2019年高职单招对口招生数学试题

合集下载

江苏省2019对口高考数学试卷.doc

江苏省2019对口高考数学试卷.doc

江苏省中 2019 年普通高校对口单招文化统考《数学》试卷一、单项选择题(本大题共 10 小题,每小题4 分,共 40 分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满.涂黑)1.已知集合 M={1,3,5} , N={2,3,4,5,},则 M ∩N 等于( )A.{3}B . {5}C . {3,5}D . {1,2,3,4,5} 2.若复数 z 满足 z · i=1+2i ,则 z 的虚部为()A .2B .1C . 3D . 63.已知数组 a=( 2, -1,0), b=(1,-1,6), 则 a ·b 等于()A .-2B . 1C . 3D . 64.二进制数() ?换算成十进制的结果是( )A .(138) 10B .( 147) 10C .( 150) 10D .( 162) 105.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为( )A .4πB . 4 2 πC . 5 πD . 36. ( x 2 +1 )6 展开式中的常数项等于( )2x315512A .B .C .D.83162327.若 sin(,则 cos2等于( ))2 7 5715 18A .25B .C .D .25252838.已知 (f x )是定义在() ( )£x ,2 则 f (- 7) 等于( )B . - 2C . 2D .19.已知双曲线的焦点在y 轴上,且两条渐近线方程为y = ?3x ,则该双曲线的离心率为( )2A .13B .135D .532C .3210.已知( m , n )是直线 x+2y-4=0 上的动点,则 3m + 9n 最小值是()A .9B .18C . 36D . 81二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.题 11 图是一个程序框图,若输入m 的值是 21,则输出的m 值是_12.题 12 图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是_13. 已知 9a 3 ,则y cosax 的周期是_14. 已知点 M 是抛物线C:y2 2 px( p 0) 上一点,F为C的焦点,线段MF的中点坐标是(2,2),则 p=_2x , x015.已知函数 f ( x),令 g( x)=f(x)+x+a.若关于 x 的方程 g( x) =2 有两个实根,则log 2 x, x0实数 a 的取值范围是三、解答题(本大题共8 小题,共计90 分)16.(8 分)若关于x 的不等式x2-4ax+4a﹥ 0 在 R 上恒成立 .( 1)求实数 a 的取值范围;( 2)解关于x 的不等式log a23x 2log a 16 .17.( 10 分)已知f( x)是定义在R 上的奇函数,当x 0 时, f (x)log 2 ( x 2) ( a 1)x b ,且 f (2) 1 .令 a n f (n 3) (n N ) .(1)求 a, b 的值;(2)求a1a5a9的值 .18.( 12 分)已知曲线C:x2 +y2+mx+ny+1=0, 其中 m 是从集合M={-2,0} 中任取的一个数,n 是从集合N={-1,1,4} 中任取的一个数.( 1)求“曲线 C 表示圆”的概率;( 2)若 m=-2,n=4 ,在此曲线C上随机取一点Q( x, y),求“点 Q 位于第三象限”的概率 .19.( 12 分)设△ ABC 的内角 A,B,C 的对边为a,b,c,已知 2sinBcosC-sinC=2sinA.( 1)求角 B 的大小;( 2)若b 2 3, a c 4 ,求△ABC的面积.20.(10 分)通过市场调查知,某商品在过去90 天内的销售量和价格均为时间t (单位:天, t∈ N*)的函数,其中日销售量近似地满足q(t) 36 1 t (1 t 90) ,价格满足41 t 28, 1 t40P(t)4,求该商品的日销售额 f (t )的最大值与最小值 .1t 52, 41t90221.( 14 分)已知数列 {a n } 的前 n 项和 S n3 n 2 1n ,数列 {b n } 是各项均为正数的等比数列,且22a 1b 1 ,a 6 b 5 .( 1)求数列 {a n } 的通项公式;( 2)求数列 {b 2n } 的前 n 项和 Tn ;1 1 1 1( 3)求a 2 ?a 3...的值 .a 1 ? a 2 a 3 ?a 4a 33? a3422.( 10 分)某房产开发商年初计划开展住宅和商铺出租业务,每套住宅的平均面积为 80 平方米,每套商铺的平均面积为60 平方米,出租住宅每平方米的年利润是30 元,出租商铺每平方米的年利润是 50 元 .政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000 平方米 .若当年住宅和商铺的最大需求量分别为450 套和 600 套,且开发的住宅和商铺全部租空.问房产开发商出租住宅和商铺各多少套,可使年利润最大并求早最大年利润.23.( 14 分)已知圆 O :x 2+y 2=r 2(r>0 )与椭圆 C :x 2y 2 1(a b 0) 相交于点 M (0,1),n ( 0,y 2b 2-1),且椭圆的一条准线方程为x=-2.(1) 求 r 的值和椭圆 C 的方程;( 2)过点 M 的直线 l 另交圆 O 和椭圆 C 分别于 A,B 两点 .uuuv uuuv ①若 7MB 10MA, 求直线 l 的方程;②设直线 NA 的斜率为 k 121=2k 2.,直线 NB 的斜率为 k ,求证 :k。

完整)2019年浙江高职考数学试卷

完整)2019年浙江高职考数学试卷

完整)2019年浙江高职考数学试卷2019年浙江省单独考试招生文化考试数学试题卷本试题卷共三大题,共4页,满分150分,考试时间120分钟。

考生事项:1.答题前,请务必将自己的姓名和准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上的“注意事项”要求,在答题纸相应的位置上规范作答。

在本题卷上的作答一律无效。

一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均不得分)1.已知集合A={-1},B={-3,-1,1,3},则A∩B的值为A。

{-1,1}B。

{-1}C。

{1}D。

Ø2.不等式x^2-4x≤0的解集为A。

[0,4]B。

(0,4)C。

[-4,0)∪(0,4]D。

(-∞,0]∪[4,+∞)3.函数f(x)=ln(x-2)+1/(x-3)的定义域为A。

(2,+∞)B。

(0,4)C。

(-∞,2]∪[3,+∞)D。

(2,3)∪(3,+∞)4.已知平行四边形ABCD,则向量AB+BC= A。

BDB。

DBC。

ACDD。

DC5.下列函数以π为周期的是A。

y=sin(x-π)B。

y=2cosxC。

y=sin2xD。

y=sin(x)6.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是A。

400B。

380C。

190D。

407.已知直线的倾斜角为60°,则此直线的斜率为A。

-√3B。

-√3/3C。

√3/3D。

√38.若sinα>0且tanα<0,则角α终边所在象限是A。

第一象限B。

第二象限C。

第三象限D。

第四象限9.椭圆标准方程为(x^2/4)+(y^2/9)=1,一个焦点为(-3,0),则t的值为A。

-1B。

0C。

1D。

310.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为A。

江苏省对口高考数学试卷

江苏省对口高考数学试卷

江苏省2019年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩ N 等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z 满足z ·i =1+2i ,则z 的虚部为3. 已知数组a =(2,-1,0),b =(1,-1,6),则a ·b 等于4. 二进制数()2换算成十进制数的结果是 A.(138)10 B.(147)10 C.(150)10 D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为A.π4B.π22C.π5D.π3 6. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于 A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于B.2-C.2 9. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a=3,则αx y cos =的周期是 .14.已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,线段MF 的中点坐标是(2,2),则p = . 15.已知函数f (x )=⎪⎩⎪⎨⎧,2,log 2x x, 令g (x )=f (x )+x +a .若关于x 的方程g (x )=2有两个实根,则实数a 的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x 的不等式x 2-4ax +4a >0在R 上恒成立.(1)求实数a 的取值范围;(2)解关于x 的不等式16log 2log 23a x a <-.17.(10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,且f (2)=-1.令a n =f (n -3)(n ∈N *).(1)求a ,b 的值;(2)求a 1+a 5+a 9的值.18.(12分)已知曲线C :x 2+y 2+mx +ny +1=0,其中m 是从集合M ={-2,0}中任取的一个数,n是从集合N ={-1,1,4}中任取的一个数.(1)求“曲线C 表示圆”的概率;(2)若m =-2,n =4,在此曲线C 上随机取一点Q (x ,y ),求“点Q 位于第三象限”的概率.x ≤0 x >019.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221 ,求该商品的日销售额f (x )的最大值与最小值.21.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式;(2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+Λ的值.1≤t ≤41≤t ≤9022.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :)0>>(12222b a b y a x =+相交于点M (0,1),N (0,-1),且椭圆的一条准线方程为x =-2.(1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107=,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图。

2019数学对口试卷(最新整理)

2019数学对口试卷(最新整理)

二、填空题(将正确答案写在横线上,要注意答案的书写规范及准确性)
1. y lg x2 5x 6 的定义域是

2.已知在 ABC 中, a 2 b2 bc c 2 角 A=

3.过点(2,3)且垂直于 x 2 y 0 的直线方程是

4.抛物线 y 2 10x 的焦点到准线的距离是

(A) 30 (B) 45
(C) 60 (D) 90
9.5 位同学排成一列,甲乙两人不相邻的排法有( (A)48 (B)36(C)72 (D)54
)种
10.sin15 sin 30 sin 75 (

3
3
1
1
(A) 4 (B) 8 (C) 8 (D) 4
2 卷非选择题(共 8 小题.每小题 4 分.共 32 分)
位置关系是(

(A)相交
(B)相切
(C)相离
(D)相交或相离
6.下列函数中是奇函数且在 0, 上是增函数的是(

(A) y e x (B) y x 2 1 (C) y x
7.设向量
a
2,1,
b
x,3 且
a
b

x=(
1 (A) 2 (B)3
3 (C) 2
(D)-2
y 1
(D)
x

8.正方体 ABCD — A1B1C1D1 中异面直线 BD1 和 A1D 所成角是(
5.某小组学生约定假期每两人互通一次信件,共计 56 封,则这个小组的学生有多少人呢?
3x 2 6.(本题 8 分)求以双曲线 2
3y2 10
1 的右焦点为圆心,且与直线 3x
y 4 0 相切

四川省2019年高职院校单独招生考试数学试卷

四川省2019年高职院校单独招生考试数学试卷

秘密★启用前四川省2019年高职院校单独招生统一考试文化考试(普通高中类)试卷数学一、选择题(共10小题;共50分)1、若集合{}12<<-=x x A ,{}31>-<=x x x B 或,则=B A ( ) A.{}12-<<-x x B.{}32<<-x x C.{}11<<-x x D.{}31<<x x2、若直线022=++y ax 与直线023=--y x 平行,则=a ( )A.3-B.23-C.6-D. 233、已知向量()m a ,1=,()2,3-=b ,且()b b a ⊥+,则=m ( )A.8-B.6-C.6D. 84、已知复数i z 21+=,则=•z z ( )A.i 43-B.i 45+C.3-D. 55、从5名医生(3男2女)中随机等可能地选派2名医生,则恰选1名男医生和1名女医生的概率为( ) A.101 B.52 C.21 D. 53 6、已知32sin =α,则()=-a 2cos π( ) A.35- B.91- C.91 D. 35 7、已知直线l 与圆122=+y x 相切与点⎪⎪⎭⎫ ⎝⎛23,21M ,则l 的斜率是( ) A.1 B.21 C.33- D. 3 8、若2tan =α,则ααααcos 2sin cos sin 2+-的值为( )A.0B.43C.1D. 459、x x y ln 82-=在区间⎪⎭⎫ ⎝⎛41,0和⎪⎭⎫ ⎝⎛1,21内分别为( ) A.增函数,增函数 B.增函数,减函数C.减函数,减函数D. 减函数,增函数10、四人赛跑,假设其跑过的路程()x f i (其中{}4,3,2,1∈i )和时间()1>x x 的函数关系式分别是()21x x f =,()x x f 42=,()x x f 23log =,()x x f 24=,如果他们一直跑下去,最终跑到最前面的人具备的函数关系是( )A.()21x x f =B.()x x f 42=C.()x x f 23log =D.()x x f 24=二、填空题(共3小题;共12分)11、若1lg lg =+b a ,则=ab .12、数列{}n a 满足n n a a 21=+,若11=a ,则=4a .13、如图所示,有D C B A ,,,四个海岛,已知B 在A 的正北方向15n mile 处,C 在A 北偏东 60方向,又在D 的北偏东 45方向,且C B ,相距21n mile ,则D C ,两岛屿的距离为 .三、填空题(共3小题;共38分)14、设等差数列{}n a 的前n 项和为n S ,12-=a ,84-=S ,(1)求数列{}n a 的通项公式;(2)若99-=n S ,求n 的值。

2019年江苏高职单招数学真题试卷

2019年江苏高职单招数学真题试卷

2019年江苏高职单招数学真题卷参考公式:锥体的体积公式V=h,其中S是锥体的底面积,h是锥体的高一、选择题(本大题共10小题,每小题4分共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,3},B={l,3},若AUB={1,2,3},则实数m=A.2B.3C. 6D.92.盒中装有大小、形状都相同的6个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是A .BC D.3.已知函数f(x)=)(a>0)的最小正周期为,则的值为_____A.1 B .2 C .D (2)4。

如图,在△ABC中,=a,=b。

若点D满足=2,则= A.a+b B..a-b C. .a+b D. .a-b5。

如图是一个算法流程图,若输入x的值为3,则输出s的值为A.2B.4C.8D.166。

若变量x,y满足,则=y-2x的最大值为A.-1B. 0 C .1 D.27.在平面直角坐标系中,已知第一象限的点(a,b)在直线x+2y-1=0上,则+的最小值为_______A.11B.9C.8D.68.已知f(1-x)=2x-1,且f(m)=6则实数m的值为_______A. B. - C. -1 D. -9。

已知等差数列{an}的前n项和为Sn,若=1,=15,则=___ A.55 B.45 C.35 D.2510。

已知圆C与圆+=1关于直线x+y=0对称,则圆C的标准方程为A+=1 B.+=1C.+=1D.+=1二、填空题(本大题共5小题,每小题4分,共20分)11.若复数z满足z(1+i)=4-2i(i为虚数单位),则=______________12.设平面向量a=(2,y),b=(1,2),若a∥b,则=________________13.如图,已知三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,三棱锥P-ABC的体积为_______________14.容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[30,60)的频率为____________分组[10,20][20,30)[30,40)[40,50)[50,60)[60,70]频数54321215。

河南省2019年对口升学数学真题答案及解析

河南省2019年对口升学数学真题答案及解析

)
. 3
【考点】
:等差数列的前 n 项和公式
【解析】选择 C.

2
2
3
2 = 21 + , 3 = 31 + 3,由 3 −

化简得1 + − (1 + ) = 1,
2

2
31 +3
= 1,得
= 1,
3

21 +
= 2,
2
= 1,
故选 C.
⃗⃗⃗⃗⃗ •
⃗⃗⃗⃗⃗ = ( )
因为2 − = ( − ) > 0,所以2 > ,
因为 > 2 = ( − ) > 0,所以 > 2 ,
根据不等式性质的传递性得2 > > 2 .故选择 D.
3.已知函数( + 1)的定义域为[-2,4],则函数(2 + 1)的定义域为( )
3 3
B.如果2 +2 ≠0,则 ≠ 0或 ≠ 0
C.如果 ≠ 0或 ≠ 0,则2 +2 >0
D.如果2 +2 ≠0,则 ≠ 0且 ≠ 0
【考点】
:命题
【解析】选择 A.
命题:已知2 + 2 = 0则 = 0, = 0
逆命题:如果 = 0, = 0,则2 + 2 = 0
显然 A 选项不成立,
1
−2
1
1
2
−1
=− >
= −1,
−1
B 选项不成立,
−2
1
−2
2
−1
= <
= 2,
C 选项不成立,(−2)2 = 4, (−2) × (−1) = 2,(−1)2 = 1, 4 > 2 > 1,故选择 D.

(完整)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

(完整)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

江苏省2019年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z满足z·i=1+2i,则z的虚部为A.2B.1C.-2D.-13. 已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A.-2B.1C.3D.64. 二进制数(10010011)2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 A.π4B.π22C.π5D.π36. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于A.-1B.2-C.2D.19. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是 A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a=3,则αxy cos=的周期是 .14.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,线段MF的中点坐标是(2,2),则p= .15.已知函数f (x)=⎪⎩⎪⎨⎧,2,log2xx,令g (x)=f (x)+x+a.若关于x的方程g (x)=2有两个实根,则实数a的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x的不等式x2-4ax+4a>0在R上恒成立.(1)求实数a的取值范围;(2)解关于x的不等式16log2log23axa<-.x≤0x>017.(10分)已知f (x)是定义在R上的奇函数,当x≥0时,f (x)=log2(x+2)+(a-1)x+b,且f (2)=-1.令a n=f (n-3)(n∈N*).(1)求a,b的值;(2)求a1+a5+a9的值.18.(12分)已知曲线C:x2+y2+mx+ny+1=0,其中m是从集合M={-2,0}中任取的一个数,n是从集合N={-1,1,4}中任取的一个数.(1)求“曲线C表示圆”的概率;(2)若m=-2,n=4,在此曲线C上随机取一点Q(x,y),求“点Q位于第三象限”的概率.19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sinC =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221,求该商品的日销售额f (x )的最大值与最小值.1≤t ≤4041≤t ≤9021.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式; (2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+ 的值.22.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :()012222>>=+b a bya x 相交于点M(0,1),N (0,-1),且椭圆的一条准线方程为x =-2. (1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107 ,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图2019年江苏省普通高校对口单独招生数学参考答案。

河南省2019年对口高考数学卷

河南省2019年对口高考数学卷

河南省2019年普通高等学校对口招收中等职业学校毕业生考试数学试卷一、选择题(每小题3分, 共30分. 每小题只有一个选项是正确的,请将正确选项涂在答题卡上)1.已知2200,0a b a b 则+===.下列哪一个是前述命题的逆否命题( ) A .如果0a ¹或0b ¹,则220a b +?;B .如果220a b +?,则0a ¹或0b ¹;C .如果0a ¹,0b ¹,则220a b +>;D .如果220a b +?,则0a ¹且0b ¹. 2.已知,,,a b c R ab c 且?<,则下列式子中,正确的是( )A .22ac bc >B .11a b <C .b aa b> D .22a ab b >>3.已知函数(1)f x +的定义域为[24],-,则函数(21)f x +的定义域为( )A .33[]22,- B .[33],- C .[39],- D .[12],-4.下列各组函数中,表示同一函数的是( )①()()f x g x ==②()()f x x g x 和==③2()()f x x g x 和==④22()21()21f x x x g t t t 和=-+=-+A .①②B .①③C .③④D .①④ 5.已知等差数列{}n a 的前n 项和为n S ,若32132S S -=,数列{}n a 的公差d 的值为( )A .12B .1-C .2D .3 6.已知点(2,1),(1,3),(3,4)A B C -.则AB BC u u u r u u u rg =( )A .4-B .4C .3-D .37.抛物线28x y =的焦点到准线的距离为( ) A .1 B .2 C .4 D .88.三棱柱ABC-A 1B 1C 1的侧棱长和两个底面的边长都为2,侧棱垂直于底面,E ,F 分别为AB ,A 1C 1的中点,直线EF 与C 1C 所成角的余弦值为( ) A.2 B.5 C.5 D.29.一次掷甲乙两枚骰子的基本事件个数为( ) A .12 B .36 C .6 D .6610.从10个人中选出2人分别为正副班长,选法种数为( ) A .45 B .90 C .30 D .180 二、填空题(每小题3分, 共24分)11.已知集合{}{}{}21,3,,3,,3,A a B a A B a I 且===,则a = . 12.不等式2230x x --<的解集为 .13.已知22sin 1tan 3sin 2,则q q q+== . 14.若向量(12)(31)a b r r,,,==-,则()()a b a b r r r r g -= . 15.直线:2360l x y ++=在y 轴上的截距为 .16.已知正三棱锥的侧棱和底面连长都为1,则它的体积为 . 17.把4个不同的球分别放入不同的3个盒子里,一共有 种放法. 18.已知事件A 的对立事件为()0.4()A P A P A ,且,则== . 三、计算题(每小题8分, 共24分)19.在ABC D 中,1,cos , 4.43A B AC p ?== (1)求sin ;C ; (2)求ABC D 的面积.20.已知双曲线经过点()32,-,且与椭圆224936x y +=有相同的焦点,求双曲线的标准方程.21.已知()92390123921.x a a x a x a x a x L +=+++++ 求02468a a a a a ++++的值.四、证明题(每小题6分, 共11分)22.若函数()f x 是R 上的增函数,对任意实数a ,b ,若0a b +>, 求证:()()()()f a f b f a f b +>-+-.23.如图,已知矩形ABCD ,点E 为平面ABCD 外一点,EAD ABCD 平面平面^,且AE DE ^.求证EAB ECD 平面平面^.五、综合题(10分)24.等比数列{}n a 中,公比1q ¹,它的前n 项和为n S 。

2019年山西省对口升学数学试题1

2019年山西省对口升学数学试题1

2019年山西省对口升学数学试题一、 选择题(每题3分)1. 已知集合A={2,3,4},B={0,1,2,3},则A ∩B=( ).A.{0,3,4}B.{0,1,2,3,4}C.{2,3} D{1,2}2.函数y=1x的定义域为( ) A.R B.{0}C.{x ∈R|x ≠0}D. {x ∈R|x ≠1}3. 下列各角是第四象限的角的是( ).A.-60°B.210°C.120°D.60°4.4与9的等比中列是( ).A.-6B.6 C .±√13 D. ±65.已知等差数列{a n }中,a 3=9,a 9=3,则公差d=( ).A.12B.1C.- 12D.-1 6.已知 a ⃗=(3,2)b ⃗⃗=(-3,6)则a ⃗ +b⃗⃗ 的坐标是( ) A.(0,8) B.(6,-4) C.8 D.以上都不对7.(1+x )16展开式中系数最大的项是( )A.第7项B.第8项C.第9项D.第10项8.若∣a ⃗∣=√3,∣b ⃗⃗∣=2且a ⃗ ,b ⃗⃗ =30°,则a ⃗•b⃗⃗ =( ) A. √3 B.3 C.- √3 D.-39.从9名女生和4名男生中选一人主持班会,则不同的选法种数为( )A.3B.6C.7D.810.点(0,1)到直线2x-y+2=0的距离是( )A. √55B.4√55 C. √35 D. √155二、 填空题.(每题4分)1.f (x )=23x−5,则f (3)= .2.lg20+lg5= .3.已知a⃗=(-1,2)b⃗⃗=(3,m).且a⃗⊥b⃗⃗则m= .,则cos 2a= .4.已知cos a=125.二进制数(1100)2化为10进制数为 .6.由数字1,2,3,4,5组成的无重复数字的俩位偶数的有个三.解答题(共6小题)1.(6分)在△ABC中,a=12,b=13,c=5,求∠B.2.(6分)在等差数列{a n}中,已知a1=1,a6=21 求公差d和S6.3.(8分)已知二次函数f(x)=ax2+bx+c,且f(0)=0,f(1)=2,f(-2)=2,求函数f(x)的解析式.4.(8分)求对称中心在原点,焦点坐标(0,-2),(0,2)的长轴长为6的椭圆方程.5.(8分)已知tana=3,a是第一象限的角,求sina和cosa.6.(10分)袋中有7只乒乓球,其中4只白球,3只黄球,从中任意取出俩球,求下列事件发生的概率:(1)取出的球都是白球;(2)取出的球一只是白球一只是黄球.。

2019年浙江省高职考单招单考数学试卷(附答案)

2019年浙江省高职考单招单考数学试卷(附答案)

2019浙江省高职单独考试数学试卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―10小题每小题2分,11―20每小题3分,共50分.)1. 已知集合A ={-1,0,1},集合B ={-3,-1,1,3},则A ∩B =( ) A. {-1,1} B. {-1} C. {1}D. ∅2. 不等式x 2-4x ≤0的解集为( )A. [0,4]B. (0,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)3. 函数f (x )=ln (x −2)+1x −3的定义域为( ) A. (2,+∞) B. [2,+∞) C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)4. 已知平行四边形ABCD ,则向量⃗AB +⃗B C =¿( ) A. ⃗BDB. ⃗DBC. ⃗ACD. ⃗C A5. 下列函数以π为周期的是( ) A .y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin2x6. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 400B. 380C. 190D. 407. 已知直线的倾斜角为60°,则此直线的斜率为( ) A.−√33B. −√3C. √3D. √338. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限 B. 第二象限 C. 第三象限D.第四象限9. 椭圆标准方程为x 22t +4+y 24−t=1,一个焦点为(-3,0),则t 的值为( ) A. -1 B. 0 C. 1 D. 310.已知两直线l 1、l 2分别平行于平面β,则两直线l 1、l 2的位置关系为( ) A. 平行 B. 相交 C. 异面 D. 以上情况都有可能11.圆的一般方程为x 2+y 2-8x +2y +13=0,则其圆心和半径分别为( ) A. (4,-1),4 B. (4,-1),2 C. (-4,1),4 D. (-4,1),212.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为( ) A.110000B.150C.3100D.1710013. a 、b 、c 为实数,则下列各选项中正确的是( ) A. a -b <0⇔a -c <b -c B. a -b >0⇔a >-b C . a -b >0⇔-2a >-2b D . a >b >c >0⇔a b >a c 14.sin1050°的值为( ) A. √22B. √32C.−12D.1215. 双曲线x2a2−y2b2=1的实轴长为10,焦距为26,则双曲线的渐渐近线方程为( )A. y=±135x B. y=±125x C. y=±512x D. y=±513x16.方程y=√x2−4x+4所对应曲线的图形是( )17.若角α的终边经过点(4,-3),则cos2α的值为( )A. 725B.−1625C.−725D.162518.动点M在y轴上,当它与两定点E(4,10)、F(-2,1)在同一条直线上时,点M的坐标是( )A. (0,6)B. (0,5)C. (0,4)D. (0,3)19.“2019k2−1=1”是“k=1”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件20.某旅游景点有个人票和团队票两种售票方式,其中个人票每人80元,团队票(30人以上含30人)打七折. 按照购票费用最少原则,建立实际游览人数x与购票费用y(元)的函数关系,以下正确的是()A. y={80x,0≤x<24,x∈N1344,24≤x≤30,x∈N56x,x>30,x∈N B. y={80x,0≤x<21,x∈N1680,21≤x≤30,x∈N56x,x>30,x∈NC. y={80x,0≤x<24,x∈N1920,24≤x≤30,x∈N56x,x>30,x∈N D. y={80x,0≤x<21,x∈N2400,21≤x≤30,x∈N56x,x>30,x∈N二、填空题(本大题共7小题,共28分)21.等比数列14,1,4,16,…的第5项是_____.22.化简:cos(π+θ)tan(π-θ)=_____.23.(2x-y)6展开式的第5项为_____.24.圆柱的轴截面是边长为3的正方形,则圆柱的体积等于_____.25.如图所示,函数y=f(x)的图象关于直线x=8对称,则f(6)_____f(13)(填,“>”、“<”或“=”).26.正数x、y满足lg x+lg y=2,则x+y的最小值等于_____.27.已知椭圆中心在原点且对称轴为坐标轴,它与双曲线x2−y 23=1有且仅有两个公共点,它们的离心率之积为1,则椭圆标准方程为_______________.三、解答题(本大题共8小题,共72分)(解答应写出文字说明及演算步骤)28.(本题满分7分)计算:sin π2−l g1000+0.25−12÷5√32−3!+√(−5)2.29.(本题满分8分)在△ABC中,∠B=∠C=30°,a=2√3.(1)求c;(4分)(2)N为AC中点时,求△ABN的面积.(4分)30.(本题满分9分)已知圆C的圆心为(-1,1),半径为√2.(1)写出圆C的标准方程;(3分)(2)试判断直线x+y-1=0与圆C的位置关系;若相交,求出两交点间的距离.(6分)31.(本题满分9分)已知α、β为第二象限角,且满足sinα=2√23,sinβ=35,求:(1)cos(α-β);(2)函数f (x)=cosαcos x+cosβsin x的最大值.(4分)32.(本题满分9分)已知抛物线的顶点在原点,焦点坐标为F(3,0).(1)求抛物线的标准方程(3分)(2)若抛物线上点M到焦点的距离为4,求点M的坐标.(6分)33.(本题满分10分)如图,正三棱锥P-ABC的侧棱长为2√3,底面边长为4.(1)求正三棱锥P-ABC的全面积;(4分)(2)线段P A、AB、AC的中点分别为D、E、F,求二面角D-EF-A的余弦值.(6分)34.(本题满分10分)体育场北区观众席共有10500个座位. 观众席座位编排方式如图所示,由内而外依次记为第1排、第2排、……. 从第2排起,每一排比它前一排多10个座位,且最后一排有600个座位.(1)北区观众席共有多少排?(7分)(2)现对本区前5排的座位进行升级改造,改造后各排座位数组成数列{b n}. {b n}满足:①b1等于原第1排座位数的一半;②b n=b n-1+n2(n=2,3,4,5). 求第5排的座位数.(3分)35.(本题满分10分)电影《流浪地球》上映期间,一场电影的票价定为50元时,电影院满座,满座时可容纳600人. 若票价每提高5x(x∈N)元,售出票数就减少30x张.(1)若票价为60元,求实际售出的电影票数;(2分)(2)写出一场电影的票房收入R(元)与x的函数关系式;(3分)(3)已知放映一场电影所需的总成本为600(20-x)元,若不考虑其他因素,票价定为多少时,电影院能获得最大利润?(5分)答案一、单项选择题1. A2. A3. D4. C5. D6. C7. C8. B9. D 10. D 11. B 12. D 13. A 14. C 15.B16. A 17. A 18. C 19. B 20. B二、填空题21. 64 22. 23. 24. 25. > 26. 20 27. 或三、解答题28. -229.(1)2;(2)30.(1);(2)直线与圆相交,31.(1);(2)32.(1);(2)33.(1);(2)34.(1)21排;(2)254个35.(1)540张;(2);(3)票价定为85元时,电影院能获得最大利润。

江苏高职单招数学真题试卷.doc

江苏高职单招数学真题试卷.doc

2019 年江苏高职单招数学真题卷参考公式:锥体的体积公式V= h,其中 S 是锥体的底面积,h 是锥体的高一、选择题 (本大题共 10 小题,每小题 4 分共 40 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合 A={1,3} ,B={l,3},若 AUB={1,2,3} ,则实数 m=A.2B.3C. 6D.92.盒中装有大小、形状都相同的 6 个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是A.B C D.3.已知函数 f(x)=)(a>0) 的最小正周期为,则的值为_____A.1 B .2 C .D⋯24。

如图,在△ ABC 中,=a ,=b 。

若点 D 满足=2,则= A. a+ b B.. a- b C. . a+ b D. . a- b5。

如图是一个算法流程图,若输入x 的值为 3,则输出s 的值为A.2B.4C.8D.166。

若变量x, y 满足,则=y-2x 的最大值为A.-1B. 0 C .1 D.27.在平面直角坐标系中,已知第一象限的点(a,b)在直线 x+2y-1=0上,则+ 的最小值为_______A.11B.9C.8D.68.已知f(1-x)=2x-1 ,且f(m)=6则实数m的值为_______A. B. - C. -1 D. -9。

已知等差数列{an}的前 n 项和为 Sn,若=1 ,=15 ,则=___ A.55 B.45 C.35 D.2510。

已知圆 C 与圆+=1 关于直线x+y=0 对称,则圆 C 的标准方程为A +=1 B. +=1C. + =1D. + =1二、填空题 (本大题共 5 小题,每小题 4 分,共 20 分)11.若复数 z 满足 z(1+i)=4-2i(i为虚数单位),则=______________12.设平面向量a=(2 ,y),b=(1,2) ,若 a∥b,则=________________13.如图,已知三棱锥 P-ABC 中, PA⊥底面 ABC,PA=3 ,底面 ABC 是边长为 2 的正三角形,三棱锥 P-ABC 的体积为 _______________14.容量为 20 的样本数据,分组后的频数如下表,则样本数据落在区间[30,60) 的频率为 ____________分组[10,20] [20,30 )[30,40 )[40,50 )[50,60 ) [60,70]频数 5 4 3 2 1 215。

四川省2019普通高校职教师资和对口招生统一考试数学试卷

四川省2019普通高校职教师资和对口招生统一考试数学试卷

四川省2019年高职对口招生考试
数学
本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1~2页,第Ⅱ卷第3~4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

满分150分,考试时间120分钟。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)
注意事项: 1.选择题必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。

2.第I卷共1个大题,15个小题。

每个小题4分,共60分。

一、选择题(每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的)
第Ⅱ卷(非选择题共90分)
注意事项:
1.非选择题必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答。

作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效。

2.第Ⅱ卷共2个大题,11个小题,共90分。

二、填空题(本大题共5个小题,每小题4分,共20分.)
三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或推演步
骤.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档