神经元的结构和其功能讲义
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集方式就不需要这种手术,从而对人脑没有什么损害。有创采集
方式具体可分为完全植入型和皮层表面电极。完全植入型就是将
电极植入到大脑皮层中;而皮层表面电极型则是将电极放在大脑 皮层的表面而不是真正植入大脑
• 侵入式BCI,又称植入式BCI,是一种有损型脑电采集技术,利用 直接脑神经接口技术,通过外科开颅手术将电极阵列植入颅内,
• AR参数模型谱估计 • AR模型首先选择最佳 阶次问题 , 常用的定阶准则有信 息论准 则
( AIC) ,最终预测误差准则 ( FPE)等 ,阶次确定后按信号数据列与它 的估计量之间均方误差最小准则 ,求取ak 值。 AR系数的算 法有 Yule-Walker, Burg algorithm , Least Squares等 ,各有利弊。 • 双谱分析 • 双谱函数只包含了信号的相位信息 ,但未给出相位信息。对于高 斯随机分布而言,双谱作为随机信号偏离高斯分布的一个测度, 经 过对实际 EEG 数据检验表明,不同功能状态下的 EEG 对高斯分布的 偏离度有较大差别。
频域分析
• 功率谱估计 • 功率谱分析是 EEG信号处理最常用工具 ,源于傅氏变换 ,它的前提
是平稳随机信号 ,对非平衡随机信号而言 ,不同时刻的谱分析结果 是不同的。目前常用的方法之一是以短时间断数据的傅氏变换为 基础的周期法 ,具体做法是把实际淮信号在时域上分段 ,并看作是 准平稳的 ,每段取傅氏变换后的幅频特性平方再乘以适当的窗函 数 ,作为该信号的功率谱估计 ,但此法频率分辨率差 ,存在边瓣泄 漏 ,谱估计方差大等问题。
尼氏体
尼氏体:又称嗜染质,是胞质内的一种嗜碱性物质,在一般染 色中岛被碱性染料所染色,多呈斑块状或颗粒状。它分布在核周体 和树突内,而轴突起始段的轴丘和轴突内均无。尼氏体的形态结构 可作为判定神经元功能状态的一种标志。
神经原纤维Βιβλιοθήκη Baidu
在神经细胞质内,存在着直径约为2~3μm的丝状纤维结构, 在银染的切片体本可清晰地显示出呈棕黑色的丝状结构,此即为神 经原纤维,在核周体内交织成网,并向树突和轴突延伸,可达到突 起的未消部位。其生理功能主要参与胞质内的物质转运活动,接近 微管表面的各种物质流速最大,微管的表面有动力蛋白,它本身具 有ATP酶的作用,在ATP存在状态下,可使微管滑动,从而使微管 具有运输功能。
细胞核
多位于神经细胞体中央,大而圆,异染 色质少,多位于核膜内侧,常染色质多, 散在于核的中部,故着色浅,核仁l~2个 ,大而明显。细胞变性时,核多移向周边 而偏位。
细胞质
• 位于核的周围,又称核周体,其中含有发达的高尔基复合体、滑 面内质网,丰富的线粒体、尼氏体及神经原纤维,还含有溶酶体、 脂褐素等结构。具有分泌功能的神经元,胞质内还含有分泌颗粒, 如位于下丘脑的一些神经元。
轴突
每个神经元只有一根胞体发出轴突的轴突表面的细胞膜,称轴膜, 轴突内的胞质称 轴质或轴浆。轴质内有许多与轴突长袖平行的神 经原纤维和细长的线粒体,但无尼氏体和高尔基复合体,因此,轴 突内不能合成蛋白质。轴突成分代谢更新以及突触小泡内神经递质, 均在胞体内合成,通过轴突内微管、神经丝流向轴突末端。
主要功能
脑电信号(EEG)是脑神经细胞电生理活动在大脑皮层或头皮
表面的总体反映,其包含了大量的生理与病理信息,并可以用许多 特征量来描述其特征信号。脑电信号的时-频特征分析可以有效地 提取其特征量。EEG本质上是非线性时间序列。
• 脑电信号的采集方式,从破坏性上可分为两类:有创和无创。有 创采集方式由于要进行开颅手术而对大脑有一定的损伤;无创采
直接记录或刺激大脑神经元,从而实现和外界环境的交互。通过
植入这些微装置于颅内神经中枢,可以更精准地监测大脑的活动、 研究大脑机能、治疗脑部疾病,控制外部设备等。
还有一种无损植入型技术是非侵入式BCI。非侵入式BCI使用头皮电 极记录大脑活动产生的EEG信号。非侵入式BCI系统可以实现简单、 无损的脑机交互。侵入式BCI和非侵入式BCI相比,侵入式BCI有损伤, 但精确
细胞膜
胞体的胞膜和突起表面的膜,是连续完整的细胞膜。除突触 部位的胞膜有特异的结构外,大部分胞膜为单位膜结构。神经细胞 膜的特点是一个敏感而易兴奋的膜,在膜上有各种受体和离子通道, 二者各由不同的膜蛋白所构成。形成突触部分的细胞膜增厚。膜上 受体可与相应的化学物质神经递质结合,膜的离子通透性及膜内外 电位差发生改变,胞膜产生相应的生理活动:兴奋或抑制。
神经元的结构和其功能
神经元是具有长突触(轴突)
的细胞,它由细胞体和细胞突起构成。 在长的轴突上套有一层鞘,组成神经 纤维,它的末端的细小分支叫做神经 末梢。细胞体位于脑、脊髓和神经节 中,细胞突起可延伸至全身各器官和 组织中。核大而圆,位于细胞中央, 染色质少,核仁明显。细胞质内有斑 块状的核外染色质(旧称尼尔小体), 还有许多神经元纤维。细胞突起是由 细胞体延伸出来的细长部分,又可分 为树突和轴突。每个神经元可以有一 或多个树突,可以接受刺激并将兴奋 传入细胞体。每个神经元只有一个轴 突,可以把兴奋从胞体传送到另一个 神经元或其他组织,如肌肉或腺体。
脂褐素
常位于大型神经无核周体的一侧,呈棕黄色颗粒状,随年龄增 长而增多,经电镜和组织化学证实为次级溶酶体形成的残余体, 其内容物为溶酶体消化时残留的物质,多为异物、脂滴或退变的细 胞器。
突起
树突
树突是从胞体发出的一至多个突起,呈放射状。胞体起始部分较粗, 经反复分支而变细,形如树枝状。树突的结构与脑体相似,胞质内 含有尼氏体,线粒体和平行排列的神经原纤维等,但无高尔基复合 体。一般电镜下,树突棘内含有数个扁平的囊泡称棘器。树突的分 支和树突棘可扩大神经元接受刺激的表面积。树突具有接受刺激并 将冲动传入细胞体的功能。
组成神经系统的基本元件
信息整合功能
接受刺激
信息储存功能
传递信息
脑电信号的产生机制,获取和分析方法
脑电信号是生物电信号的一种。生物电的科学解释是指生物细 胞的静电压,以及在活组织中的电流,如神经和肌肉中的电流。生 物细胞用生物电储存代谢能量,用来工作或引发内部的变化,并且 相互传导信号。生物学家认为,组成生物体的每个细胞都像一台微 型发电机。一些带有正电荷或者负电荷的离于如钾离子、钙离子、 钠离子、氯离子等,分布在细胞膜内外,使得细胞膜外带正电荷, 膜内带负电荷。当这些离子流动时就会产生电流,并造成细胞内外 电位差。
方式具体可分为完全植入型和皮层表面电极。完全植入型就是将
电极植入到大脑皮层中;而皮层表面电极型则是将电极放在大脑 皮层的表面而不是真正植入大脑
• 侵入式BCI,又称植入式BCI,是一种有损型脑电采集技术,利用 直接脑神经接口技术,通过外科开颅手术将电极阵列植入颅内,
• AR参数模型谱估计 • AR模型首先选择最佳 阶次问题 , 常用的定阶准则有信 息论准 则
( AIC) ,最终预测误差准则 ( FPE)等 ,阶次确定后按信号数据列与它 的估计量之间均方误差最小准则 ,求取ak 值。 AR系数的算 法有 Yule-Walker, Burg algorithm , Least Squares等 ,各有利弊。 • 双谱分析 • 双谱函数只包含了信号的相位信息 ,但未给出相位信息。对于高 斯随机分布而言,双谱作为随机信号偏离高斯分布的一个测度, 经 过对实际 EEG 数据检验表明,不同功能状态下的 EEG 对高斯分布的 偏离度有较大差别。
频域分析
• 功率谱估计 • 功率谱分析是 EEG信号处理最常用工具 ,源于傅氏变换 ,它的前提
是平稳随机信号 ,对非平衡随机信号而言 ,不同时刻的谱分析结果 是不同的。目前常用的方法之一是以短时间断数据的傅氏变换为 基础的周期法 ,具体做法是把实际淮信号在时域上分段 ,并看作是 准平稳的 ,每段取傅氏变换后的幅频特性平方再乘以适当的窗函 数 ,作为该信号的功率谱估计 ,但此法频率分辨率差 ,存在边瓣泄 漏 ,谱估计方差大等问题。
尼氏体
尼氏体:又称嗜染质,是胞质内的一种嗜碱性物质,在一般染 色中岛被碱性染料所染色,多呈斑块状或颗粒状。它分布在核周体 和树突内,而轴突起始段的轴丘和轴突内均无。尼氏体的形态结构 可作为判定神经元功能状态的一种标志。
神经原纤维Βιβλιοθήκη Baidu
在神经细胞质内,存在着直径约为2~3μm的丝状纤维结构, 在银染的切片体本可清晰地显示出呈棕黑色的丝状结构,此即为神 经原纤维,在核周体内交织成网,并向树突和轴突延伸,可达到突 起的未消部位。其生理功能主要参与胞质内的物质转运活动,接近 微管表面的各种物质流速最大,微管的表面有动力蛋白,它本身具 有ATP酶的作用,在ATP存在状态下,可使微管滑动,从而使微管 具有运输功能。
细胞核
多位于神经细胞体中央,大而圆,异染 色质少,多位于核膜内侧,常染色质多, 散在于核的中部,故着色浅,核仁l~2个 ,大而明显。细胞变性时,核多移向周边 而偏位。
细胞质
• 位于核的周围,又称核周体,其中含有发达的高尔基复合体、滑 面内质网,丰富的线粒体、尼氏体及神经原纤维,还含有溶酶体、 脂褐素等结构。具有分泌功能的神经元,胞质内还含有分泌颗粒, 如位于下丘脑的一些神经元。
轴突
每个神经元只有一根胞体发出轴突的轴突表面的细胞膜,称轴膜, 轴突内的胞质称 轴质或轴浆。轴质内有许多与轴突长袖平行的神 经原纤维和细长的线粒体,但无尼氏体和高尔基复合体,因此,轴 突内不能合成蛋白质。轴突成分代谢更新以及突触小泡内神经递质, 均在胞体内合成,通过轴突内微管、神经丝流向轴突末端。
主要功能
脑电信号(EEG)是脑神经细胞电生理活动在大脑皮层或头皮
表面的总体反映,其包含了大量的生理与病理信息,并可以用许多 特征量来描述其特征信号。脑电信号的时-频特征分析可以有效地 提取其特征量。EEG本质上是非线性时间序列。
• 脑电信号的采集方式,从破坏性上可分为两类:有创和无创。有 创采集方式由于要进行开颅手术而对大脑有一定的损伤;无创采
直接记录或刺激大脑神经元,从而实现和外界环境的交互。通过
植入这些微装置于颅内神经中枢,可以更精准地监测大脑的活动、 研究大脑机能、治疗脑部疾病,控制外部设备等。
还有一种无损植入型技术是非侵入式BCI。非侵入式BCI使用头皮电 极记录大脑活动产生的EEG信号。非侵入式BCI系统可以实现简单、 无损的脑机交互。侵入式BCI和非侵入式BCI相比,侵入式BCI有损伤, 但精确
细胞膜
胞体的胞膜和突起表面的膜,是连续完整的细胞膜。除突触 部位的胞膜有特异的结构外,大部分胞膜为单位膜结构。神经细胞 膜的特点是一个敏感而易兴奋的膜,在膜上有各种受体和离子通道, 二者各由不同的膜蛋白所构成。形成突触部分的细胞膜增厚。膜上 受体可与相应的化学物质神经递质结合,膜的离子通透性及膜内外 电位差发生改变,胞膜产生相应的生理活动:兴奋或抑制。
神经元的结构和其功能
神经元是具有长突触(轴突)
的细胞,它由细胞体和细胞突起构成。 在长的轴突上套有一层鞘,组成神经 纤维,它的末端的细小分支叫做神经 末梢。细胞体位于脑、脊髓和神经节 中,细胞突起可延伸至全身各器官和 组织中。核大而圆,位于细胞中央, 染色质少,核仁明显。细胞质内有斑 块状的核外染色质(旧称尼尔小体), 还有许多神经元纤维。细胞突起是由 细胞体延伸出来的细长部分,又可分 为树突和轴突。每个神经元可以有一 或多个树突,可以接受刺激并将兴奋 传入细胞体。每个神经元只有一个轴 突,可以把兴奋从胞体传送到另一个 神经元或其他组织,如肌肉或腺体。
脂褐素
常位于大型神经无核周体的一侧,呈棕黄色颗粒状,随年龄增 长而增多,经电镜和组织化学证实为次级溶酶体形成的残余体, 其内容物为溶酶体消化时残留的物质,多为异物、脂滴或退变的细 胞器。
突起
树突
树突是从胞体发出的一至多个突起,呈放射状。胞体起始部分较粗, 经反复分支而变细,形如树枝状。树突的结构与脑体相似,胞质内 含有尼氏体,线粒体和平行排列的神经原纤维等,但无高尔基复合 体。一般电镜下,树突棘内含有数个扁平的囊泡称棘器。树突的分 支和树突棘可扩大神经元接受刺激的表面积。树突具有接受刺激并 将冲动传入细胞体的功能。
组成神经系统的基本元件
信息整合功能
接受刺激
信息储存功能
传递信息
脑电信号的产生机制,获取和分析方法
脑电信号是生物电信号的一种。生物电的科学解释是指生物细 胞的静电压,以及在活组织中的电流,如神经和肌肉中的电流。生 物细胞用生物电储存代谢能量,用来工作或引发内部的变化,并且 相互传导信号。生物学家认为,组成生物体的每个细胞都像一台微 型发电机。一些带有正电荷或者负电荷的离于如钾离子、钙离子、 钠离子、氯离子等,分布在细胞膜内外,使得细胞膜外带正电荷, 膜内带负电荷。当这些离子流动时就会产生电流,并造成细胞内外 电位差。