电子实验报告用D触发器做十进制计数器
数电实验报告
数电实验报告实验一实验题目:十进制代码——8421码转换电路实验目的:(1)掌握组合逻辑电路设计方法(2)掌握码制转换逻辑的设计特点(3)掌握TTL芯片的应用和调试实验原理:实验内容:将TTL设计成十进制转换成8421BCD码。
实验总结与收获:对TTL有了一定的了解,掌握码制转换逻辑的设计特点,组合逻辑电路设计方法也有些了解,对以后的实验有心理准备。
实验二实验题目: 译码器及数码显示实验目的:(1) 掌握组合逻辑电路设计的方法.(2) 对比用不同的器件,不同设计方法之间的比较. (3) 掌握数码关与译码器的电位关系.实验原理:1.数码管是一种子常用器件,当你显示十进制数时,是有很多电路供你选用,一般根据所使用的数码管是共阳极还是共阴极来选择对应芯片的.七段发光二极管(LED)数码显示器的字形与七段荧光数码管一样,外观为平面型.它的a,b,c,d,e,f,g 段是用发光二极管显示的,并且分为共阳极和共阴极两种.共阳极是七个发光二极管的阳极接在一起,接到高电平(正电源)上,阴极接到译码器的输出端,哪个发光二极管的阴极为低电平,哪个发光二极管就亮,而阴极为高电平的发光二极管就不亮.共阴极是七个发光二极管的阴极接到一起,,接到低电平处,哪个发光二极管的阳极接高电平,哪个发光二极管就亮,否则就不亮.这种数码特点是电源电压为5V,与TTL 电源一致共阳弄数码管内部结构.2.LED 数码管的内部显示如图所示:3.BI 是消隐输入端,当输出功能为0—15V 时,BI 必须开路或接高电平,BI 处于低电平时,所有各段输出均被切断且与其它输入端的电平无关.RBI 串行消隐输入端,能消除无意义的0显示,RBO 串行消隐输出端与RBI:LT 组合控制可消除其它无意义的输出.LT 为灯测注:输出端中Y表示导通,N表示截止.实验内容:(1)要求设计16进制译码器的逻辑图.(2)根据逻辑图边好译码器,并将电阻,数码管连上.(3)通电调试,直到0—F都能正确显示为止.实验设计:1.根据实验需求分析,可得出下面的逻辑关系式:CBADACBADDBCDBACBADDCBADABCBCDADBACABDCDCBADCBAa+++=++++++++=DABCBABADCCDBADCBADCBADABCDCBADCABDCBADCBADCBAb+++=++++++++=CBACDCACABDCBADDCBADABCDABCDBACDCBADCABDCBADCBAc++=+++++++++ =DB AC B ABCACABDCBCDABACDCABDC ABDC BADDC B ADABCDBACDCABDB ACDC B Ad++++=++++++++++=CABABCDADCBADCBADBCADCBADCBAe+=+++++=DBDCBABCDACDBACDBACBADDCBABCDAACDBCDBADCBAf++=++++++++ =C BB ADCC BBCDACDB ACDB ADCABDC B ADC B ADC B ADBCAACDBDC B ADCABDC B Ag+++=+++++++++++=其中:0=a+b+c+d+e+f 1=b+c 2=a+b+d+e+g. 3=a+b+c+d+g.4=b+c+g+f. 5=a+c+d+f+g. 6=a+c+d+e+f+g. 7=a+b+c.8=a+b+c+d+e+f+g. 9=a+b+c+d+f+g A=a+b+c+e+f+g.B(b)=c+d+e+f+g. C=a+e+f. d(D)=b+c+d+e+g.E=a+d+e+f+g F =a+e+f+g.2.用编程语言进行编程:PLD16V8 //器件名称BASIC GATES //逻辑功能WANGTAO 2009.4.13 //姓名,时间SHIYAN LATTICE V4.6 //用途,公司,版本D C B A NC NC NC NC NC GND //定义输入脚NC a b c d e f g NC VCC //定义输出脚;LOGIC EQUATIONS //注释a=B*/D+A*/B*D+A*C*/D+/A*/B*/Cb=/C*/D+/A*/B+A*/B*/C+A*B*/Dc=A*/C+C*/D+/A*/B*/Cd=/C*D+A*B*/C+/A*B*C+A*/B*C+/A*/B*/De=/A*B+/A*/Cf=/A*/B+C*/D+/B*Dg=B*/C+/C*D+/A*B+/B*CDESCRIPTION //程序结束3.调试验证:实验中用fm.exe对程序wt.pld进行编译.生成wt.jed文件。
移位寄存器实验报告
移位寄存器实验报告移位寄存器和计数器的设计实验室:实验台号:日期:专业班级:姓名:学号:一、实验目的1. 了解二进制加法计数器的工作过程。
2. 掌握任意进制计数器的设计方法。
二、实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。
三、实验原理图1.由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2.测试74LS161的功能3.熟悉用74LS161设计十进制计数器的方法。
①利用置位端实现十进制计数器。
②利用复位端实现十进制计数器。
四、实验结果及数据处理1.左移寄存器实验数据记录表要求:输入二进制:111100002.画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路。
8进制利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。
五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。
2. 设计十进制计数器时将如何去掉后6个计数状态的?答:通过置位端实现时,将Q0、Q3 接到与非门上,输出连接到置位控制端。
当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。
3. 谈谈电子实验的心得体会,希望同学们提出宝贵意见。
答:通过这学期的电子实验,我对电子电路有了更加深入地了解。
初步了解了触发器、寄存器、计数器等电子元件的使用。
将理论与实践相结合,更加深入的了解了电子技术,学到了很多,对这学期的电子实验十分满意。
数电实验报告触发器及其应用(共10篇)
数电实验报告触发器及其应用(共10篇)1、实验目的:掌握触发器的原理和使用方法,学会利用触发器进行计数、存储等应用。
2、实验原理:触发器是一种多稳态数字电路,具有存储、计数、分频、时序控制等功能。
常见的触发器有RS触发器、D触发器、T触发器、JK触发器等。
RS触发器是由两个交叉互连的反相器组成的,它具有两个输入端R(复位)和S(置位),一个输出端Q。
当输入R=1,S=0时,Q=0;当输入R=0,S=1时,Q=1;当R=S=1时,无法确定Q的状态,称为禁态。
JK触发器是将RS触发器的两个输入端合并在一起而成,即J=S,K=R,当J=1,K=0时,Q=1;当J=0,K=1时,Q=0;当J=K=1时,Q反转。
JK触发器具有启动、停止、颠倒相位等功能。
D触发器是由单个输入端D、输出端Q和时钟脉冲输入端组成的,当时钟信号上升沿出现时,D触发器的状态发生改变,如果D=1,Q=1;如果D=0,Q=0。
T触发器只有一个输入端T和一个输出端Q,在每个时钟脉冲到来时,T触发器执行T→Q操作,即若T=1,则Q取反;若T=0,则Q保持不变。
触发器可以组成计数器、分频器、存储器、状态机等各种数字电路,被广泛用于计算机、控制系统等领域。
3、实验器材:数码万用表、示波器、逻辑分析仪、CD4013B触发器芯片、几个电阻、电容、开关、信号发生器等。
4、实验内容:4.1 RS触发器测试利用CD4013B芯片来测试RS触发器的功能,在实验中将RS触发器的输入端分别接入CD4013B芯片的端子,用示波器观察输出端的波形变化,并记录下输入输出关系表格,来验证RS触发器的工作原理。
具体实验步骤如下:将CD4013B芯片的端子按如下接线方式连接:RST1,2脚接入+5V电源,C1个100nF的电容与单位时间5 ns的外部时钟信号交替输入接口CLK,以模拟器件为master时,向器件提供单个时钟脉冲。
测试时选择适宜的数据输入,R1和S2另一端程+5V,S1和R2另一端连接接地GND,用万用表测量各端电压,电容缓存的电压。
电子技术实验报告(数电部分)
电气与电子信息工程学院实验报告课程名称:电子技术实验(数电部分)专业名称:班级:学号:姓名:湖北理工学院电气与电子信息工程学院实验报告规范实验报告是检验学生对实验的掌握程度,以及评价学生实验课成绩的重要依据,同时也是实验教学的重要文件,撰写实验报告必须在科学实验的基础上进行。
真实的记载实验过程,有利于不断积累研究资料、总结研究实验结果,可以提高学生的观察能力、实践能力、创新能力以及分析问题和解决问题的综合能力,培养学生理论联系实际的学风和实事求是的科学态度。
为加强实验教学中学生实验报告的管理,特指定湖北理工学院电气与电子信息工程学院实验报告规范。
一、每门实验课程中的每一个实验项目均须提交一份实验报告。
二、实验报告内容一般应包含以下几项内容:1、实验项目名称:用最简练的语言反映实验内容,要求与实验课程安排表中一致;2、实验目的和要求:明确实验的内容和具体任务;3、实验内容和原理:简要说明本实验项目所涉及原理、公式及其应用条件;4、操作方法与实验步骤:写出实验操作的总体思路、操作规范和操作主要注意事项,准确无误地记录原始数据;5、实验结果与分析:明确地写出最后结果,并对实验得出的结果进行具体、定量的结果分析,说明其可靠性;6、问题与建议(或实验小结):提出需要解决问题,提出改进办法与建议,避免抽象地罗列、笼统地讨论。
(或对本次实验项目进行总结阐述。
)三、实验报告总体上要求字迹工整,文字简练,数据齐全,图标规范,计算正确,分析充分、具体、定量。
四、指导教师及时批改实验报告,并将批改后的报告返还学生学习改进。
五、实验室每学期收回学生的实验报告,并按照学校规章保存相应时间。
实验报告实验项目名称:逻辑门电路逻辑功能的测试同组人:实验时间:实验地点:指导教师:一、实验目的1、熟悉数字逻辑实验箱的结构、基本功能和使用方法。
2、掌握常用非门、与非门、或非门、异或门的逻辑功能及其测试方法。
二、实验主要仪器与设备三、实验预习要求做实验前必须认真复习数字逻辑实验箱、数字万用表、芯片CC4011、CC4030、CC4000的有关内容。
D触发器设计实验报告
reg RD;
reg CP;
// Output
wire QN;
wire Q;
// Bidirs
always #50 CP= ~CP;
always #20 D = {$random}%2;
// Instantiate the UUT
D_top UUT (
.SD(SD),
.QN(QN),
.Q(Q),
end
// `endif
endmodule
输出波形图:
五、课后思考题
1、异步时序逻辑电路与同步时序逻辑电路有何区别?
答:对于同步时序逻辑电路,因为时钟脉冲对电路的控制作用,所以无论输入信号时电平信号还是脉冲信号,对电路引起的状态响应都是相同的。
而对于异步时序逻辑电路,电路中没有统一的时钟脉冲信号同步,电路状态的改变是外部输入信号变化直接作用的结果;在状态转移过程中,各存储元件的状态变化不一定发生在同一时刻,不同状态的维持时间不一定相,并且可能出现非稳定状态。对输入信号的形式有所区分,输入电平信号与脉冲信号,对电路引起的状态响应是不同的
如下图1所示:
输入CLR为清0端,信号LD为置数端,将A、B、C、D的输入值送到计数器中,并立即在QA、QB、QC、QD中输出。输入信号M为模式选择端,当M=1时加1计数,当M=0时减1计数。CP端输入一个上升信号时进行一次计数,计数有进位/借位时,Qcc端输出一个负脉冲。
三、实验过程
1、启动ISE集成开发环境,创建工程并输入设计源文件。
output b ;
reg b ;
reg [31:0] cnt ;
reg clkout ;
always @ ( posedge clk or negedge rst )
数字电路实验报告-用D触发器设计三位二进制加法计数器
电学实验报告模板实验原理1.触发器的触发方式(1)电平触发方式电平触发方式的特点是:CP = 1时,输出与输入之间通道“透明”,输入信号的任何变化都能引起输出状态的变化。
当CP = 0时,输入信号被封锁,输出不受输入影响,保持不变。
(2)边沿触发方式边沿触发方式的特点是:仅在时钟CP信号的上升沿或下降沿才对输入信号响应。
触发器的次态仅取决于时钟CP信号的上升沿或下降沿到达时输入端的逻辑状态,而在这以前或以后,输入信号的变化对触发器输出端状态没有影响。
2. 边沿触发器(1)边沿D触发器图1 上升沿触发D触发器图1所示为上升沿触发D触发器的逻辑符号。
上升沿触发D触发器的特性表如表1所示。
表1 上升沿D触发器特性表D触发器的特性方程为:Q^(n+1) = D1.同步触发器的异步置位复位端电平触发器和边沿触发器都在CP时钟信号的控制下工作,这种工作方式称之为“同步”。
也把这类触发器称为同步触发器,以区别于基本RS触发器。
在小规模集成电路芯片中,触发器既能同步工作,又兼有基本RS触发器的功能。
例如。
图2所示的触发器。
这是上升沿触发D触发器,其中,SD(-)和RD(-)是异步置位复位端。
只图2 带有异步置位复位端的D触发器要在SD(-)或RD(-)加入低电平,立即将触发器置“1”或置“0”,而不受时钟信号CP和输入信号D的控制。
只有当SD(-)或RD(-)均处于高电平时,触发器才正常执行上升沿触发D触发器的同步工作功能。
实验仪器实验内容及步骤1.测试双D触发器74LS74的逻辑功能(1)74LS74引脚图图3 74LS74引脚图图3所示为集成电路芯片74LS74的引脚图。
芯片包含两个带有异步置位复位端的上升沿D触发器。
(1)测试74LS74的逻辑功能图4 测试74LS74的逻辑功能实验电路按照图4连接电路。
D触发器的Q和Q(-)(芯片5和6号引脚)各接一个发光二极管用以观察触发器的输出逻辑电平。
按照上面测试74LS112的逻辑功能同样的方法和步骤,测试74LS74的逻辑功能,将实验数据记录在表2。
计数器及其应用
实验十计数器及其应用一、实验目的:1、学习用集成触发器构成计数器的方法;2、掌握中规模集成计数器的使用方法及功能测试方法;3、运用集成计数器构成1/N分频器。
二、实验原理:计数器是一种用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器的种类很多。
按构成计数器中的各触发器是否使用于一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数体制的不同,分为二进制计数器、十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就图中LD------置数端;CP U-----加计数端;CP D-----减计数端;非同步进位输出端;BO------非同步借位输出端;D0、D1、D2、D3-----计数器输入端;Q0、Q1、Q2、Q3-----数据输出端;CR-----清零端。
表10-174LS192(同CC40192,二者可互换使用)的功能如表10-1所示,说明如下:当清零端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。
当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码的十进制加法计数。
执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D输入,表10-2为8421码十进制加、减计数器的状态转换表。
表10-2 加计数减计数3、计数器的级联使用一个十进制计数器只能表示0-9十个数,为了扩大计数器计数范围,常将多个十进制计数器级联使用。
电子技术习题解答第章触发器和时序逻辑电路及其应用习题解答
第8章 触发器和时序逻辑电路及其应用习题解答8.1 已知基本RS 触发器的两输入端D S 和D R 的波形如图8-33所示,试画出当基本RS 触发器初始状态分别为0和1两种情况下,输出端Q的波形图。
图8-33 习题8.1图解:根据基本RS 触发器的真值表可得:初始状态为0和1两种情况下,Q的输出波形分别如下图所示:习题8.1输出端Q的波形图8.2 已知同步RS 触发器的初态为0,当S 、R 和CP 的波形如图8-34所示时,试画出输出端Q的波形图。
图8-34 题8.2图解:根据同步RS 触发器的真值表可得:初始状态为0时,Q的输出波形分别如下图所示:习题8.2输出端Q的波形图8.3 已知主从JK触发器的输入端CP、J和K的波形如图8-35所示,试画出触发器初始状态分别为0时,输出端Q的波形图。
图8-35 习题8.3图解:根据主从JK触发器的真值表可得:初始状态为0情况下,Q的输出波形分别如下图所示:习题8.3输出端Q的波形图8.4 已知各触发器和它的输入脉冲CP的波形如图8-36所示,当各触发器初始状态均为1时,试画出各触发器输出Q端和Q端的波形。
图8-36 习题8.4图解:根据逻辑图及触发器的真值表或特性方程,且将驱动方程代入特性方程可得状态方程。
即:(a )J =K =1;Qn +1=n Q,上升沿触发 (b)J =K =1;Qn +1=n Q, 下降沿触发 (c)K =0,J =1;Qn +1=J n Q+K Qn =1,上升沿触发 (d)K =1,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0·Qn =n Q,上升沿触发 (e)K =Qn ,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0=n Q,上升沿触发 (f)K =Qn ,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0=n Q,下降沿触发, 再根据边沿触发器的触发翻转时刻,可得当初始状态为1时,各个电路输出端Q的波形分别如图(a )、(b )、(c )、(d )、(e )和(f )所示,其中具有计数功能的是:(a )、(b )、(d )、(e )和(f )。
fpga触发器及计数器实验报告
XX电力学院FPGA应用开发实验报告实验名称:触发器与计数器专业:电子科学与技术姓名:班级:学号:1.触发器功能的模拟实现实验目的:1.掌握触发器功能的测试方法。
2.掌握基本RS触发器的组成及工作原理。
3.掌握集成JK触发器和D触发器的逻辑功能及触发方式。
4.掌握几种主要触发器之间相互转换的方法。
5.通过实验,体会EPLD芯片的高集成度和多I/O口。
实验说明:将基本RS触发器,同步RS触发器,集成J-K触发器,D触发器同时集一个FPGA芯片中模拟其功能,并研究其相互转化的方法。
实验的具体实现要连线测试,实验原理如图所示:2.计数器在VHDL中,可以用Q<=Q+1简单地实现一个计数器,也可以用LPM来实现。
下面分别对这两种方法进行介绍。
方法一:第1步:新建一个Quartus项目。
第2步:建立一个VHDL文件,实现一个8位计数器。
计数器从“00000000”开始计到“11111111”,计数器的模是256。
计数器模块还需要包含一个时钟clock、一个使能信号en、一个异步清0信号aclr和一个同步数据加载信号sload。
模块符号如下图所示:第3步:VHDL代码如下:第4步:将VHDL文件另存为counter_8bit.vhd,并将其设定为项目的最顶层文件,再进行语法检查。
第5步:语法检查通过以后,用KEY[0]表示clock,SW[7..0]表示data,SW[8~10]分别表示en、sload和aclr;LEDR[7..0]表示q。
第6步:引脚分配完成后,编译并下载。
第7步:修改上述代码,把计数器的模更改为100,应如何操作。
模为100的计数器,VHDL代码如下:方法二:使用LPM实现8位计数器。
LPM是指参数化功能模块,用LPM可以非常方便快捷地实现一个计数器。
第1步:选择Tools->MegaWizard Plug-In Manager命令,打开如下图所示的对话框。
第2步:直接单击Next按钮,出现如下图所示的对话框。
数字电路 实验 计数器及其应用 实验报告
实验六计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握同步计数的逻辑功能、测试方法及功能扩展方法3.掌握构成任意进制计数器的方法二、实验设备和器件1.+5V直流电源2.双踪示波器3.连续脉冲源4.单次脉冲源5.逻辑电平开关6.逻辑电平显示器7.译码显示器8.CC4013×2(74LS74)CC40192×3(74LS192)CC4011(74LS00)CC4012(74LS20)三、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
计数器计数时所经历的独立状态总数为计数器的模(M)。
计数器按模可分为二进计数器(M=2n)、十进计数器(M=10n)和任意进制计数器(M≠2n、M≠10n)。
按计数脉冲输入方式不同,可分为同步计数和异步计数。
按计数值增减趋势分为:加法计数器、减法计数器和可逆(加/减)计数器。
1.用D触发器构成异步二进制加/减计数器图6-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T 触发器,再由低位触发器的Q端和高一位的CP端相连接。
若将图6-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。
2.中规模十进制计数器、十六进制计数器(1)CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能。
当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。
当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CP D接高电平,计数脉冲由CP U输入;在计数脉冲上升沿进行8421码十进制加法计数。
执行减计数时,加计数端CP U接高电平,计数脉冲由减计数端CP D 输入,表6-2为8421码十进制加、减计数器的状态转换表。
D触发器电路设计及计数器设计..
14 13 12 11 10 9
8
D SD Q CP RD Q
CP RD Q D SD Q
1
23
4
5
6
7
1RD 1D 1CP 1SD 1Q 1 Q 地
用74LS74设计一模十计数器 ——实验电路设计
Q0
“1”
CP
SD DQ
CP Q RD
Q1
SD DQ
CP Q RD
Q2
SD DQ
CP Q RD
Q3
SD DQ
动态调试与静态调试的区别在于时钟脉冲改由连续时钟脉 冲信号源提供,输出可由示波器观测也可采用逻辑分析仪进行 观测。用示波器进行动态调试的一般步骤如下:
1、把时序脉冲发生器输出的连续周期性脉冲信号接到时序逻 辑电路的时钟输入端,同时将电路中的特定节点接到系统 的显示部分作辅助检测电路。
时序电路调试技巧—动态调试
Q0
SD DQ
CP Q RD
Q1
SD DQ
CP Q RD
Q2
SD DQ
CP Q RD
时序电路调试技巧—静态调试
静态调试是时钟输入端加单步脉冲,同时根据状态转移 的要求合理设置输入信号值,遍历时序电路的全部状态,来 验证电路的结果是否符合要求,发现和确定故障点的调试方 法。常用的调试步骤如下: 1、把经过消抖处理的手动单次脉冲发生器输出端连接到电路
注意事项
由于时序逻辑电路对各单元之间时序关系有严格要求, 所以出现故障不易找出原因,因此无论静态调试还是动态调 试都应该注意以下问题:
1、注意检查容易产生故障的环节,掌握排除故障的方法。出现故障时 ,可以从简单部分开始逐级查找,逐步缩小故障点的范围,也可以 对某些预知点的特性进行静态或动态测试, 判断故障部位。
电子实验报告用d触发器做十进制计数器
1.实验内容用D触发器设计一个同步十进制计数器2.实验器材编号器材型号个数1 二输入与门74LS08 12 三输入与门74LS11 13 二输入或非门74LS02 14 三输入或非门74LS10 15 D触发器74LS74 26 导线若干7 LED灯 48 电阻(200Ω) 13.实验原理计数器实际上是对时钟脉冲进行计数,每来一个脉冲,计数器状态改变一次。
8421 BCD码十进制加计数器在每个时钟脉冲作用下,触发器输出编码值加1,编码顺序与8421 BCD码一样,每个时钟脉冲完成一个计数周期。
由于电路的状态数、状态转换关系及状态编码都是明确的,因此设计过程较简单。
4.实验过程1)列出状态表十进制计数器共有十个状态,需要4个D触发器构成,其状态表1-1所示。
表1-18421 BCD码同步十进制加计数器的状态表计数脉冲CP的顺序状态状态(激励信号)Q3 Q2 Q1 Q0 Q3(D3)Q2(D2)Q1(D1)Q3(0D0)0 1 2 3 4 5 6 7 0 0 0 00 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 10 0 0 10 0 1 00 0 1 10 1 0 00 1 0 10 1 1 00 1 1 11 0 0 08 9 0 0 0 01 0 0 110 0 10 0 0 0(2)确定激励方程组按表1-1可画出触发器激励信号的卡诺图,如图1-1所示。
4个触发器组合16个状态(0000 ~ 1111),其中有6个转台(1010 ~ 1111)在8421 BCD码十进制计数器中是无效状态,在图1-1所示的卡诺图中以无关项×表示。
于是,得到激励方程组:图1-1 卡诺图(3)画出逻辑图,并且检查自启动能力检查激励方程组可画出逻辑图,如图1-2所示。
图中,各触发器的直接置0端为之地电平有效,如果系统没有复位信号,电路的RESET输入端应保持为高电平计数器能够正常工作。
电子技术习题解答.第8章.触发器和时序逻辑电路及其应用习题解答
第8章 触发器和时序逻辑电路及其应用习题解答8.1 已知基本RS 触发器的两输入端D S 和D R 的波形如图8-33所示,试画出当基本RS 触发器初始状态分别为0和1两种情况下,输出端Q的波形图。
图8-33 习题8.1图解:根据基本RS 触发器的真值表可得:初始状态为0和1两种情况下,Q的输出波形分别如下图所示:习题8.1输出端Q的波形图8.2 已知同步RS 触发器的初态为0,当S 、R 和CP 的波形如图8-34所示时,试画出输出端Q的波形图。
图8-34 题8.2图解:根据同步RS 触发器的真值表可得:初始状态为0时,Q的输出波形分别如下图所示:习题8.2输出端Q的波形图8.3 已知主从JK触发器的输入端CP、J和K的波形如图8-35所示,试画出触发器初始状态分别为0时,输出端Q的波形图。
图8-35 习题8.3图解:根据主从JK触发器的真值表可得:初始状态为0情况下,Q的输出波形分别如下图所示:习题8.3输出端Q的波形图8.4 已知各触发器和它的输入脉冲CP的波形如图8-36所示,当各触发器初始状态均为1时,试画出各触发器输出Q端和Q端的波形。
图8-36 习题8.4图解:根据逻辑图及触发器的真值表或特性方程,且将驱动方程代入特性方程可得状态方程。
即:(a )J =K =1;Qn +1=n Q,上升沿触发 (b)J =K =1;Qn +1=n Q, 下降沿触发 (c)K =0,J =1;Qn +1=J n Q+K Qn =1,上升沿触发 (d)K =1,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0·Qn =n Q,上升沿触发 (e)K =Qn ,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0=n Q,上升沿触发 (f)K =Qn ,J =n Q;Qn +1=J n Q+K Qn =n Qn Q+0=n Q,下降沿触发, 再根据边沿触发器的触发翻转时刻,可得当初始状态为1时,各个电路输出端Q的波形分别如图(a )、(b )、(c )、(d )、(e )和(f )所示,其中具有计数功能的是:(a )、(b )、(d )、(e )和(f )。
数电项目实验报告(3篇)
第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。
2. 掌握常用数字电路的分析方法。
3. 培养动手能力和实验技能。
4. 提高对数字电路应用的认识。
二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。
本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。
四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。
(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。
(3)分析输出波形,验证逻辑门电路的正确性。
2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。
(3)分析输出波形,验证触发器电路的正确性。
3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。
(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。
(3)分析输出波形,验证计数器电路的正确性。
4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。
(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。
(3)分析输出波形,验证寄存器电路的正确性。
五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。
实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。
2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。
实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。
3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。
实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。
触发器的应用实验报告
一、实验目的1. 掌握基本RS、JK、D和T触发器的逻辑功能及测试方法。
2. 熟悉触发器之间的相互转换方法。
3. 学习触发器在时序电路中的应用。
二、实验原理触发器是一种具有记忆功能的逻辑电路,可以存储1位二进制信息。
触发器分为基本触发器和时钟触发器两大类。
基本触发器包括RS触发器、JK触发器、D触发器和T触发器。
触发器之间的相互转换是数字电路设计中的重要环节。
三、实验仪器与设备1. 数字电路实验箱2. 示波器3. 信号发生器4. 电源四、实验内容与步骤1. 观察基本RS触发器(1)连接电路:将RS触发器的S端连接到高电平,R端连接到低电平,观察Q和Q'端的状态。
(2)改变输入:将S端连接到低电平,R端连接到高电平,观察Q和Q'端的状态。
(3)总结:基本RS触发器具有置0、置1和保持功能。
2. 观察JK触发器(1)连接电路:将JK触发器的J端连接到高电平,K端连接到低电平,观察Q和Q'端的状态。
(2)改变输入:将J端连接到低电平,K端连接到高电平,观察Q和Q'端的状态。
(3)总结:JK触发器具有置0、置1、置Q和置Q'功能。
3. 观察D触发器(1)连接电路:将D触发器的D端连接到高电平,观察Q和Q'端的状态。
(2)改变输入:将D端连接到低电平,观察Q和Q'端的状态。
(3)总结:D触发器具有置0和置1功能。
4. 观察T触发器(1)连接电路:将T触发器的T端连接到高电平,观察Q和Q'端的状态。
(2)改变输入:将T端连接到低电平,观察Q和Q'端的状态。
(3)总结:T触发器具有置Q和置Q'功能。
5. 触发器之间的相互转换(1)RS触发器与JK触发器转换:将RS触发器的S端连接到J端,R端连接到K 端。
(2)D触发器与T触发器转换:将D触发器的D端连接到T端。
6. 触发器在时序电路中的应用(1)设计一个4位二进制计数器:使用D触发器连接成4位二进制计数器,观察计数过程。
计数器及其应用实验[优质ppt]
2SD 2D 2CP 2RD 1SD 1D 1CP 1RD
特点:(1)单输入端的双D触发器。 (2)它们都带有直接置0端RD和直接置1端SD,为低电平有效。 (3)为TTL边沿触发器,CP上升沿触发。
CP=CLK; RD=CLR; SD=PRE
2、用2个上升沿触发的D触发器组成的两位异 步二进制加法计数器。
工作原理:D触发器都接成T’触发器。
3、同步十进制可逆计数器74LS192
Vcc D0 CR BO CO LD D2 D3
16
15
14
13 12
11
10
9
1
2
3
4
5
6
7
8
D1 Q1 Q0 CPD CPU Q2 Q3 GND
LD——置数端;CPU——加计 数端;CPD——减计数端; CO——非同步进位输出端; BO——非同步借位输出端;D0、 D1、D2、D3——计数器输入端; Q0、Q1、Q2、Q3——数据输 出端;CR——清除端
实验六、计数器及其应用
一、实验目的: 1.学习集成触发器构成计数器的方法。
2.掌握中规模集成计数器的使用方法及功能测试方法。 二、实验仪器及元器件:
1.数字电路实验箱。
2.双D触发器74LS74(两片)
同步十进制可逆计数器74LS192
三、实验原理
1、74LS74(双D触发器)
2Q 2Q 1Q 1Q
输入
输出
CR LD CPU CPD D3
D2
D1
D0
Q3 Q2
Q1
Q0
1X
XXXX
XX
00
0
1
XX
D触发器电路设计及计数器设计
时序电路调试技巧—静态调试
静态调试是时钟输入端加单步脉冲,同时根据状态转移
的要求合理设置输入信号值,遍历时序电路的全部状态,来
验证电路的结果是否符合要求,发现和确定故障点的调试方
法。常用的调试步骤如下:
1、把经过消抖处理的手
4、注意电路中的元件类型,如电路中有TTL 电路、又有CMOS 电路 ,还有分立元件电路,要选择合适的电源,注意电平转换以及带负 载能力等问题。
5、有些故障是由于竞争和冒险造成的,应该尽量避免将组合电路的 输出直接作为触发器的时钟、异步复位和异步置)连好电路 2)静态验证 触发器时钟脉冲接自单脉冲,观察每来一个单
脉冲,暗灯的移动情况 3)动态观察波形 时钟脉冲接自连续脉冲,用示波器观察且
记录CP及各触发器输出端Q0、Q1、Q2的波形
设计广告流水灯 —设计过程
根据题意,输出有8种状态,所以需用74LS74设 计一个模8计数器,并将计数器的输出送至译码器 74LS138进行译码即可。设计的电路如下图所示:
时序电路调试技巧—动态调试
动态调试是指电路的时钟输入端在某一规律时钟信号作用 下,借助示波器或逻辑分析仪观察各级工作波形,检查时序电 路是否按照预定的状态图(流程图)要求,在时钟脉冲及输入 信号作用下完成预定的状态转换及输出控制信号。
动态调试与静态调试的区别在于时钟脉冲改由连续时钟脉 冲信号源提供,输出可由示波器观测也可采用逻辑分析仪进行 观测。用示波器进行动态调试的一般步骤如下:
用74LS74设计一模十计数器 ——实验要求
1)设计电路 2)连接电路并进行静态验证或动态验证
用74LS74设计一模十计数器 ——74LS74功能介绍
数字电子技术实验报告(学生版)
数字电子技术实验报告开课实验室 指导教师 班级 学号 姓名 日期实验项目 实验一 TTL 逻辑门电路 和组合逻辑电路一、实验目的1.掌握TTL “与非”门的逻辑功能.2.学会用“与非”门构成其他常用门电路的方法。
3.掌握组合逻辑电路的分析方法与测试方法。
4.学习组合逻辑电路的设计方法并用实验来验证.二、预习内容1.用74LS00验证“与非”门的逻辑功能Y 1=AB 2.用“与非"门(74LS00)构成其他常用门电路Y 2=A Y 3=A+B=B A Y 4=AB B AB A实验前画出Y 1——Y 4的逻辑电路图,并根据集成片的引脚排列分配好各引脚。
3.画出用“异或”门和“与非”门组成的全加器电路。
(参照实验指导书P 。
75 图3—2-2)并根据集成片的引脚排列分配好各引脚。
4.设计一个电动机报警信号电路.要求用“与非”门来构成逻辑电路。
设有三台电动机,A 、B 、C 。
今要求:⑴A 开机,则B 必须开机;⑵B 开机,则C 必须开机;⑶如果不同时满足上述条件,则必须发出报警信号。
实验前设计好电动机报警信号电路。
设开机为“1”,停机为“0”;报警为“1”,不报警为“0”。
(写出化简后的逻辑式,画出逻辑图及引脚分配)三、实验步骤1. 逻辑门的各输入端接逻辑开关输出插口,门的输出端接由发光二极管组成的显示插口。
逐个测试逻辑门Y 1-Y 4的逻辑功能,填入表1-1表1-12. 用74LS00和74LS86集成片按全加器线路接线,并测试逻辑功能。
将测试结果填入表 1—2.判断测试是否正确。
图中A i 、B i 为加数,C i —1为来自低位的进位;S i 为本位和,C i 为向高位的进位信号.表1—23.根据设计好的电动机报警信号电路用74LS00集成片按图接线,并经实验验证.将测试结果填入表1—3。
表1-3四、简答题1.Y4具有何种逻辑功能?2.在实际应用中若用74LS20来实现Y=AB时,多余的输入端应接高电平还是低电平? 3.在全加器电路中,当A i=0,S i*=1,C i=1时C i—1=?数字电子技术实验报告开课实验室 指导教师 班级 学号 姓名 日期 实验项目 实验二 组合逻辑电路的设计一、实验目的1.掌握用3线- 8线译码器74LS138设计组合逻辑电路。
电子电工实验报告8集成触发器及应用
电工电子实验报告集成触发器及应用一、实验目的1.掌握集成触发器的逻辑功能。
2.熟悉用触发器构成计数器的方法。
3.掌握集成触发器的基本应用。
二、主要仪器设备及软件硬件:直流稳压电源,电工电子综合实验箱,函数信号发生器,示波器,笔记本电脑软件:NI Multisim 14三、实验原理(或设计过程)1.集成触发器的种类和特点触发器是组成时序逻辑电路的基本单元,集成触发器主要有3大类,锁存触发器、D触发器和JK触发器。
(1)D锁定触发器目前常使用的D锁存触发器有四锁定触发器74LS75,功能表如下锁定触发器具有以下三个特点:①锁定触发器不会出现不定状态,输入信号只需要一个,使用方便。
②锁定触发器在CP=“0”时,状态不因输入信号发生变化。
③锁定触发器是电平触发的触发器,在CP=“1”,D端状态不允许变化。
(2)维持堵塞D触发器维持阻塞D触发器克服了空翻现象,因而维持阻塞D触发器可以用来作计数器和位移寄存器。
(3)JK触发器①主从JK触发器目前主要的主从JK触发器74LS72单JK触发器和74LS112双JK触发器.②边沿JK触发器边沿触发器不仅可以克服空翻现象,而且仅仅在时钟CP的上升沿或下降沿才对输入信号起响应。
2.集成触发器的应用触发器在构成包含时间关系的数字电路中是必不可少的,它广泛用来构成计器、寄存器、移位寄存器,还可用来构成单稳、多谐等电路。
(1)二进制计数器触发器可以构成各种计数器。
每一个触发器都接成计数状态。
对D触发器,将其D端与Q非输出端相接就构成计数状态,因D触发器是上升沿触发,所以用它们构成二进制计数器时,应将每位Q非输出端与高一位CP端相连。
如图使用TTL集成D触发器和JK触发器构成的三位二进制计数器(2)并行累加器累加器适用于多个数相加求和的一种电路。
(3)堆成脉冲至对称脉冲的奇数分频四、实验电路图五、实验内容和实验结果用74LS74设计二位二进制加法计数器状态转移表:测试结果:六、实验小结通过这次实验,我们掌握集成触发器的逻辑功能,熟悉用触发器构成计数器的方法,掌握集成触发器的基本应用。
数电实验7——计数器. 报告docx
深圳大学实验报告课程名称:数字电子技术实验项目名称:计数器学院:光电工程学院专业:光源与照明指导教师:**报告人:黄学号:2016 班级:实验时间:2018年12月19日实验报告提交时间:教务处制三、实验原理:计数器器件是应用较广的器件之一,它有很多型号,各自完成不同的功能,可根据不同的需要选用。
本实验选用74LS162做实验器件。
74LS162引脚图见图1。
74LS162是十进制BCD同步计数器。
Clock是时钟输入端,上升沿触发计数触发器翻转。
允许端P和T都为高电平时允许计数,允许端T为低时禁止Carry产生。
同步预置端Load加低电平时,在下一个时钟的上升沿将计数器置为预置数据端的值。
清除端Clear为同步清除,低电平有效,在下一个时钟的上升沿将计数器复位为0。
74LS162的进位位Carry在计数值等于9时,进位位Carry为高,脉宽是1个时钟周期,可用于级联。
四、实验内容与步骤:(一)实验内容:1、用1片74LS162和1片74LS00采用复位法构一个模7计数器。
用单脉冲做计数时钟,观测计数状态,并记录。
用连续脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。
2、用1片74LS162和1片74LS00采用置位法构一个模7计数器。
用单脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。
3、用2片74LS162和1片74LS00构成一个模60计数器。
2片74LS162的Q D,Q C,Q B,Q A分别接两个译码显示的D,B,C,A端。
用单脉冲做计数时钟,观测数码管数字的变化,检验设计和接线是否正确。
(二)实验接线及测试结果:1、复位法构成的模7计数器接线图及测试结果(1)复位法构成的模7计数器接线图图9.1 复位法7进制计数器接线图1 图9.2 复位法7进制计数器接线图2 图中,AK1是按单脉冲按钮,LED0,LED1,LED2和LED3是逻辑状态指示灯,100kHz 是连续脉冲源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数器实际上是对时钟脉冲进行计数,每来一个脉冲,计数器状态改变一次。
8421 BCD 码十进制加计数器在每个时钟脉冲作用下,触发器输出编码值加
1,
编码顺序与8421 BCD 码一样,每个时钟脉冲完成一个计数周期。
由于电路的状 态数、状态转换关系及状态编码都是明确的,因此设计过程较简单。
4. 实验过程
1) 列出状态表
十进制计数器共有十个状态,需要4个D 触发器构成,其状态表1-1所示。
表1-18421 BCD 码同步十进制加计数器的状态表
计数脉冲 CP 的顺序
状态
状态(激励信号)
Q3 Q2 Q1 Q0 Q3 (D3)
Q2 (D2) Q1 (D1) Q3 (0D0)
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 2 0 0 1 0 0 0 1 1 3 0 0 1 1 0 1 0 0 4 0 1 0 0 0 1 0 1 5 0 1 0 1 0 1 1 0 6
0 1 1 0 0 1 1 1 7
1
1
1
1
1. 实验内容
用D 触发器设计一个同步十进制计数器
2. 实验器材
3. 实验原理
10 0 1
(2)确定激励方程组
按表1-1可画出触发器激励信号的卡诺图,如图 4个触发器组合16个状态(0000 - 1111),其中有6个转台(1010 - 1111 )在
8421 BCD 码十进制计数器中是无效状态, 表示。
于是,得到激励方程组:
1-1所示。
在图 1-1所示的卡诺图中以无关项X Q
Q ;
Q.
y
Q"
r
Q,
Q,
Q
;
Qs
Q.
<
y
Q
:
图1-1 (3)画出逻辑图,并且检查自启动能力 检查激励方程组可画出逻辑图,如图1-2所示。
为之地电平有效,如果系统没有复位信号,电路的
平计数器能够正常工作。
卡诺图
图中,各触发器的直接置0端 RESET 输入端应保持为高电
图1-2
检查自动启动能力的方法是: 1101、1110和1111分别为状态,
带入电路的状态方程组而求其次状态。
如果还 没有进入有效状态,再以新的状态作为现态以此类推,看最终能否进入有效状态。
结果证明,这6个状态在一、两个时钟周期后全部都能进入有效循环状态,
电路
具有自启动能力。
于是,可画出完全状态图,如图
图1-3 电路的状态图
如果需求电路必须从0000开始计数,则可将前述复位电路连接在 入端。
在开始计数前使RESET 产生低电平脉冲,强制4个触发器进入
CP
逻辑电路
讲该电路的6个无效状态:1010、1011、1100、 1-3所示。
RESET 输
0000的初始状态,待RESET=1后再开始计数。
5. 实验小结
了解了各个行芯片的作用;
了解了实验过程,并明白了实验原
理; 做实验时,得实物图和连线图相
结合;
连好线路图以后需要多次实验,以确保连线准确;
在做实验的过程中,不懂的地方需要多向老师及同学请教,以确保实验 能够按时完成。
6. 实验心得
关于面包板,面包板是专为电子电路的无焊接实验设计制造的。
由于各种 电
子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间, 而且元件可以重复使用,所以非常适合电子电路的组装、 调试和训练。
每一条金 属片插入一个塑料槽,在同一个槽的插孔相通,不同槽的插孔不通。
三组五孔相 通,一组五孔相通。
铜线必须插入金属孔中,铜线太长容易引起短路。
关于集成 块的插法,由于集成块引脚间与距离与插孔位置有偏差,必须预先调整好位置, 小心插入金属孔中,不然会引起接触不良,而且会使铜片位置偏移。
在接线以前 要把导线拉直。
两个三组五孔和中间四组五孔相同接通, 整形连通,常用来接电 源和接地。
左边整列连通,右边整列接通。
常用来外界电源和地。
整块板上的元 器件的布局要合理,是走线距离短,接线方便,整洁美观。
导线量好长度后,剥 好线头,根据走线位置折好后插入面包板。
走线方向为“横平,竖直” 。
多个线 控接同一个地方时,可以串接,以减少走线距离。
一根导线可以直通的地方尽量 只用一根线,用多更导线转接费事又容易出错。
【本文档内容可以自由复制内容或自由编辑修改内容期待 你的好评和关注,我们将会做得更好】
(1)
⑵ ⑶ ⑷。