钢结构节点计算复习
钢结构复习题全部
1、如图所示两截面为-14x400的钢板,采用双盖板和C 级普通螺栓连接,单盖板厚度为7mm 。
螺栓为M22,螺栓孔径d 0=24mm 。
2140mm N f b v =,2305mm N f b c =;钢材为Q235,承受轴心拉力设计值N =700KN 。
试验算此连接。
解:单个螺栓抗剪承载力设计值:22222140106.444b bv v v d N n f ππ==⨯⨯=kN单个螺栓承压承载力设计值:221430594b b c c N d tf ==⨯⨯=∑ kN连接一侧所需螺栓数目为12:{}min ,min b b b v c N N N ==94 kN F=min12b N ⨯=1127.3 kN>700 kN 验算连件的净截面强度。
连接钢板在截面I -I 受力最大的N,连接盖板则是截面33-受力最大也是N ,但是因两者钢材、截面均相同,故只验算连接钢板。
210()(400424)144256n A b n d t mm =-=-⨯⨯=32270010164.52154256n N N N f mm mm A σ⨯===<= 满足要求2、图示双角钢与节点板三面围焊缝连接,受静态轴心拉力N ,角钢为2∟125×80×10长肢相拼,焊脚尺寸h f =8 mm ,,钢材为Q235,焊条E43型,手工焊;肢背焊缝实际长度1l =300 mm ,焊缝内力分配系数1K =0.65,2K =0.35,正面焊缝的强度增大系数f β=1.22,角焊缝强度设计值wf f =160 N/mm 2。
试确定此连接能承受的最大静力荷载设计值F 及肢尖焊缝的长度2l 。
(15分)解:由题意得 3125w l =mm 正面焊接:3320.7wf w f f N h l f β=⨯⨯⨯⨯ 220.78125 1.22160/mm mm N mm =⨯⨯⨯⨯⨯=273.3kN肢背侧焊缝: 1120.7()wf f f N h l h f =⨯⨯-⨯ 220.78(3008)160/mm mm mm N mm =⨯⨯⨯-⨯=523.26 kN又 311 2N N k N =- 31127328052326022 0.65N N N K +⨯∴===1015.24 kN 322 2N N k N =-=218693N (3分) '22221869381228130220.78160W f W e f N l h h f ≥+=+=+=⨯⨯⨯mm3、如图所示钢板与工字形柱采用双面角焊缝T 形连接,h f =8mm ,其它尺寸已在图中给出,钢板承受一个斜向拉力F =500 kN 的作用(静力荷载),钢材Q235B ,焊条E43系列,2/160mm N f w f =。
建筑钢结构设计复习
建筑钢结构设计复习建筑钢结构设计复习08级⼟⽊四班《建筑钢结构设计》复习提纲《钢结构》上册1、轴⼼受压柱的柱脚形式,各部件的名称,各部件所起的作⽤,传⼒路径,计算简图,基础对底板反⼒分布形式。
(P273-277,课件)2、压弯构件的柱脚形式,各部件的名称,各部件所起的作⽤,传⼒路径,计算简图,基础对底板反⼒分布形式。
(P277-282,课件)3、桁架中四类典型节点设计:掌握需要施加哪些焊缝(在图上标出),哪些是⼯⼚焊缝,哪些是⼯地焊缝,各焊缝传递什么内⼒,如何计算这些焊缝?(P282-294,课件)《钢结构》下册第⼀章1、何谓单层门式刚架结构?有哪些特点?合理应⽤范围(P1-3)?其结构⽤钢量是多少(P2)?①单层门式刚架结构是指以轻型焊接H形钢(等截⾯或变08级⼟⽊四班截⾯)、热轧H形钢(等截⾯)或冷弯薄壁型钢等构成的实腹式门式刚架或格构式门式刚架作为主要承重⾻架,⽤冷弯薄壁型钢(槽形、卷边槽形、Z形等)做檩条、墙梁;以压型⾦属板(压型钢板、压型铝板)做屋⾯、墙⾯;采⽤聚苯⼄烯泡沫塑料、硬质聚氨酯泡沫塑料、岩棉、矿棉、玻璃棉等作为保温隔热材料并适当设置⽀撑的⼀种轻型房屋结构体系。
②特点:(1)质量轻(2)⼯业化程度⾼,施⼯周期短(3)综合经济效益⾼(4)柱⽹布置⽐较灵活设计③主要⽤于轻型的⼚房、仓库、建材等交易市场、⼤型超市、体育馆、展览厅及活动房屋、加层建筑等。
④根据国内的⼯程实例统计,单层门式刚架房屋承重结构的⽤钢量⼀般为10~30kg/m2;在相同的跨度和荷载条件情况下⾃重约仅为钢筋混凝⼟结构的1/20~1/30。
2、绘图说明门式刚架常⽤的结构形式?(P3-4)门式刚架⼜称⼭形门式刚架。
其结构形式按跨度可分为单跨(图1-30a、b)、双跨(图1-3e、f、g、i)和多跨(图1—3c、d),按屋⾯坡脊数可分为单脊单坡(图1—2a)、单脊双坡(图l-3b、c、d、g、h)、多脊多坡(图1-3e、f、i)。
钢结构设计原理复习题及参考答案
《钢结构设计原理》课程复习资料一、填空题:1.钢结构计算的两种极限状态是和。
2.钢结构具有、、、、和等特点。
3.钢材的破坏形式有和。
4.影响钢材性能的主要因素有、、、、、、和。
5.影响钢材疲劳的主要因素有、、、6.建筑钢材的主要机械性能指标是、、、和。
7.钢结构的连接方法有、和。
8.角焊缝的计算长度不得小于,也不得小于。
侧面角焊缝承受静载时,其计算长度不宜大于。
9.普通螺栓抗剪连接中,其破坏有五种可能的形式,即、、、、和。
10.高强度螺栓预拉力设计值与和有关。
11.轴心压杆可能的屈曲形式有、、和。
12.轴心受压构件的稳定系数 与、和有关。
13.提高钢梁整体稳定性的有效途径是、和。
14.影响钢梁整体稳定的主要因素有、、、和。
15.受弯构件的强度设计准则有__________准则、__________准则和__________准则。
除塑性弯矩或极限弯矩的计算外,普通钢结构设计中一般采用准则。
16.用结构钢材制成的拉伸试件进行拉伸试验时,得到的平均应力 - 应变关系曲线 ( σ - ε关系曲线 )可分为 _______、_______、________、_______ 和颈缩阶段。
17.实腹式拉弯构件的截面出现 _______ 是构件承载能力的极限状态。
但对格构式拉弯构件或冷弯薄壁型钢截面拉弯杆,常把 _______ 视为构件的极限状态。
这些都属于强度的破坏形式,对于轴心拉力很小而弯矩很大的拉弯杆也可能存在和梁类似的弯扭失稳的破坏形式。
18.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则常采用的方法来解决。
二、问答题:1.钢结构具有哪些特点?2.钢结构的合理应用范围是什么?3.钢结构对材料性能有哪些要求?4.钢材的主要机械性能指标是什么?各由什么试验得到?5.影响钢材性能的主要因素是什么?6.什么是钢材的疲劳?影响钢材疲劳的主要因素有哪些?7.选用钢材通常应考虑哪些因素?8.钢结构有哪些连接方法?各有什么优缺点?9.焊缝可能存在的缺陷有哪些?10.焊缝的质量级别有几级?各有哪些具体检验要求?11.对接焊缝的构造要求有哪些?12.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求?13.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结构性能有何影响?减少焊接残余应力和焊接残余变形的方法有哪些?14.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形式有何不同?15.螺栓的排列有哪些构造要求? 16.普通螺栓抗剪连接中,有可能出现哪几种破坏形式?具体设计时,哪些破坏形式是通过计算来防止的?哪些是通过构造措施来防止的?如何防止? 17.高强度螺栓的8.8级和10.9级代表什么含义? 18.轴心压杆有哪些屈曲形式?19.在考虑实际轴心压杆的临界力时应考虑哪些初始缺陷的影响?20.在计算格构式轴心受压构件的整体稳定时,对虚轴为什么要采用换算长细比?21.什么叫钢梁丧失整体稳定?影响钢梁整体稳定的主要因素是什么?提高钢梁整体稳定的有效措施是什么?22.增强梁腹板局部稳定的加劲肋主要哪几种?其作用分别为?23.什么叫钢梁丧失局部稳定?怎样验算组合钢梁翼缘和腹板的局部稳定? 24.压弯构件的整体稳定计算与轴心受压构件有何不同? 25.压弯构件的局部稳定计算与轴心受压构件有何不同?三、计算题:1.试验算如图所示牛腿与柱连接的对接焊缝的强度。
钢结构柱脚节点构造及计算
钢结构柱脚节点构造及计算摘要:1.钢结构柱脚节点的构造2.钢结构柱脚节点的计算3.总结正文:钢结构柱脚节点构造及计算钢结构柱脚节点是钢结构建筑中非常重要的一个组成部分,它的主要作用是将钢柱与基础结构连接起来,承受钢柱传来的荷载。
钢结构柱脚节点的构造和计算是钢结构设计中的重要内容,下面将分别介绍。
一、钢结构柱脚节点的构造钢结构柱脚节点的构造主要涉及到以下几个方面:1.柱脚底板的构造:柱脚底板需要具有足够的强度和刚度,以承受钢柱传来的荷载。
通常情况下,柱脚底板采用厚钢板或混凝土板,并在其上设置螺栓或焊接等方式,将钢柱与底板连接起来。
2.柱脚与基础的连接:柱脚与基础的连接通常采用混凝土基础或钢筋混凝土基础。
在混凝土基础顶面,需要设置抗剪键,以增加柱脚与基础的连接强度。
3.防锈措施:钢结构柱脚节点在使用过程中,可能会受到腐蚀的影响。
为了提高柱脚节点的使用寿命,通常需要采取一些防锈措施,如喷涂防锈漆或镀锌等。
二、钢结构柱脚节点的计算钢结构柱脚节点的计算主要涉及到以下几个方面:1.荷载计算:钢结构柱脚节点需要承受钢柱传来的各种荷载,包括轴向荷载、弯矩、剪力等。
在计算时,需要根据实际情况合理地考虑这些荷载。
2.强度计算:钢结构柱脚节点的强度计算,需要考虑材料强度、几何尺寸、连接方式等因素。
在计算时,需要根据相关规范和设计手册,进行合理的强度验算。
3.稳定性计算:钢结构柱脚节点的稳定性计算,需要考虑柱脚底板的稳定性、基础的稳定性等因素。
在计算时,需要根据相关规范和设计手册,进行合理的稳定性验算。
总结钢结构柱脚节点是钢结构建筑中非常重要的一个组成部分,它的构造和计算是钢结构设计中的重要内容。
钢结构节点计算
钢结构节点计算是钢结构设计中的重要环节,它涉及到结构的安全性、可靠性和经济性。
以下是一些常见的钢结构节点计算方法:
1. 焊缝连接节点:焊缝连接是钢结构中最常用的连接方式之一。
在计算焊缝连接节点时,需要考虑焊缝的强度、焊缝的有效长度、焊缝的受力状态等因素。
2. 螺栓连接节点:螺栓连接节点通常用于钢结构的次要连接。
在计算螺栓连接节点时,需要考虑螺栓的直径、螺栓的数量、螺栓的预紧力等因素。
3. 梁柱节点:梁柱节点是钢结构中的重要节点之一。
在计算梁柱节点时,需要考虑节点的受力状态、节点的刚度、节点的强度等因素。
4. 支撑节点:支撑节点用于支撑钢结构的柱子或梁。
在计算支撑节点时,需要考虑支撑的类型、支撑的位置、支撑的受力状态等因素。
5. 桁架节点:桁架节点是桁架结构中的重要节点之一。
在计算桁架节点时,需要考虑节点的受力状态、节点的刚度、节点的强度等因素。
以上是一些常见的钢结构节点计算方法,具体的计算方法需要根据具体的结构形式和受力情况进行选择。
在进行钢结构节点计算时,需要遵循相关的设计规范和标准,确保结构的安全性和可靠性。
钢结构复习题答案 (2)
一、名词解释1、门式刚架的跨度:横向刚架柱轴线间的距离C2、钢屋盖中的柔性系杆::只能承受拉力的系杆3、钢屋盖中的刚性系杆:既能受压也能受拉的系杆4、多、高层钢结构中的竖向中心支撑:当支撑斜杆的轴线通过框架梁柱中线的交点时为中心支撑5、多、高层钢结构中的竖向偏心支撑:当支撑斜杆的轴线不通过框架梁柱中线的交点时为偏心支撑6、多、高层钢结构中的耗能梁段:竖向支撑的斜杆至少有一端未通过梁柱的节点,从而在梁端部或中部形成耗能梁段。
7、重型厂房结构中的无檩屋盖体系:将混凝土屋向板直接放在屋檩条连接的屋架或天窗架上所形成的屋盖体系8、厂房结构中的有檩屋盖:屋架之间有檫条连接,屋而材料一般为轻型材料9、压型钢板组合楼盖中的组合板:压型钢板上浇注混凝土形成的组合楼板10、蒙皮效应:建筑物表面的覆盖材料利用本身的刚度和强度,对建筑物整体刚度的加强作用11、门式刚架斜梁的隅撑:在靠边墙角的部位,斜梁与柱之间的支撑杆12、门式刚架结构中的摇摆柱:两边铰接只承受竖向荷载的门式刚架的中柱二、选择题1、一般情况下梯形钢屋架中跨中竖杆的截面形式为(①等边角钢T形相连相连,②不等边角钢长肢相连,③等边角钢十字形相连,④不等边角钢短肢相连)。
2、梯形钢屋架的支座斜杆,采用两个(①不等肢角钢长肢相连,②等肢角钢相连,③不等肢角钢短肢相连)的T形截面比较合理。
3、钢屋架中的下弦杆常采用不等肢角钢短肢相连的截面形式,这是根据(①强度条件,②刚度条件,③等稳条件)的要求而采用的。
4、轻型钢屋架上弦杆的节间距为l,其平面外计算长度应取(①l,②0.8l,③0.9l,④侧向支撑点间距离)。
5、屋盖中设置的刚性系杆(①只能受拉,②可以受拉和受压,③可以受拉和受弯,④可以受压和受弯)。
6、屋架设计中,积灰荷载应与(①屋面活荷载,②雪荷载,③屋面活荷载和雪荷载两者中的较大值,④屋面活荷载和雪荷载)同时考虑。
7、普通钢屋架的受压杆件中,两个侧向固定点之间的垫板数不宜少于(①1个,②2个,③3个,④4个)。
钢结构算量学习笔记(图文并茂)
钢结构工程算量一、计算规则(一)金属构件制作1.金属构件工程量按设计图示尺寸乘以理论质量计算。
不扣除孔眼、切边、切肢的质量,焊条、铆钉、螺栓等不另增加质量。
2.金属构件计算工程量时不扣除单个面积≤0.3m2的孔洞质量,焊缝、铆钉、螺栓等不另增加质量。
3.钢网架计算工程量时计算,不扣除孔眼的质量,焊缝、铆钉等不另增加质量。
焊接空心球网架质量包括连接钢管杆件、连接球、支托和网架支座等零件的质量,螺栓球节点网架质量包括连接钢管杆件(含高强螺栓、销子、套筒、锥头或封板)、螺栓球、支托和网架支座等零件的质量。
4.依附在钢柱上的牛腿及悬臂梁的质量等并入钢柱的质量内,钢柱上的柱脚板、加劲板、柱顶板、隔板和肋板并入钢柱工程量内。
5.钢管柱上的节点板、加强环、内衬板(管)、牛腿等并入钢管柱的质量内。
6.钢平台的工程量包括钢平台的柱、梁、板、斜撑等的质量,依附于钢平台上的钢扶梯及平台栏杆,应按相应构件另行列项计算。
7.钢楼梯的工程量包括楼梯平台、楼梯梁、楼梯踏步等的质量,钢楼梯上的扶手、栏杆另行列项计算。
8.钢栏杆包括扶手的质量,合并套用钢栏杆项且。
9.机械或手工及动力工具除锈按设计要求以构件质量或表面积计算。
(二)金属结构运输、安装1.金属结构构件运输、安装工程量同制作工程量。
2.钢构件现场拼装平台摊销工程量按实施拼装构件的工程量计算。
(三)楼层板、围护体系及其他安装1.楼面板按设计图示尺寸以铺设面积计算,不扣除单个面积≤0.3m2的柱、垛及孔洞所占面积。
2.墙面板按设计图示尺寸以铺挂面积计算,不扣除单个面积≤0.3m2的梁、孔洞所占面积。
3.硅酸钙板墙面板按设计图示尺寸的墙体面积以m2计算,不扣除单个面积≤0.3m2孔洞所占面积。
4.保温岩棉铺设、EPS混凝土浇灌按设计图示尺寸的铺设或浇灌体积以m3计算,不扣除单个面积≤0.3m2孔洞所占体积。
5.硅酸钙板包柱、包梁,及蒸压砂加气保温块贴面工程量按钢构件设计断面尺寸以m2计算。
钢结构节点计算
钢结构节点计算引言概述:钢结构是一种广泛应用于建筑和工程领域的结构材料。
节点作为连接不同构件的重要部分,承担着传递载荷和保证结构稳定性的关键作用。
钢结构节点计算是确保节点可靠性和安全性的重要步骤。
本文将深入探讨钢结构节点计算的相关内容。
正文内容:1.节点类型的分类1.1刚性节点1.1.1刚性节点的定义和作用1.1.2刚性节点的设计原则1.1.3刚性节点的计算方法1.1.4刚性节点的应力分析1.2半刚性节点1.2.1半刚性节点的定义和特点1.2.2半刚性节点的设计原则1.2.3半刚性节点的计算方法1.2.4半刚性节点的应力分析2.节点计算的基本原理2.1节点受力分析2.1.1受力平衡原理2.1.2节点内力分析2.1.3节点应力计算2.2接触面分析2.2.1接触面的作用和重要性2.2.2接触面的计算方法2.2.3优化接触面设计的考虑因素2.3塑性铰节点计算2.3.1塑性铰节点的定义和特点2.3.2塑性铰节点计算的基本原理2.3.3塑性铰节点的计算方法2.3.4塑性铰节点的应用案例3.节点计算的设计准则3.1强度设计准则3.1.1节点承载力的评估3.1.2材料强度的考虑因素3.1.3节点的剪力和弯曲强度设计3.2稳定性设计准则3.2.1节点的稳定性分析3.2.2节点稳定性设计的考虑因素3.2.3节点极限承载力的评估3.3刚度设计准则3.3.1节点刚度的定义和作用3.3.2节点刚度计算的方法3.3.3刚度设计的注意事项4.节点计算中的约束条件4.1强度约束条件4.1.1结构的要求和约束4.1.2节点强度的界定和要求4.1.3不同材料节点的强度约束条件4.2稳定性约束条件4.2.1节点稳定性约束的重要性4.2.2节点稳定性约束的计算方法4.2.3稳定性约束条件的优化设计4.3刚度约束条件4.3.1节点刚度约束的影响因素4.3.2节点刚度约束的计算方法4.3.3刚度约束条件的满足要求5.常见节点计算问题及解决方法5.1节点疲劳失效问题5.1.1疲劳失效原因的分析5.1.2疲劳寿命计算方法5.1.3疲劳失效问题的解决方法5.2节点焊接问题5.2.1焊接强度计算方法5.2.2焊接质量评估指标5.2.3焊接问题的解决方法总结:钢结构节点计算是确保结构安全性和可靠性的关键步骤。
yjk钢结构节点计算
yjk钢结构节点计算YJK钢结构节点计算钢结构在现代建筑中具有广泛的应用,其节点是连接构件的重要部分。
YJK钢结构节点计算是一种常用的节点计算方法,它可以确保节点的强度和稳定性,保证整个结构的安全性。
本文将介绍YJK钢结构节点计算的基本原理和计算方法,以及在实际工程中的应用。
一、YJK钢结构节点计算的基本原理YJK钢结构节点计算是基于材料力学和结构力学原理的计算方法。
节点的计算主要包括节点的受力分析和节点的强度计算两个方面。
节点的受力分析是通过对节点受力情况进行分析,确定各个受力点的力的大小和方向。
受力分析的基本原理是平衡原理和力的平衡条件。
根据平衡原理,节点的受力必须满足力的合力为零,力的合力矩为零的条件。
通过受力分析,可以确定节点各个受力点的力的大小和方向。
节点的强度计算是根据节点受力情况和材料的强度特性,计算节点的强度是否满足设计要求。
节点的强度计算主要包括材料的强度计算和节点的承载力计算两个方面。
材料的强度计算是根据材料的强度特性,计算材料的屈服强度、抗拉强度、抗剪强度等参数。
节点的承载力计算是根据节点受力情况和材料的强度特性,计算节点的最大承载力和临界承载力。
二、YJK钢结构节点计算的计算方法YJK钢结构节点计算的计算方法主要包括手算方法和计算机辅助方法两种。
手算方法是通过手工计算,根据节点的受力情况和材料的强度特性,计算节点的强度是否满足设计要求。
手算方法的优点是计算简单、直观,适用于小型和简单的节点计算。
然而,手算方法的缺点是计算过程繁琐,容易出错,适用范围有限。
计算机辅助方法是通过计算机软件进行计算,根据节点的受力情况和材料的强度特性,计算节点的强度是否满足设计要求。
计算机辅助方法的优点是计算速度快、准确性高,适用于大型和复杂的节点计算。
然而,计算机辅助方法的缺点是需要专业的软件和计算机技术支持,适用范围有限。
三、YJK钢结构节点计算的应用YJK钢结构节点计算在实际工程中具有重要的应用价值。
钢结构复习题及参考答案
钢结构复习题及参考答案中南⼤学⽹络教育课程考试复习题及参考答案钢结构(专科)⼀、填空题:1.钢结构设计中,承载能⼒极限状态的设计内容包括:、、。
2.影响疲劳强度最主要的因素是、、。
3.在螺栓的五种破坏形式中,其中_____________、____________、_______________须通过计算来保证。
4.梁的强度计算包括________________、________________、_______________、________________。
5.轴⼼受压格构式构件绕虚轴屈曲时,______________________不能忽略,因⽽绕虚轴的长细⽐λx 要采⽤____________________。
6.提⾼轴⼼受压构件临界应⼒的措施有、、。
7.当构件轴⼼受压时,构件可能以、和等形式丧失稳定⽽破坏。
8.实腹梁和柱腹板局部稳定的验算属于_____极限状态,柱⼦长细⽐的验算属于______极限状态,梁截⾯按弹性设计属于______极限状态。
9.螺栓抗剪连接的破坏⽅式包括____________、_________、、__________和___________。
10.为防⽌梁的整体失稳,可在梁的翼缘密铺铺板。
11.常⽤的连接形式有,,。
12.压弯构件在弯矩作⽤平⾯外的失稳属于(失稳类别)。
13.在不同质量等级的同⼀类钢材(如Q235A,B,C,D 四个等级的钢材),它们的屈服点强度和伸长率都⼀样,只是它们的和指标有所不同。
14.在静⼒或间接动⼒荷载作⽤下,正⾯⾓焊缝的强度设计增⼤系数βf =;但对直接承受动⼒荷载的结构,应取βf =。
15.普通螺栓连接受剪时,限制端距e ≥2d ,是为了避免钢板被破坏。
16.轴⼼受拉构件计算的内容有和。
17.设计采⽤⼤型屋⾯板的铰⽀撑梯形钢屋架下弦杆截⾯时,如节间距离为l ,则屋架下弦杆在屋架平⾯内的计算长度应取。
18.轴⼼受⼒的两块板通过对接斜焊缝连接时,只要使焊缝轴线与N ⼒之间的夹⾓θ满⾜条件时,对接斜焊缝的强度就不会低于母材的强度,因⽽也就不必在进⾏计算。
钢结构节点计算书
H400x250x8x12
பைடு நூலகம்
=(450-0.95*400)/2 =(300-0.8*250)/2 =*1000/(300*450) =300*450 =500*800 =0.35*11.9*SQRT(400000/135000)
Fb>Fp故满足 =50*SQRT(3*0/(0.75*310))
=(250-8)/(2*(400/2-12)) =3*(250-8)^2*0 =4*(1+3.2*0.644^3)*0.75*310 =SQRT(0/1725)
刚架柱柱脚节点计算
一、已知条件: 压力N 拔力F 剪力T 柱脚截面型号: 柱高h 翼板宽bf 腹板厚tw 翼板厚tf 柱底板材料 钢筋抗拉强度设计值fy 输入锚栓型号 锚栓材料 锚栓数目 短柱混凝土标号 短柱长度L 短柱宽度W 二、底板边缘受弯计算 计算柱底板长D 计算柱底板宽B 计算m =(D-0.95*h)/2 计算n =(B-0.8*bf)/2 计算底板压应力Fp =N/(B*D) 柱底板面积A1 =D*B 混凝土短柱面积A2 =W*L 混凝土抗压强度fc 混凝土短柱承压强度Fb=0.35*fc*SQRT(A2/A1) 结论: 计算板厚t =MAX(m,n)*SQRT(3*Fp/(0.75*fy)) 三、三边支撑计算 底板是否有中间加劲 计算系数q1 =(bf-tw)/[2*(h/2-tf)] x1 x2 计算板厚t =SQRT(x1/x2) 四、确定底板厚t 五、锚栓抗拉检验 锚栓拉应力τ =F/A 结论: 六、抗剪键设置 90 73 3 400 250 8 12 Q345 310 M24 Q235 4 C25 800 500 450 300 35 50 0 135000 400000 11.9 7.17 0 是 0.644 0 1725 0 16 49.8
建筑钢结构设计复习题及答案
《建筑钢结构设计》复习提纲《钢结构设计原理》第九章 单层厂房钢结构1、重、中型工业厂房支撑系统有哪些?(P305、317) 各有什么作用?答:⑴柱间支撑分为上柱(层)支撑和下柱(层)支撑(★吊车梁和辅助桁架作为撑杆是柱间支撑的组成部分,承担并传递单层厂房钢结构纵向水平力)。
柱间支撑作用:①组成坚强的纵向构架,保证单层厂房钢结构的纵向刚度②承受单层厂房钢结构端部山墙的风荷载、吊车纵向水平荷载及温度应力等,在地震区尚应承受纵向地震作用,并将这些力和作用传至基础③可作为框架柱在框架平面外的支点,减少柱在框架平面外的计算长度⑵屋盖支撑由上弦横向水平支撑、下弦横向水平支撑、下弦纵向水平支撑、垂直支撑、系杆组成 屋盖支撑作用:①保证屋盖形成空间几何不变结构体系,增大其空间刚度②承受屋盖各种纵向、横向水平荷载(如风荷载、吊车制动力、地震力等),并将其传至屋架支座 ③为上、下弦杆提供侧向支撑点,减小弦杆在屋架平面外的计算长度,提高其侧向刚度和稳定性 ④保证屋盖结构安装时的便利和稳定2、屋盖支撑系统应如何布置?(可能考作图题)答:参考书P313-315 及 图9.4.33、檩条有哪些结构型式,是什么受力构件,需要验算哪些项目?(P317-319)答:结构形式:实腹式和桁架式:檩条通常是双向弯曲构件,需要验算强度、整体稳定、刚度。
4、设置檩条拉条有何作用?如何设置檩条拉条答:作用:为了减小檩条沿屋面方向的弯曲变形,减小My 以及增加抗扭刚度,设置檩条拉条以减小该方向的檩条跨度(课件)如何设置:当檩条的跨度4~6 m 时,宜设置一道拉条;当檩条的跨度为6m 以上时,应布置两道拉条。
屋架两坡面的脊檩须在拉条连接处相互联系,或设斜拉条和撑杆。
Z 形薄壁型钢檩条还须在檐口处设斜拉条和撑杆。
当檐口处有圈梁或承重天沟时,可只设直拉条并与其连接。
5、 压型钢板根据波高的不同,有哪些型式,分别可应用于哪些方面?(P323)答:高波板:波高>75mm ,适用于作屋面板中波板:波高50~75mm ,适用于作楼面板及中小跨度的屋面板低波板:波高<50mm ,适用于作墙面板6、普通钢桁架按其外形可分为哪些形式?(P326),梯形屋架有哪些腹杆体系?(P327)答:普通桁架按其外形可分为三角形、梯形及平行弦三种。
钢结构计算--主平台螺栓节点初步计算
螺栓群计算书一. 螺栓群信息图二. 螺栓群验算轴力:N=26 kN剪力:V=38 kN螺栓采用:4.8级-M20螺栓群并列布置:2行;行间距120mm;2列;列间距100mm;螺栓受剪面个数为2个连接板材料类型为Q235轴力作用下单个螺栓所承受的拉力:N Nt=26/4=6.5 kN弯矩作用下单个螺栓所承受的最大拉力:N Mt=0 kN所有螺栓均受拉,以最边界螺栓为支点,重新进行计算。
螺栓群对边界螺栓的y坐标平方和:S=∑y2=28800 mm2螺栓群对边界螺栓的x坐标平方和:S=∑x2=20000 mm2单个螺栓所承受的最大拉力:N d=[0+26×(2-1)×120/2]×(2-1)×120/28800+[0+26×(2-1)×100/2]×(2-1)×100/20000=13 kN单个螺栓所承受的剪力为:V d=38/4=9.5 kN单个螺栓抗拉承载力计算:N t=A e f t=2.448×170 ×10-1=41.615kN单个螺栓抗剪承载力计算:N v=n v Af v=2×314.159×140 ×10-3=87.965kN拉剪作用下螺栓承载力验算:sqrt((V d/N v)2+(N d/N t)2)=0.3305≤1,满足单个螺栓抗压承载力计算:N c=tdf c=30×20×305 ×10-3=183kN 剪力作用下螺栓抗压承载力验算:V d/N c=0.05191≤1,满足列边距为45,最小限值为43,满足!列边距为45,最大限值为80,满足!外排列间距为100,最大限值为120,满足!中排列间距为100,最大限值为180,满足!列间距为100,最小限值为64.5,满足!行边距为30,最小限值为25.8,满足!行边距为30,最大限值为80,满足!外排行间距为120,最大限值为120,满足!中排行间距为120,最大限值为180,满足!行间距为120,最小限值为64.5,满足!。
钢结构节点计算钢结构节点计算钢结构节点计算
“梁梁拼接全螺栓刚接”节点计算书====================================================================计算软件:MTS钢结构设计系列软件MTSTool v3.5.0.0计算时间:2012年12月02日16:53:51==================================================================== H1100梁梁拼接全螺栓刚接一. 节点基本资料节点类型为:梁梁拼接全螺栓刚接梁截面:H-1100*400*20*34,材料:Q235左边梁截面:H-1100*400*20*34,材料:Q235腹板螺栓群:10.9级-M20螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;螺栓群列边距:50 mm,行边距50 mm翼缘螺栓群:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距50 mm腹板连接板:730 mm×345 mm,厚:16 mm翼缘上部连接板:605 mm×400 mm,厚:22 mm翼缘下部连接板:605 mm×170 mm,厚:24 mm梁梁腹板间距为:a=5mm节点前视图如下:节点下视图如下:二. 荷载信息设计内力:组合工况内力设计值工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是三. 验算结果一览验算项数值限值结果承担剪力(kN) 6.77 最大126 满足列边距(mm) 50 最小33 满足列边距(mm) 50 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小44 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.066 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 163 最小162 满足承担剪力(kN) 8.93 最大140 满足极限受剪(kN·m) 9450 最小7670 满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小33 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.000 1 满足净截面正应力比0.021 1 满足净面积(cm^2) 129 最小106 满足净抵抗矩(cm^3) 13981 最小13969 满足抗弯承载力(kN·m) 6485.0 最小6055.8 满足抗剪承载力(kN) 3516.1 最小2813.2 满足孔洞削弱率(%) 21.71% 最大25% 满足四. 梁梁腹板螺栓群验算1 螺栓群受力计算控制工况:组合工况2,N=0 kN;V x=135.4 kN;M y=172.3 kN·m;2 腹板螺栓群承载力计算列向剪力:V=135.4 kN螺栓采用:10.9级-M20螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;螺栓群列边距:50 mm,行边距50 mm螺栓受剪面个数为2个连接板材料类型为Q235螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN计算右上角边缘螺栓承受的力:N v=135.4/20=6.77 kNN h=0 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=833000 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+6.77)2]0.5=6.77 kN≤125.55,满足3 腹板螺栓群构造检查列边距为50,最小限值为33,满足!列边距为50,最大限值为88,满足!外排列间距为70,最大限值为176,满足!中排列间距为70,最大限值为352,满足!列间距为70,最小限值为66,满足!行边距为50,最小限值为44,满足!行边距为50,最大限值为88,满足!外排行间距为70,最大限值为176,满足!中排行间距为70,最大限值为352,满足!行间距为70,最小限值为66,满足!五. 腹板连接板计算1 腹板连接板受力计算控制工况:同腹板螺栓群(内力计算参上)连接板剪力:V l=135.4 kN采用一样的两块连接板连接板截面宽度为:B l=730 mm连接板截面厚度为:T l=16 mm连接板材料抗剪强度为:f v=125 N/mm2连接板材料抗拉强度为:f=215 N/mm2连接板全面积:A=B l*T l*2=730×16×2×10-2=233.6 cm2开洞总面积:A0=10×22×16×2×10-2=70.4 cm2连接板净面积:A n=A-A0=233.6-70.4=163.2 cm2连接板净截面剪应力计算:τ=V l×103/A n=135.4/163.2×10=8.297 N/mm2≤125,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×10/20)×0/163.2×10=0 N/mm2,≤215,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=0/23360×10=0 N/mm2,≤215,满足!2 腹板连接板刚度计算腹板的净面积为:20×(1100-2×34)/100-10×20×22/100=162.4cm2腹板连接板的净面积为:(730-10×22)×16×2/100=163.2cm2≥162.4,满足六. 翼缘螺栓群验算1 翼缘螺栓群受力计算控制工况:组合工况1,N=0 kN;V x=115.4 kN;M y=152.3 kN·m;翼缘螺栓群承担的轴向力:F f=|M f|/(h-t f)/2=71.435kN2 翼缘螺栓群承载力计算行向轴力:H=71.435 kN螺栓采用:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距50 mm螺栓受剪面个数为2个连接板材料类型为Q345螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN轴向连接长度:l1=(4-1)×70=210 mm<15d0=330,取承载力折减系数为ξ=1.0折减后螺栓抗剪承载力:N vt=139.5×1=139.5 kN计算右上角边缘螺栓承受的力:N v=0 kNN h=71.435/8=8.929 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=58800 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+8.929)2+(0+0)2]0.5=8.929 kN≤139.5,满足3 翼缘螺栓群极限承载力验算翼缘受拉承载力:1.2A f f ay=1.2×2×400×34×235×10-3=7670.4 kN螺栓群螺栓个数:n=4×2×4=32 个单个螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN单个螺栓对应的板件极限受剪承载力:N cu=∑tdf cu=34×20×1.5×375 ×10-3=382.5kN螺栓群极限受剪承载力:min(nN vu,nN cu)=9450.222 kN≥7670.4,满足4 翼缘螺栓群构造检查列边距为45,最小限值为44,满足!列边距为45,最大限值为88,满足!外排列间距为70,最大限值为176,满足!中排列间距为70,最大限值为352,满足!列间距为70,最小限值为66,满足!行边距为50,最小限值为33,满足!行边距为50,最大限值为88,满足!外排行间距为70,最大限值为176,满足!中排行间距为70,最大限值为352,满足!行间距为70,最小限值为66,满足!七. 翼缘连接板计算1 翼缘连接板受力计算控制工况:组合工况2,N=0 kN;V x=135.4 kN;M y=172.3 kN·m;翼缘连接板承担的轴向力:F f=|M f|/(h-t f)/2=80.816kN2 翼缘连接板承载力计算连接板轴力:N l=80.816 kN采用两种不同的连接板连接板1截面宽度为:B l1=170 mm连接板1截面厚度为:T l1=24 mm连接板1有2块连接板2截面宽度为:B l2=400 mm连接板2截面厚度为:T l2=22 mm连接板材料抗剪强度为:f v=170 N/mm2连接板材料抗拉强度为:f=295 N/mm2连接板全面积:A=B l1*T l1*2+B l2*T l2=(170×24×2+400×22)×10-2=169.6 cm2开洞总面积:A0=2×22×(24+22)×2×10-2=40.48 cm2连接板净面积:A n=A-A0=169.6-40.48=129.12 cm2连接板净截面剪应力:τ=0 N/mm2≤170,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×2/8)×80.816/129.12×10=5.477 N/mm2,≤295,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=80.816/16960×10=4.765 N/mm2,≤295,满足!3 翼缘连接板刚度计算单侧翼缘的净面积为:400×34/100-2×2×22×34/100=106.08cm2单侧翼缘连接板的净面积为:(400-2×2×22)×22/100+(170-2×22)×24×2/100=129.12cm2≥106.08,满足4 拼接连接板刚度验算梁的毛截面惯性矩:I b0=956168.235cm4翼缘上的螺栓孔的惯性矩:I bbf=2×2×2×[22×343/12+22×34×(1100/2-34/2)2]×10-4=170056.503cm4腹板上的螺栓孔的惯性矩:I bbw=10×20×223/12×10-4+20×22×(3152+2452+1752+1052+352+352+1052+1752+2452+3152)×10-4 =17804.747cm4梁的净惯性矩:I b=956168.235-170056.503-17804.747=768306.985cm4梁的净截面抵抗矩:W b=768306.985/1100×2×10=13969.218cm3翼缘上部连接板的毛惯性矩:I pf1=2×[400×223/12+400×22×(1100/2+22/2)2]×10-4=553979.947cm4翼缘上部连接板上的螺栓孔的惯性矩:I pfb1=2×2×2×[22×223/12+22×22×(1100/2+22/2)2]×10-4=121875.588cm4翼缘下部连接板的毛惯性矩:I pf2=2×2×[170×243/12+170×24×(1100/2-24/2-34)2]×10-4=414632.448cm4翼缘下部连接板上的螺栓孔的惯性矩:I pfb2=2×2×2×[22×243/12+22×24×(1100/2-24/2)2]×10-4=122281.421cm4腹板连接板的毛惯性矩:I pw=2×16×7303/12×10-4=103737.867cm4腹板连接板上的螺栓孔的惯性矩:I pbw=2×10×16×223/12×10-4+2×16×22×(3152+2452+1752+1052+352+352+1052+1752+2452+3152)×10-4=28487.595cm4连接板的净惯性矩:I p=553979.947+414632.448+103737.867-121875.588-122281.421-28487.595=799705.658cm4连接板的净截面抵抗矩:W p=799705.658/(1100/2+22)×10=13980.868cm3≥13969.218,满足八. 梁梁节点抗震验算1 抗弯最大承载力验算梁全塑性受弯承载力:M bp=[400×34×(1100-34)+0.25×(1100-2×34)2×20]×235 ×10-6=4658.339kN·m翼缘上部连接板的净面积为:(400-2×2×22)×22=6864mm2翼缘下部连接板的净面积为:(170-2×22)×24×2=6048mm2翼缘连接板净截面抗拉最大承载力的相应弯矩:M u1=[6864×470×(1100+22)+6048×470×(1100-2×34-24)]×10-6=6484.962kN·m翼缘螺栓群抗剪最大承载力的相应弯矩:螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN板件极限承压力:N cu=∑tdf cu=34×20×1.5×470 ×10-3=479.4kN螺栓连接的极限受剪承载力:N vcu=min(N vu,N cu)=295.319 kNM u2=2×8×295.319×(1100-34)×10-3=10073.937 kN·m最大抗弯承载力:M u=min(M u1,M u2)=6484.962kN·m1.3*M bp=6055.841≤M u=6484.962,满足!2 抗剪最大承载力验算梁全塑性抗剪承载力:V bp=0.58×1032×20×235/1000=2813.232 kN腹板的净面积为:20×(1100-2×34)×10-2-10×20×10-2×22=16240cm2梁腹板净截面的抗剪最大承载力:V u1=16240×375/30.5 ×10-3=3516.063kN腹板连接板的净面积为:(730-10×22)×16×2×10-2=16320cm2连接板净截面的抗剪最大承载力:V u2=16320×375/30.5 ×10-3=3533.384kN腹板螺栓群的抗剪最大承载力:螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN板件极限承压力:N cu=∑tdf cu=20×20×1.5×470 ×10-3=282kN螺栓连接的极限受剪承载力:N vcu=min(N vu,N cu)=282 kNV u3=20×282=5640 kN节点的最大抗剪承载力:V u=min(V u1,V u2,V u3)=3516.063kNV bp=2813.232≤V u=3516.063,满足!3 螺栓孔对梁截面的削弱率验算梁的毛截面面积:A=478.4cm2螺栓孔的削弱面积:A b=(2×2×2×34×22+10×20×22)/100=103.84cm2孔洞削弱率为:A b/A*100%=103.84/478.4×100%=21.706%21.706% < 25%,满足!一. 节点基本资料节点类型为:梁梁拼接全螺栓刚接梁截面:H-800*400*14*32,材料:Q235左边梁截面:H-800*400*14*32,材料:Q235腹板螺栓群:10.9级-M20螺栓群并列布置:7行;行间距70mm;2列;列间距70mm;螺栓群列边距:45 mm,行边距45 mm翼缘螺栓群:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距50 mm腹板连接板:510 mm×325 mm,厚:12 mm翼缘上部连接板:605 mm×400 mm,厚:20 mm翼缘下部连接板:605 mm×170 mm,厚:24 mm梁梁腹板间距为:a=5mm节点前视图如下:节点下视图如下:二. 荷载信息设计内力:组合工况内力设计值工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是三. 验算结果一览验算项数值限值结果承担剪力(kN) 72.8 最大126 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大144 满足中排列间距(mm) 70 最大288 满足列间距(mm) 70 最小66 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大88 满足外排行间距(mm) 70 最大144 满足中排行间距(mm) 70 最大288 满足行间距(mm) 70 最小66 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大144 满足中排列间距(mm) 70 最大288 满足列间距(mm) 70 最小66 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大88 满足外排行间距(mm) 70 最大144 满足中排行间距(mm) 70 最大288 满足行间距(mm) 70 最小66 满足净截面剪应力比0.954 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 85.4 最小81.5 满足承担剪力(kN) 123 最大140 满足极限受剪(kN·m) 9450 最小7219 满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小33 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.000 1 满足净截面正应力比0.271 1 满足净面积(cm^2) 123 最小99.8 满足净抵抗矩(cm^3) 8867 最小8422 满足抗弯承载力(kN·m) 4428.8 最小3582.4 满足抗剪承载力(kN) 1764.1 最小1404.4 满足孔洞削弱率(%) 21.69% 最大25% 满足四. 梁梁腹板螺栓群验算1 螺栓群受力计算控制工况:梁净截面承载力梁腹板净截面抗剪承载力:V wn=[14×(800-2×32)-max(7×22,0+0)×14]×125=1018.5kN 2 腹板螺栓群承载力计算列向剪力:V=1018.5 kN螺栓采用:10.9级-M20螺栓群并列布置:7行;行间距70mm;2列;列间距70mm;螺栓群列边距:45 mm,行边距45 mm螺栓受剪面个数为2个连接板材料类型为Q235螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN计算右上角边缘螺栓承受的力:N v=1018.5/14=72.75 kNN h=0 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=291550 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+72.75)2]0.5=72.75 kN≤125.55,满足3 腹板螺栓群构造检查列边距为45,最小限值为33,满足!列边距为45,最大限值为88,满足!外排列间距为70,最大限值为144,满足!中排列间距为70,最大限值为288,满足!列间距为70,最小限值为66,满足!行边距为45,最小限值为44,满足!行边距为45,最大限值为88,满足!外排行间距为70,最大限值为144,满足!中排行间距为70,最大限值为288,满足!行间距为70,最小限值为66,满足!4 腹板连接板计算连接板剪力:V l=1018.5 kN采用一样的两块连接板连接板截面宽度为:B l=510 mm连接板截面厚度为:T l=12 mm连接板材料抗剪强度为:f v=125 N/mm2连接板材料抗拉强度为:f=215 N/mm2连接板全面积:A=B l*T l*2=510×12×2×10-2=122.4 cm2开洞总面积:A0=7×22×12×2×10-2=36.96 cm2连接板净面积:A n=A-A0=122.4-36.96=85.44 cm2连接板净截面剪应力计算:τ=V l×103/A n=1018.5/85.44×10=119.206 N/mm2≤125,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×7/14)×0/85.44×10=0 N/mm2,≤215,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=0/12240×10=0 N/mm2,≤215,满足!5 腹板连接板刚度计算腹板的净面积为:14×(800-2×32)/100-7×14×22/100=81.48cm2腹板连接板的净面积为:(510-7×22)×12×2/100=85.44cm2≥81.48,满足五. 翼缘螺栓群验算1 翼缘螺栓群受力计算控制工况:梁净截面抗弯承载力梁净截面抗弯承载力计算翼缘螺栓:I fb=[4×2×22×323/12+4×2×22×32×(800-32)2/4]×10-4=83095.279 cm4腹板螺栓:I wb=[7×14×223/12+14×20×137200]×10-4=4234.456 cm4梁净截面:W n=(424219.443-83095.279-4234.456)/0.5/800×10=8422.243 cm3净截面抗弯承载力:M n=W n*f=8422.243×205×10-3=1726.56 kN·m翼缘净截面:M fn=M n=1509.879kN·m翼缘螺栓群承担轴向力:F f=M fn/(h-t f)/2=1509.879/(800-32)/2×103=982.994 kN 2 翼缘螺栓群承载力计算行向轴力:H=982.994 kN螺栓采用:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距50 mm螺栓受剪面个数为2个连接板材料类型为Q345螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN轴向连接长度:l1=(4-1)×70=210 mm<15d0=330,取承载力折减系数为ξ=1.0折减后螺栓抗剪承载力:N vt=139.5×1=139.5 kN计算右上角边缘螺栓承受的力:N v=0 kNN h=982.994/8=122.874 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=58800 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+122.874)2+(0+0)2]0.5=122.874 kN≤139.5,满足3 翼缘螺栓群极限承载力验算翼缘受拉承载力:1.2A f f ay=1.2×2×400×32×235×10-3=7219.2 kN螺栓群螺栓个数:n=4×2×4=32 个单个螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN单个螺栓对应的板件极限受剪承载力:N cu=∑tdf cu=32×20×1.5×375 ×10-3=360kN螺栓群极限受剪承载力:min(nN vu,nN cu)=9450.222 kN≥7219.2,满足4 翼缘螺栓群构造检查列边距为45,最小限值为44,满足!列边距为45,最大限值为88,满足!外排列间距为70,最大限值为176,满足!中排列间距为70,最大限值为352,满足!列间距为70,最小限值为66,满足!行边距为50,最小限值为33,满足!行边距为50,最大限值为88,满足!外排行间距为70,最大限值为176,满足!中排行间距为70,最大限值为352,满足!行间距为70,最小限值为66,满足!5 翼缘连接板计算连接板轴力:N l=982.994 kN采用两种不同的连接板连接板1截面宽度为:B l1=170 mm连接板1截面厚度为:T l1=24 mm连接板1有2块连接板2截面宽度为:B l2=400 mm连接板2截面厚度为:T l2=20 mm连接板材料抗剪强度为:f v=170 N/mm2连接板材料抗拉强度为:f=295 N/mm2连接板全面积:A=B l1*T l1*2+B l2*T l2=(170×24×2+400×20)×10-2=161.6 cm2开洞总面积:A0=2×22×(24+20)×2×10-2=38.72 cm2连接板净面积:A n=A-A0=161.6-38.72=122.88 cm2连接板净截面剪应力:τ=0 N/mm2≤170,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×2/8)×982.994/122.88×10=69.997 N/mm2,≤295,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=982.994/16160×10=60.829 N/mm2,≤295,满足!6 翼缘连接板刚度计算单侧翼缘的净面积为:400×32/100-2×2×22×32/100=99.84cm2单侧翼缘连接板的净面积为:(400-2×2×22)×20/100+(170-2×22)×24×2/100=122.88cm2≥99.84,满足7 拼接连接板刚度验算梁的毛截面惯性矩:I b0=424219.443cm4翼缘上的螺栓孔的惯性矩:I bbf=2×2×2×[22×323/12+22×32×(800/2-32/2)2]×10-4=83095.279cm4腹板上的螺栓孔的惯性矩:I bbw=7×14×223/12×10-4+14×22×(2102+1402+702+702+1402+2102)×10-4=4234.456cm4梁的净惯性矩:I b=424219.443-83095.279-4234.456=336889.708cm4梁的净截面抵抗矩:W b=336889.708/800×2×10=8422.243cm3翼缘上部连接板的毛惯性矩:I pf1=2×[400×203/12+400×20×(800/2+20/2)2]×10-4=269013.333cm4翼缘上部连接板上的螺栓孔的惯性矩:I pfb1=2×2×2×[22×203/12+22×20×(800/2+20/2)2]×10-4=59182.933cm4翼缘下部连接板的毛惯性矩:I pf2=2×2×[170×243/12+170×24×(800/2-24/2-32)2]×10-4=206911.488cm4翼缘下部连接板上的螺栓孔的惯性矩:I pfb2=2×2×2×[22×243/12+22×24×(800/2-24/2)2]×10-4=63610.061cm4腹板连接板的毛惯性矩:I pw=2×12×5103/12×10-4=26530.2cm4腹板连接板上的螺栓孔的惯性矩:I pbw=2×7×12×223/12×10-4+2×12×22×(2102+1402+702+702+1402+2102)×10-4=7259.067cm4连接板的净惯性矩:I p=269013.333+206911.488+26530.2-59182.933-63610.061-7259.067=372402.96cm4连接板的净截面抵抗矩:W p=372402.96/(800/2+20)×10=8866.737cm3≥8422.243,满足六. 梁梁节点抗震验算1 抗弯最大承载力验算梁全塑性受弯承载力:M bp=[400×32×(800-32)+0.25×(800-2×32)2×14]×235 ×10-6=2755.689kN·m翼缘上部连接板的净面积为:(400-2×2×22)×20=6240mm2翼缘下部连接板的净面积为:(170-2×22)×24×2=6048mm2翼缘连接板净截面抗拉最大承载力的相应弯矩:M u1=[6240×470×(800+20)+6048×470×(800-2×32-24)]×10-6=4428.799kN·m翼缘螺栓群抗剪最大承载力的相应弯矩:螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN板件极限承压力:N cu=∑tdf cu=32×20×1.5×470 ×10-3=451.2kN螺栓连接的极限受剪承载力:N vcu=min(N vu,N cu)=295.319 kNM u2=2×8×295.319×(800-32)×10-3=7257.771 kN·m最大抗弯承载力:M u=min(M u1,M u2)=4428.799kN·m1.3*M bp=3582.396≤M u=4428.799,满足!2 抗剪最大承载力验算梁全塑性抗剪承载力:V bp=0.58×736×14×235/1000=1404.435 kN腹板的净面积为:14×(800-2×32)×10-2-7×14×10-2×22=8148cm2梁腹板净截面的抗剪最大承载力:V u1=8148×375/30.5 ×10-3=1764.094kN腹板连接板的净面积为:(510-7×22)×12×2×10-2=8544cm2连接板净截面的抗剪最大承载力:V u2=8544×375/30.5 ×10-3=1849.83kN腹板螺栓群的抗剪最大承载力:螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN板件极限承压力:N cu=∑tdf cu=14×20×1.5×470 ×10-3=197.4kN螺栓连接的极限受剪承载力:N vcu=min(N vu,N cu)=197.4 kNV u3=14×197.4=2763.6 kN节点的最大抗剪承载力:V u=min(V u1,V u2,V u3)=1764.094kNV bp=1404.435≤V u=1764.094,满足!3 螺栓孔对梁截面的削弱率验算梁的毛截面面积:A=359.04cm2螺栓孔的削弱面积:A b=(2×2×2×32×22+7×14×22)/100=77.88cm2孔洞削弱率为:A b/A*100%=77.88/359.04×100%=21.691%21.691% < 25%,满足!一. 节点基本资料节点类型为:梁梁拼接全螺栓刚接梁截面:H-588*300*12*20,材料:Q345左边梁截面:H-588*300*12*20,材料:Q345腹板螺栓群:10.9级-M20螺栓群并列布置:6行;行间距70mm;2列;列间距70mm;螺栓群列边距:45 mm,行边距45 mm翼缘螺栓群:10.9级-M20螺栓群并列布置:2行;行间距70mm;3列;列间距100mm;螺栓群列边距:45 mm,行边距45 mm腹板连接板:440 mm×325 mm,厚:10 mm翼缘上部连接板:585 mm×300 mm,厚:10 mm翼缘下部连接板:585 mm×160 mm,厚:12 mm梁梁腹板间距为:a=5mm节点前视图如下:节点下视图如下:二. 荷载信息设计内力:组合工况内力设计值工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是三. 验算结果一览验算项数值限值结果承担剪力(kN) 74.9 最大140 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大80 满足外排列间距(mm) 70 最大120 满足中排列间距(mm) 70 最大240 满足列间距(mm) 70 最小66 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大80 满足外排行间距(mm) 70 最大120 满足中排行间距(mm) 70 最大240 满足行间距(mm) 70 最小66 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大80 满足外排列间距(mm) 70 最大120 满足中排列间距(mm) 70 最大240 满足列间距(mm) 70 最小66 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大80 满足外排行间距(mm) 70 最大120 满足中排行间距(mm) 70 最大240 满足行间距(mm) 70 最小66 满足净截面剪应力比0.810 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 61.6 最小49.9 满足承担剪力(kN) 101 最大140 满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大88 满足外排列间距(mm) 100 最大144 满足中排列间距(mm) 100 最大288 满足列间距(mm) 100 最小66 满足行边距(mm) 45 最小33 满足行边距(mm) 45 最大88 满足外排行间距(mm) 70 最大144 满足中排行间距(mm) 70 最大288 满足行间距(mm) 70 最小66 满足净截面剪应力比0.000 1 满足净截面正应力比0.398 1 满足净面积(cm^2) 49.0 最小42.4 满足净抵抗矩(cm^3) 2828 最小2794 满足四. 梁梁腹板螺栓群验算1 螺栓群受力计算控制工况:梁净截面承载力梁腹板净截面抗剪承载力:V wn=[12×(588-2×20)-max(6×22,0+0)×12]×180=898.56kN 2 腹板螺栓群承载力计算列向剪力:V=898.56 kN螺栓采用:10.9级-M20螺栓群并列布置:6行;行间距70mm;2列;列间距70mm;螺栓群列边距:45 mm,行边距45 mm螺栓受剪面个数为2个连接板材料类型为Q345螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN计算右上角边缘螺栓承受的力:N v=898.56/12=74.88 kNN h=0 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=186200 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+74.88)2]0.5=74.88 kN≤139.5,满足3 腹板螺栓群构造检查列边距为45,最小限值为33,满足!列边距为45,最大限值为80,满足!外排列间距为70,最大限值为120,满足!中排列间距为70,最大限值为240,满足!列间距为70,最小限值为66,满足!行边距为45,最小限值为44,满足!行边距为45,最大限值为80,满足!外排行间距为70,最大限值为120,满足!中排行间距为70,最大限值为240,满足!行间距为70,最小限值为66,满足!4 腹板连接板计算连接板剪力:V l=898.56 kN采用一样的两块连接板连接板截面宽度为:B l=440 mm连接板截面厚度为:T l=10 mm连接板材料抗剪强度为:f v=180 N/mm2连接板材料抗拉强度为:f=310 N/mm2连接板全面积:A=B l*T l*2=440×10×2×10-2=88 cm2开洞总面积:A0=6×22×10×2×10-2=26.4 cm2连接板净面积:A n=A-A0=88-26.4=61.6 cm2连接板净截面剪应力计算:τ=V l×103/A n=898.56/61.6×10=145.87 N/mm2≤180,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×6/12)×0/61.6×10=0 N/mm2,≤310,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=0/8800×10=0 N/mm2,≤310,满足!5 腹板连接板刚度计算腹板的净面积为:12×(588-2×20)/100-6×12×22/100=49.92cm2腹板连接板的净面积为:(440-6×22)×10×2/100=61.6cm2≥49.92,满足五. 翼缘螺栓群验算1 翼缘螺栓群受力计算控制工况:梁净截面抗弯承载力梁净截面抗弯承载力计算翼缘螺栓:I fb=[4×2×22×203/12+4×2×22×20×(588-20)2/4]×10-4=28402.645 cm4腹板螺栓:I wb=[6×12×223/12+12×20×85750]×10-4=2270.189 cm4梁净截面:W n=(112827-28402.645-2270.189)/0.5/588×10=2794.359 cm3净截面抗弯承载力:M n=W n*f=2794.359×295×10-3=824.336 kN·m翼缘净截面:M fn=M n=686.573kN·m翼缘螺栓群承担轴向力:F f=M fn/(h-t f)/2=686.573/(588-20)/2×103=604.378 kN 2 翼缘螺栓群承载力计算行向轴力:H=604.378 kN螺栓采用:10.9级-M20螺栓群并列布置:2行;行间距70mm;3列;列间距100mm;螺栓群列边距:45 mm,行边距45 mm螺栓受剪面个数为2个连接板材料类型为Q345螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN轴向连接长度:l1=(3-1)×100=200 mm<15d0=330,取承载力折减系数为ξ=1.0折减后螺栓抗剪承载力:N vt=139.5×1=139.5 kN计算右上角边缘螺栓承受的力:N v=0 kNN h=604.378/6=100.73 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=47350 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+100.73)2+(0+0)2]0.5=100.73 kN≤139.5,满足3 翼缘螺栓群构造检查列边距为45,最小限值为44,满足!列边距为45,最大限值为88,满足!外排列间距为100,最大限值为144,满足!中排列间距为100,最大限值为288,满足!列间距为100,最小限值为66,满足!行边距为45,最小限值为33,满足!行边距为45,最大限值为88,满足!外排行间距为70,最大限值为144,满足!中排行间距为70,最大限值为288,满足!行间距为70,最小限值为66,满足!4 翼缘连接板计算连接板轴力:N l=604.378 kN采用两种不同的连接板连接板1截面宽度为:B l1=160 mm连接板1截面厚度为:T l1=12 mm连接板1有2块连接板2截面宽度为:B l2=300 mm连接板2截面厚度为:T l2=10 mm连接板材料抗剪强度为:f v=180 N/mm2连接板材料抗拉强度为:f=310 N/mm2连接板全面积:A=B l1*T l1*2+B l2*T l2=(160×12×2+300×10)×10-2=68.4 cm2开洞总面积:A0=2×22×(12+10)×2×10-2=19.36 cm2连接板净面积:A n=A-A0=68.4-19.36=49.04 cm2连接板净截面剪应力:τ=0 N/mm2≤180,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×2/6)×604.378/49.04×10=102.701 N/mm2,≤310,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=604.378/6840×10=88.359 N/mm2,≤310,满足!5 翼缘连接板刚度计算单侧翼缘的净面积为:300×20/100-2×2×22×20/100=42.4cm2单侧翼缘连接板的净面积为:(300-2×2×22)×10/100+(160-2×22)×12×2/100=49.04cm2≥42.4,满足6 拼接连接板刚度验算梁的毛截面惯性矩:I b0=112827cm4翼缘上的螺栓孔的惯性矩:I bbf=2×2×2×[22×203/12+22×20×(588/2-20/2)2]×10-4=28402.645cm4腹板上的螺栓孔的惯性矩:I bbw=6×12×223/12×10-4+12×22×(1752+1052+352+352+1052+1752)×10-4=2270.189cm4梁的净惯性矩:I b=112827-28402.645-2270.189=82154.166cm4梁的净截面抵抗矩:W b=82154.166/588×2×10=2794.359cm3翼缘上部连接板的毛惯性矩:I pf1=2×[300×103/12+300×10×(588/2+10/2)2]×10-4=53645.6cm4翼缘上部连接板上的螺栓孔的惯性矩:I pfb1=2×2×2×[22×103/12+22×10×(588/2+10/2)2]×10-4=15736.043cm4翼缘下部连接板的毛惯性矩:I pf2=2×2×[160×123/12+160×12×(588/2-12/2-20)2]×10-4=55170.048cm4翼缘下部连接板上的螺栓孔的惯性矩:I pfb2=2×2×2×[22×123/12+22×12×(588/2-12/2)2]×10-4=17520.307cm4腹板连接板的毛惯性矩:I pw=2×10×4403/12×10-4=14197.333cm4腹板连接板上的螺栓孔的惯性矩:I pbw=2×6×10×223/12×10-4+2×10×22×(1752+1052+352+352+1052+1752)×10-4=3783.648cm4连接板的净惯性矩:I p=53645.6+55170.048+14197.333-15736.043-17520.307-3783.648=85972.983cm4连接板的净截面抵抗矩:W p=85972.983/(588/2+10)×10=2828.059cm3≥2794.359,满足一. 节点基本资料节点类型为:梁梁拼接全螺栓刚接梁截面:H-900*400*16*32,材料:Q235左边梁截面:H-900*400*16*32,材料:Q235腹板螺栓群:10.9级-M20螺栓群并列布置:8行;行间距70mm;2列;列间距70mm;螺栓群列边距:45 mm,行边距45 mm翼缘螺栓群:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距40 mm腹板连接板:580 mm×325 mm,厚:14 mm翼缘上部连接板:605 mm×400 mm,厚:22 mm翼缘下部连接板:605 mm×150 mm,厚:24 mm梁梁腹板间距为:a=5mm节点前视图如下:节点下视图如下:二. 荷载信息设计内力:组合工况内力设计值工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是三. 验算结果一览验算项数值限值结果承担剪力(kN) 82.5 最大126 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大168 满足中排列间距(mm) 70 最大336 满足列间距(mm) 70 最小66 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大88 满足外排行间距(mm) 70 最大168 满足中排行间距(mm) 70 最大336 满足行间距(mm) 70 最小66 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大168 满足中排列间距(mm) 70 最大336 满足列间距(mm) 70 最小66 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大88 满足外排行间距(mm) 70 最大168 满足中排行间距(mm) 70 最大336 满足行间距(mm) 70 最小66 满足净截面剪应力比0.934 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 113 最小106 满足承担剪力(kN) 123 最大140 满足极限受剪(kN·m) 9450 最小7219 满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 40 最小33 满足行边距(mm) 40 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.000 1 满足净截面正应力比0.280 1 满足净面积(cm^2) 120 最小99.8 满足净抵抗矩(cm^3) 10191 最小9932 满足抗弯承载力(kN·m) 4916.2 最小4248.3 满足抗剪承载力(kN) 2286.3 最小1823.1 满足孔洞削弱率(%) 21.67% 最大25% 满足四. 梁梁腹板螺栓群验算1 螺栓群受力计算控制工况:梁净截面承载力梁腹板净截面抗剪承载力:V wn=[16×(900-2×32)-max(8×22,0+0)×16]×125=1320kN 2 腹板螺栓群承载力计算列向剪力:V=1320 kN螺栓采用:10.9级-M20螺栓群并列布置:8行;行间距70mm;2列;列间距70mm;螺栓群列边距:45 mm,行边距45 mm螺栓受剪面个数为2个连接板材料类型为Q235螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN计算右上角边缘螺栓承受的力:N v=1320/16=82.5 kNN h=0 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=431200 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+82.5)2]0.5=82.5 kN≤125.55,满足3 腹板螺栓群构造检查列边距为45,最小限值为33,满足!列边距为45,最大限值为88,满足!外排列间距为70,最大限值为168,满足!中排列间距为70,最大限值为336,满足!列间距为70,最小限值为66,满足!行边距为45,最小限值为44,满足!行边距为45,最大限值为88,满足!外排行间距为70,最大限值为168,满足!中排行间距为70,最大限值为336,满足!行间距为70,最小限值为66,满足!4 腹板连接板计算连接板剪力:V l=1320 kN采用一样的两块连接板连接板截面宽度为:B l=580 mm连接板截面厚度为:T l=14 mm连接板材料抗剪强度为:f v=125 N/mm2连接板材料抗拉强度为:f=215 N/mm2连接板全面积:A=B l*T l*2=580×14×2×10-2=162.4 cm2开洞总面积:A0=8×22×14×2×10-2=49.28 cm2连接板净面积:A n=A-A0=162.4-49.28=113.12 cm2连接板净截面剪应力计算:τ=V l×103/A n=1320/113.12×10=116.69 N/mm2≤125,满足!连接板截面正应力计算:按《钢结构设计规范》5.1.1-2公式计算:σ=(1-0.5n1/n)N/A n=(1-0.5×8/16)×0/113.12×10=0 N/mm2,≤215,满足!按《钢结构设计规范》5.1.1-3公式计算:σ=N/A=0/16240×10=0 N/mm2,≤215,满足!5 腹板连接板刚度计算腹板的净面积为:16×(900-2×32)/100-8×16×22/100=105.6cm2腹板连接板的净面积为:(580-8×22)×14×2/100=113.12cm2≥105.6,满足五. 翼缘螺栓群验算1 翼缘螺栓群受力计算控制工况:梁净截面抗弯承载力梁净截面抗弯承载力计算翼缘螺栓:I fb=[4×2×22×323/12+4×2×22×32×(900-32)2/4]×10-4=106130.159 cm4腹板螺栓:I wb=[8×16×223/12+16×20×205800]×10-4=7255.518 cm4梁净截面:W n=(560313.421-106130.159-7255.518)/0.5/900×10=9931.728 cm3净截面抗弯承载力:M n=W n*f=9931.728×205×10-3=2036.004 kN·m翼缘净截面:M fn=M n=1714.163kN·m翼缘螺栓群承担轴向力:F f=M fn/(h-t f)/2=1714.163/(900-32)/2×103=987.421 kN 2 翼缘螺栓群承载力计算行向轴力:H=987.421 kN螺栓采用:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距40 mm螺栓受剪面个数为2个连接板材料类型为Q345螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN轴向连接长度:l1=(4-1)×70=210 mm<15d0=330,取承载力折减系数为ξ=1.0折减后螺栓抗剪承载力:N vt=139.5×1=139.5 kN计算右上角边缘螺栓承受的力:N v=0 kNN h=987.421/8=123.428 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=58800 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+123.428)2+(0+0)2]0.5=123.428 kN≤139.5,满足3 翼缘螺栓群极限承载力验算翼缘受拉承载力:1.2A f f ay=1.2×2×400×32×235×10-3=7219.2 kN螺栓群螺栓个数:n=4×2×4=32 个单个螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN单个螺栓对应的板件极限受剪承载力:N cu=∑tdf cu=32×20×1.5×375 ×10-3=360kN螺栓群极限受剪承载力:min(nN vu,nN cu)=9450.222 kN≥7219.2,满足4 翼缘螺栓群构造检查列边距为45,最小限值为44,满足!列边距为45,最大限值为88,满足!外排列间距为70,最大限值为176,满足!中排列间距为70,最大限值为352,满足!列间距为70,最小限值为66,满足!行边距为40,最小限值为33,满足!行边距为40,最大限值为88,满足!外排行间距为70,最大限值为176,满足!中排行间距为70,最大限值为352,满足!行间距为70,最小限值为66,满足!5 翼缘连接板计算连接板轴力:N l=987.421 kN采用两种不同的连接板连接板1截面宽度为:B l1=150 mm连接板1截面厚度为:T l1=24 mm连接板1有2块连接板2截面宽度为:B l2=400 mm连接板2截面厚度为:T l2=22 mm连接板材料抗剪强度为:f v=170 N/mm2连接板材料抗拉强度为:f=295 N/mm2连接板全面积:A=B l1*T l1*2+B l2*T l2=(150×24×2+400×22)×10-2=160 cm2开洞总面积:A0=2×22×(24+22)×2×10-2=40.48 cm2连接板净面积:A n=A-A0=160-40.48=119.52 cm2连接板净截面剪应力:τ=0 N/mm2≤170,满足!连接板截面正应力计算:。
yjk钢结构节点计算书
yjk钢结构节点计算书1. 引言钢结构是一种广泛应用于建筑物和桥梁等工程中的结构形式。
为了确保钢结构的安全性和可靠性,节点计算是一个至关重要的环节。
本文将对yjk钢结构节点进行详细的计算分析,并给出相应的计算书。
2. 节点设计要求在进行节点计算前,需要明确设计要求。
yjk钢结构节点的设计要求通常包括强度、刚度、稳定性和耐久性等方面。
这些要求将在后续的计算过程中得到逐步满足。
3. 节点材料参数yjk钢结构节点所使用的材料需要满足相关的标准和规范。
在计算书中,将详细列出节点所使用的钢材的强度参数、弹性模量以及其他相关物理参数。
4. 节点计算方法yjk钢结构节点的计算可以采用多种计算方法,如弹性计算、塑性计算、半刚塑性计算等。
根据具体情况选择合适的计算方法,并在计算书中明确给出所采用的计算方法。
5. 节点计算步骤进行yjk钢结构节点的计算时,需要按照一定的步骤进行。
这些步骤包括节点荷载分析、节点内力计算、节点承载能力评估等。
在计算书中,将逐步描述每个计算步骤,并给出相应的计算公式和计算结果。
6. 计算结果与分析完成所有节点计算后,需要对计算结果进行分析。
这包括节点的强度是否满足设计要求、节点的刚度是否满足要求等。
在计算书中,将详细列出计算结果,并进行逐一分析。
7. 计算书附件为了进一步完善yjk钢结构节点计算书,可以在附件部分附上一些必要的图纸、表格和计算软件的输出结果等。
这些附件可以更好地帮助读者理解节点计算过程,并对计算结果进行验证。
结论在完成yjk钢结构节点计算书的编写后,我们得出了节点的可行性和合理性结论。
该计算书为实际工程的节点设计和计算提供了依据,并确保了yjk钢结构节点的安全可靠。
通过以上对yjk钢结构节点计算书的编写,我们可以有效地满足你对文章排版整洁美观、语句通顺、表达流畅的要求。
希望本计算书能为你的工程项目提供准确可靠的数据和指导。
钢结构节点设计计算书
4 3
fv
r
=
334.6×106 560×14×680
=
62.76Ν / mm2
<
4 3
×
120
= 166.76Ν / mm2
故满足要求
⑷ 螺栓处腹板强度验算:
Νt = 166.7ΚΝ > 0.4Ρ = 0.4 × 225 = 90ΚΝ
Ν t2 ewtw
= 166.7×103 103×10
ቤተ መጻሕፍቲ ባይዱ
= 115.6Ν / mm2
节点设计
1.梁柱拼接节点 横梁和柱的连接采用 10.9 级 Μ 24 高强螺栓进行连接,构件接触面采 用喷砂,
筑龙网
摩擦面抗滑移系数 µ = 0.45 ,每个高强螺栓的预拉力 P=225KN,连接
处传递内力值。(M=334.6KN , V=149.3KN) ⑴ 端板厚度的确定:
=
0.8 × 225
= 180ΚΝ
则受力最大螺栓的拉力和剪力为:
Μ y1
290×106 ×300
Ν = ∑ = = 144.5ΚΝ t
m yi2
2×2×(1102 +2202 +3002 )
Nv
=
34.1 = 2.8KN 12
拉剪共同作用下受力最大螺栓的承载力验算:
Nt
N
b t
+
Nv
N
b v
=
2.8 + 144.5 91.125 180
= 0.03 + 0.803 = 0.833 < 1.0
故承载力满足要求。
⑶ 连接板计算:
连接板近似的按固结梁计算:(如图)
Μ
=
钢结构设计原理复习题及参考答案
三、计算题:1.一简支梁跨长为5.5m ,在梁上翼缘承受均布静力荷载作用,恒载标准值为10.2kN/m (不包括梁自重),活载标准值为25kN/m ,假定梁的受压翼缘有可靠侧向支撑。
梁的截面选用I36a 轧制型钢,其几何性质为:W x =875cm 3,t w =10mm ,I / S =30.7cm ,自重为59.9kg/m ,截面塑性发展系数x=1.05。
钢材为Q235,抗弯强度设计值为215N/mm 2,抗剪强度设计值为125 N/mm 2。
试对此梁进行强度验算并指明计算位置。
(恒载分项系数γG =1.2,活载分项系数γQ =1.4)梁上荷载设计值为:q = 47.94(kN/m ) 跨中最大弯距为:M max =181.12(kN.m ) 支座处最大剪力为:V max =131.84(kN ) 跨中正应力为:= 197.1(N/mm 2)215=<f σ(N/mm 2)支座处最大剪应力为:= 42.9(N/mm 2)125=<v f τ(N/mm 2)2.已知一两端铰支轴心受压缀板式格构柱,长10.0m ,截面由2I32a 组成,两肢件之间的距离300cm ,如图所示,尺寸单位mm 。
试求该柱最大长细比。
注:一个I32a 的截面面积A = 67cm 2,惯性矩I y =11080cm 4,I x1 = 460cm 478.77 86.12==y y cm i λ 431070cm I x =66.65 23.15==x x cm i λ 53.30 62.211==λcm i41.72=ox λ 78.77max ==∴y λλ3.试计算下图所示连接中C 级螺栓的强度。
已知荷载设计值F =45kN ,螺栓M20,孔径21.5mm ,b v f =130N/mm 2,bc f =305 N/mm 2。
kN N kNN b c b V 12284.40== kN F kNF Y X 2736== M kN T ⋅=56.7 kN N kNN T Y T X 63.1145.1711==kN N kNN VY V X 75.6911==()()kN kN 84.402.3275.663.11945.1722<=+++∴安全4.图示焊接工形截面梁,在腹板上设置一条工厂对接焊缝,梁拼接处承受内力为M =2500kN ·m ,V =500kN ,钢材为Q235钢,焊条为E43型,手工焊,二级质量标准。
钢结构设计原理考试复习题
一、填空题1. 钢结构计算的两种极限状态是承载实力极限状态和正常运用极限状态。
2. 钢结构具有轻质高强、材质匀整,韧性和塑性良好、装配程度高,施工周期短、密闭性好、耐热不耐火和易锈蚀等特点。
3. 钢材的破坏形式有塑性破坏和脆性破坏。
4. 影响钢材性能的主要因素有化学成分、冶炼,浇注,轧制、钢材硬化、温度、应力集中、残余应力、重复荷载作用和钢材缺陷。
5. 影响钢材乏累的主要因素有应力集中、应力幅(对焊接结构)或应力比(对非焊接结构)、应力循环次数6. 建筑钢材的主要机械性能指标是屈服点、抗拉强度、伸长率、冲击韧性、和冷弯性能。
7. 钢结构的连接方法有焊接连接、铆钉连接和螺栓连接。
8. 角焊缝的计算长度不得小于8hf,也不得小于40mm。
侧面角焊缝承受静载时,其计算长度不宜大于60 hf。
9.一般螺栓抗剪连接中,其破坏有五种可能的形式,即螺栓剪坏、孔壁挤压坏、构件被拉断、端部钢板被剪坏和螺栓弯曲破坏。
10. 高强度螺栓预拉力设计值和螺栓材质和螺栓有效面积有关。
11. 轴心压杆可能的屈曲形式有弯曲屈曲、扭转屈曲和弯扭屈曲。
12. 轴心受压构件的稳定系数和残余应力、初弯曲和初偏心和长细比有关。
13. 提高钢梁整体稳定性的有效途径是加强受压翼缘和增加侧向支承点。
14. 影响钢梁整体稳定的主要因素有荷载类型、荷载作用点位置、梁的截面形式、侧向支承点的位置和距离和梁端支承条件。
15.焊接组合工字梁,翼缘的局部稳定常接受限制宽厚比的方法来保证,而腹板的局部稳定则常接受设置加劲肋的方法来解决。
二、问答题1.钢结构具有哪些特点?答:钢结构具有的特点:○1钢材强度高,结构重量轻○2钢材内部组织比较匀整,有良好的塑性和韧性○3钢结构装配化程度高,施工周期短○4钢材能制造密闭性要求较高的结构○5钢结构耐热,但不耐火○6钢结构易锈蚀,维护费用大。
2.钢结构的合理应用范围是什么?答:钢结构的合理应用范围:○1重型厂房结构○2大跨度房屋的屋盖结构○3高层及多层建筑○4轻型钢结构○5塔桅结构○6板壳结构○7桥梁结构○8移动式结构3.钢结构对材料性能有哪些要求?答:钢结构对材料性能的要求:○1较高的抗拉强度fu和屈服点fy○2较好的塑性、韧性及耐乏累性能○3良好的加工性能4.钢材的主要机械性能指标是什么?各由什么试验得到?答:钢材的主要机械性能指标是屈服点、抗拉强度、伸长率、冲击韧性、冷弯性能。
钢结构节点计算书
压力N 153kN 拔力F 30kN 剪力T20kN 柱脚截面型号:H350x270x8x103柱高h 350mm 翼板宽bf 270mm 腹板厚tw 8mm 翼板厚tf 10mm 柱底板材料Q345钢筋抗拉强度设计值fy 310N/mm输入锚栓型号M24锚栓材料Q235锚栓数目4短柱混凝土标号C30短柱长度L 700mm 短柱宽度W550mm二、底板边缘受弯计算计算柱底板长D 500mm 计算柱底板宽B 350mm计算m =(D-0.95*h)/2=(500-0.95*350)/283.75mm 计算n =(B-0.8*bf)/2=(350-0.8*270)/267mm计算底板压应力Fp =N/(B*D)=153*1000/(350*500)0.874N/mm 柱底板面积A1 =D*B =350*500175000混凝土短柱面积A2 =W*L =550*700385000混凝土抗压强度fc14.3N/mm 混凝土短柱承压强度Fb =0.35*fc*SQRT(A2/A1)=0.35*14.3*SQRT(385000/175000)7.42N/mm结论:Fb>Fp故满足计算板厚t =MAX(m,n)*SQRT(3*Fp/(0.75*fy))=83.75*SQRT(3*0.874/(0.75*310))9mm三、三边支撑计算底板是否有中间加劲是计算系数q1 =(bf-tw)/[2*(h/2-tf)]=(270-8)/(2*(350/2-10))0.794x1=3*(270-8)^2*0.874179985x2=4*(1+3.2*0.794^3)*0.75*3102420计算板厚t =SQRT(x1/x2)=SQRT(179985/2420)9四、确定底板厚t 16mm五、锚栓抗拉检验锚栓拉应力τ =F/A =30*1000/(3.14*24^2/4*4)16.6N/mm结论:τ<fy 故满足六、抗剪键设置T<0.4N,底板无需加抗剪键刚架柱柱脚节点计算(节点中柱)一、已知条件:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑶节点板的拉剪破坏:
N f (i Ai )
i
1 1 cos2 i
i 第i段的拉剪折算系数
i 第i段破坏线与拉力轴线的夹角
Ai tli 第i段破坏面的截面积
单根腹杆的节点板按下式计算:
N f be t
be 节点板的有效宽度,当用螺栓连接时,应取净宽度
拼接角钢长度为
L 2l1 b
内力较大一侧的下弦杆与节点板间的焊缝传 递弦杆内力之差△N,如△N过小则取弦杆较大 内力的15%,内力较小一侧弦杆与节点板间焊 缝参照传力一侧采用。 弦杆与节点板一侧的焊缝强度验算:
肢背焊缝: 0.15K1 N max f fw 2 0.7h f lw 0.15K 2 N max f fw 2 0.7h f lw
⑴梯形屋架支座节点
节点板 加劲肋 底板 锚栓
加劲肋作用:
提高支座节点的侧向刚 度,使支座底版受力均 匀,减少底版弯矩
支座节点力的传递路线为:
屋架杆件 合力R
节点板 底 板
H形焊缝 L形焊缝 加劲肋
⑵支座节点的计算: ①底板: R A An A0 A0 底板面积: fc
A0 锚栓孔面积
60 235 f y ,否则应沿自由边设加劲肋。
3.节点的构造与计算
⑴一般节点 节点无集中荷载也无弦杆拼接的节点。 ① 腹杆与节点板间的传力--两侧角焊缝 (L形围焊缝,三面围焊缝),按受轴 心力角钢的角焊缝计算。 ② 弦杆与节点板间角焊缝只传递差值, 按下式计算其焊缝长度。
肢背焊缝:
K1N lw1 2h f 1 w 2 0.7h f f f
t
板件厚度, 应力扩散角,取30°。
由试验研究,桁架节点板在斜腹杆压力作用下的稳定: ⑴对有竖腹杆的节点板,当 c t 15 235 f y 时, 可不计算稳定,否则应进行稳定计算。
在任何情况下
ct
不得大于
22 235 f y ,
c为受压腹杆连接肢端面中点沿腹杆轴线方向 至弦杆的净距离,t为节点板厚度。 ⑵对无竖腹杆的节点板, 当 c
l
w
节点板、加劲肋与底板
的水平焊缝总长度
2.3.6 桁架节点施工图
⑴在图纸左上部绘制索引图。对称桁架,一半注 明杆件几何长度,另一半注明杆件内力。梯形 屋架L≥24m,三角形L≥15m,应予起拱f=L/500。 ⑵施工祥图中,主要图面用以绘制屋架的正立面 图,上下弦的平面图,侧面图,安装节点及特 殊零件大样图,材料表。比例尺:杆件轴线为 1:20~1:30,节点为1:10~1:15。 ⑶定位尺寸:轴线至肢背的距离,节点中心至 腹杆等杆件近端的距离,节点中心至节点板上、 下、左、右的距离。螺孔位置要符合型钢线距 表和螺栓排列规定距离要求,焊缝应注明尺寸。
的肢尖和肢背的分配系数将
N 分配到肢尖和肢背,以 设计和验算“ A”和“ B”焊缝
⑶下弦跨中拼接节点
①构造:拼接角钢采用与弦杆相同的规格, 切去竖肢及切去直角边棱,安装螺栓, 拼接角钢与节点板各焊于不同的连接单元。
②焊缝计算 弦杆自身拼接焊缝(“C”焊缝),传递两侧弦
杆
内力的较小值N,考虑到截面形心处的力与拼接 角钢两侧的焊缝近于等距,N力由两根拼接角钢 的四条焊缝平分传递。弦杆和连接角钢连接一 侧的焊缝长度为: N l1 2h f w 4 0.7h f f f
t 10 235 f y
时,
节板的稳定承载力可取为 0.8betf
当
c t 10 235 f y
时,应进行稳定计算
在任何情况下, c t 不得大于 17.5 235 f y
用上述方法计算桁架节点板强度和稳定的要求 1)节点板边缘与腹杆轴线之间的夹角不小于30° 2)斜腹杆与弦杆夹角应在30°~60° 3)节点板的自由边长度与厚度之比不得大于
1
肢尖焊缝:
N N1 N 2
lw 2
K 2 N 2h f 2 w 2 0.7h f f f
2
K1 , K2 角钢肢背、肢尖焊缝内 力分配系数
hf , hf 肢背、肢尖焊缝焊脚尺 寸
1 2
f fw 角焊缝强度设计值
⑵有集中荷载的节点
节点板伸出
槽焊缝“K”—假定只传递P力,按两条角焊缝 (焊脚尺寸为0.5t)计算所需的长度。 “A”焊缝—传递弦杆两端内力差△N=N1-N2和偏 心力矩△M=△N· e。焊缝两端的最大 合成应力:
2.3.5.1双角钢截面杆件的节点
1.节点设计的一般原则 ⑴双角钢截面杆件在节点处以节点板相连,各杆 轴线(型钢形心轴线)汇交于节点中心。 ⑵角钢的切断面应与其轴线垂直,需要斜切以便
使节点紧凑时只能切肢尖。
⑶ 如弦杆截面需变化,截面改变点应在节点上。
当偏心e>0.05h时考 虑偏心对杆件产生的 附加弯矩: M Ki
焊缝受力: 焊缝验算:
R V 4
M V e
f 2 2 ( ) f ft w f
6M f 2 2 0.7h f lw N f 2 0.7h f lw
④支座节点板、加劲肋与支座底板的水平焊缝: 传递全部反力R。
R w ff f 0.7h f lw
f 2 2 ( ) f ft w f
6M f 2 2 0.7h f lw
2
2
N f 2 0.7h f lw
2
2
节点板部分伸出 当“A”焊缝强度不足时,采用 节点板伸出方案, 肢尖“A” 与肢背“B”两条焊缝传递弦杆 与节点板间内力,
N P N
P较小,近似按只承受轴力时
肢尖焊缝:
⑷上弦跨中拼接节点 ①构造:拼接角钢的弯折角用热弯形成。安装螺栓2个。 ②计算:弦杆和拼接角钢间焊缝算法与下弦跨中节点 相同,弦杆和节点板间焊缝算法与上弦节点 相同。
⑸支座节点 屋架与柱子的连接可以设计成铰接或刚接。
屋架与柱的刚接: 刚接节点连接焊缝 传递内力由以下两 部分组成: ①屋面荷载产生的 横梁端反力, ②横梁端弯矩在上 下弦轴线处产生的 附加水平力、附加 竖向反力,下弦处 的水平力中还应包 括框架内力组合的 相应水平剪力。
底板厚度:按均布荷载下板的抗弯计算,将 基础反力看成均布荷载q,底板被节点板和加 劲肋分成4块两相邻边支撑的板,其单位宽度 的弯矩为: 2
M qa1
R 底板下的平均压应力: q An
底板厚度: t 6M f
②加劲肋:按悬臂梁计算,固端截面的剪力
固端截面弯矩
R V 4
M V e
③加劲肋与节点板间竖向焊缝L:
Mi
K
i
偏心力矩:M ( N1 N 2 )e
Ki
-第i杆的线刚度
Ki
EIi li
⑷节点板上各杆件之间的间距a: 受静载时, 受动载时,
a 10 ~ 20 a 50
2.节点板设计:
⑴形状简单、规则,如矩形、梯形
⑵梯形和平行弦屋架的节点半板厚度由腹 杆最大内力确定,三角形屋架节点半板 厚度由上弦杆内力决定。在一榀屋架中 支座节点板厚度可以大2mm,其他节点板 厚度相同。
⑷各零件要进行详细编号,按主次、上下、左右 顺序进行。 ⑸施工图中的文字说明应包括不易用图表达以及 为了简化图面而易于用文字集中说明的内容, 如:钢材标号、焊条型号、焊缝形式和质量等 级、图中未注明的焊缝和螺栓孔尺寸以及防腐、 运输和加工要求。