递推公式求通项公式的几种方
递推公式求通项公式的几种方
由递推公式求通项公式的常用方法由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。
对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
方法一:累加法形如a n+1-a n=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,则用累加法求a n。
有时若不能直接用,可变形成这种形式,然后利用这种方法求解。
例1a1,a2,a3(1(2(2又a形如例2由(n得(a n+1n n+1n因为a n>0,则a n+1+a n≠0,所以=,将n=1,2,…,n-1,分别代入得==……=将上面n-1个式子相乘得,=××…×又a1=1,则a n=点评:本题先由已知求出递推公式,化成了=g(n)的类型,再利用累乘法求通项公式。
方法三:构造新数列法构造新数列法:将递推关系经过适当的恒等变形转化为特殊数列的递推关系(等差数列、等比数列、常数列或等差数列和等比数列的求和形式),以下类型均采用这种解法。
类型一:a n+1=A a n+B(A,B∈R,A≠0)线性递推关系当A≠0,B=0时,a n+1=A a n是以A为公比的等比数列;当Aa1+例3a n}的通项公式。
a n-a n+cq n 待入得p,而数列{a n+·例4解:由n=n+·可变形为n=(n+),则数列{n}是以为1=首项以为公比的等比数列,根据等比数列的通项公式得a n+=()n因此a n=-类型三:a n+2=p a n+1+q a n(其中p,q均为常数)方法:先把原递推公式转化为a n+2-s a n+1=t(a n+1-s a n),其中s,t满足,再利用等比数列来求解。
例5:已知数列{a n}中,a1=1,a2=2,a n+2=a n+1+a n,求{a n}的通项公式。
由递推公式求通项公式的三种方法
由递推公式求通项公式的三种方法递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接,下面介绍由递推公式求通项公式的几种方法.1.累加法[典例1] 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [解析] 由已知得b n =2n -8,a n +1-a n =2n -8,所以a 2-a 1=-6,a 3-a 2=-4,…,a 8-a 7=6,由累加法得a 8-a 1=-6+(-4)+(-2)+0+2+4+6=0,所以a 8=a 1=3.[答案] B[题后悟道]对形如a n +1=a n +f (n )(f (n )是可以求和的)的递推公式求通项公式时,常用累加法,巧妙求出a n -a 1与n 的关系式.2.累乘法[典例2] 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n . (1)求a 2,a 3;(2)求{a n }的通项公式.[解] (1)由S 2=43a 2得3(a 1+a 2)=4a 2, 解得a 2=3a 1=3.由S 3=53a 3得3(a 1+a 2+a 3)=5a 3, 解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1. 将以上n -1个等式中等号两端分别相乘,整理得a n =n n +1 2. 综上可知,{a n }的通项公式a n =n n +1 2.[题后悟道]对形如a n +1=a n f (n )(f (n )是可以求积的)的递推公式求通项公式时,常用累乘法,巧妙求出a n a 1与n 的关系式.3.构造新数列[典例3] 已知数列{a n }满足a 1=1,a n +1=3a n +2;则a n =________.[解析] ∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1.[答案] 2×3n -1-1[题后悟道]对于形如“a n +1=Aa n +B (A ≠0且A ≠1)”的递推公式求通项公式,可用迭代法或构造等比数列法.上面是三种常见的由递推公式求通项公式的题型和对应解法,从这些题型及解法中可以发现,很多题型及方法都是相通的,如果能够真正理解其内在的联系及区别,也就真正做到了举一反三、触类旁通,使自己的学习游刃有余,真正成为学习的主人.。
数列-递推公式求通项的十大模型
递推公式求通项的十种类型类型1.等差数列:相邻两项递推形式:d d a a n n ,(=--1为常数,+∈≥N n n 且2)或者相邻三项递推形式:)2(211++-∈≥=+N n n a a a n n n 且.这种递推形式下,直接用等差数列的通项公式:即可解决!例1.已知数列{}n a 的前n 项和为n S ,满足11a =1=,则n a =()A.21n -B.nC.21n +D.12n -解析:∵11a ==1,∴是以1为首项,以1为公差的等差数列,(1)11(1)1n n n =-⨯=+-⨯=,即2n S n =,∴()221121n n n a S S n n n -=-=--=-(2n ≥).当1n =时,11a =也适合上式,∴21n a n =-.故选:A.注1:在等差数列中,有一类比较特殊的递推类型,即b kn a a n n +=++1,它可以得到两个子数列分别是公差为k 的等差数列.例2.已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011解析:∵12a =,()142n n a a n n +++=+∈N ,∴216a a +=,解得24a =.142n n a a n ++=+ ,∴2146n n a a n +++=+,两式相减,得24n na a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n nS n n +==+,()111111n S n n n n ==-++,设1n S ⎧⎫⎨⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-= .故选:A.例3.数列{}n a 中,112,21,N n n a a a n n *+=+=+∈.求{}n a 的通项公式;解析:(1)由121++=+n n a a n ①2123n n a a n ++⇒+=+②,②-①22n n a a +⇒-=,∴{}n a 的奇数项与偶数项各自成等差数列,由11223a a a =⇒+=,∴21a =,∴2112(1)2n a a n n -=+-=,∴1n a n =+,n 为奇数,212(1)21n a n n =+-=-,∴1n a n =-,n 为偶数.∴()()**1,21,N 1,2,Nn n n k k a n n k k ⎧+=-∈⎪=⎨-=∈⎪⎩.类型2.等比数列:相邻两项递推:)2,0,0(1+-∈≥≠≠=N n n a q qa a n n n且且或q a a n n=-1.或者相邻三项递推:)2(211≥∈=+-+n N n a a a n n n 且.注2:在等比数列应用中,有一类比较特殊的递推类型,即++∈∀⋅=N n m a a a n m m n ,,,我们可以对其赋值得到一个等比数列.例4.数列{}n a 中,112a =,对任意,N m n *∈有m n m n a a a +=,若19111k k k a a a +++++ 15522=-,则k =()A.2B.3C.4D.5解析:由任意,m n *∈N 都有m n m n a a a +=,所以令1m =,则11n n a a a +=,且112a =,所以{}n a 是一个等比数列,且公比为12,则1910155191112222222k k k k k k k k a a a ++++++++=+++=-=- 所以5k =,故选:D.例5.已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数且11a =,22a =.求通项n a ;解析:当n 为奇数时,由22n n a a +-=知数列{}21k a -是公差为2的等差数列,()2111221k a a k k -=+-⨯=-,∴n a n =,n 为奇数;当n 为偶数时,由22n n a a +=知数列{}2k a 是公比为2的等比数列,1222k kk a a q -==,∴22nn a =,n 为偶数∴2,2,n n n n a n ⎧⎪=⎨⎪⎩为奇数为偶数.类型3.)(1n f a a n n =--累加型例6.若数列{}n a 满足11a =,12n n a a n +-=.求{}n a 的通项公式.解析:因为12n n a a n +-=,11a =,所以()()()1122112(1)2(2)21n n n n n a a a a a a a a n n ---=-+-++-+=-+-+++2222(1)112n n n n -+⋅-+=-+=,故21n a n n =-+.类型4.)(1n f a a n n=-(2≥∈+n N n 且)累乘型.例7.数列{}n a 及其前n 项和为n S 满足:11a =,当2n ≥时,111n n n a a n -+=-,则12320231111a a a a ++++= ()A.20211011B.40442023C.20231012D.40482025解析:当2n ≥时,111n n n a a n -+=-,即111n n a n a n -+=-,所以3124123213451,,,,,12321n n n n a a a a a n n a a a a n a n ---+=====-- 累乘得:()113451123212n n n a n n a n n ++=⨯⨯⨯⨯=-- ,又11a =,所以()12n n n a +=所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则1232023111111111111222212233420232024a a a a ⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭14046202321202420241012⎛⎫=-== ⎝⎭.故选:C.类型5.d ca a n n +=-1型(待定系数法)一般形式:1(,n n a ca d c d -=+为常数,0,1,0)c c d ≠≠≠,可以构造一个等比数列,只要在每一项同加上一个常数即可,且常数1dx c =-,1()n n a x c a x -+=+,令n n b a x =+,则n b 为等比数列,求出n b ,再还原到n a ,1)1(11--⋅-+=-c dc cd a a n n .例8.在数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈.求{}n a 的通项公式.解析:依题意,数列{}n a 中,12a =,()*1432,N n n a a n n -=-≥∈,所以()()1*N 1412,n n a a n n --=-≥∈,所以数列{}1n a -是首项为111a -=,公比为4的等比数列.例9.(2014年新课标全国1卷)已知数列{}n a 满足13,111+==+n n a a a ,证明⎭⎬⎫⎩⎨⎧+21n a 是等比数列,并求{}n a 的通项公式.解析:显性构造:13,111+==+n n a a a ,)21(3211+=++n n a a ,)13(21-=n n a .类型6.nn n b m qa a ⋅+=+1型例10.已知数列{}n a 的首项1=6a ,且满足1142n n n a a ++=-.求数列{}n a 的通项公式;解析:∵1142n n n a a ++=-,∴112122n n n n a a ++=⋅-,∴1112122n n n n a a ++⎛⎫-=- ⎪⎝⎭,又∵1122a -=,故12n n a ⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列.112222n nn n a --=⋅=,则42n n n a =+.类型7.)1)((1≠+=+p n f pa a n n 型.方法1.数学归纳法.方法2.1111)()(+++++=⇒+=n n n n n n n p n f p a p a n f pa a ,令n n n p a b =,则11)(++=-n n n pn f b b ,用累加法即可解决!(公众号:凌晨讲数学)例11.(2020年新课标全国3卷)设数列{}n a 满足31=a ,n a a n n 431-=+.(1)计算2a ,3a ,猜想{}n a 的通项公式并加以证明;(2)求数列{}n na 2的前n 项和n S .解析:方法1:归纳法.(1)235,7,a a ==猜想21,n a n =+得1(23)3[(21)]n n a n a n +-+=-+,1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+方法2:构造法.由n a a n n 431-=+可得:1113433+++-=-n n n n n n a a ,累加可得:123123+=⇒+=n a n a n n n n .(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯ .①23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯ .②-①②得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯ ,1(21)2 2.n n S n +=-+类型8.)0(1≠⋅+=+q p qpa ta a n nn 型例12.已知数列{}n a 满足11a =,*1,N 1nn n a a n a +=∈+,求数列{}n a 的通项公式.因为*1,N 1n n n a a n a +=∈+,所以1111n na a +=+,即1111n n a a +-=,又11a =,所以111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭为首项为1,公差为1的等差数列,所以()1111n n n a =+-⨯=,故1n a n =,所以数列{}n a 的通项公式为1n a n=.类型9.已知n S 与n a 关系,求n a .(公众号:凌晨讲数学)解题步骤:第1步:当1=n 代入n S 求出1a ;第2步:当2≥n ,由n S 写出1-n S ;第3步:1--=n n n S S a (2≥n );第4步:将1=n 代入n a 中进行验证,如果通过通项求出的1a 跟实际的1a 相等,则n a 为整个数列的通项,若不相等,则数列写成分段形式,.)2()1(1⎩⎨⎧≥==n a n a a n n 在本考点应用过程中,具体又可分为三个角度,第一,消n S 留n a ,第二个角度,消n a 留n S ,第三个角度,级数形式的前n 项和,下面我们具体分析.例13.已知数列{}n a 的前n 项和为n S ,112a =,112n n n S S a ++⋅=-.证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列.证明:∵112n n n S S a ++⋅=-,∴112n n n n S S S S ++⋅=-,易知0n S ≠,∴111112n n n n n nS S S S S S +++-=-=⋅,∴数列1n S ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.例14.设数列{}n a 的前n 项和为n S ,且满足1=2a ,()*123N n n n a S n +=+∈.求n S .解析:因为()*123N n n n a S n +=+∈,所以11233,3n nn n n n n S S S S S ++-=+=+∴,则111111,333333n n n n n n n n S S S S ++++-=+=,11233S =,即{}3n n S 为首项为23,公差为13的等差数列,则211(1)(1)3333n n S n n =+-=+,故1(1)3n n n S -=+⋅.例15.已知数列{}n a 满足123123252525253n n na a a a ++++----….求数列{}n a 的通项公式.解析:123123252525253n n na a a a +++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++----…,②由①-②,得()3522n n a n +=≥,因为14a =符合上式,所以352n n a +=.例16.(2022新高考1卷)记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.求{}n a 得通项公式.解析:111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .类型9:已知前n 项积求n a .例17.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.解析:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠,所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈,所以数列{}n b 是以132b =为首项,以12d =为公差等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n n b n ∴=+-⨯=+,22211n n n b n S b n +==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.类型10.特征方程法(强基层次):n n n ba aa a +=++12型.求解方程:02=--b a λλ,根据方程根的情况,可分为:(1)若特征方程有两个相等的根,则nn x b An a 0)(+=(2)若特征方程有两个不等的根,则n nn Bx Ax a 21+=例18.已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式;解析:2143n n n a a a ++=-,变形为:()2113n n n n a a a a +++-=-,216a a -=,∴数列{}1n n a a +-是等比数列,首项为6,公比为3.∴116323n nn n a a -+-=⨯=⨯,变形为:1133n n n n a a ++-=-,131a -=-,∴31n n a -=-,∴31n n a =-例19.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a .解析:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩,1322n n n a --∴=.例20.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a .解析:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+-.。
已知数列递推公式求通项公式的几种方法
求数列通项公式的方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式;解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-;评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式;二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式; 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =;评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式;例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式;解:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式;例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式;解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 评注:本题解题的关键是把递推关系式13231nn n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232111122321()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式; 三、累乘法例5 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式;解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式; 例6已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式;解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=; 所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式; 四、待定系数法例7 已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式;解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}nn a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+;评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式;例8 已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式;解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+;令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-;评注:本题解题的关键是把递推关系式13524nn n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}nn a +⨯+的通项公式,最后再求数列{}n a 的通项公式;例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式;解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x xx y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---;评注:本题解题的关键是把递推关系式212345n n a a n n +=+++转化为2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列2{31018}n a n n +++是等比数列,进而求出数列2{31018}n a n n +++的通项公式,最后再求出数列{}n a 的通项公式;五、对数变换法例10 已知数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式;解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,;在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误!将⑩式代入错误!式,得5lg lg3lg 2(1)5(lg )n n a n x n y a xn y +++++=++,两边消去5lg n a 并整理,得(lg3)lg 255x n x y xn y ++++=+,则lg35lg 25x x x y y +=⎧⎨++=⎩,故lg34lg3lg 2164x y ⎧=⎪⎪⎨⎪=+⎪⎩代入错误!式,得1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++ 错误! 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠及错误!式, 得lg3lg3lg 2lg 04164n a n +++≠, 则1lg3lg3lg 2lg (1)41645lg3lg3lg 2lg 4164n n a n a n +++++=+++, 所以数列lg3lg3lg 2{lg }4164n a n +++是以lg3lg3lg 2lg 74164+++为首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,因此1111111116164444111111161644441111111616444455514lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464(lg 7lg 3lg 3lg 2)5lg 3lg 3lg 2[lg(7332)]5lg(332)lg(7332)5lg(332)lg(733n n n n n n n n n n n n a n ---------=+++---=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅1115116454151511642)lg(732)n n n n n -------⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯;评注:本题解题的关键是通过对数变换把递推关系式5123n n n a a +=⨯⨯转化为1lg3lg3lg 2lg3lg3lg 2lg (1)5(lg )41644164n n a n a n +++++=+++,从而可知数列lg3lg3lg 2{lg }4164n a n +++是等比数列,进而求出数列lg3lg3lg 2{lg }4164n a n +++的通项公式,最后再求出数列{}n a 的通项公式; 六、迭代法例11 已知数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式;解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=;评注:本题还可综合利用累乘法和对数变换法求数列的通项公式;即先将等式3(1)21nn n na a ++=两边取常用对数得1lg 3(1)2lg nn n a n a +=+⨯⨯,即1lg 3(1)2lg n n na n a +=+,再由累乘法可推知(1)123!213211221lg lg lg lg lg lg lg5lg lg lg lg n n n n n n n n n a a a a a a a a a a --⋅⋅---=⋅⋅⋅⋅⋅=,从而1(1)3!225n n n n n a --⋅⋅=;七、数学归纳法例12 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式; 解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得 由此可猜测22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论;1当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立; 2假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立; 根据1,2可知,等式对任何*n N ∈都成立;评注:本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明; 八、换元法例13 已知数列{}n a 满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式;解:令n b =则21(1)24n n a b =-故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所以{3}n b -是以13332b -===为首项,以21为公比的等比数列,因此121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得 2111()()3423n n n a =++;n b ,使得所给递推关系式转化11322n n b b +=+形式,从而可知数列{3}n b -为等比数列,进而求出数列{3}n b -的通项公式,最后再求出数列{}n a 的通项公式;。
求递推数列通项公式的常用方法
求递推数列通项公式的常用方法一 公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。
例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式?【解析】: 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =, ∴ 12nn a ⎛⎫= ⎪⎝⎭.反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键.跟踪训练 1.已知数列{}n a 的前n 项和n S ,满足关系()1lgn S n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.二 归纳法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例二 已知数列{}n a 中,11a =,121(2)n n a a n -=+≥,求数列{}n a 的通项公式. 【解析】: 11a =,121(2)n n a a n -=+≥,∴2121a a =+3=,3221a a =+7=⋅⋅⋅⋅ 猜测21n n a =-*()n N ∈,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.跟踪训练2.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对于所有自然数n ,n a 与1的等差中项等于n S 与1的等比中项,求数列{}n a 的通项公式.三 累加法:利用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的方法称为累加法。
累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和).例三 已知无穷数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 满足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的关键是将递推公式变形为1()n n a a f n +=+.跟踪训练3.已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.四 累乘法:利用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】: 1()n n n a n a a +=-,∴11n n a n a n ++=,又有321121(0,2)n n n n aa a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,满足n a n =,∴n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.跟踪训练 4.已知数列{}n a 满足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是.五 构造新数列:类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
九类常见递推数列求通项公式方法
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n
.
九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+
常见递推数列求通项公式的七种方法
解A争 1_. l 1 边 - 得 一 :—-= , : q 两 加2 :l =L 2. } I . ‘+ 在 ,
例 5已知数列 ‘ l a 2 = . 中,t , =
)C k十 l
。 求数列 { ) 的
类 型 二 : 知 口: 口 ) 。, ・ 型 . 用 累 乘 法 求 已 I ≠o , = ( | 可
‘ ・
例. 数 {J,} =,数 {) 4知 列 中8 , 列 的 已 - + 求 = -
通项公式.
由 口- 叶
。 可知 :
u l
1 )
u
, , …
t t. t ̄ 1
一
1 ) ・
解法一 : 已知 + 两边 同除 以 2 J 给 a 肿, }一 得
把上面各项两边分别相乘 , 得
’ 1 ,b 参- + 冷6 则 . } 1 ,
・
= l ) 2… ・ 一 ) 口・ 【) 1 ≥2 1 . )
.
.
例 2设 I l 首 项 为 1的 正 项 数 列 , (+ ) . 是 且 ,1 l
至多 有 1 是 二 等 品 ” 件 的概 率 P A)O9 . ( = .6
解 法 二 : I 2 两 边 同除 以 ( 1 , ( 1“ 广 对 + = l I 一 ) 得 一 )
=
・
}^ ‘‘=. ・ }争争} ・
E . Ⅳ) .
} 等 比数 列. 为
(1 = (2^ _ ) 一- ) . 令 6 - ) , 6 l(1 ‰ l (1 则 =_ ,
常见递推数列 求通项公 式的七种方法
由递推公式求通项公式的几种基本类型
由递推公式求通项公式的几种基本类型数列的递推公式和数列的通项公式是数列的两种不同表示形式,已知数列的递推公式如何求数列 的通项公式,现介绍几种基本类型的处理方法: (1)“)(1n f a a n n +=+型”——累加法利用累加可得:1(1)(2)(1)n a a f f f n =++++-,(2n ≥)例1、111,2 1.n n a a a n +==++求{}n a 的通项公式.解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-(2)“)(1n f a a n n ⋅=+型”——累乘法利用累乘可得: 1(1)(2)(1)n a a f f f n =-,(2n ≥)例2、111,2.n n n a a a +==⋅求{}n a 的通项公式.解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a(3)“q a p a n n +⋅=+1型”(p , q 为常数且10p ≠≠,q )——构造等比数列法递推关系可化为1()11n n q q a p a p p ++=+--,利用等比数列求出1n qa p +-的表达式,进而求出n a例3、111,2 1.n n a a a +==+求{}n a 的通项公式.解:由),3,2,1(121 =+=+n a a n n 可考虑转化为)(21x a x a n n +=++的形式, 即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a),3,2,1(122 =-=⇒=⇒n a b n n n n(4)“1nn n ma a pa q+=+型”(p , ,q m 为常数且,,0p m q ≠)——倒数法可采用取倒数方法转化成为111n n m m a q a p+=+形式,而后利用第(3)种类型的处理方法解决。
由递推公式求通项公式五类型
由递推公式求通项公式类型一 累加相消法(“)(1n f a a n n +=+型”)例1.设数列{}n a 满足),3,2,1(12,111 =++==+n n a a a n n 求{}n a 的通项公式 解:由(1)),3,2,1(121 =+=-+n n a a n n 可知,;11212+⨯=-a a ;12223+⨯=-a a ;1)1(2;1+-⨯=--n a a n n上述等式累加可得,21)1())1(21(2n a n n a a n n =⇒-+-+++⨯=-类型二 累乘相消法(“)(1n f a a n n ⋅=+型”)例2.设数列{}n a 满足),3,2,1(2,111 =⋅==+n a a a n n n ,求{}n a 的通项公式 解:由(2)),3,2,1(21 =⋅=+n a a n n n 可知,212=a a ;2232=a a ;3342=a a112--=n n n a a 上述等式累乘可得,2)1(132122222--=⇒⋅⋅=n n n n n a a a类型三 倒数法 CBa Aa a n nn +=型数列(C B A ,,为非零常数)例3.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a a n nn 求{}n a 的通项公式 解:211211+=+=+nn n n a a a a ∴⎭⎬⎫⎩⎨⎧n a 1是以35为首项,公差为2的等差数列,即351=n a +2(n -1)=316-n ∴a n =163-n 类型四 构建新数列( 待定系数法) (1)q a p a n n +⋅=+1型例4.设数列{}n a 满足),3,2,1(12,111 =+==+n a a a n n ,求{}n a 的通项公式 解 :设)(21x a x a n n +=++,即x a a n n +=+21与递推式比较,可得1=x ,所以递推式转化为)1(211+=++n n a a 则可构造新数列,令1+=n n a b ,有⎩⎨⎧===+=+),3,2,1(221111 n b b a b n n ),3,2,1(122 =-=⇒=⇒n a b n n n n (2)a n +1 = p a n + f (n )型例5.已知数列{a n }中,a 1=1,且a n =a n -1+3n -1,求{a n }的通项公式.解:设a n +p ·3n =a n -1+p ·3n -1则a n =a n -1-2p ·3n -1,与a n =a n -1+3n -1比较可知p =-21. 所以⎭⎬⎫⎩⎨⎧-23n n a 是常数列,且a 1-23=-21.所以23n n a -=-21,即a n =213-n .(3) 11-++=n n n qa pa a 型(其中p ,q 为常数)例6. 已知数列{}n a 满足06512=+-++n n n a a a ,且5,121==a a ,且满足,求n a .解:令)(112n n n n xa a y xa a -=-+++,即0)(12=++-++n n n xya a y x a ,与已知06512=+-++n n n a a a 比较,则有⎩⎨⎧==+65xy y x ,故⎩⎨⎧==32y x 或⎩⎨⎧==23y x 下面我们取其中一组⎩⎨⎧==32y x 来运算,即有)2(32112n n n n a a a a -=-+++,则数列{}n n a a 21-+是以3212=-a a 为首项,3为公比的等比数列,故n n n n a a 333211=⋅=--+,即n n n a a 321+=+,利用类型(2)的方法,可得n n n a 23-=.类型五 取对数 r n n pa a =+1(其中p ,r 为常数)型例6. 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式. 解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b ,{}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log12-=-n a n ,∴1212--=n n a。
递推公式求通项的几种方法
S1 (n 1) an S n S n1 (n 2)
与 an Sn Sn1 f (an ) f (an1 ) 消去 S (n 2) n 或与 Sn f (Sn Sn1 )(n 2)消去an
(2006,陕西,理,20本小题满分12分)
已知正项数列 an ,其前n项和 Sn 满足
an 2n 1(经验证,n=1也满足)
an1 2an 1 (类型3的形式)②
根据待定系数法构造等比数列 ,得 an 2n 1
方法三 综合联立方法一、二的① ②,可得
an 2 1(n 2)
n
方法四(特征根法)①特征方程为 x 2 3x 2 0
解出特征根 x1 1, x2 2
2 2 n1
由① - ②得
10an (an a
) 6(an an1 )
即
(an an1 )(an an1 5) 0
而 则
an an1>0 an an1 5(n 2)
当 a1 3 时, a3 13 , a15 73.
a1 , a3 , a15 不成等比数列, ∴ a1 3
解:设
求数列 an 的通项公式。
,
an2 san1 t (an1 san ) 则 an2 (s t )an1 tsan
s t 3 与已知等式比较,得 ts 2
解得,s=1,t=2或s=2,t=1
方法一 取s=1,t=2,得
an2 an1 2(an1 an )
nan
再联合已知式,可得 当 n 2 时, an1 an
即
an1 (n 1)an
又 a2 a1 1 ∴ a1 1, a2 1, a3 3, , an n a1 a2 an 1 将以上n个式子相乘,得 n! a n ( n 2) 2
求通项公式的常用方法
求通项公式的常用方法通项公式是数列中每一项与序号n之间的关系式,可通过递推关系和数列特点来确定。
下面将介绍几种常用的方法来求解通项公式。
一、等差数列等差数列是一种公差固定的数列,通项公式可以通过公差和首项求得。
1.递推法:设等差数列的首项为a₁,公差为d,则通项公式为an = a₁ + (n -1)d。
2.求和法:对于等差数列,可以根据前n项和与首项之间的关系来求解通项公式。
设前n项和为Sn,首项为a₁,公差为d,则有等差数列求和公式Sn =n/2(a₁ + an)。
二、等比数列等比数列是一种比值固定的数列,通项公式可以通过公比和首项求得。
1.递推法:设等比数列的首项为a₁,公比为r,则通项公式为an = a₁ * r^(n -1)。
2.求和法:对于等比数列,可以根据前n项和与首项之间的关系来求解通项公式。
设前n项和为Sn,首项为a₁,公比为r,则有等比数列求和公式Sn=a₁(r^n-1)/(r-1)。
三、斐波那契数列斐波那契数列是一种特殊的数列,前两项为1,之后的每一项都是前两项的和。
1.递推法:设斐波那契数列的第n项为F(n),则通项公式为F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=12.通项公式法:利用通项公式公式Fn = (Phi^n - (-Phi)^(-n))/sqrt(5),其中Phi是黄金分割比(约为1.618)。
四、多项式数列多项式数列是指通项由多项式表达的数列。
1.解线性递推关系:对于多项式数列,可以根据给定的递推关系式来推导通项公式。
具体的方法可以通过代入法、特征根法、辅助方程法等来求解。
2.拉格朗日插值法:对于已知部分数列项的数值,可以利用拉格朗日插值法求解通项公式。
该方法需要确定数列项数目与已知项数目一致。
以上是一些常见的求通项公式的方法,不同的数列类型可能需要不同的方法来求解。
在实际问题中,还可以根据数列性质和给定条件等将其转化为已知的数列类型,从而应用相应的求解方法。
由递推公式求通项的几种常见方法
由递推公式求通项的几种常见方法作者:王玉君来源:《成才之路》2011年第13期递推公式是表示数列的一种方法。
由于它比较抽象,是数列这章的难点,也是重点。
而其中渗透的整体思维、化归、分类讨论思想,都是数学中的重要内容。
一、叠加法人教版的等差数列通项公式的导出,为我们提供了一种方法,称之为叠加法。
推导如下:a2-a1=d,a3-a2=d,a4-a3=d……an-an-1=d(n≥2),这样就可把n-1个式子相加,得到an- a1=(n-1),所以an= a1+(n-1)d,当n=1时也适合上式。
由此就导出等差数列通项公式。
只要递推公式满足an+1- an=f(n),都可以用此方法。
例如:已知数列{an}满足a1=1,an+1=an+()n,求通项an.解:由题意,an+1-an=()n,所以a2-a1=,a3-a2=()2……,an-an-1=()n-1(n≥2),把这n-1个式子相加,有an-a1=+()2+……()n-1(n≥2),对右侧求和,整理得an-a1=,所以an=2-()n-1.当n=1时显然也适合上式。
二、叠乘法叠乘法的灵感,来自等比数列通项公式的推导。
过程如下:=q,=q,=q......=q(n≥2),这样可把n-1个式子相乘,得到=qn-1(n≥2)。
显然,当n=1时也适合,所以an=a1qn-1.例如:已知数列{an}满足a1=2,an+1=2n·an,求通项公式an.解:由题意,an≠0,=2n,所以,=2,=22,=23......=2n-1(n≥2),把n-1个式子相乘,得到=2·22·23……2n-1=2(1+2+3+……+n-1)=2,所以an=2·2=2 (n≥2),显然,当n=1时也适合。
所以an=2.只要是满足=f(n)式子,都适合用叠乘法求通项公式。
三、可构造成形式为{an+x}的等比数列,求通项公式an在数列这章,我们只学了等差、等比数列的相应公式,对于其他类型的数列,可借助等差或等比数列公式求出。
由递推关系求数列通项公式的几种方法
1 1 解:Qan+1 = 3an +1 ∴an+1 + =(an + ) 3 2 21 an+1 + 1 2 =3 Qan + ≠ 0 ∴ 1 2 1 an + ∴{an + }是等比数列 , 2 2 1 1 n−1 3n −1 ∴an + = (a1 + ) ⋅ 3 ∴an = (n ∈N*) 2 2 2
然后用数学归纳法证明
小结: 小结
到了什么? 1.这节课我学 2.我还有哪些疑问? 3.我有什么新 想法 新发现? ,
作业:1.复习 作业 复习 2.进行等差数列 等比数列的知识梳理 进行等差数列,等比数列的知识梳理 3.做卷子 其中例 做卷子.其中例 其中例1(3)(8)选做 选做
1.形如an+1 − an = d(d为常数) 等差型
a2 2 解: = a1 1 a3 3 = a2 2 a4 4 = a3 3
5 .形 an+1 = f( ) n 如 n ⋅a
迭乘法
an 2 3 4 n −1 n ∴ = ⋅ ⋅ L ⋅ a1 1 2 3 n − 2 n −1
Mn an × a = n − 1 (n ≥ 2) ∴an = n (n ∈N*) n −1
2.形如an+1 = q ⋅ an (q为常数)
等比型
5 2 课课练P 44 / 12同学们做到 an = an −1 (n ≥ 2) 3 3
an 2 Q an −1 ≠ 0 ∴ = ( n ≥ 2) an −1 5
3 2 ∴{an }是等比数列, 首项a1 = , 公比q = 5 5
常见递推数列通项公式的求法
(5)累乘法:
an1 an
f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.
又
an
1 2
an1
1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1
pan qan
r
(
p, q,
r均不为零)
类型6
an1
递推数列求通项公式的典型方法
递推数列求通项公式的典型方法1、 a n+1=a n +f (n )型 累加法:a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =f (n-1)+f (n-2)+…f (1)+ a1例1 已知数列{a n }满足a 1=1,a n+1=a n +2n (n ∈N *), 求a n 解: a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+ a 1 =2n-1+2n-2+…+21+1=2n -1(n ∈N *)例 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=2、)(1n g a ann =+型累积法:112211.....a a aa a a a a n n n n n ---=所以()()()()11...321a g n g n g n g a n ---=∴例2:已知数列{a n }满足()*1N n n a ann ∈=+,.11=a 求n a解:112211...a a aa a a a a n n n n n ---==()()()()!11...321-=---n n n n ()()+∈-=∴N n n a n !1例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题). 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 3.q pa a n n +=+1型(p,q 为常数)方法:(1)⎪⎪⎭⎫⎝⎛-+=-++111p q a p p q a n n ,再根据等比数列的相关知识求n a . (2)()11-+-=-n n n n a a p a a 再用累加法求n a .(3)111++++=n n n n n p qp a p a ,先用累加法求n n p a 再求n a 例3.已知{}n a 的首项a a =1(a 为常数),()2,21≥∈=+-n N n a a n n ,求n a解 设()λλ-=--12n n a a ,则1-=λ ()1211+=+∴-n n a a{}1+∴n a 为公比为2的等比数列。
谈谈三类递推数列通项公式的求法
思路探寻求递推数列的通项公式问题是一类难度系数较大的问题,侧重于考查同学们的运算和推理能力.求递推数列的通项公式问题中的递推式多种多样,解答这类问题的关键是合理整合递推式,将问题转化为简单的、易于求解的数列问题.本文主要分析三类递推数列通项公式的求法.一、a n +1=qa n -1+d 型递推数列对于形如a n +1=qa n -1+d (q ≠1,d ≠0)的递推数列问题,我们一般采用待定系数法进行求解.在解题时,要先设出待定系数m ,使a n +1+m =q (a n −1+m ),然后将其与原递推式中对应项的系数相比较,建立含有待定系数的方程或方程组,解方程或方程组,求出待定系数的值,就能构造出一个等比数列{}a n +m ,再根据等比数列的通项公式就可以求出数列{}a n 的通项公式.例1.在若数列{}a n 中,a 1=1,a n +1=12a n +1()n ∈N +,求a n .解:令a n +1+m =12()a n+m ,则m =-2,所以{}a n -2是首项为-1,公比为12的等比数列,所以a n -2=-æèöø12n -1,即a n =-æèöø12n -1+2.该递推式属于a n +1=qa n -1+d 型,因此我们需从a n +1=12a n +1入手,运用待定系数法进行求解.二、a n +1=ca n +f ()n 型递推数列当遇到形如a n +1=ca n +f ()n (c ≠0)型的数列递推式时,一般要先将递推式变形为a n +1f ()n =ca nf ()n +1的形式,然后令a n f ()n =b n ,得到b n +1=c q b n +1q ,这样便将问题转化求a n +1=qa n −1+d 型递推数列的通项公式.运用待定系数法构造出等比数列便可解答出来.例2.在数列{}a n 中,a 1=1,a n +1=3a n +2n ()n ∈N +,求a n .解:由a n +1=3a n +2n得2∙a n +12n +1=3∙a n 2n +1,令b n =a n 2n ,则b n +1=32b n +12.由待定系数法得b n +1+1=32(b n +12),令c n =b n +1,则c n +1=32c n ,所以{}c n 是首项为c 1=b 1+1=32,公比为32的等比数列,所以c n =æèöø32n,b n =æèöø32n-1,即a n =2n ∙b n =32-2n .我们先通过换元,把分散的条件联系起来,让隐含的条件显露出来,将问题转化为求a n +1=qa n −1+d 型递推数列的通项公式.再运用待定系数法便可求出数列的通项公式.三、a n +1∙a n =ca n +1+da n 型递推数列对于形如a n +1∙a n =ca n +1+da n (c ≠0,d ≠0)递推数列,在求其通项公式时,我们先要在递推式的两边同时除以a n +1·a n ,得到c a n +da n +1=1,将问题转化为a n +1=qa n −1+d 型递推数列问题,再运用待定系数法求解即可.例3.已知数列{}a n 满足:a n ≠0,且a n =3a n -1a n -1+3()n ≥2,a 1=12,求数列的通项公式.解:在递推式a n =3a n -1a n -1+3的两边取倒数得1a n =1a n -1+13,所以数列{}a n 是首项为1a 1=2、公差为13的等差数列,所以1a n=2+()n -1∙13=13()n +5,所以a n =3n +5.我们先在递推式的两边取倒数,便可构造出首项为1a 1=2、公差为13的等差数列,再根据等差数列的通项公式求得数列的通项公式.虽然求递推式数列的通项公式问题的难度较大,但是我们只要掌握方法,善于整合数列的递推式,将问题转化为等比、等差数列问题进行求解,问题便能迎刃而解.在解题时,要抓住关键,重点分析数列的递推式,将其合理进行变形,如引入待定系数、取倒数、换元等,构造出等差、等比数列,根据等差、等比数列的通项公式进行求解.(作者单位:湖北省襄阳市南漳县第一中学)谈谈三类递推数列通项公式的求法石磊53Copyright©博看网 . All Rights Reserved.。
由递推公式求通项公式的常见类型
由递推公式求通项公式的常见类型一、累差型例1 在数列{a n }中,a 1=1,a n+1=a n +2n , 求数列{a n }的通项公式。
解:当n ≥2时,由得a n+1-a n =2n ,得a n =(a n -a n-1)+( a n-1-a n-2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n-1+2n-2+…+22+2+1=2(1-2n-1)1-2 +1=2n -1当n=1时, a 1=1也合上式所以a n =2n -1(n ∈N*)二、累商型例2 在数列{a n }中,a 1=4, a n+1=n+2n an, 求数列{a n }的通项公式。
解:由a n+1=n+2n a n 得a n+1a n =n+2n ,于是有 a 2a 1 =3, a 3a 2 =42 ,a 4a 3 =53 ,…, 122n n a n a n--+=, a n a n-1 =n+1n-1 ,将这个式子相乘,得1(1)2n a n n a +=,所以当n ≥2时,a n = n(n+1)2 a 1=2n(n+1) .当n=1时,a 1=4符合上式,所以a n =2n(n+1) (n ∈N*)三、倒数型例3 已知数列{a n }满足a n+1=112n n n n a a a +++,a 1=2, 求数列{a n }的通项公式。
解:由已知递推式可得1a n+1 =11121122n n n n n n a a a ++++=+ ∴ 11n a +-1n a =112n + ∴2211112a a -=,3321112a a -=,4431112a a -=,…,11112n n n a a --= 将以上n-1个式子相加,得23411111112222n n a a -=++++∴1n a =11(1)12211212n n -=-- ∴a n =221n n -(n ∈N*)例4 已知数列{a n }满足a n+1=22nn aa +,a 2012=12012 求数列{an }的通项公式。
根据递推关系求数列通项公式的几种方法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an
求数列通项公式的十种方法-例题答案详解
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯- 评注:已知aa =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递推公式求通项公式的
几种方
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
由递推公式求通项公式的常用方法
由数列的递推公式求通项公式是高中数学的重点问题,也是难点问题,它是历年高考命题的热点题。
对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
方法一:累加法
形如a n +1-a n =f (n )(n =2,3,4,…),且f (1)+f (2)+…+f (n -1)可求,则用累加法求a n 。
有时若不能直接用,可变形成这种形式,然后利用这种方法求解。
例1:(07年北京理工农医类)已知数列{a n }中,a 1=2,a n +1=a n +cn (c 是常数,n =1,2,3,…)且a 1,a 2,a 3成公比不为1的等比数列
(1)求c 的值
(2)求{a n }的通项公式
解:(1)a1,a2,a3成公比不为1的等比数列
(2)由(1)知n a a n a a n n n n 2,211=-+=++即,将n =1,2, …,n -1,分别代入 将上面n -1个式子相加得a n -a 1=2(1+2+3+…+n -1)=n 2-n 又a 1=2,a n =n 2-n +2 方法二:累乘法
形如
a n +1
a n
=g (n )(n =2,3,4…),且f (1)f(2)…f (n -1)可求,则用累乘法求a n .有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例2:设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2
+a n +1a n =0(n =
1,2,3…),求它的通项公式。
解:由题意知a 1=1,a n >0(n =1,2,3…) 由(n +1)a n +12-na n 2+a n +1a n =0 得(a n +1+a n )[(n +1)a n +1-na n ]=0
因为a n >0,则a n +1+a n ≠0,所以a n +1a n = n n +1
,将n =1,2, …,n -1,分别代入得
a 2a 1 = 1
2 a 3a 2 = 23
……
a n a n -1 = n -1n
将上面n -1个式子相乘得,a n a 1 =12×23×…×n -1n
又a 1=1,则a n =1
n
点评:本题先由已知求出递推公式,化成了a n+1
a n
=g(n)的类型,再利用累乘法
求通项公式。
方法三:构造新数列法
构造新数列法:将递推关系经过适当的恒等变形转化为特殊数列的递推关系(等差数列、等比数列、常数列或等差数列和等比数列的求和形式),以下类型均采用这种解法。
类型一: a n+1=A a n+B(A,B∈R,A≠0) 线性递推关系
当A≠0,B=0时,a n+1=A a n是以A为公比的等比数列;
当A≠0,B≠0时,a n+1=A a n+B可变形为a n+1+
B
A-1
=A(a n+
B
A-1
),此时
就构造出了{a n+
B
A-1
}这样一个以a1+
B
A-1
为首项,以A为公比的新的等比数
列,从而求出a n。
例3:(07年全国理科卷)已知数列{a n}中,a1=2, a n+1=( 2 -1)(a n +2)n=1,2,3,…,求{a n}的通项公式。
解:由题设:a n+1=( 2 -1)(a n+2)变形为a n+1- 2 =( 2 -1)(a n - 2 )
所以数列{a n- 2 }是首项为2- 2 公比为 2 -1的等比数列,则
a n- 2 = 2 ( 2 -1)n 即{a n}的通项公式为a n= 2 [( 2 -1)n+1]
类型二:a n+1=p a n+cq n(其中p,q,c均为常数)
方法一:观察所给的递推公式,它一定可以变形为a n+1+xq n+1=p(a n+xq n),
将递推关系a n+1=p a n+cq n待入得p a n+cq n+xq n+1=p(a n+xq n)解得x=
c
p-q
,则由
原递推公式构造出了a n+1+
c
p-q
·q n+1=p(a n+
c
p-q
·q n),而数列{a n+
c
p-q
·q n}
是以为首相以为公比的等比数列。
方法二:将a n+1=p a n+cq n两边分别除以q n+1,则有a n+1
p n+1
=
a n
p n
+
cq n
p n+1
然后利用累
加法求得。
可见对于同一个题型的构造的新数列类型可能不唯一,所以要注意巧妙构造。
例4:(07年唐山二摸)在数列{a n}中,a1=1
6,a n=
1
2
a n+
1
2
·
1
3n
(n∈n*,n≥
2) ,求{a n}的通项公式。
解:由a n=1
2
a n+
1
2
·
1
3n
可变形为a n+
1
3n
=
1
2
(a n+
1
3n-1
),则数列{ a n+
1
3n
}是以为a1+
1
3
=1
2首项以
1
2
为公比的等比数列,根据等比数列的通项公式得a n+
1
3n
=(
1
2
)n
因此a n =12n -1
3
n
类型三:a n +2=p a n +1+q a n (其中p,q 均为常数)
方法:先把原递推公式转化为a n +2-s a n +1= t(a n +1-s a n ),其中s,t 满足⎩⎨⎧s +t =p s ·t =-q
,再利用等比数列来求解。
例5:已知数列{a n }中, a 1=1, a 2=2, a n +2=23a n +1+1
3
a n , 求{a n }的通项公式。
解:由a n +2=23a n +1+1
3
a n 可转化为a n +2-s a n +1= t(a n +1-s a n )
即a n +2=(s +t )a n +1-s · t a n ,
∴⎩⎪⎨⎪⎧s +t =23
s ·t =-13
解得⎩⎨⎧s =1t =-13 或⎩⎨⎧s =-13t =1 这里不妨选用⎩⎨⎧s =1t =-13 (当然也可以选用⎩⎨⎧s =-1
3t =1
)
a n +2-a n +1= -1
3
(a n +1-a n )
所以{a n +1-a n }是以a 2-a 1=1为首项, -1
3
为公比的等比数列,
所以a n +1-a n =(-13)n -1 再用累加法a n -a 1=(-13)0+(-13)1+…+(-1
3
)n-2=
1-(-13)
n-1
1+
13
又a 1=1,因此a n =74-34(-1
3)n -1 上面给大家介绍了由递推公式求通项公式常用的三种方法(累加法、累乘法和构造新数列法)以及几种典型类型题。
构造新数列法比较简捷,但如果观察不到结构的特殊性,就想不到构造的新数列,所以仔细观察结构的特征是运用这种方法解决求通项公式的问题的关键所在。
如果构造新数列难度较大时也可采用迭代法求通项公式,迭代法即根据递推公式循环代入,一直代到首项为止,上面这些类型的问题大都也可采用此种方法求解。
有时由递推公式求通项公式还可以用猜想归纳法,即利用数列的递推公式求出前几项,根据前几项猜想出通项公式,然后运用数学归纳法证明其正确性。
需要说明的是以上这些方法都有一定的局限性,求解时要注意灵活运用。
配套练习:
1、已知数列{a n }满足a 1=12,a n +1=a n +1
n 2+n
,求a n 。
2、(04年唐山)已知数列{a n }满足a 1=1,2n-1a n =a n -1(n ∈N, n ≥2),求a n 。
3、(06年福建卷)已知数列{a n }满足a 1=1,a n +1=2a n +1(n ≥2),求a n 。
4、已知数列{a n }中,a 1=56,a n +1=13a n +(12
)n +1
,求a n 。
5、已知数列{a n }中, a 1=0, a 2=2, a n +1+ a n -1=2(a n +1)(n ≥2), 求{a n }的通项公式。
6、已知数列{a n }满足a 1=2,a n +1=a n +n +2,求a n 。
7、已知{}n a 满足11122,2+++==n n n a a a ,求n a 。