t检验与z检验.PPT

合集下载

一文搞懂Z检验,T检验,x2检验

一文搞懂Z检验,T检验,x2检验

一文搞懂Z检验,T检验,x2检验作者:Bob大叔,香港精益六西格玛黑带
三种检验方法的介绍
Z检验举例:
某产品,其装量服从N(2.1,0.012),即均值2.1,标准差0.01。

抽取15个样品,其测量值如下:
2.08 2.10 2.10
2.09 2.10 2.10
2.09 2.09 2.11
2.09 2.12 2.10
2.10 2.10 2.10
建立假设H0:μ=2.1,H1 μ≠2.1,由于σ已知,故选择Z检验
操作如下:
P=0.36>0.05,无法拒绝原假设H0, 所以认为取样的平均装量没有变化。

t检验举例:
某设备的OEE目标为70%,连续15天的OEE如下,请判断OEE是否已达到70%目标?
由于σ(标准差)未知,且为小样本,故而选择,t检验
建立假设:HO: μ=70%, H1>70%,
操作如下:
P=0.252>0.05,无法拒绝原假设,说明0EE并未大于70%。

X2检验举例:
已知某产品装量,符合N(μ,σ2)分布,μ未知,但是要求标准差不能超过0.01,随机抽取30个样品,请问标准差是否有变化?
由于μ未知,故而选择X2检验,
建立假设:H0:σ=0.01, H1:σ≠0.01
操作如下:
(weixin gongzhonghao: HK_BobUncle)
P=0.303>0.05, 无法拒绝原假设,说明标准差无变化。

t检验教学课件讲学讲义PPT

t检验教学课件讲学讲义PPT

(1)建立检验假设 ,确定检验水准
H0:d 0 ,儿童的皮肤反应直径无差别
H1:d 0 ,儿童的皮肤反应直径有差别
0.05
2020/1/17
9
(2)计算t值 本例n = 12, Σd = 39,Σd2 = 195,
=3.25(mm )
d=Σd /n = 39/12
Sd
d 2 d 2 n

1 n2

式中,S2称为两均数合并的方差,计算公式为:
2020/1/17
12
S 2 (n1 1)S12 (n2 1)S22 n1 n2 2
上式如果n1=n2,则
S X1X 2
S12 S22 n1 n2
t | X1 X2 | S12 S22 n1 n2
2020/1/17
第八章 t 检验
2020/1/17
1
[学习要求] 了解:正态性检验和变量变换的基本概念。 熟悉:方差齐性检验的基本概念;两样本方差齐性
检验的计算;t’检验的计算。 掌握:t检验的步骤和t分布的关系;样本均数和总
体均数比较、配对设计均数的比较、两样本均数的比 较t检验的方法与步骤。
2020/1/17
计检验的效率最高。本检验要求:两总体分布为正态分布,且
方差齐同

2 1
.22
2020/1/17
11
一、两样本均数比较的t检验
t | X1 X2 | S
X1X 2
ν=n1+n2-1
式中,S X1X 2 称为两均数之差的标准误的估计值,其计
算公式为
S X1X 2
S
2
1 n1
7
配对资料的t检验(paired samples t-test)先求出各对子的差

总体均数的估计和假设检验PPT课件

总体均数的估计和假设检验PPT课件

5、t’检验
当方差不齐时,两小样本均数的比较用t’
检验。 检验统计量:t'
x1 x2 s12 s22 n1 n2
临界值:
t'
s2 x1
t ,v1
s2
s2 x2
s2
t ,v2
x1
x2
如果t’ >t’α,则P<α,则拒绝原假设。
6、z检验
当样本含量较大时,可用z检验来进行
两样本均数的比较。它是用于两大样本均 数的比较,目的是推断两总体均数是否相 同。所用公式:
4、成组t检验
(3) 资料要求:两样本来自正态或近似正态 分布,并且两组总体方差相等。
(4) 对数正态分布的资料,在进行t检验时,
要先把数据进行对数转换,用对数值作为
新变量进行成组t检验。
4、成组t检验
(4) 公式: H0: μ1= μ2 H1:μ1 ≠ μ2
t x1 x2 s
x1 x2
(1) 小样本资料的估计(未知)
P(t ,<t<t , ) 1
由1-αx时 t,,计( 算sn )总<体<均x数的t,可( 信sn区)可间得的到通当式可为信:度
即:x
t
,
s x
例2:试求例1中该地1岁婴儿血红蛋白平 均值的95%的可信区间。
s
由ν于 =nn= -215=,24s=,11α.取9g双/L尾, 0s.x 05,n查t2界.3值8 g表/ L得:
准差s2=1.626 mg/dl,配对t检验结果,t =-
3.098,P<0.05,故认为脑病病人尿中类固醇排出 量高于正常人。
表3 正常人和脑病病人尿中类固醇排出量 (mg/dl)
正常人
2.90 5.41 5.48 4.60 4.03 5.10 4.97 4.24 4.37 3.05 2.78脑ຫໍສະໝຸດ 病人差别是由抽样误差引起的。

假设检验与样本数量分析①——单样本Z检验和单样本t检验

假设检验与样本数量分析①——单样本Z检验和单样本t检验

X
32.03 + 32.14 + … + 31.87 15

1.9 2.0

0.029 0.023

0.028 0.022

0.027 0.022

0.0226 0.020

0.025 0.020

0.024 0.019

0.024 0.019

0.023 0.018
原假设 (零假设)即上述的可能,符号是H0
备择假设(与原假设对立的假设),符号是H1
如本例:假设外径尺寸 H0:(μ = 32) H1: (μ≠32) 确立检验水准: α——显著水平(通常取α=0.05)

显著水平α是当原假设正确却被拒绝的概率 通常人们取0.05或0.01 这表明,当做出接受原假设的决定时,其正确的可 能性(概率)95% 或99% 概率是0~1之间的一个数,因此小概率就是接近0的 一个数 英国统计家Ronald Fisher 把0.05作为标准,从此0.05 或比0.05小的概率都被认为是小概率
8 作出不拒绝零假设的统计结论,即外径尺寸 均值没有偏离目标Ф 32
<6>
单样本 Z 检验 单样本 t 检验
预备知识
接上页

假设检验的例子(1)
检验 α = 0.05
临界值 临界值

2
=0.025
拒绝范围

1 – α = 95%
不拒绝H0范围
2
=0.025
根据小概率原理,可以先假设总体参数的 某项取值为真,也就是假设其发生的可能 性很大,然后抽取一个样本进行观察,如 果样本信息显示出现了与事先假设相反的 结果(显示出小概率),则说明原来假定 的小概率事件(一次实验中是几乎不可能发 生)在一次实验中居然真的发生了,这是 一个违背小概率原理的不合理现象,因此 有理由怀疑和拒绝原假设;否则不能拒绝 原假设。 在给定了显著水平α 后,根据容量为n的样 本,按照统计量的理论概率分布规律,可 以确定据以判断拒绝和接受原假设的检验 统计量的临界值。 临界值将统计量的所有可能取值区间分为 两个互不相交的部分,即原假设的拒绝域 和接受域。

t检验医学统计学PPT课件

t检验医学统计学PPT课件

[
sc2
( x12
x1)2 ][ n1
( x22
n1 n2 2
x2)2 ] n2
(n1 1)s12 (n2 1)s22 n1 n2 2
第36页/共78页
例8-7 :
表8-4 男女大学生的血清谷胱甘肽过氧化酶(GSH-PX)
性别 例 数 均 数 标准差 男 48 96.53 7.66 女 46 93.73 8.23
身高与以往男子平均身高相等
H1:µ≠µ0=170cm,即即现在该地20岁男子平均
身高与以往男子平均身高不等
α= 0.05,双侧检验
第9页/共78页
⑵ 选定检验方法,计算检验统计量 根据题目资料类型,可见,该资料是样本与
总体之间的比较,且σ已知可用样本-总体的Z
检验。依公式计算检验统计量:
z x 0 x 0
值样本是否来自零总体(μd=0 ),如来自零总体
,则两方法检测值相同,如不是来自零总体,则 表明两方法检测值的不一致,不是由抽样误差引 起,而是来自不同的总体。
第25页/共78页
⑴ 建立检验假设,确定检验水准
H0:µd=0,即两方法检测结果相同 H1:µd≠0,即两方法检测结果不同 α= 0.05 ,双侧检验
第6页/共78页
在 H0 成立的前提条件下,检验统计量计算公式:
① σ已知或σ未知但n足够大:
z x
x
( )
② σ未知且n较小:
t x μ0 x μ0
sx
s n
第7页/共78页
(n1)
例8-1 根据大量调查得知,某地20岁健康成年男子平 均身高为170cm,标准差为cm。今随机抽查了该地25 名健康成年男子,求得其身高均数为172cm,标准差 为cm,能否据此认为该地现在20岁成年男子平均身高 与以往不同?

5第四章 t检验ppt课件

5第四章 t检验ppt课件

1.建立检验假设、确定检验水准
H0:两总体方差相等
H1:两总体方差不相等
0.10( 较大以减少II类错误)
2.选择检验方法、计算统计量
中药组S2 =0.580 西药组S2 =0.466 F=s12/s22 =0.580/0.466 =1.245
3.确定P 值、做出推论
ν1=n1-1=10-1=9,ν2=n2- 1=10-1=9,查F 界值表(方差齐 性检验用),得F 0.05〔9,9) = 4.03, F< F 0.05〔9,9) ,P >0.05。
非参数检验是一类不依赖总体分布的具体形式的统 计方法。如Ridit分析、秩和检验、符号检验、 中位数检验、序贯试验、等级相关分析等。
⑴优点:①对总体的分布形式不要求;②可用于不 能精确测量的资料;③易于理解和掌握;④计算 简便。
⑵缺陷:不能充分利用资料所提供的信息,使检验 效率降低。
(二〕单因素分析与多因素分析
已知总体均数一般为标准值、理论值或 经大量观察得到的较稳定的指标值。
一、适用条件
1.对正态分布的数值变量资料,需用t 检验。
2.对于非正态分布的资料,若经过变量 变换使成正态分布,可按t检验处理; 否则,用非参数检验的方法。
二、正态性检验的方法
检验假设H0为总体分布是正态分布,当P>α时, 不拒绝H0,认为样本所来自的总体服从正态分 布;而P≤α时,拒绝H0,认为样本所来自的总 体不服从正态分布。
表4-2 两法治疗高血脂症3个月后血清胆固醇含量(mmol/L)
病人编号 组别
1 2 3 4 5 6 7 8 9 10
中药 5.45 5.04 4.62 5.61 4.06 5.32 5.28 4.78 6.97 5.34 西药 5.34 6.12 5.87 4.67 5.21 6.89 5.48 5.43 4.57 5.79

t检验和Z检验

t检验和Z检验

药物治疗
1
? =
药物治疗合 并饮食疗法
2
推断
甲组
n1=12
XX1 =15.21
乙组 n2=13 X 2=10.85
t 检验——问题提出
▪ 根据研究设计,t检验有三种形式:
➢单个样本的t检验 ➢配对样本均数t检验(非独立两样本均数t
检验)
➢两个独立样本均数t检验
第一节 单个样本t检验
▪ 又称单样本均数t检验(one sample t test),适 用于样本均数与已知总体均数μ0的比较,目的是 检验样本均数所代表的总体均数μ是否与已知总 体均数μ0有差别。
▪ 配对设计主要有三种情况:
(1)将受试对象按某些混杂因素(如性别、年龄、窝别 等)配成对子,每对中的两个个体随机分配给两种处理 (如处理组与对照组); (2)同一受试对象或同一标本的两个部分,随机分别进 行不同处理(或测量)。 (3)同一受试对象自身前后对照。
配对t检验原理
▪ 配对设计的资料具有对子内数据一一对应的特征, 研究者应关心是对子的效应差值而不是各自的效 应值。
表 5-1 12 名儿童分别用两种结核菌素的皮肤浸润反应结果(mm)
编号
标准品 新制品 差值 d
d2
1
12.0
10.0
2.0
4.00
2
14.5
10.0
4.5
20.25
3
15.5
12.5
3.0
9.00
4
12.0
13.0
-1.0
1.00
5
13.0
10.0
3.0
9.00
6
12.0
5.5
6.5
42.25

教育科研中的统计方法——Z检验和t检验

教育科研中的统计方法——Z检验和t检验

教育科研中的统计方法——Z检验和t检验乌海市海勃湾区教研室王根运通常我们用平均分比较两个班的成绩的优劣是不妥的。

即某次考试中初二、二班数学成绩平均分低于初二、五班的平均分,不一定说明初二、二班数学真实成绩比初二、五班的差。

这是因为一个班的的平均成绩具有统计意义,存在抽样误差,其平均成绩在一定范围内波动,假如再进行一次考试也许初二、二班数学成绩平均分高于初二、五班的平均分。

所以比较成绩时应用平均数差异的显著性检验更科学。

统计学中平均数差异的显著性检验时规定一个显著性水平,经过检验所得差异超过这个显著性水平,表明这个差异不属于抽样误差,确实存在差异,反之属于抽样误差。

这个平均数差异的显著性检验在教育科研统计中总结为Z检验或t 检验。

一般地样本容量大于30时,用Z检验;样本容量小于30时,用t检验。

当问题所给的条件用t检验方便时,样本容量虽然大于30,也可以用t检验。

下面是样本容量大于30时的Z检验和样本容量小于30时的t检验案例。

一、样本容量大于30时的Z检验案例:比较初三第一学期期末实验班和对比班的化学成绩表1、初三、八班(实验班)第一学期期末化学成绩表表2、初三、七7班(对比班)第一学期期末化学成绩表时间:2010年1月实验班和对比班学生人数均为52,样本容量大于30,用Z 检验看实验班和对比班成绩有无显著性差异(用计算机处理)。

实验班:初三、八班,据表1,样本容量:n 1=52,平均分:1X =11n X∑=69.84每个学生分数与平均分离差的平方和:∑21d ==-∑211)(X X 13243.86 标准差:S 1=121n d ∑=15.96对比班:初三、七班,据表2,样本容量:n 2=52, 平均分 :2X =22n X ∑=66.92每个学生分数与平均分离差的平方和:∑22d ==-∑222)(X X 7967.19标准差:S 2=222n d ∑=12.38, Z=22212121n S n S X X +-=1.043Z 检验的判断方法: 0<Z <1.96时,两个班的成绩无显著性差异;1.96<Z <2.58时,两个班的成绩成绩有显著性差异。

4第四章 假设检验、t检验和Z检验

4第四章 假设检验、t检验和Z检验
H1 : d 0
0.05
2.选定检验方法,计算检验统计量t值
d d / n 44 / 10 4.4 sd t
d ( d ) / n
2 2
d sd / n

n 1 4.4 2.12 / 10

234 (44) 2 / 10 2.12 10 1 v 10 1 9
0.05
2.选定检验方法,计算检验统计量t值
t x 0 s/ n 75.0 72 5.0 / 25 3.00, v 25 1 24
3.确定P值,作出推断结论 H1,差异有高度统计学意义。
P<0.05,按α=0.05水准,拒绝H0,接受
第二节 单样本t检验和Z检验
41044222???????????????????vnsdtnnddsndddd第四节两独立样本比较的t检验和z检验一方差齐性检验二两独立样本t检验三两独立样本t检验四两独立样本z检验2111222211sfnns?????较大较小1121111212122221121212212121nnnnsnsnxxnnsxxsxxtcxx??????????????22212121nsnsxxt???2222212211xxxxsststst????????221121212221212111nsnsxxssxxsxxzxxxx?????????两独立样本t检验例45某医生为探讨强迫症与超氧化物歧化酶sod的关系随机抽得30例强迫症患者测得sod的均数为30125numl标准差为2801numl
2 2
0.05
5.4086
3.确定P值,作出推断结论
有高度统计学意义。
P<0.01。按α=0.05水准,拒绝H0,接受H1,差异

第七章 t检验和z检验课件

第七章  t检验和z检验课件

t
X1 X2
( n1
1
)
S
2 1
(n2
1
)
S
2 2
(
1
1
)
n1பைடு நூலகம் n2 2
n1 n2
2.656 5.150
7.581
(9 1)0.475 2 (8 1)0.852 2 (1 1 )
982
98
n1 n2 2 1 5
3. 确定P值, 作出推断结论
查t界值表得, t0.05/2,15=2.131, t0.01/2,15=2.947,
资料所提供的信息: 1. 计量资料 2. 配对设计。
表7.1 贫血患儿治疗一个疗程前后血红蛋白(g/L)变化情况
对上面问题可以作如下考虑:
治疗前后血红蛋白 的变化(差值)
d
问题归纳: 样本疗效
样本
n10 Sd7.96d137.53
d 0?
药物作用 + 机遇
d33.5
μ 0? d
问题:| d 究0 |竟多大能够下“有效”的结论?
对资料进行分析: 1. 资料提供的信息: 小样本计量资料
已知总体均数0=72次/分, n=25,
x74.2次/分S = 6.0次/分。 2. 应进行样本均数与已知总体均数比
较的t 检验。 3. 目的: 推断样本所代表的未知总体均
数与已知的总体均数有无差别。
(1) 建立检验假设,确定检验水准
H0:=0, 山区成年男子脉搏均数与一般成年
S/ n 6 25
0.01<p<0.05
例7.2 以往通过大规模调查已知某地新 生儿出生体重为3.30kg, 从该地难产儿中 随机抽取35名新生儿作为研究样本,平均 出生体重为3.42kg, 标准差为0.40kg。问 该地难产儿出生体重是否与一般新生儿体 重不同?

z检验和t检验的区别

z检验和t检验的区别

z检验和t检验的区别
卡方检验是对两个或两个以上样本率(构成比)进行差别比较的统计方法。

t检验,主要是用于小样本(样本容量小于30)的两个平均值差异程度的检验方法。

它是用t分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。

t检验的适用条件:正态分布资料。

1、卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,
包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡仿检验以及分
类资料的相关分析等。

2、t检验,亦称student t检验( student's ttest) ,主要用作样本含量较小(比
如n大于30) ,总体标准差o未明的正态分布。

t检验就是用t原产理论去推断差异出现
的概率,从而比较两个平均数的差异与否明显。

t检验
3、t检验共分成三种方法,分别就是单一制样本t检验,接合样本t检验和单样本t
检验。

单一制样本t检验和单因素方差分析功能上基本一致,但是单一制样本t检验就可
以比较两组选项的差异,比如说男性和女性。

相对来讲,独立样本t检验在实验比较时使用频率更高,尤其是生物、医学相关领域。

针对问卷研究,如果比较的类别为两组,独立样本t检验和单因素方差分析均可实现,研
究者自行选择使用即可。

4、卡方分析:卡方检验用作分析定类数据与定类数据之间的关系情况。

比如研究人
员想要晓得两组学生对于手机品牌的偏好差异情况,则必须采用卡方分析。

卡方就是通过
分析相同类别数据的相对挑选频数和比重情况,进而展开差异推论,单选题或多选题均可
以采用卡方分析展开对照差异分析。

z检验与t检验的比较分析

z检验与t检验的比较分析
X1
population
sample 2
X2
……
sample r
Xr
observation X:z X (3 13) sample mean X: z X
n
is unknown
mean X: t X ,
Sn
df n 1
X
~N
,
2
n
z-distribution versus t-distribution
Testing sample X should be a sample of a normal random variable. 检验样本是 来自正态总体的随机样本
If X is not normal, t will have an unknown distribution and, strictly speaking, the t-test is inapplicable. However, according to the central limit theorem, as the sample size increases, the distribution of t tends to be normal. Therefore, if the sample size is big, we can use the t-test even if X is not normal. But there is no way to find out what value is big enough. This value depends on how X deviates from the normal distribution. Some sources claim that n should be greater than 30, but sometimes even this size is not enough. Alternatively, we can use non-parametric test: Wilcoxon rank-sign test.〔见p79,第九章〕

医学统计学——t检验课件

医学统计学——t检验课件

医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。

t检验常用于小样本数据,特别是两个独立样本的比较。

t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。

两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。

t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。

结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。

两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。

适用条件样本应来自正态分布总体,且方差相等。

结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。

适用条件样本应来自正态分布总体,且方差相等。

结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。

03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。

数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。

数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。

第十章第四节 t检验和z检验2014.

第十章第四节  t检验和z检验2014.

第四节 t 检验和u检验
t-test或称Student’s t-test; u-test或称Z-test
应用: 用于两均数比较的假设检验;
资料要求: (1)资料随机取自正态总体 (2)两总体方差齐性(相等)
除上述条件外,u检验还要求: 样本含量比较大(如n≥50), 或n虽小但σ已知
(很少见)。 (t分布逼近u分布,或本身呈u分布)
注意:统计分析是 在H0前提下进行的
H0: = 0 (72次/分)
H1: > 0
单侧: = 0.05
t X 0
S/ n
74.2 72 1.833 6.0 / 25
=74.2
此图为从 0总体中抽样(n=25)得 到的样本均数分布图
=n- 1=25 -1=24 查t界值表(P302),得单侧 t0.05,24 = 1.711 因: t =1.833> t0.05,24 所以:P < 0.05
方差齐 性检验
Equa l varian ces assum ed Equa l varian ces not assume d
Leve ne 's Te st fo r Equa lity of Variance s
F
S i g.
.015
.905
t-test for Equa lity of Mea ns
x
/ n
则 u 服从标准正态分布 N(0,1)
实际工作中, 往往未知,s 代替, 此时
就不是u代换,而是 t 代换。
t X X
Sx S/ n
无数t点所组成的分布,称t分布。
t 分布的特征: (1)以 0 为中心,两侧对称的单峰分布 (2)与 u 分布比较,峰值较低,两边上翘

t检验与z检验

t检验与z检验

4.统计分析不能代替专业分析。
假设检验结果“有”或“无”统计学意 义,主要说明抽样误差的可能性大小。在分 析资料时还必须结合临床医疗,预防医学特 点,来加以分析。例如,某两种药物降低血 压相差5毫米汞柱,经检验认为有统计学意义, 但这种差异在临床却没有什么意义。
总之,不能用统计分析来代替专业分析, 当然,也不能认为统计分析可有可无
因为Z = 6.97 > Z 0.01, 所以P <0.01,
差异有统计学意义(P<0.01),
故拒绝H0,认为该地男、女间红细胞数
有显著差别,男高于女。
t 检验的应用条件
1、正态性 2、方差齐性
方差齐性检验
两独立样本均数比较的t 检验,
要求相应的两总体方差相等,即方 差具有齐性。为此,我们要对两样 本的方差作统计学检验
同时降低α与β
b
七、使用t 检验的注意事项
1.所观察的样本必须具备代表性,随 机性和可靠性;如果是两个样本比较,一 定要注意两个样本间的齐同均衡性,即 可比性。
2.必须根据实验设计的不同,选择不 同假设检验方法。
譬如,资料性质不同,设计类型不
同,样本大小不同,选用配对t检验
还是两独立样本t检验,选用大样本还 是小样本检验,这些都涉及到最后进 行统计处理时使用不同公式。
练习:(1)某地测定30岁以上健康人与 冠心病病人的血清胆固醇结果见表3。 问:健康人与冠心病病人血清胆固醇量 有无不同(不必计算)?

表3 血清胆固醇资料

────────────────────────────

编号
健康人
冠心病病人
────────────────────────────

华北理工卫生统计学实验指导08 t检验、z检验

华北理工卫生统计学实验指导08 t检验、z检验

实验八:t检验、z检验【目的要求】1.熟悉假设检验的基本步骤2.掌握t检验、z检验的应用条件及分析过程3.熟悉假设检验的基本思想【案例分析】案例1:某医生研究脑缺氧对脑组织中生化指标的影响,将乳猪按出生体重配成7对,一组为对照组,一组为脑缺氧模型组。

两组乳猪脑组织钙泵的含量差值(对照组减脑缺氧模型组)均数为0.0441ug/g,标准差为0.05716ug/g,经配对t检验(双侧),得t=2.0412,P>0.05,按a=0.05的水准,不拒绝H0,差别无统计学意义,尚不能认为脑缺氧可造成钙泵含量的变化。

(1)本例结论是否正确?为什么?(2)该结论可能犯几型错误?案例2:7名接种卡介苗的儿童,8周后用两批不同的结核菌素,一批是标准结核菌素,一批是新制结核菌素,分别注射在儿童的左右前臂。

以皮肤浸润直径(mm)为指标。

数据如下表所示。

某医生计算标准品与新制品的差值,均数为3.19mm,故认为新制结核菌素的皮肤浸润直径比标准结核菌素小。

两种结核菌素皮肤浸润直径比较(mm)编号1234567标准品12.014.515.513.012.010.57.5新制品10.010.012.210.0 5.58.5 6.5该医师对资料的统计分析是否正确?为什么?若不正确,应该怎么做?案例3:2005年某县疾病预防控制中心为评价该县小学生卡介苗抗体效价,随机抽取了30名小学生,测定结果如表2。

经完全随机设计两样本均数比较的t检验(方差齐,F=0.05,P>0.05),t=0.014,P>0.05,故认为该县小学生卡介苗抗体效价无性别差异。

2005年某县30名小学生卡介苗抗体滴度测定结果分组卡介苗抗体滴度(倒数)男生40201604032080402040801604080404040女生80201604040160402040160160408040该案例中资料的统计分析是否正确?为什么?若不正确,应该怎么做?【SPSS操作】1.单样本t检验Analyze → Compare Means →one-sample T Test…→ Test Variable(s):变量→ Test Value:总体水平→OK2.配对t检验Analyze → Compare Means → Paired-Samples T Test …→ Paired Variables:x1-x2(同时选中)→OK3.两样本均数比较的t 检验Analyze → Compare Means →Independent-samples T Test …→ Test Variable(s):x → Grouping Variable:group →OK【练习题】一、填空题1.假设检验中的Ⅰ型错误指 。

第4章 t检验和Z检验ppt课件

第4章 t检验和Z检验ppt课件

ppt精选版
17
▪ 两独立样本t检验要求两样本所代表的总体服从正 态分布N(μ1,σ12)和N(μ2,σ22),且两总体方 差σ12、σ22相等,即方差齐性。
▪ 若两总体方差不等,即方差不齐,可采用t’检验,
或进行变量变换,或用秩和检验方法处理。
ppt精选版
18
两独立样本t检验原理
▪ 两独立样本t检验的检验假设是两总体均数相等, 即H0:μ1=μ2,也可表述为μ1-μ2=0,这里可将 两样本均数的差值看成一个变量样本,则在H0条件 下两独立样本均数t检验可视为样本与已知总体 均数μ1-μ2=0的单样本t检验, 统计量计算公式
认为两种方法皮肤浸润反应结果有差别。
ppt精选版
16
第三节 两独立样本t检验
▪ 两独立样本t 检验(two independent sample t-test),又称成组 t 检验。
▪ 适用于完全随机设计的两样本均数的比较,其目 的是检验两样本所来自总体的均数是否相等。
▪ 完全随机设计是将受试对象随机地分配到两组中, 每组患者分别接受不同的处理,分析比较处理的 效应。
第四章 t检验和Z检验
ppt精选版
1
第一节 t检验
▪ 以 t分布为基础的检验为t检验。
▪ 在医学统计学中,t检验是非常活跃的 一类假设检验方法。
▪ 医疗卫生实践中最常见的是计量资料两 组比较的问题
ppt精选版
2
25例糖尿病患者 随机分成两组, 总体 甲组单纯用药物 治疗,乙组采用 药物治疗合并饮 食疗法,二个月 后测空腹血糖 (mmol/L) 问两种 样本 疗法治疗后患者 血糖值是否相同?
ppt精选版
5
单个样本 t 检验原理

统计学t值、z值、x2对应的统计检验方法

统计学t值、z值、x2对应的统计检验方法

一、背景介绍统计学是一门研究数据收集、分析和解释的学科,统计检验方法是统计学的重要应用之一。

在统计学中,t值、z值和x2值是常见的统计指标,它们对应着不同的统计检验方法,用于检验样本数据是否符合特定的分布或者是否存在差异。

本文将对t检验、z检验和卡方检验进行详细介绍,分析它们的应用场景、计算方法和实际意义。

二、 t检验t检验是一种用于比较两个样本均值是否存在显著差异的统计方法。

当样本数据符合正态分布且方差未知时,可以采用t检验进行假设检验。

t检验分为单样本t检验和双样本t检验两种。

1. 单样本t检验单样本t检验用于检验样本均值是否等于已知的总体均值。

它的计算公式为:t = (样本均值 - 总体均值) / (标准误差)其中,标准误差的计算需要用到样本标准差和样本容量。

2. 双样本t检验双样本t检验用于比较两个独立样本的均值是否存在显著差异。

在双样本t检验中,需要计算t值和自由度,然后查找t分布表得出显著性水平。

如果t值大于临界值,则拒绝原假设,认为两组样本均值存在显著差异。

三、 z检验z检验是一种用于比较样本均值与总体均值差异的统计方法。

当样本容量较大且符合正态分布时,可以采用z检验进行假设检验。

z检验通常用于总体标准差已知且样本容量较大的情况。

z检验的计算公式为:z = (样本均值 - 总体均值) / (总体标准差 / 样本容量的平方根)根据z值查找标准正态分布表可以得出样本均值的显著性水平。

如果z 值落在临界值之外,则可以拒绝原假设,认为样本均值存在显著差异。

四、卡方检验卡方检验是一种用于检验观察频数与期望频数之间是否存在显著差异的统计方法。

在实际应用中,卡方检验通常用于分析分类数据的拟合度或者独立性。

1. 卡方拟合度检验卡方拟合度检验用于检验观察频数与期望频数之间的拟合度。

计算公式为:X2 = Σ((观察频数 - 期望频数)2 / 期望频数)根据卡方分布表可以得出显著性水平,从而判断观察频数是否符合期望频数的分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为Z = 6.97 > Z 0.01, 所以P <0.01,
差异有统计学意义(P<0.01),
故拒绝H0,认为该地男、女间红细胞数
有显著差别,男高于女。
.
24
t 检验的应用条件
1、正态性 2、方差齐性
.
25

方差齐性检验
两独立样本均数比较的t 检验,
要求相应的两总体方差相等,即方 差具有齐性。为此,我们要对两样 本的方差作统计学检验
140
27
2
150
138
-12
3
150
140
-10
4
135
135
0
5
128
135
7
6
100
120
20
7
110
147
37
8
120
114
-6
9
130
138
8
10
123
120
-3
使用配对t检验
解:1.建立检验假设,确定检验水准
H0:μd=0,假设该药不影响血红蛋白的变
化,即治疗前后总体差数为0。
H1:μd≠0 ,假设该药影响血红蛋白的变
.
21
1. H0 : μ1= μ2 ,即该地男、女红细胞数相
同,
H1 : μ1 ≠ μ2 ,该地男、女红细胞数不相
同。
α=0.05.
.
22
2. 计算Z 值
Z
X1 X2
S
2 1
S
2 2
n1 n 2
4.654.22
6.97
(0.55)2 (0.44)2
156 104
.
23
3. Z 0.05 = 1.96 Z 0.01 = 2.58
( paired sample t test )
1、配对资料(三种情况) (1)一批实验对象某种处理前后 (2)一批实验对象两种处理方法 (3)实验对象经过配对后的实验结果
.
3
2、目的:判断不同的处理间是否有差别? 即:差值的总体均数为0
3、公式:
d 0 d
t
Sd
Sd
.
ν = n-1 4
例2 应用克矽平治疗矽肺患者10名, 治疗前后血红蛋白的含量如表1所示,问 该药是否引起血红蛋白含量的变化?
者与当地健康者的血磷值的均数相同。
H1: μ1 ≠ μ2 ,即克山病患
者与当地健康者的血磷值的均数不相 同。
α=0.05.
2.计算t
.
15
X1 4.71,S1 1.3031
X2 3.35,S2 1.3042
Sc2
(n11)S12(n21)S2 2 n1n22
Sc21 01.1 6 1 91 1 8 3 2 21.701 1.69qt 9 h
n1 n2
与Z 0.05 = 1.96 进行比较
.
20
例4
某地抽查了25~29岁正常人群的 红细胞数, 其中:
男性156人,得均数为4.65(×1012/L), 标准差为 0.55(×1012/L);
女性104人,得均数为4.22(×1012/L), 标准差为0.44(×1012/L)。
问该人群男、女红细胞数有无差别?
化,即治疗前后总体差数不为0。 α=0.05.
2.计算t值
d 6.8 Sd 16.4574
Sd
S 16.45745.2043 n 10
d 6.8
t
1.307
Sd 5.2043
.
9
3.自由度df = 10-1 = 9 ,
查t 临界值(c2)得:
0.20<P <0.40,按α=0.05水准
不拒绝H0,差异无统计学意义。
SX1X2
S
2 c
1 n1
1 n2
1 .6 9 9 7
1 11
1 13
0.534
t
X1 X2
4.713.35
2.547
S X1 X2
0.534
3.自由度
ν=n1+n2-2 = 11+13-2 = 22 查 附 表 2 可 得 : 0.01 < P < 0.02, 按
α=0.05水准拒绝H0,差异有统计学意义。
Sc2
1 n1
1 n2
Sc2
(n11)S12(n21)S22 n1n22
ν= n1 + n2 -2
.
12
例3 某克山病高发区测得11例急性克山 病患者与该地13名健康人的血磷值(mg%) 如表2所示,判定两组均数差异有否统计 学意义。
.
13
表2 患者与健康者的血磷测定值(mg%)
患者编号
1
X1
4.73
t 检验计算公式
t X 1 X 2
S
2 1
S
2 2
n1 n2
tα’界限值计算公式
健康者编号 X2
1
2.34
2
6.40
3
2.60
4
3.24
5
6.53
6
5.18
7
5.58
8
3.73
9
4.32
10
5.78
11
3.73
2
2.50
3
1.98
4
1.67
5
1.98
6
3.60
7
2.33
8
3.73
9
4.57
10 4.82
11 5.78
12 4.17
13 4.14
解:1.H0:μ1= μ2 ,即克山病患
第6章 t检验与Z检验
(t test and u test)
一、单个样本的t检验 二、配对设计计量资料比较的t检验 三、两独立样本资料均数比较的t检验
四、Z检验 五、t’检验
.
1
一、单个样本的t检验
(one sample t test)
t X 0
SX
自由度ν= n-1
.
2
二、配对资料比较的t 检验
表1 克矽平治疗矽肺患者治疗前后
血红蛋白含量(g/L) 编号 治疗前 治疗后
1
113
140
2
150
138
3
150
140
4
135
135
5
128
135
6
100
120
7
110
147
8
120
114
9
130
138
10
123
120
表1 治疗矽肺患者血红蛋白量(克%)
编号 治疗前 治疗后 治疗前后差数d
1
113
.
26
方差齐性的检验用F 检验, 统计量F 值的计算公式为:
S
2 1


F
S
2 2


.
27
求得F值后,其自由度分别为: df1 =n1-1; df2 =n2-1
查c6,作方差齐性检验,
若 P> 0.05 则用 t 检验 P< 0.05 则用t'检验
.
28
五、两独立样本均数比较的t’ 检验 (two independent sample t-test)
根据目前资料尚不能认为克矽平 对血红蛋白含量有影响。
.
10
三、两独立样本均数比较的t 检验 (two independent sample t test)
▲目的:由两个样本均数的差别推断两样本 所取自的总体中的总体均数间有无差别?
▲公式:
t X1 X2 S X1 X2
.
11
其中:
SX1X2
可以认为克山病患者血磷的平均值高 于当地健康人的血磷平均值。
.
18
四、Z 检验
单样本Z检验 适用于当Z较大时或总体标准差已知时。
Z X 0 (n较大时 )
S/ n
Z
X 0 0 / n
(
已知时
0
)
与Z
0.05
=
1.96
进行比较
.
19
四、Z 检验
两大样本均数的比较
Z X1 X2
S
2 1
S
2 2
相关文档
最新文档