)将各内力方程分别代入式,分段积分后再求总和即可计算出所求位移。
结构力学第四章
M
(2将)虚位移X 与/ 实C 际 力a /状b 态代无入关得,故:可设
B
X X
0
X
P
x
b1P
/
a
C
0
(3通)求常解取时关键一步X 是找1出虚位x 移状态的位移关系。
(4)用单几位何位法移来解法静(U力n平it-衡D问isp题lacement Method)
2、虚功原理用于虚设的平衡力状态与实际的协 调位移状态之间。
微段外力功 dW= dWg+dWi
所有微段的外力功之和:
所有微段的外力功之和:
Wex =∫dWe+∫dWn =∫dWe =δWe
Ude =∫dWi =δWi
故有Wex = Ude成立。
几个问题:
1. 虚功原理里存在两个状态: 力状态必须满足平衡条件;位移状态必须满足协调
条件。
2. 原理的证明表明:原理适用于任何 (线性和非线性)的 变形体,适用于任何结构。
二、结构的虚变形功 平面杆系结构k状态微段外力、m状态的变形为
微段受力 微段拉伸
微段剪切
微段弯曲
整个平面杆系结构,结构的虚变形功为 Ude =Σ∫[FNkδεm+FQkδγm+Mkδθm]ds
§4-3. 虚功原理
一、变形体的虚功原理
原理的表述:
任何一个处于平衡状态的变形体,当 发生任意一个虚位移时,变形体所受外力 在虚位移上所作的总虚功Wex,恒等于变 形体各微段外力在微段变形位移上作的虚
例. 求 A 端支座发生竖向位移 c 时引起C点的竖向位移 . A
c
BC
1
A
B
A
C
a
b C
YA
结构力学 第四章 三铰拱
杆轴线为曲线 在竖向荷载作 用下不产生水 平反力。 平反力。
FP
曲梁
三铰拱
第四章 三铰拱
三、拱常用的形式
静定拱
三铰拱
两铰拱
超静定拱
无铰拱
第四章 三铰拱
四、拱的有关概念
顶铰 拱轴线 平拱 拱趾铰 跨度 拱趾铰 拱轴线 拱(矢)高
斜拱
拉杆拱
第四章 三铰拱 §4-2 三铰拱的支座反力和内力 一、支反力 1、竖向反力 A ∑ M A = 0, VB l − M ABP = 0 H A
第四章 三铰拱
第四章 三铰拱
§4-1 概述 §4-2 三铰拱的支座反力和内力 §4-3 压力线与合理拱轴
第四章 三铰拱
§4-1 概述 实例——拱桥 一、实例 拱桥 拱桥是承受轴向压力为主的拱圈或拱肋作为主要 承受轴向压力为主 拱桥是承受轴向压力为主的拱圈或拱肋作为主要 承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。 承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。
第四章 三铰拱 [例4-1]三铰拱及其所受荷载如图所示,拱的轴线为抛物线: 1]三铰拱及其所受荷载如图所示,拱的轴线为抛物线: 三铰拱及其所受荷载如图所示 y=4fx(l-x)/l2,求支座反力,并绘制内力图。 求支座反力,并绘制内力图。 解: (1) 反力计算
4 × 4 + 1× 8 ×12 0 VA = VA = 16 = 7kN ( ↑ ) 7kN
M ABP VB = l l 同跨度同荷载简支梁(代 同跨度同荷载简支梁( 的支座反力: 梁)的支座反力:
i i
P
q
C
f
B
l1
l − l1
HB VB
∑ Pa =
VA
结构力学第四章
2.利用平衡条件计算 所有微段的外力虚功之和 Ude 微段位移分 刚体位移 ab ab 为两部分 变形位移 ab ab 微段外力功 在刚体位移上的功dWg 分为两部分 在变形位移上的功dWi 微段外力功 dW= dWg+dWi 所有微段的外力功之和:
1 YA c 0
bc / a
(1)所建立的虚功方程, 实质上是几何方程。 (2)虚设的力状态与实际位移状 态无关,故可设单位广义力 P=1 (3)求解时关键一步是 找出虚力状态的静力 平衡关系。 (4)是用静力平衡法来解几何问题。
单位位移法的虚功方程 单位荷载法的虚功方程
三、图形分解 求 B
20 A
MP
20
A
B
40
B
20 kN m
A
20 kN m
EI
40 B
40 kN m 10 m
1
40 kN m
Mi
1/ 3
2/3
1 1 2 B ( 10 40 EI 2 3 1 1 500 10 20 ) ( ) 2 3 3EI
三、图形分解
微段受力
微段拉伸
微段剪切
微段弯曲
整个平面杆系结构,结构的虚变形功为
Ude =Σ∫[FNkδεm+FQkδγm+Mkδθm]ds
§4-3. 虚功原理
一、变形体的虚功原理
原理的表述:
任何一个处于平衡状态的变形体,当 发生任意一个虚位移时,变形体所受外力 在虚位移上所作的总虚功Wex,恒等于变 形体各微段外力在微段变形位移上作的虚 功之和Ude。也即恒有如下虚功方程成立
求 B
结构力学第四章知识讲解
虚功原理:
设有一变形体系,分布存在两个独立无关的静力平衡系和位移协调 系,则力系中的外力经位移系中的位移所作的虚功恒等于变形体系 各微段外力在变形位移上虚功和。即:
以平面刚架为例证明虚功原理: 静力平衡力系k: 截面内力分量:
求解步骤:
(1)解除所求约束力的约束,代之以约束力,得k状态。 (2)沿所求约束力的方向给以一位虚位移,得m状态。 (3)由虚位移原理建立虚功方程,求解约束力。
例 利用单位位移法求两跨静定梁在图示荷载下的支座D的反力和截面E的 弯矩。 解 : 1.求支座反力 :
(1)解除D支座,代之一约束力 ,得 静力状态k;
恒等于变形体系各微段外力在变形位移上的虚功和。
静力平衡系
位移协调系
(虚拟)
(真实)
单位荷载法:
在应用虚力原理时,特别的假设单位荷载。
求解步骤:
(1)沿所求位移的方向加上对应的单位虚力,得静力状态k。 (2)实际位移状态m,建立虚功方程。
例 试用单位荷载法求图示两跨静定梁,由于中间支座B向下移动 , 中间铰C的竖向位移 。 解: 1.建立静力状态k: 2.建立虚功方程:
静力状态k的集中力 在位移状态m的位移Δkm 上所作的虚功:
2.力偶虚功: 静力状态k的力偶 在位移状态m的角位移θkm 上所作的虚功:
3.均布力虚功: 静力状态k的均布力在位移状态m 上所作的虚功:
4.等量反向共线的两集中力的虚功:
静力状态k的力在位移状态m 上所作的虚功: 平衡力系在刚体位移上的虚功=?
解:(1)桁架各杆的剪力和弯矩为零,轴力为常数,建立虚力方程,位移公式简 化为
结构力学第四章静定结构总论
§4-6
2)三角形桁架
FP FP
各种桁架的受力特点
FP FP/2 h 4d
C
FP/2
简支梁C 点的弯 矩
(1)上弦杆
0 2.5FP 2d FP d 0.5FP 2d MC FN r r
在往下的竖向荷载作用下,三角形桁架的上弦杆受压,并 且抵抗弯矩。由于简支梁的弯矩是按抛物线变化的,而r是按三 角形变化的,因此上弦杆的内力中间小,两边大。
2008年10月13日星期一9时35分12秒
§4-6
FP FP/2
D
各种桁架的受力特点
FP FP FP FP FP/2 h 简支梁D 点的弯 矩
3)抛物线形桁架
6d (2)下弦杆
0 3FP 2d FP d 0.5FP 2d M D FN r r
在往下的竖向荷载作用下,抛物线形桁架的下弦杆受拉, 并且抵抗弯矩。由于简支梁的弯矩是按抛物线变化的,r也是按 抛物线变化的,因此下弦杆的内力相同。
2008年10月13日星期一9时35分12秒
2008年10月13日星期一9时35分12秒
§4-6
FP FP/2
各种桁架的受力特点
FP FP FP FP FP/2 h
3)抛物线形桁架
6d (3)腹杆
可以证明抛物线形桁架腹杆的内力等于零,剪力由上 弦杆受承受。
2008年10月13日星期一9时35分12秒
§4-6
各种桁架的受力特点
通过上述分析可以得出以下结论: 1、平行弦桁架 由于杆件内力分布不均匀,会造成材料的浪费。但构造 简单,经常应用于小跨度结构。 2、三角形桁架 在支座处,桁架的夹角小,内力大,构造复杂,因此一 般用于小跨度的屋架。 3、抛物线形桁架 由于上下弦杆的内力基本相同,因此最节省材料,但是 结点构造复杂,一般用于大跨度结构。
结构力学课件 第四章 影响线
ab F l
MC的变化规律
• 分析:
A
a
D
B b
1. 该图线的含义:每一纵坐标值都是MC的值;不同点的纵坐标值代表FP移
动到不同位置时MC的大小。(举例说明) 2. 每一点的MC与FP均成正比,其比例系数称为MC的影响系数,用 M C 表
示,即 M C
MC 。 若将该影响系数的变化规律用图线来表示,则该图线 F
d 3
5d 12
MD影响线
1 6
5d 6
FQD影响线
2 3
5 6
1 3
x
FP=1
F
d d
1 3 2 3 1 3
d
d
d
FQF影响线
1 2
1 3
1 3
1 2
1 6
1 3
FQF左影响线
2 3
5 6
1 3
FQF右影响线
x
FP=1
2d 3
E
d d d d d
1
FQE影响线
2d 3
ME影响线
§4-4 静力法作桁架的影响线
就称为MC的影响线。
二、 影响线
F P=1
A
a
C
ab ab F ll
b
B
M 的影响线 M 的变化规律 C C • 定义:在单位移动荷载FP=1作用下,表示结构上某量值Z的变化规律的图线, 称为Z的影响线。 • 说明:1. Z可以是反力、弯矩、剪力、轴力 2. 求Z的影响线,就是求在单位移动荷载FP=1作用下Z的大小。 3. 在Z的影响线中,横坐标表示的是FP=1的作用位置; 纵坐标表示 的是影响系数 Z 的大小。 (比较:弯矩图、弯矩影响线) • 计算方法:1.静力法 2.机动法(虚功原理)
结构力学第4章静定拱(f)
FH
FH
由边界条件
x 0, y 0 : x 0, y 0 :
A qc
B0
合理拱轴线的方程为
y qc (cosh x 1)
FH
§4-3 三铰拱的合理拱轴线
例4-3 试求三铰拱在垂直于拱轴线的均布荷载作用下的合理 拱轴线。
解:由图a,荷载为非竖向荷载。
思路:假定拱处于无弯矩状态,根据平衡 条件推求合理拱轴线方程。
Fi ai l
Fx 0 FAH FBH FH
相应简支梁
取左半拱为隔离体
MC 0
FH
FAV l1 F1(l1 a1) f
可 得
FAV FBV
FA0V FB0V
FH
M
0 C
f
三铰拱的反力只与 荷载及三个铰的位置有 关,与拱轴线形状无关;
推力FH 与拱高 f 成反比。
§4-2 三铰拱的计算
§4-2 三铰拱的计算
2、内力的计算
压力为正
任一截面的轴力等于该截面一 侧所有外力在该截面法线方向 上的投影代数和。
FN FAV sin FH cos F1 sin (FAV F1) sin FH cos FS0 sin FH cos
相应简支梁
§4-2 三铰拱的计算
2、内力的计算
区别拱与梁的主要标志:推力的存在与否。
§4-1 概述
拉杆拱: 拱两支座间的拉杆代替支座承受水平推力
拉杆做成折线形可获得较大空间
高跨比:f/l
平拱: 两拱趾在同一水平线上 斜拱: 两拱趾不在同一水平线上
§4-2 三铰拱的计算
1、支座反力的计算
由拱的整体平衡
M B 0 FAV
Fibi l
M A 0 FBV
结构力学第4章
静定结构当支座产生移动时,整个结构发生刚体位移, 静定结构当支座产生移动时,整个结构发生刚体位移, 因而不产生变形,应用刚体的虚功原理W =0, 因而不产生变形,应用刚体的虚功原理 e=0,得
帮助 开篇
退出
上一页
下一页
∆ ×1 + ∑ Rc = 0
式中, 为虚单位力引起的支座反力 为虚单位力引起的支座反力, 式中,R为虚单位力引起的支座反力,c 为实际支座 位移,当二者方向一致时,其乘积取正值,相反时取负值。 位移,当二者方向一致时,其乘积取正值,相反时取负值。 若结构是超静定的,则当支座移动时, 若结构是超静定的,则当支座移动时,将会产生内力和变 形,故 Wi≠0,因此应该用变形体的虚功原理求位移。 ,因此应该用变形体的虚功原理求位移。 4.温度作用时的位移计算 4.温度作用时的位移计算 静定结构在温度变化时,杆件不产生切应变, 静定结构在温度变化时,杆件不产生切应变,而轴向 线应变和曲率分别为 / ε =α t0, κ=α∆t/h
A B
帮助 开篇
退出
上一页
下一页
c
烟台大学 烟台大学
第4章 静定结构的位移计算 章
返回
自测
若结构发生位移时,结构内部也同时产生应变, 若结构发生位移时,结构内部也同时产生应变,则 此时结构的位移计算问题属于变形体的位移计算问题 变形体的位移计算问题。 此时结构的位移计算问题属于变形体的位移计算问题。 例如,图中简支梁由于温度变化产生了应变, 例如,图中简支梁由于温度变化产生了应变,就属于 变形体的位移计算问题。 变形体的位移计算问题。 -t
烟台大学 烟台大学
帮助 开篇
退出
上一页
下一页
第4章 静定结构的位移计算 章
结构力学-第4章影响线
影响线和包络图在该桥设计中的应用
详细阐述影响线和包络图在该桥设计中的应用过程,包括影响线和包络图的绘制、最不利位置的确定、最大内力的计 算等。
设计结果分析与评价
对该桥的设计结果进行分析和评价,包括结构安全性、经济性等方面的评估。同时,可以与其他设计方 案进行对比分析,以进一步验证影响线和包络图在工程设计中的有效性和优越性。
通过绘制建筑结构的包络图,可以找到结构在地震作用下的最大变形和位移,为结构的刚 度设计和稳定性分析提供依据。
影响线和包络图在建筑结构优化设计中的作用
利用影响线和包络图,可以对建筑结构进行优化设计,如调整结构布置、改变构件截面等 ,以提高结构的抗震性能和经济效益。
工程案例分析:某大桥设计过程剖析
工程背景介绍
结构优化设计
根据影响线的形状和分布,对结 构进行优化设计,以改善结构的 受力性能。
80%
工程实例分析
结合具体工程实例,利用影响线 理论进行结构分析和设计,验证 理论的正确性和实用性。
03
超静定结构影响线绘制与应用
超静定梁影响线绘制实例
实例一
实例三
一次超静定梁的影响线绘制。通过选取 基本体系和基本未知量,利用力法方程 求解多余未知力,并绘制影响线。
影响线用于确定桥梁结构在移动荷载作用下的最不利位置
通过绘制桥梁结构的影响线,可以确定移动荷载在桥梁上的最不利位置,从而进行结构分析和设 计。
包络图用于确定桥梁结构的最大内力
通过绘制桥梁结构的包络图,可以找到桥梁在移动荷载作用下的最大内力,为桥梁的强度设计和 稳定性分析提供依据。
影响线和包络图在桥梁优化设计中的作用
影响线在结构优化中的应用
结构力学 第四章影响线
( 注意有正负面积之分)
4 、用合力求影响量值(相同斜率段) F
FP1 FP2 FPn-1 FPn
合力矩定理
O
a
y1 y2
y
yn-1 yn
Z= FP1 y1+FP2 y2+…+FPn-1 yn-1+FPn yn =(FP1 x1+FP2 x2+…+FPn-1 xn-1+FPn xn)tanα =F x tana= F y
F
移动FP=1 荷载FP=1的位置 C截面的弯矩值 与内力单位差N
FP=1 C ab l
图 形 表 示
Fa Fa
用静力法求刚架影响线
A
FP=1
FP=1 C a
C
B b l d
b
l
E
l
x
l
a
求支座反力、MC、FQC、FNC的影响线
FP=1
b
l
C a
l
求支座反力、MC、FQC、FNC的影响线
静力法求影响线的本质是: 求解单位集中力作用在x位置时的 某截面内力或反力的大小 方法是
剪力用合力计算时需分两段计算,为什么?
二、 求荷载的最不利位置
使某量Z达到最大(最小)的荷载位置
简单情况可用观察法。 判断原则:
把数量大,排列密的荷载放在影响线竖 标较大的部位。
1、均布荷载(长度可任意布置) Z=q· o A 求Z max 时,在+Ao内布满q 求Z min 时,在 -Ao内布满q
FP=1
1 3
4m 4m
2
4m
4m
4m
0
2 2 2 4 2 4
上承式
FN1影响线
结构力学第4章
定义:单位移动荷载作用下描述某物理 量随荷载位置变化规律的图形称 影响线。 确定影响线通常有两者方法: 静力法 机动法
§4-2 静力法做简支梁 影响线
将描述荷载位置的量作为固定值,通 过静力平衡的方式确定某物理量与荷 载位置的关系的方法称静力法。 正确的影响线应该具有“正确的外形、 必要的控制点纵座标值和正负号”等 基本特征。
FP=1
a a
b Nc b 1 c1
N1
d 上承 e d e
ff
g g h h
方法:结点法与截面法 1、I.L RA及RG MC 0 2、 I .L N1
P 1在Ⅰ Ⅰ以左 , 取右隔离体
A A
RA
C B C B C P=1
P=1 C
D D
E F E 下承 F
G G
N 1 h RG 4 d 0
lx l
a
bl 1 l
ab l
b
al 2
( a x l l2 )
4
l
MC
I.L M C
P=1
x
D
B
P=1
A
d
l2
l1
伸臂部分影 响线
(5 ) M x,
l
RA
RB
D
I .L M
d
D
0
x d
(6) Q D 1
1
I .L Q D
0
x d
影响线座标的意义:横座标表示单位荷载的位置; 纵座标表示单位荷载作用在本位置时指定位置物理 量的反应。 简支梁弯矩影响线与弯矩图的区别
x 1
由比例可得: y C
5d 8
, yE
结构力学第4章 静定拱结构
一、工程中的拱结构轴线为曲线、仅在竖向荷载下能产生水平反力(推力)的结构称为拱。
图4-1所示为拱结构的工程实例。
图4-1工程中的拱结构二、拱式结构的特征及其应用1、定义:通常杆轴线为曲线,在竖向荷载作用下,支座产生水平反力的结构。
2、特点:(1)弯矩比相应简支梁小,水平推力存在的原因。
(2)用料省、自重轻、跨度大。
(3)可用抗压性能强的砖石材料。
(4)构造复杂,施工费用高。
3、拱的种类:图4-2拱的种类4、拱各部分的名称:一、支座反力的计算C拱顶铰BA拱肋跨度拱趾铰(a) 等高三铰拱C高差hAB(b) 不等高三铰拱严格的来说,实体三铰拱支座反力的计算与一般三铰刚架结构反力计算相同。
本书介绍的是等代梁解法。
图4-4实体三铰拱第二节实体三铰拱的数解法图4-5等代粱ll 1l 2a 3b 3b 2b 1a 2a 1F P1F P2F P3F P1F P2F P3F A yF B yF A yF B yF B xF A x 00A CBAB C(b)(a )f0CH M F =HB A F F F ==x x 0Ay Ay F F =0ByBy FF =二、拱内截面内力的计算图4-6拱内截面内力1、拱的内力计算原理仍然是截面法。
2、拱通常受压力,所以计算拱时,规定轴力以受压为正。
对于竖向荷载作用三铰拱,其内力计算有简捷公式。
(c)CB A00F B yF A yF P3F P2F P1B F B xAF A x F A yF B y(a )C F P3F P2F P1a 1a 2b 1b 2b 3a 3lϕK F A y F A xF P1KM K F NKF QKx KK ϕy KxyK K(b)yF MM H 0-=ϕϕsin cos H 0Q Q F F F -=ϕϕcos sin H 0Q N F F F --=A0AyFQ F 0M (b) 代梁受力F Ax =F H F Ayx A y k F y FxyϕM(a) 截面k 坐标方向力图4-7拱内截面内力需要指出的是,非竖向荷载作用不等高三铰拱等情形,上述公式是不适用的。
结构力学 第4章 静定结构的位计算
例如,图1(a)所示两个梯形应用图乘法,可不必求 梯形的形心位置,而将其中一个梯形(设为MP图)分成 两个三角形,分别图乘后再叠加。
图1
对于图2所示由于均布荷载q所引起的MP图,可以 把它看作是两端弯矩竖标所连成的梯形ABDC与相应简
支梁在均布荷载作用下的弯矩图叠加而成。
四、几种常见图形的面积和形心的位置
零。
P
2Δ
PP2P30
22
2
YA P/2
YB P/2
2.变形体系的虚功原理 We Wi
体系在任意平衡力系作用下,给体系以几何可能的
位移和变形,体系上所有外力所作的虚功总和恒等于体
系各截面所有内力在微段变形位移上作的虚功总和。
说明: (1)虚功原理里存在两个状态:力状态必须满足平衡条件;位移状态
PR3 PRk PR
4EI 4EA 4GA
M N Q
P θ
P=1
钢筋混凝土结构G≈0.4E 矩形截面,k=1.2,I/A=h2/12
Q M
kGEAI2R14Rh2
N M
I AR2
1 h2 12R
如 h 1 , 则Q 1 , N 1
1
EA 2(1 2)Pa()
1 2
1
EA
2
1
例3.求图示1/4圆弧曲杆顶点的竖向位移Δ。
解:1)虚拟单位荷载
2)实际荷载
虚拟荷载
ds
M P PR sin
M R sin
QP P cos
Q cos
dθ
N P P sin
N sin
d d ds d
d dd sd sN Pds
结构力学(第四章)-力矩分配法
C M CB = 0
0 0
配 传 递
最终杆端弯矩: 最终杆端弯矩 M AB = 100 28.6 = 128.6 q = 12kN / m 42.9 M BA = 100 57.1 = 42.9 M BC = 0 42.9 = 42.9 128 .6 M CB = 0
C d M AB = CM BA = 0.5 × ( 57.1) = 28.6 C d M CB = CM BC = 0 × ( 42.9) = 0
传递弯矩
与远端支承 情况有关
固定状态: 固定状态 F M AB = ql 2 / 12 = 100kN .m F M BA = 100kN .m F F M BC = M CB = 0 放松状态: 放松状态 d u M BA = BA ( M B ) = 57.1 d u M BC = BC ( M B ) = 42.9
1
ql / 8
2
12
2
100 0 -57.1 -42.9 -6.1 3.5 2.6
0 0 0
28.6
100
-28.6 -57.1 -42.9
21.4 6.1 -9.2 -12.2 -6.1 1.8 6.1 1.8 3.5 2.6
分 配 传 递
0
M 0
A
0
q = 12 kN / m
40.3
2
B
… … ...
A
M
d BA
B
u MB
B
u MB
C
u d d M B + M BA + M BC = 0 1 u ( M B ) B = S BA + S BC
B
结构力学第四章虚功原理和结构的位移计算
↓↓↓↓↓↓↓↓↓↓↓↓↓d↓s↓↓↓ 1
2
即:T12=
V1变2
微段的变形可分为ε2ds,
γ2ds, κ2ds
dV1变 =N1ε2ds+Q1γ2ds+M1κ2ds
V 变2 12
dV 变
12
N1
ds
2
Q ds
12
M ds
12
M1 ↓↓↓↓ M1+dM
N1
ds
N1+dN
Q1
Q1+dQ
d2=κ2ds ds dλ2=ε2ds
基本要求:
领会变形体虚功方程。 掌握实功与虚功、广义力与广义位移确
定,掌握互等定理;支座移动和温 度改变引起的位移计算。 熟练掌握荷载产生的位移计算、用图乘 法求位移。
线支温图结虚
弹
座 移
度 改
乘
构 位
功
性动变 移及
体产产法计虚 生生 算
互的的及的功
等位位 一原
定
移 计
移 计
举
般 公
理
理算算例式理
§4·1 位移计算概述
N QM
虚拟力状态 1
c1 P=1
R1
§4·4荷载作用下的位移计算
一、荷载作用下的位移计算的一般公式与简化公式
↑↑↑↑↑↑↑↑↑↑↑↑
( ) 注:(1)EI、iPEA、GAN是杆NEN件AQP截面k刚MQG度QA;P. ds
M M EI
PR.icdi s
k是截面形状系数k矩=1.2, k圆=10/9。 (2)NP、QP、MP实际荷载引起的内力,
X P Pb
a
虚设位移求未知力(虚位移原理) 1)由虚位移原理建立的虚功方程,实质上是平衡方程。 2)虚位移与实际力系是彼此独立无关的,为了方便,可 以随意虚设,如设δX=1。 3)虚功法求未知力的特点是采用几何的方法求解静力平 衡问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位位移法:
在应用虚位移原理时,特别的假设发生单位位移。
求解步骤:
(1)解除所求约束力的约束,代之以约束力,得k状态。 (2)沿所求约束力的方向给以一位虚位移,得m状态。 (3)由虚位移原理建立虚功方程,求解约束力。
例 利用单位位移法求两跨静定梁在图示荷载下的支座D的反力和截面E的 弯矩。
解 : 1.求支座反力 : ,得
第四章 静定结构的位移计算
§4-1 §4-2 §4-3 §4-4 §4-5 §4-6 概述 外力虚功与虚变形功 虚功原理 虚位移原理与单位位移法 虚力原理、单位荷载法 杆件结构的位移计算公式 及荷载作用下的位移计算
§4-7
§4-8 §4-9
图乘法
支座移动、温度改变时的位移计算 互等定理
§4-1
概 述
一、工程结构在荷载、温度变化、支座移动等因素下,结 构的形状一般会发生变化——变形(或形变),结构 的截面位置一般会发生改变——位移(线位移和角位 移)。
荷载作用
温度变化
支座移动
相对位移
二、结构位移计算的目的
(1) 结构设计必须经过刚度校核。 (2)结构施工阶段常常需要估算结构可能变更位置以便作出相应的工 程措施。 (3)结构位移计算是分析超静定结构以及结构动力分析,稳定分析等 的基础。
图的面积
例 悬臂刚架如图所示,外边温度升高10度,内边温度升高20度,求悬臂 端的竖向位移,已知h=20cm,α=120E-7/度。
解:1.建立虚力状态:
2.作 图:
3.计算位移:
返回
§4-9
一、虚功互等
互等定理
建立虚功方程:
虚功互等定理可叙述为:k状态的力因m状态的位移所作的虚功,等于 m状态的力因k状态的位移所作的虚功。
(1)解除D支座,代之一约束力 静力状态k; (2)虚设单位位移 得位移状态m; (3)虚功方程: ,
2.求截面E的弯矩
:
,
(1)将截面E换成铰,并加上 得k状态; (2)沿 正向给单位虚位移 得m状态; (3)虚功方程
返回
§4-5 虚力原理、单位荷载法
虚力原理:
变形体系在任意外来因素作用下的位移系协调的充分必要条件是,当 有任意虚拟的静力平衡系时,力系中的外力经位移系中的位移所作的虚 功恒等于变形体系各微段外力在变形位移上的虚功和。 静力平衡系 (虚拟) 位移协调系 (真实)
解: (1)建立虚力状态 (2)分别作内力图 M p , M k
(3)用图乘法计算位移
返回
§4-8
支座移动、温度改变时的位移计算
均为零,结构上k处发生位
一、支座移动时的位移计算
静定结构支座移动 时, 移 ; 虚力状态的支座反力记为: 由虚功原理:
例 图示结构,若支座B发生水平移动,即B点向右移动一距离a,试求 C铰左右两截面的相对转角φ。 解:(1)建立虚力状态:
静力状态k的集中力
在位移状态m的位移Δkm 上所作的虚功:
2.力偶虚功:
静力状态k的力偶
在位移状态m的角位移θkm
上所作的虚功:
3.均布力虚功:
静力状态k的均布力在位移状态m 上所作的虚功:
4.等量反向共线的两集中力的虚功:
静力状态k的力在位移状态m 上所作的虚功:
平衡力系在刚体位移上的虚功=?
四、结构各微段外力在变形位移上的虚功和。
取微段进行分析:
微段静力状态k的力在位移状态m 上所作的虚功:
第i杆件的虚功:
平面杆件结构各微段外力在变形位移上的虚功和(虚变形功):
返回
§4-3 虚功原理
静力平衡系(静力状态k):满足结构整体和局部平衡条件以静力边 界条件,并遵循作用和反作用定律的力系。 位移协调系(位移状态m):在结构的边界和内部都必须是分段光滑 连续的,在边界上满足位移边界条件且是微小的位移系。
(2)求有移动的支座的反力:
(3)
二、温度改变的位移计算
结构由于温度改变(设变温沿杆长不变,沿截面高度直线变化)而 变形并引起位移: 杆轴线处平均温度变化: 线段伸长为: 线段两端截面的相对转角: 为最外纤维温度差。 温度改变不引起剪应变
图的面积
符号规定:轴力以拉为正,压力为负。 受拉边的变温定义为 。
常见图形的面积和形心位置:
常见图形图乘结果:
例
求图示刚架C点的水平线
。
解:1.建立虚力状态: 2.作 图: 3.图乘:
例 设有一矩阵钢筋混凝土渡槽,如图(a)所示,槽深的计算简图如 图(b)所示,试求槽内最高水位时 A、B两点的相对位移。已 7 2 3 4 4 3 EI 2.1 10 kN / m 2.81 10 m 5.91 10 kN . m , 10kN / m 知 。 水 (设结构自重不计,并略去轴力及剪力对位移的影响)。
由虚功互等: 即:
反力位移互等定理可叙述为:沿k方向的单位力在沿m方向引起的反力, 等于m方向发生单位位移时,在沿k方向引起的位移,但符号相反。
返回
解:1. 角位移 (1)虚力状态 (2)列内力方程
(3)
2. 竖向位移 (1)虚力状态 (2)列内力方程
(3)
2. 水平位移 (1)虚力状态 (2)列内力方程
(3)
例 求图示对称桁架在荷载作用下结点4的竖向位移,设 E 2100kN / cm ,图 2 中括弧内的数值为杆件截面面积A( cm )。
一、位移公式
单位荷载法:
二、荷载作用下的位移计算公式
荷载作用下:
例
求简支梁AB,受均布荷载q时跨度中点的挠度。已知E、I。
解:1. 建立虚力状态: 2. 内力公式:
取
,设矩形截面
一般地:
在梁的计算中可略去轴力、剪力的影响; 在深梁的计算中必须考虑剪力的影响。
返回
例 求图示四分之一圆弧的曲梁的自由端的角位移与线位移
三、虚功原理是结构位移计算的基础。
返回
§4-2
一、功
外力虚功与虚变形功
二、实功与虚功
1.位移是作功的力引起的。 实功:
Δp相对于Fp而言为实位移。
2.位移不是作功的力引起的 虚功:
3.实功计算不满足叠加原理;虚功计算满足叠加原理。
三、结构的外力虚功
静力状态:结构在k处所方向受广义力 作用处于平衡状态。 位移状态:结构由于其它原因而产生位移。其中k处所方向的广义位移 为Δkm k状态的外力在m状态的虚位移上所作的虚功: 1、集中力的虚功
2
解:(1)桁架各杆的剪力和弯矩为零,轴力为常数,建立虚力方程,位移公式简 化为
式中,l为杆件长度 (2)求 FNP , FNk
(3)列表计算
(4)计算
§4-7
图乘法
使用条件:均质、常截面直杆; 至少一个内力图按直线变化。
位移计算公式中的积分可以用图乘法:
(1)用一内力图的面积A乘以该内力图面积的形心所对应的直线内力图 的纵距 ; (2)面积A与纵距 在杆轴同侧,则乘积 取正号,反之取负号。
按结构整体计算k状态的力在m状态的位移所作虚功:
外力虚功:
各截面内力虚功总和为零。 显然有:
虚功原理的讨论:
(1)试用线性、非线性、小变形问题。 (2)利用虚功原理解决平衡问题、几何问题。 (3)刚体虚功原理: 或
返回
§4-4
虚位移原理:
虚位移原理与单位位移法
变形体系在力系作用下成平衡的必要与充分条件是,当有任意 虚拟的位移协调系(即虚位移)时,力系中的外力经位移系中 的位移所作的虚功恒等于变形体系各微段外力在变形位移上的 虚功和。 位移协调系 (虚拟) 静力平衡系 (真实)
虚功原理:
设有一变形体系,分布存在两个独立无关的静力平衡系和位移协 调系,则力系中的外力经位移系中的位移所作的虚功恒等于变形 体系各微段外力在变形位移上虚功和。即:
以平面刚架为例证明虚功原理: 静力平衡力系k: 截面内力分量: 微段外力满足平衡条件:
位移协调系m: 各点的位移分量:
按微段计算k状态的力在m状态的位移所作虚功:
二、位移互等定理
在虚功互等定理中,令 则:
位移互等定理可叙述为:沿k方向的单位力在沿m方向引起的位移,等 于沿m方向的单位力在沿k方向引起的位移。
三、反力互等定理
由虚功互等: 即:
反力互等定理可叙述为:k支座发生单位位移时在m支座内引起反力, 等于m支座发生单位位移时在k支座内引起反力。
四、反力位移互等定理
单位荷载法:
在应用虚力原理时,特别的假设单位荷载。
求解步骤:
(1)沿所求位移的方向加上对应的单位虚力,得静力状态k。 (2)实际位移状态m,建立虚功方程。
例 动
试用单位荷载法求图示两跨静定梁,由于中间支座B向下移 ,中间铰C的竖向位移 。
解:
1.建立静力状态k: 2.建立虚功方程:
返回
§4-6
杆件结构的位移计算公式及荷载作用 下的位移计算