第2章牛顿运动定律刚体定轴转动定律
52--定轴转动定律
Mdt d(J) 刚体定轴转动角动量定理微分形式
t
J
Mdt
t0
J00 d(J) J J00
刚体定轴转动角动量定理积分形式
4
L (miviri ) (miri2 ) ( miri 2 ) J
J miri 2 称为刚体对转轴的转动惯量
3
L J
于是有 M d(J) J d J
dt
dt
刚体定轴转动定理: M J
F ma
对 M d (J) 进行处理得到:
大小:M Fr sin
M
F
Or
d
Pr
z
F∥
or
F θ F⊥
转轴
转动平面 2
二、刚体定轴转动定理
在以角速度ω作定轴转动的刚体
内取一质点 mi ,则其对OZ轴
的角动量为:
o ri
v
P
Li miviri
对于整个刚体,各质点对定轴的角动量都具有相同的 方向。则定轴转动刚体的角动量就是对组成刚体的所 有质点的角动量求和。
刚体转动定律
1
一、作用于定轴刚体的外力矩
1 .力对固定点的矩
M
rF
2 .力对固定轴的矩
(1)力直于转轴
这种情况相当于质点绕固 定点O转动的情形。
(2)力与转轴不垂直 可以把力分解为平行于转轴
的分量和垂直于转轴的分量。
平行转轴的力不产生转动效果,
该力对转轴的 力矩 为零。 M r F
刚体的定轴转动定律
刚体的定轴转动定律1. 介绍刚体是物理学中的一个重要概念,它指的是在运动过程中形状和大小保持不变的物体。
刚体的定轴转动定律是描述刚体绕固定轴线转动的规律和性质,对于我们理解刚体的运动和应用相关物理问题具有重要意义。
2. 刚体的转动惯量2.1 定义刚体绕轴线转动时,其转动惯量是衡量刚体抵抗转动运动的特性。
转动惯量的大小取决于刚体的质量分布以及轴线的位置和方向。
2.2 转动惯量的计算方法转动惯量可以通过积分计算得到,对于一个质量为m的刚体,其转动惯量可以用以下公式表示: [ I = r^2 dm ] 其中,r是质量元dm到转轴的距离。
对于一些常见的简单形状的刚体,转动惯量可以通过一些公式直接计算得到,例如:- 细杆绕直线轴线转动:[ I = mL^2 ] - 球体绕直径轴线转动:[ I = MR^2 ] - 圆环绕直径轴线转动:[ I = MR^2 ]3. 定轴转动的角动量3.1 定义角动量是描述物体转动的物理量,刚体的角动量可以通过转动惯量和角速度的乘积得到。
3.2 角动量的守恒对于一个孤立系统,如果没有外力矩作用,刚体的角动量将保持不变,这就是角动量守恒定律的内容。
3.3 角动量定理角动量定理描述了外力矩对刚体角动量的影响,它可以表示为以下公式: [ = ] 其中,()是作用在刚体上的外力矩,(L)是刚体的角动量。
4. 牛顿第二定律与角加速度4.1 牛顿第二定律牛顿第二定律描述了刚体转动的加速度与作用力的关系,其公式为: [ = I] 其中,()是作用在刚体上的合外力矩,(I)是刚体的转动惯量,()是刚体的角加速度。
4.2 角加速度的计算对于旋转轴与力矩不垂直的情况,我们可以通过以下公式计算刚体的角加速度:[ = ] 其中,()是力矩与旋转轴之间的夹角。
5. 定轴转动的动能5.1 定义刚体的转动动能是由于其转动而具有的能量,它可以通过转动惯量和角速度的平方的乘积得到。
5.2 动能定理动能定理描述了外力对刚体转动动能的影响,它可以表示为以下公式: [ W = K ] 其中,(W)是作用在刚体上的合外力所做的功,(K)是刚体的转动动能。
2.2 刚体定轴转动定律及其应用
R
dS
r
O
- 2 r kv 2 r d r
0
R
m
- 2 r k r 2 r d r
0
R
4 k r 3dr k R 4
0
R
M 随 变化
M J
M J
4
d J dt
M k R
4
1 2 d k R mR 2 dt
mg
0
d
0
d
0
3g cos d 2L
3g sin L
3) 此时,棒中点C的速度和加速度
L v C rC 6
2
3g sin L
竖直位置?
g acn rC sin 2
g act rC cos 4
例:如图,设滑块A,重物B及滑轮C的质量分别为MA, MB,MC。滑轮C是半径为 r 的均匀圆板。滑块A与桌面之 间,滑轮与轴承之间均无摩擦,轻绳与滑轮之间无滑动。 求:(1)滑块A的加速度a (2)滑块A与滑轮C之间绳的张力T1, (3)滑轮C与重物B之间绳的张力T2。
两边积分
2 k R 2 d dt 0 0 m
0
t
d
0
0
0
2 k R 2 d m
2 k R 2 0 m m0 m 0 N 2 2 2 k R 2 2 4 kR
例. 将一根质量为M,长为L的匀质细杆两端A、B用 等长的线水平地悬挂在天花板上,若突然剪断其中一 根,求此瞬间另一根绳内的张力有多大。 解: 突然剪断B线,棒AB受重力和A线对它的拉力作用 AB绕A点在竖直面内转动。 A线的拉力对A点的力矩为零 重力对A点的力矩为 转动定律
(完整版)大学物理笔记
1. 参考系:为描述物体的运动而选的标准物2. 坐标系3. 质点:在一定条件下,可用物体上任一点的运动代表整个物体的运动,即可把整个物体当做一个有质量的点,这样的点称为质点(理想模型)4. 位置矢量(位矢):从坐标原点指向质点所在的位置5. 位移:在t ∆时间间隔内位矢的增量6. 速度 速率7. 平均加速度8. 角量和线量的关系9. 运动方程10. 运动的叠加原理位矢:k t z j t y i t x t r r ϖϖϖϖϖ)()()()(++==位移:k z j y i x t r t t r r ϖϖϖϖϖϖ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆ϖ速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t ϖϖϖϖϖϖϖϖϖ•••→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dtr d dt d t a t ϖϖϖϖϖϖϖϖϖϖ••••••→∆++=++===∆∆=222222220lim υυ 圆周运动 角速度:•==θθωdtd 角加速度:••===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a ϖϖϖ+= 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dtd a t == 沿切线方向 线速率:ωυR =弧长:θR s =1.牛顿运动定律:牛顿第一定律:任何物体都保持静止或匀速直线运动的状态,直到其他物体作用的力迫使它改变这种状态牛顿第二定律:当质点受到外力的作用时,质点动量p的时间变化率大小与合外力成正比,其方向与合外力的方向相同牛顿第三定律:物体间的作用时相互的,一个物体对另一个物体有作用力,则另一个物体对这个物体必有反作用力。
作用力和反作用力分别作用于不同的物体上,它们总是同时存在,大小相等,方向相反,作用在同一条直线上。
刚体定轴转动知识点总结
刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。
在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。
2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。
角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。
3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。
在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。
因此,可以根据力矩的大小和方向来分析刚体的转动运动。
4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。
转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。
转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。
5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。
转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。
6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。
通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。
稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。
7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。
比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。
刚体的定轴转动定律
T2、 T2’(T2’= T2)
T1
T2
T1
T2
am
a
1
a
m
m1
m1g 2
m2
m2g
因m2>m1,物体1向上运动,物体2向下运动,滑轮以
顺时针方向旋转,Mr的指向如图所示。可列出下列方
程
T1 G1 m1a
G2 T2 m2a
T2r T1r M J
式中是滑轮的角加速度,a是物体的加速度。滑轮
t 0
方向:
t dt
右手螺旋方向
z (t)
x
参考平面
参考轴
刚体定轴转动(一
维转动)的转动方向可
以用角速度的正负来表
示.
角加速度
d
dt
定轴转动的特点
z
>0
z
<0
1) 2)
每一质点均作圆周运动,圆面为转动平面;
任一质点运动
,
,
均相同,但
v,
a不同;
3) 运动描述仅需一个坐标 .
三、 匀变速转动公式
轴的力矩 Mzk
r
F
z
F
k
O rFz
F
M z rF sin
z
Байду номын сангаас
F
M
O
r P
d
五. 定轴转动刚体的转动定律:
Fit
Fi
fit
•
ri
fi
mi• fin
Fin
O
•
j
d
fij
fji
i
Fit ri (miri2 )
I miri2
i
大学物理A(1)章节练习题
大学物理A (1)章节练习题第一章 质点运动学1.关于质点的概念下列理解正确的是( )A.研究地球公转时,因为地球直径太大,不能把地球看成质点来研究B.质点是一个理想化的模型,并且是真实存在的C.如果一个物体可以被看成质点,那么我们在研究问题时就可以忽略这个物体的形状和大小D.只有质量小的物体才能被看成质点,质量大的物体则不能被看成质点2.关于质点的概念下列理解错误的是( )A.只有很小的物体才能看成质点B.质点是为了方便研究物体运动而提出的一个理想化的模型,实际并不存在C.质点忽略了物体的形状和大小,看成一个有质量的点D.质点不同于数学中的几何点3. 下列关于速度和速率的说法,正确的是()A.瞬时速度是矢量,而平均速度是平均值,是个标量B.瞬时速率不是平均速率的极限值C.瞬时速率和瞬时速度的大小相等D.瞬时速度可以描述物体运动的快慢,而平均速度不能描述物体运动的快慢4.一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小的表示有四种意见,即(1)t d d r ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是( )A. 只有(1)(2)正确B. 只有(2)正确C. 只有(2)(3)正确D. 只有(3)(4)正确5.质点作圆周运动时,下列说表述中正确的是( )A.速度方向一定指向切向,加速度方向一定指向圆心B.切向加速度仅由速率的变化引起C.由于法向分速度为零,所以法向加速度也一定为零D.速度方向一定指向切向,加速度方向也一般指向切向6.(判断)质点是一个理想化的模型,所以质点没有大小,形状和质量.7.(判断)物体在做单向直线运动时,位移的大小等于路程.8.(判断)当质点的位矢和速度被同时确定时,其运动状态也就被确定.9.(判断)匀速圆周运动的物体,速度方向一直沿着切线方向.10.(判断)匀加速运动时,速度方向总是与加速度方向在一条直线上.11.(判断)变速圆周运动中,其加速度的方向始终指向圆心.12.(判断)相对地面做匀速直线运动的火车车厢可以看做是惯性参考系.13.(判断)路程和位移是两个不同的概念,在时间趋于零时,位移的大小等于路程.14.一质点在半径为2m 的圆周上运动,其角位置为32t =θ,式中θ的单位为rad ,t 单位是s .(1)质点在任意时刻的角速度=ω .(2)t=1s 时质点的法向加速度 .切向加速度为 。
第2章刚体定轴转动
第2章 刚体定轴转动2.28 质量为M 的空心圆柱体,质量均匀分布,其内外半径为R 1和R 2,求对通过其中心轴的转动惯量.解:设圆柱体的高为H ,其体积为V = π(R 22 – R 12)h ,体密度为ρ = M/V .在圆柱体中取一面积为S = 2πRH ,厚度为d r 的薄圆壳,体积元为d V = S d r = 2πrH d r ,其质量为d m = ρd V ,绕中心轴的转动惯量为d I = r 2d m = 2πρHr 3d r , 总转动惯量为213442112d ()2R R I Hr r H R R πρπρ==-⎰22211()2m R R =+.2.29 一矩形均匀薄板,边长为a 和b ,质量为M ,中心O 取为原点,坐标系OXYZ 如图所示.试证明:(1)薄板对OX 轴的转动惯量为2112OX I Mb =; (2)薄板对OZ 轴的转动惯量为221()12OZI M a b =+. 证: 薄板的面积为S = ab ,质量面密度为σ = M/S .(1)在板上取一长为a ,宽为d y 的矩形元,其面积为d S = a d y , 其质量为d m =σd S ,绕X 轴的转动惯量为d I OX = y 2d m = σay 2d y , 积分得薄板对OX 轴的转动惯量为/2/223/2/21d 3b b OXb b I a y y a y σσ--==⎰32111212ab Mb σ==. 同理可得薄板对OY 轴的转动惯量为2112OY I Ma =. (2)方法一:平行轴定理.在板上取一长为b ,宽为d x 的矩形元,其面积为d S = b d x ,质量为d m = σd S , 绕过质心的O`Z`轴的转动惯量等于绕OX 轴的转动惯量d I O`Z` = b 2d m /12. 根据平行轴定理,矩形元对OZ 轴的转动惯量为 d I OZ = x 2d m + d I O`Z ` = σbx 2d x + b 2d m /12, 积分得薄板对OZ 轴的转动惯量为/222/21d d 12a M OZa Ib x x b m σ-=+⎰⎰/232/211312a ab x b M σ-=+221()12M a b =+.方法二:垂直轴定理.在板上取一质量元d m ,绕OZ 轴的转动惯量为d I OZ = r 2d m .由于r 2 = x 2 + y 2,所以d I OZ = (x 2 + y 2)d m = d I OY + d I OX , 因此板绕OZ 轴的转动惯量为221()12OZ OY OX I I I M a b =+=+.2.30 一半圆形细杆,半径为R ,质量为M ,求对过细杆二端AA `轴的转动惯量.解:半圆的长度为C = πR ,质量的线密度为λ = M/C .在半圆上取图2.28一弧元d s = R d θ,其质量为d m = λd s ,到AA `轴的距离为r = R sin θ, 绕此轴的转动惯量为d I = r 2d m = λR 3sin 2θd θ,半圆绕AA `轴的转动惯量为32sin d I R λθθ=⎰π31(1cos 2)d 2Rλθθ=-⎰π32122R MR λ==π2.31 如图所示,在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔.圆孔中心在圆盘半径的中点.求剩余部分对大圆盘中心且与盘面垂直的轴线的转动惯量.解:大圆的面积为S = πR 2,质量的面密度为σ = M/S .大圆绕过圆心且与盘面垂直的轴线的转动惯量为I M = MR 2/2.小圆的面积为s = πr 2,质量为m = σs ,绕过自己圆心且垂直圆面的轴的转动惯量为I C = mr 2/2, 根据平行轴定理,绕大圆轴的转动惯量为I m = I C + m (R/2)2.2221()(2)24m C R I I m m r R =+=+2221(2)4r r R σπ=+22221(2)4r M r R R =+,剩余部分的转动惯量为4222122()2M m r I I I M R r R=-=--.2.32 飞轮质量m = 60kg ,半径R = 0.25m ,绕水平中心轴O 转动,转速为900r·min -1.现利用一制动用的轻质闸瓦,在剖杆一端加竖直方向的制动力F ,可使飞轮减速.闸杆尺寸如图所示,闸瓦与飞轮之间的摩擦因数μ = 0.4,飞轮的转动惯量可按匀质圆盘计算.(1)设F = 100N ,问可使飞轮在多长时间内停止转动?这段时间飞轮转了多少转?(2)若要在2s 内使飞轮转速减为一半,需加多大的制动力F ?解:设飞轮对闸瓦的支持力为N`,以左端为转动轴,在力矩平衡时有0.5N` – 1.25F = 0, 所以N`=2.5F = 250(N).闸瓦对飞轮的压力为N = N`= 250(N), 与飞轮之间摩擦力为f = μN = 100(N), 摩擦力产生的力矩为M = fR .飞轮的转动惯量为I = mR 2/2,角加速度大小为β = -M/I = -2f/mR = -40/3(rad·s -2), 负号表示其方向与角速度的方向相反.飞轮的初角速度为ω0 = 30π(rad·s -1).根据公式ω = ω0 + βt ,当ω = 0时,t = -ω0/β = 7.07(s).再根据公式ω2 = ω02 + 2βθ,可得飞轮转过的角度为θ = -ω02/2β = 333(rad), 转过的圈数为n = θ/2π = 53r .[注意]圈数等于角度的弧度数除以2π.(2)当t = 2s ,ω = ω0/2时,角加速度为β = -ω0/2t = -7.5π. 力矩为M = -Iβ,摩擦力为f = M/R = -mRβ/2 = (7.5)2π. 闸瓦对飞轮的压力为N = f /μ,需要的制动力为F = N /2.5 = (7.5)2π = 176.7(N).OrR r图2.31图2.322.33 一轻绳绕于r = 0.2m 的飞轮边缘,以恒力F = 98N 拉绳,如图(a )所示.已知飞轮的转动惯量I = 0.5kg·m 2,轴承无摩擦.求 (1)飞轮的角加速度.(2)绳子拉下5m 时,飞轮的角速度和动能.(3)将重力P = 98N 的物体挂在绳端,如图(b )所示,再求上面的结果.解:(1)恒力的力矩为M = Fr = 19.6(N·m), 对飞轮产生角加速度为β = M/I = 39.2(rad·s -2).(2)方法一:用运动学公式.飞轮转过的角度为θ = s/r = 25(rad), 由于飞轮开始静止,根据公式ω2 = 2βθ,可得角速度为ω=s -1); 飞轮的转动动能为E k = Iω2/2 = 490(J).方法二:用动力学定理.拉力的功为W = Fs = 490(J), 根据动能定理,这就是飞轮的转动动能E k .根据公式E k = Iω2/2,得角速度为ω=s -1). (3)物体的质量为m = P/g = 10(kg).设绳子的张力为T ,则P – T = ma ,T r = Iβ. 由于a = βr ,可得Pr = mr 2β + Iβ, 解得角加速度为2Prmr I β=+= 21.8(rad·s -2). 绳子的张力为2I IPT r mr Iβ==+= 54.4(N). 张力所做的功为W` = Ts = 272.2(J),这就是飞轮此时的转动动能E`k .飞轮的角速度为`ω=s -1).2.34 质量为m ,半径为R 的均匀圆盘在水平面上绕中心轴转动,如图所示.盘与水平面的摩擦因数为μ,圆盘从初角速度为ω0到停止转动,共转了多少圈?解:圆盘对水平面的压力为N = mg ,压在水平面上的面积为S = πR 2, 压强为p = N /S = mg /πR 2.当圆盘滑动时,在盘上取一半径为r 、对应角为d θ面积元,其面积为d S = r d θd r , 对水平面的压力为d N = p d S = pr d r d θ, 所受的摩擦力为d f = μd N = μpr d r d θ,其方向与半径垂直,摩擦力产生的力矩为d M = r d f = μpr 2d r d θ,总力矩为220d d RM pr r πμθ=⎰⎰312π3p R μ=23mgR μ=.圆盘的转动惯量为I = mR 2/2, 角加速度大小为43M gI Rμβ=-=-,负号表示其方向与角速度的方向相反. 根据转动公式ω2 = ω02 + 2βθ,当圆盘停止下来时ω = 0,所以圆盘转过的角度为2200328R g ωωθβμ=-=,转过的圈数为 203216R n gωθππμ==.F=98N P=98N(a)(b) (图2.33)图2.34[注意]在圆盘上取一个细圆环,其面积为d s = 2πr d r ,这样计算力矩等更简单。
刚体的定轴转动和转动定律
受力: F Ft Fn
力矩:M r (Ft Fn )
r Ft rFt k
M F r ma r
z
M
Ft F
O r m
Fn
mr2
at r
即: M mr 2
3 – 2 力矩 转动定律 转动惯量
2、刚体转动定律
质元 m j 受力为:
右手螺旋定则
第三章 刚体的转动
3– 1 刚体的定轴转动
4、角加速度(矢量)
第三章 刚体的转动
大小: d
dt
方向: 若 2 > 1 则 与角速度同向, 若 2 < 1 则 与角速度反向。
3– 1 刚体的定轴转动
第三章 刚体的转动
二、匀变速转动公式
匀变速转动:转动的角加速度为恒量的运动。
J R 2π r3dr π R4 所以 J 1 mR2
0
2
2
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
例3 :质量为m、高为h、半径为r的均匀圆柱体,求其对 圆柱中心的转动轴的转动惯量?
解:dm dV 2 r h dr
其中:
m V
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
三 转动惯量 J mjrj2 , J r 2dm
1、物理意义:
j
描述刚体转动过程中转动惯性大小的物理量.( 转动
惯量的大小取决于刚体的质量、形状及转轴的位置 .)
2、转动惯量的计算方法:
1)质量离散分布刚体的转动惯量:
J mjrj2 m1r12 m2r22
对质量面分布的刚体: dm dS
刚体定轴转动的转动定律
R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M
T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R
2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m
R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?
大学物理力学总结完整版
大学物理力学总结Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】大学物理力学公式总结第一章(质点运动学)1.r=r(t)=x(t)i+y(t)j+z(t)kΔr=r(t+Δt)- r(t)一般地 |Δr|≠Δr2.v=d rdt a=d rdx=d r2dt3.匀加速运动:a=常矢v0=v x+v y+v z r=r0+v0t+rrat24.匀加速直线运动:v= v0+at x=v0t+12at2 v2-v02=2ax5.抛体运动:a x=0 a y=-gv x=v0cos v y=v0sinθ-gtx=v0cosθ?t y=v0sinθ?t-12gt26.圆周运动:角速度ω=dθdt =v R角加速度α=dωdt加速度 a=a n+a t法相加速度 a n=v2R=Rω2,指向圆心切向加速度 a t=d rdt=Rα,沿切线方向7.伽利略速度变换:v=v’+u第二章(牛顿运动定律)1.牛顿运动定律:第一定律:惯性和力的概念,惯性系的定义, p=m v第二定律:F=d rdt当m为常量时,F=m a第三定律: F12=-F21力的叠加原理:F=F1+F2+……2.常见的几种力:重力:G=m g弹簧弹力:f=-kx3.用牛顿定律解题的基本思路:1)认物体2)看运动3)查受力(画示力图)4)列方程(一般用分量式)第三章(动量与角动量)1.动量定理:合外力的冲量等于质点(或质点系)动量的增量,即F dt=d p2.动量守恒定律:系统所受合外力为零时,p=∑r r r =常矢量 3. 质心的概念:质心的位矢 r c =∑r r r r rm(离散分布) 或 r c =∫r dmm(连续分布) 4. 质心运动定理:质点系所受的合外力等于其总质量乘以质心的加速度,即 F=m a c5. 质心参考系:质心在其中静止的平动参考系,即零动量参考系。
6. 质点的角动量:对于某一点, L=r ×p=m r ×v7. 角动量定理: M =d r dt其中M 为合外力距,M=r ×F ,他和L 都是对同一定点说的。
3-2 刚体的定轴转动定理
一个质量为M、半径为R的定滑轮 例1、一个质量为 、半径为 的定滑轮 (当作均匀圆盘)上面绕有细绳,绳的一 当作均匀圆盘)上面绕有细绳, 端固定在滑轮边上,另一端挂一质量为m的 定轴O 端固定在滑轮边上,另一端挂一质量为 的 定轴 物体而下垂。忽略轴处摩擦,求物体m由静 物体而下垂。忽略轴处摩擦,求物体 由静 止下落高度h时的速度和此时滑轮的角速度 时的速度和此时滑轮的角速度。 止下落高度 时的速度和此时滑轮的角速度。 · m t R 绳 v0=0 h
R
角加速度为常量,且与 的方向相反, 角加速度为常量,且与ω0的方向相反,表明圆盘作匀减速转动
ω = ω 0 + αt
当圆盘停止转动时, 当圆盘停止转动时,ω=0,则得 ,
t=
− ω0
α
3 Rω 0 = 4 µg
二、刚体定轴转动的转动定律的应用 题目类型 1.已知转动惯量和力矩,求角加速度; 已知转动惯量和力矩, 已知转动惯量和力矩 求角加速度; 2.已知转动惯量和角加速度,求力矩; 已知转动惯量和角加速度, 已知转动惯量和角加速度 求力矩; 3.已知力矩和角加速度,求转动惯量。 已知力矩和角加速度, 已知力矩和角加速度 求转动惯量。 解题步骤 1.确定研究对象; 确定研究对象; 确定研究对象 2.受力分析; 受力分析; 受力分析 3.选择参考系与坐标系; 选择参考系与坐标系; 选择参考系与坐标系 4.列运动方程; 列运动方程; 列运动方程 5.解方程; 解方程; 解方程 6.必要时进行讨论。 必要时进行讨论。 必要时进行讨论
力学基本定律
第一节 质点的运动
一. 位移 运动方程
1. 位移
y
质点在这段时间内位置的改 变叫它在这段时间的位移。
P P1
位移 是矢量, 既有大 小又有方向.其大小用矢 z 0
x
量 的长度表示, 记
作.
2. 运动方程
质点的运动就是它的位置随时间的变化, 也 就是它的位矢是随时间改变的。即:
上式是质点运动方程的矢量表示式。若位矢 在 直角坐标系中的三个分量分别是 则有:
二. 国际单位制和量纲
目前国内外通用的单位制是国际单位制.代号 为SI。
在确定各物理量的单位时, 选定少数几个物理量 作为基本量, 并人为地规定它们的单位, 这样的 单位叫基本单位。
基本单位有7个:时间T(秒S)、长度L(米m)、质 量M(千克kg)、温度θ(开尔文 K)、电 流I (安培A)、发光强度(坎德拉cd)、物质的 量(摩尔 Mol)。
在直角坐标系中, 加速度的分量表示式如下:
第二节 牛顿运动定律
一 牛顿运动定律
1.牛顿第一定律: 物体(质点)如果不受外力的作用, 它将保持原来 的静止状态或匀速直线运动状态(惯性定律)。
2.牛顿第二定律: 作用在物体上的合外力等于物体动量对时间的变 化率。即:
或
3. 牛顿第三定律:
力总是成对出现的,且同时出现同时消失。 如果物体A以力 作用在物体B上, 则物体B也 必然同时以一等值反向的力 作用在物体A 上, 即
第一章力学基本定律
本章要求: 1. 掌握位移、 速度、 加速度、角速度、角加速 度的概念。 2. 掌握牛顿运动定律、转动定律, 理解惯性系和 非惯性系,理解力学单位制及量纲。 3. 掌握动量守恒、 能量守恒、角动量守恒定律。 了解对称性的概念以及对称性守恒定律的关系。 4. 了解应力与应变的关系以及生物组织的特性。
(完整版)大学物理知识点(全)
Br ∆ A rB ryr ∆第一章 质点运动学主要内容一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds dr dt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dtdv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
力矩_刚体定轴转动定律
m2
m1
1 2
m
r
当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,
有
T1
T2
2m1m2 m2 m1
g
a m2 m1 g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测量
重力加速度g的简单装置。因为在已知m1、 m2 、r和 J的情况下,能通过实验测出物体1和2的加速度a,
再通过加速度把g算出来。在实验中可使两物体的m1 和m2相近,从而使它们的加速度a和速度v都较小, 这样就能角精确地测出a来。
注 (1)在定轴动问题中 ,如不加说明,所指的力矩 是指力在转动平面内的分力 对转轴的力矩。
力矩
(2) M Z rF2 sin F2d
d r s是in转轴到力作用线
F1 F
的距离,称为力臂。
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
rF2ຫໍສະໝຸດ (4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
的质量dm=rddre,所受到的阻力矩是rdmg 。
定轴转动定律
此处e是盘的厚度。圆盘所受阻力矩就是
M rdmg g rreddr
ge02
d
R
0
r
2dr
2 geR3
3
因m=eR2,代入得
M
2 mgR
3
根据定轴转动定律,阻力矩使圆盘减速,即
获得负的角加速度.
定轴转动定律
2 mgR J 1 mR2 d
N
firi sin i 0
i1
定轴转动定律
得到:
N
Firi
sin i
N
(mi
大学_大学物理教程上册(范仰才著)课后答案
大学物理教程上册(范仰才著)课后答案大学物理教程上册(范仰才著)内容提要绪论第一篇力学第1章质点运动学1.1 参考系和坐标系质点1.2 质点运动的描述1.3 自然坐标系中的速度和加速度1.4 不同参考系中速度和加速度的变换关系思考题习题第2章质点动力学2.1 牛顿运动定律2.2 惯性系与非惯性系2.3 力的空间积累效应2.4 保守力的功势能机械能守恒定律2.5 力的时间积累效应动量守恒定律__2.6 质心质心运动定理阅读材料(1)混沌及其特征思考题习题第3章刚体的定轴转动3.1 刚体及刚体定轴转动的描述3.2 刚体定轴转动定律3.3 定轴转动的功和能3.4 角动量定理和角动量守恒定律__3.5 进动阅读材料(2)对称性与守恒律思考题习题第二篇热学第4章气体动理论4.1 平衡态态参量理想气体物态方程 4.2 理想气体的压强公式4.3 理想气体的`温度公式4.4 能量按自由度均分理想气体的内能 4.5 麦克斯韦速率分布律__4.6 玻耳兹曼分布律4.7 分子的平均碰撞频率和平均自由程__4.8 气体内的输运过程__4.9 范德瓦尔斯方程真实气体阅读材料(3)低温与超导思考题习题第5章热力学基础5.1 准静态过程功热量和内能5.2 热力学第一定律及其在理想气体等值过程的应用 5.3 绝热过程多方过程5.4 循环过程卡诺循环5.5 热力学第二定律5.6 热力学第二定律的统计意义熵阅读材料(4)热学熵与信息熵思考题习题第三篇振动和波动第6章振动学基础6.1 简谐振动的运动学旋转矢量表示法6.2 简谐振动的动力学特征6.3 简谐振动的能量6.4 简谐振动的合成6.5 阻尼振动受迫振动共振思考题习题第7章波动学基础7.1 机械波的形成和传播7.2 平简谐波的波函数7.3 波的能量声波大学物理教程上册(范仰才著)目录《21世纪高等学校规划教材:大学物理教程(上)》可作为本科院校理工科各专业的大学物理教材,也可作为各类普通高等学校非物理类专业、各类成人高校物理课程的教材或教学参考书。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体 定
牛 顿
第
轴 运二
转 动
动 定
章
定律
律
2.1 牛顿运动定律
2.1.1 牛顿第一定律
一切物体总保持匀速直线运动的状态或静止状态,直到有
外力迫使它改变这种状态为止。 2.1.2 牛顿第二定律 F
ma
物体受到外力作用时,它产生加速度的大小与合外力的大小
成正比,与其质量成反比,加速度的方向与外力的方向相同
解 如图,建立坐标、取微元
dm m dx
l
J
l
2 l
2
x2
m l
dx
1 12
ml 2
J ' l x2 m dx 1 ml2
0l
3
J'
1 ml2 3
1 ml2 12
m
l 2
2
JC
m
l 2
2
平行轴定理
常见刚体的转动惯量
J m r2
J 1 m r2 2
J 1 m r2 2
J 2 m r2(球体) 5
Fx max m2x
Fy may m2 y
F Fxi Fy j m2xi m2 yj m2 xi yj m2r 有心力
例2-2 质量为m的质点,在力F=mg(12t+4)N的作用下沿Ox轴 运动,在t=0时,υ=υ0 ,x=x0 ,求质点速度表达式υ(t)和运动方程 x(t) 。
M z Miz
i
2.2.2 刚体定轴转动定律
应用牛顿第二定律,可得 Fi fi miai
O' ω
采用自然坐标系,上式切向分量式为
Fi sini fi sini miait miri
左右两端同时乘以 ri
Fi sini ri fi sini ri miri2 O
设刚体由N 个点构成,每个质点均可写
(1)已知运动情况求力 (2)已知力的作用情况求运动
例2-1 设质量为m的质点M在Oxy平面内
运动(如图),其运动方程为x=acosωt,
y=bsinωt ,式中a、b及ω都是常数,求
作用于质点上的力。
解 x a cost
求导
y bsint
求导
ax 2a cost 2x ay 2bsint 2 y
J 2 m r2(球壳) 3
2.2.4 刚体定轴转动的应用
解题步骤: (1)确定研究对象;
(2)对研究对象进行受力分析,并确定外力矩;
(3)规定转动正方向,根据定律列方程求解,讨论结果 若题中还存在其它物体的平动,则还需针对平动对象由
牛顿第二定律列出方程,并同时列出平动与转动之间的联 系方程。
例2-10 如图,长为l、质量为m的匀质细杆竖直放置,其下端与 固定铰链O相连并绕其无摩擦地转动,求当此杆受到微小振动 在重力作用下由静止开始绕O点转动到与竖直方向成θ角时的 角加速度和角速度。
滞力R与小球速率成正比R=-kυ (k为正常数),小球在下落过程
中受到的浮力恒为B(浮力小于重力)。试推导任意时刻质点
的速度表达式υ(t) ,并求小球的最大速度υm 。
解 分析受力得 mg (B) (k) m d
dt
整理得
d = dt mg B k m
应用初始条件 积分得
mg
B
(1
kt
e m)
解 mg(12t 4) ma m d
dt
t
d g(12t 4)dt
d g(12t 4)dt
0
0
得
0 6gt 2 4gt
由
dx
dt
0 6gt2 4gt
得 dx (0 4gt 6gt 2 )dt
积分得 x x0 0t 2gt2 2gt3
例2-3 质量为m的小球在液体中由静止下落,设液体对小球黏
刚体定轴转动定律 M J ,式中M 为刚体受到的外力矩;
为刚J体定轴转动的转动惯量,为刚体转动惯性的量度;
为力矩M所产生的转动效果,改变刚体的转动状态,且与
M 的方向相同。
2.2.3 转动惯量的计算
1.转动惯量的定义 J miri2
各质点的质量与它到转轴距离平方的乘积之和,称为转动惯量
2.转动惯量的计算-应用公式
Fx
max
m dx
dt
m d2x dt 2
d
Ft mat m dt
Fy
may
m dy
dt
d2 y m dt2
2.1.3 牛顿第三定律
2 Fn man m
F F ' F+F '=0
两个质点相互作用时,作用力和反作用力在同一直线上,
大小相等,方向相反。
2.1.4 牛顿运动定律的应用
动力学两类问题:
解 当杆与铅直线成θ角时,重力对铰链O 的力矩大小为
mg l sin 垂直投影平面向里
2
由刚体的定轴转动定律,并结合杆的转
动惯量得
mg l sin 2
3g sin
1 ml2
2l
3
例2-10 如图,长为l、质量为m的匀质细杆竖直放置,其下端与 固定铰链O相连并绕其无摩擦地转动,求当此杆受到微小振动 在重力作用下由静止开始绕O点转动到与竖直方向成θ角时的 角加速度和角速度。
Fi sini
ri
N i 1
mi ri 2
合外力矩
转动惯量
M J
刚体定轴转动定律 刚体定轴转动时,它的角加速度α与所受合外力
矩 M 成正比,与转动惯量 J 成反比。
注意:
牛顿第二定律 F ,m式a 中为F质点受到的外力; 为质m量, 为质点平动惯性的量度; 为力 a所产生F的平动效果,改变物 体的运动状态,且与 的方向相同F。
k
速度极值
m
mg k
B
2.2 刚体定轴转动定律
2.2.1 力对固定轴的力矩
Mz (F) Ft r
注意:
(1)力矩有正负。让刚体的转向 与右手螺旋转向一致,螺旋前进的 方向如果沿转轴Oz正方向一致,则 为正;反之,为负。
z
Fz
F
Ft
O
F'
r P Fn
(2)如果刚体同时受几个力的作用,则刚体定轴转动的 合力矩等于各分力矩的代数和。
出类似的方程,将N 个方程求和,得
ri
mi
fi
i
Fi i
N
N
N
Fi sini ri fi sini ri miri2
i 1
i 1
i 1
由于内力等值、反向、共线,对同一转轴力矩之和为零,所以
N
Fi sini
ri
N
mi ri 2
N
miri2源自i 1i 1i1
N
i 1
若质量不连续分布
若质量连续分布
J= miri2
i
J r2dm
例2-5 如图,在由不计质量的细杆组成的
边长为l 的正三角形的顶角上,各固定质
量为m的小球。求(1)系统对过质心且与
三角形平面垂直的轴C的转动惯量;(2)系
统对过点A ,且平行于轴C的转动惯量。
例2-6 已知匀质细杆质量为m 、长为l 。(1)计算其绕中心垂直 轴的转动惯量;(2)计算其绕过端点且与杆垂直的轴的转动惯 量。