光电信号检测实验

合集下载

光电探测实验报告

光电探测实验报告

实验一光敏电阻特性实验实验原理:光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。

由于半导体在光照的作用下, 电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成为了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。

实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(由用户选配)实验步骤:1、测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构 ,用遮光罩将光敏电阻彻底掩盖,用万用表测得的电阻值为暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。

在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。

2、光敏电阻的暗电流、亮电流、光电流按照图(3)接线,电源可从+2~+8V 间选用,分别在暗光和正常环境光照下测出输出电压V 暗和 V 亮则暗电流 L 暗=V 暗/R L,亮电流 L 亮=V 亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

分别测出两种光敏电阻的亮电流,并做性能比较。

图(2)几种光敏电阻的光谱特性3、伏安特性:光敏电阻两端所加的电压与光电流之间的关系。

按照图(3)分别测得偏压为 2V、4V、6V、8V、10V、12V 时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。

将所测得的结果填入表格并作出 V/I 曲线。

偏压 2V 4V 6V 8V 10V 12V光电阻 I光电阻 II注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。

光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。

实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

实验一光电探测原理实验

实验一光电探测原理实验

福建师范大学物理与光电信息科技学院光电检测技术实验-实验一1 实验一光电探测原理实验一、内容简介光电探测原理实验箱,是本公司为适合光电子、信息工程、物理等专业教学内容的需要,最新推出的光电类教学实验装置。

本实验箱从了解和熟悉光电二极管和光电池的角度出发,讨论关于光电二极管和光电池的主要技术问题,主要知识点包括:光照度及其测量基本知识;光电池的结构、工作原理和光照特性及其应用;光电二极管的结构、工作原理和光照特性及其应用等。

本实验系统注重理论与实践的紧密结合,突出实用性,可作为光测控技术、光电子技术、光电子仪器仪表及精密仪器等专业本科生和研究生课堂实验与研究。

二、实验箱说明实验箱配备有0~12V 可调的直流电压源,可为光电二极管提供可以调节的偏置电压。

本实验箱还配有照度计、电压表和电流表,各表头显示单元和各种调节单元都放在面板上,而光源、照度计探头、硅光电池和硅光电二极管等不需要经常移动的器件都在实验箱里面固定,所有引出线都通过连线连接到面板上,学生做实验时只需要简单连线即可,连线、调节、观察和记录都很方便。

实验箱还配备10K 粗调电位器RP1和47K 多圈精密细调电位器RP2,可供学生配合其它元件自己动手搭建实验之用,提高学生动手动脑能力。

面板操作示意图:实验(一)光照度测试一、实验目的1、了解光照度基本知识;2、了解光照度测量基本原理;3、学会光照度的测量方法。

二、实验内容对光照度进行测量,观察现象。

三、预备知识1、光照度基本知识光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。

光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。

因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。

光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L 处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:2EI/L式中:E——光照度,单位为Lx;I——光源发光强度,单位为cd;L——距离,单位为m。

光电检测实验报告

光电检测实验报告

实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。

四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。

2、将光纤实验模板输出端V0与数显单元相连,见图9-2。

3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。

4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。

5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。

注:电压变化范围从0→最大→最小必须记录完整。

表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。

并认为X=4mm时为最小的0。

6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。

答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。

光电综合实验报告

光电综合实验报告

光电综合实验报告
实验目的:通过光电综合实验,了解光电效应在光电器件中的应用,掌握光电检测技术和光电器件的使用方法。

实验仪器:光电综合实验箱、光电二极管、光电三极管、光电开关等光电器件。

实验原理:光电效应是指当光照射在半导体材料上时,电子受到能量激发而跃迁至导带,从而产生电流或电压的现象。

光电器件是利用光电效应制成的电子器件,如光电二极管、光电三极管和光电开关等。

实验步骤:
1.将光电二极管插入实验箱中,并连接好电路。

2.调节实验箱上的光强度调节钮,观察光电二极管的输出信号。

3.更换光电三极管,并重复步骤2。

4.使用光电开关进行实验,观察其在光照和无光照状态下的输出信号变化。

实验结果:
通过实验,我们观察到光电二极管在光照射下产生了电流信号,光照强度越大,输出信号越强。

光电三极管的输出信号也随着光照强度的变化而变化,但其灵敏度比光电二极管更高。

而光电开关在有光照时输出高电平,在无光照时输出低电平,可以用于光控开关等应用。

实验结论:
光电器件是利用光电效应制成的电子器件,能够将光信号转换为电信号,具有灵敏度高、响应速度快等优点,并且在光控开关、光电传感器等领域有着广泛的应用。

通过本次实验,我们成功掌握了光电器件的使用方法及其在光电检测技术中的应用。

总结:
光电综合实验让我们更加深入地了解了光电效应在光电器件中的应用,通过实验操作,我们掌握了光电器件的使用方法,为今后在光电检测技术领域的应用奠定了基础。

希望能够通过不断地实践和学习,进一步提高自己的实验技能和理论水平。

光电探测实验报告总结(3篇)

光电探测实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。

实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。

二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。

实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。

光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。

三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。

(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。

(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。

2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。

(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。

3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。

(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。

五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。

在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。

2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。

同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。

检测技术光电实验报告

检测技术光电实验报告

一、实验目的1. 理解光电效应的基本原理及其在光电检测中的应用。

2. 掌握光电检测器的工作原理和特性。

3. 通过实验验证光电检测技术在信号检测中的应用效果。

4. 学习如何设计和搭建光电检测系统。

二、实验原理光电效应是指当光子照射到物质表面时,能够将物质中的电子激发出来,形成光电子。

光电检测技术就是利用这一效应,将光信号转换为电信号,实现对光、电场、磁场等信号的检测。

本实验采用光电二极管作为光电检测器,其基本工作原理是:当光照射到光电二极管上时,光电二极管内的电子会被激发出来,形成光电流。

光电流的大小与入射光的强度成正比。

三、实验器材1. 光电二极管2. 光源(如激光笔)3. 数字多用表4. 光电检测电路板5. 连接线6. 实验台四、实验步骤1. 搭建光电检测电路:按照实验指导书的要求,将光电二极管、光源、数字多用表和电路板连接好,确保电路连接正确无误。

2. 调整光源强度:使用激光笔照射光电二极管,调整光源的强度,观察数字多用表上光电流的变化。

3. 测量光电二极管的响应度:记录不同光照强度下,光电二极管的光电流值,并计算光电二极管的响应度。

4. 研究光电二极管的暗电流:关闭光源,观察数字多用表上光电流的变化,记录暗电流值。

5. 分析光电检测系统的性能:通过实验数据,分析光电检测系统的性能,包括响应度、暗电流等参数。

五、实验结果与分析1. 光电二极管的响应度:实验结果显示,光电二极管的响应度随光照强度的增加而增加,与理论相符。

2. 光电二极管的暗电流:实验结果显示,在无光照条件下,光电二极管存在一定的暗电流,这可能是由于电路中的热噪声等原因造成的。

3. 光电检测系统的性能:根据实验数据,可以计算出光电检测系统的性能参数,如响应度、暗电流等,并与理论值进行比较,分析实验误差。

六、实验总结1. 通过本次实验,我们掌握了光电效应的基本原理及其在光电检测中的应用。

2. 我们了解了光电二极管的工作原理和特性,并学会了如何设计和搭建光电检测系统。

最新光电实验报告.

最新光电实验报告.

最新光电实验报告.
在本次光电实验中,我们探究了光电效应的基本原理及其在现代科技中的应用。

实验的主要目的是验证爱因斯坦的光电效应理论,并测量光电子的动能与入射光频率之间的关系。

实验开始前,我们首先搭建了光电实验装置,包括光电管、光源、电压源和电流计。

光电管内部涂有高灵敏度的光电材料,能够将入射光子的能量转换为电子的动能。

光源选用了一系列不同波长的单色光,以便我们能够观察不同频率光对光电效应的影响。

实验过程中,我们调整了光源的强度和电压源的偏压,记录了不同条件下的电流计读数。

通过改变入射光的频率,并保持其他条件不变,我们得到了一系列的电流-电压(I-V)特性曲线。

数据分析阶段,我们将实验数据与爱因斯坦的光电效应公式进行了对比。

根据公式,光电子的最大动能应与入射光的频率成正比,与光强度无关。

我们的实验结果与理论预测相符,证明了光电效应的量子性质。

此外,我们还观察到,在一定的偏压下,电流随光强度的增加而增加,这表明了光电效应的饱和现象。

在实验的最后部分,我们探讨了光电效应在实际应用中的潜力,例如在太阳能电池和光电探测器中的作用。

我们还讨论了如何通过改进光电材料和设计来提高光电转换效率。

总结来说,本次实验不仅加深了我们对光电效应理论的理解,而且通过实践操作提高了我们的实验技能。

通过分析和讨论,我们也对光电技术的未来发展趋势有了更清晰的认识。

光电测试技术-非相干信号检测技术

光电测试技术-非相干信号检测技术
降低成本
为了满足不断增长的光电信号检测需求,需要提高非相干 信号检测的性能,包括提高检测灵敏度、降低噪声、减小 检测误差等。
在保持高性能的同时,还需要降低非相干信号检测的成本 ,包括降低材料成本、制造成本和运营成本等,以促进非 相干信号检测技术的广泛应用和普及。
THANKS FOR WATCHING
缺点
需要使用调制器和解调器,增加了系 统的复杂性和成本。
频谱分析法
优点
可以提供全面的光信号信息,适用于复杂的光信号检测和分析。
缺点
需要使用光谱分析仪或傅里叶变换光谱仪,成本较高,且对测试环境和操作要求较高。
04 非相干信号检测技术的性 能指标
检测范围与精度
检测范围
非相干信号检测技术的检测范围包括光谱范围、功率范围和温度范围等,这些范围决定了该技术在特 定应用中的适用性。
抗干扰能力
在实际应用中,非相干信号检测技术可 能会受到各种噪声和干扰的影响。抗干 扰能力强的技术能够更好地抑制噪声, 提高测试结果的准确性。
VS
可靠性
可靠的非相干信号检测技术能够在长时间 内保持稳定的性能,降低故障率,提高测 试系统的可用性。
05 非相干信号检测技术的实 际应用案例
光电传感器的非相干信号检测
检测精度
高精度的非相干信号检测技术能够准确测量信号的微小变化,从而提高测试结果的可靠性。
响应速度与稳定性
响应速度
非相干信号检测技术的响应速度决定了测试系统的实时性能,快速响应技术能够更好地 捕捉信号变化。
稳定性
稳定的非相干信号检测技术能够提供一致的测试结果,降低测试误差,提高测试的可重 复性。
抗干扰能力与可靠性
06 非相干信号检测技术的未 来发展与挑战

光电检测与显示实验六 面阵CCD应用实验:总结 计划 汇报 设计 可编辑

光电检测与显示实验六 面阵CCD应用实验:总结 计划 汇报 设计 可编辑
(一)面阵CCD原理及驱动实验
一、实验目的
1.掌握面阵CCD实验仪的基本操作和各个部件的功能;
2.掌握隔列转移型面阵CCD的基本工作原理;
3.掌握面阵CCD各路驱动脉冲波形及其所涉及部分的功能;
4.掌握面阵CCD输出的视频信号与PAL电视制式的关系。
二、实验仪器
1.带宽50MHz以上双踪迹(或四踪迹)同步示波器一台;
实验6面阵CCD应用技术实验
面阵CCD图像传感器主要用于采集物体图像信息。它所包含的内容很多,其中能够按PAL电视制式(或其他电视制式)形成视频电视信号的常被称为面阵CCD摄像头。面阵CCD实验指导主要针对面阵CCD摄像头展开的,通过对它的驱动波形分析使学生掌握面阵CCD的基本工作原理和特性。然后展开它的应用实验和如何与现代的计算机技术结合起来为机器安装“眼睛”与“大脑”。为达到利用面阵CCD完成“电眼”功能,还需要掌握有关《图像数字处理》方面的有关内容,为此实验指导增设了一些图像数字处理最为基础的实验内容。通过这些内容的学习能够使学生大体了解如何将面阵CCD摄像头输出的视频信号转变为数字图像,又如何从数字图像中提取出有用的信息。
2.YHACCD-Ⅲ型彩色面阵CCD多功能实验仪一台。
三、实验内容及步骤
1、开机过程
1)将被测的标准图片如图3-1所示,安装在“被测物夹持架”上,将USB接口线正确连接到计算机上;
2)打开计算机的电源开关,并确认YHACCD-Ⅲ型彩色面阵CCD实验仪的“面阵CCD尺寸测量实验”软件已经安装;
3)将外置面阵CCD摄像机的镜头盖打开;
3.面阵CCD行、场自扫描电视制式的测量;
4.视频输出信号的测量。
四、实验步骤
1)实验准备
①首先将示波器地线与实验仪上的地线连接好,并确认示波器的电源和实验仪的电源插头均已插在交流220V插座上;

大恒实验产品-3光电器件与检测系列实验

大恒实验产品-3光电器件与检测系列实验

大恒实验产品-3光电器件与检测系列实验3-1 GCS-GDTC 光电探测器特性测量实验光电探测器是光电系统的核心组成部分,其性能直接影响着光电系统的性能。

因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。

本实验研究光电二极管、热释电探测器、光敏电阻三种常用探测器的频率响应与时间响应特性。

主要实验内容如下:(1) 深入理解光电探测器的响应度、光谱响应等概念(2) 光电二极管光谱响应测量实验(3) 了解热释电探测器和硅光电二极管的原理和使用方法。

(4) 了解光电探测器的响应度与信号光的调制频率的关系。

(5) 脉冲响应法测量光电二极管的响应时间。

(6) 幅频响应法测量光敏电阻的响应时间。

(7) 偏置电压与负载电阻对光电二极管响应时间的影响。

3-2 GCS-LD/LED-I/II LD/LED 参数测量综合实验实验通过从LD/LED的光学特性(发射光谱、发射角、发散角)、电学特性(P-I特性和V-I 特性)、热学特性(温度对阈值电流和输出照度的影响)和色度学特性(发光体的单色性及颜色分布)5大特性进行描述,并通过对其工作原理的讲解,让学生对LD/LED有一个清晰认识。

主要实验内容如下:1.发光二极管光谱特性的研2.发光二极管响应时间的测试3.发光二极管发光亮度与电流关系4.LED发光法向光强及其角分布5.LED/LD光谱分析和色坐标测试实验(GCS-LED/LD-II可完成)3-3 GCS- BZG 光电倍增管特性及微弱光信号探测实验光电倍增管是基于外光电效应和二次电子发射效应的电子真空器件。

它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,可以测量微弱的光信号。

主要实验内容如下:1.熟悉光电倍增管的基本构成和工作原理,掌握光电倍增管参数的测量方法2.学习光电倍增管输出信号的检测和变换处理方法3.验证光电倍增管的光照灵敏度4.测量光电倍增管在无光照射情况下的暗电流5.作出光电倍增管工作的光电特性曲线6.作出光电倍增管工作的伏安特性曲线7.作出光电倍增管在不同直接负载和I/V变换下的关系曲线8.了解光电倍增管在脉冲光时,经过运算放大器输出的电压波形变化3-4 GCS- RTC 热探测器参数测量实验热探测器是基于光辐射与物质相互作用的热效应制成的器件。

光电探测_电路实验报告

光电探测_电路实验报告

一、实验目的1. 了解光电探测的基本原理和电路组成。

2. 掌握光电探测器电路的设计方法和实验技能。

3. 熟悉光电探测器的性能测试方法,并分析实验结果。

二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。

当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。

本实验主要研究光电二极管和光敏电阻两种光电探测器。

三、实验仪器与设备1. 光源:LED灯、激光器等。

2. 光电探测器:光电二极管、光敏电阻等。

3. 放大器:低频放大器、高频放大器等。

4. 测量仪器:示波器、万用表、信号发生器等。

5. 实验电路板:包含光电探测器、放大器、电源等组件。

四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光电二极管上。

(3)使用示波器观察光电二极管输出信号的波形和幅度。

(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。

2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光敏电阻上。

(3)使用示波器观察光敏电阻输出信号的波形和幅度。

(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。

3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。

(2)搭建实验电路,并接入电源。

(3)调整电路参数,使光电探测器电路满足实验要求。

4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。

(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。

五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。

(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。

2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。

CCD光电测量实验报告

CCD光电测量实验报告

重庆大学学生实验报告实验课程名称电子信息综合实验开课实验室重庆大学物理实验教学中心学院物理年级 2012 专业班电子信息01 组内成员姓名张益达组长张益达设计日期:2015年10月20日起2015年12月8日止开课时间 2015 至 2016 学年第 1 学期物理学院学院制目录一、实验目的 (1)二、实验原理: (1)D的原理、种类、特点、发展、应用 (1)1.1 CCD简介 (1)1.2 CCD 工作原理 (1)1.3 CCD 的种类 (6)1.4 CCD 的发展 (7)1.5 CCD 的主要应用 (9)1.6 TCD1206UD 的工作原理 (10)2. FPGA的特点、应用、设计流程 (12)2.1 FPGA 简介 (12)2.2 FPGA 的主要应用 (12)2.3 FPGA 的设计流程 (13)三、设计要求 (14)1.电路设计 (14)D驱动信号 (14)四、实现过程 (15)1.设计方案: (15)1.1电源部分设计 (15)1.2 CCD 驱动电路的设计 (16)2.设计过程 (16)2.1电源部分 (16)2.2 CCD驱动电路部分设计 (17)2.3 整体电路设计 (18)2.4 PCB板的制作 (18)2.5印制电路的焊接 (19)3.测试:调试中出现的问题和解决方法 (19)3.1调试过程 (19)3.2 测试结果 (21)3.3 实验设计修正 (23)五、结果和分析 (24)1.实验收获 (24)2.设计的建议 (24)参考文献 (26)组内成员评分 (27)CCD光电测量综合设计一、实验目的本次电子信息综合实验的目的,是完成一个CCD光电测量系统。

CCD(Charge Coupled Devices)是20世纪70年代发展起来的新型半导体器件。

CCD器件是一种新型光电转换器件,它以电荷作为信号,其基本功能是电荷信号的产生、存储、传输与检测。

它主要由光敏单元、输入结构和输出结果等组成。

光电检测实验报告

光电检测实验报告

实验三十光纤位移传感器(半圆分部)的特性实验一、实验目的:了解光纤位移传感器的工作原理和性能。

二、基本原理:本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此可用于测量位移。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元、测微头、直流电源±15V、铁测片。

四、实验步骤:1、根据图9-1安装光纤位移传感器,二束光纤分别插入实验板上光电变换座内,其内部装有发光管D及光电转换管T。

2、将光纤实验模板输出端V0与数显单元相连,见图9-2。

3、在测微头顶端装上铁质圆片,作为反射面,调节测微头使探头与反射面轻微接触,数显表置20V档。

4、实验模板接入±15V电源,合上主控箱电源开关,调节RW2使数显表显示为零。

5、旋转测微头,使被测体离开探头,每隔0.1mm读出数显表显示值,将其填入9-1。

注:电压变化范围从0→最大→最小必须记录完整。

表9-1:光纤位移传感器输出电压与位移数据如下表所示:通过上述的表格可以找出在X=6.5或者6.6mm时输出电压才达到最大值为6.78或者6.79V,但当继续寻找最小值的时候并没有找到,输出电压随着位移的增大逐渐的减小,但是减小的幅度会渐渐的趋于平衡,在达到测微头最大量程时还在继续的减小,因此并没有找到最小的记录。

并认为X=4mm时为最小的0。

6、根据表9-1数据,作出光纤位移传感器的位移特性图,并加以分析、计算出前坡和后坡的灵敏度及两坡段的非线性误差。

答:利用excel对数据进行分析得光纤位移传感器的位移特性图如下所示:通过光纤位移传感器的位移特性图可知:其图形被分为前坡和后坡两部分,在前坡输出电压随着位移的增大而增大并且达到最大值,并且前坡的增大的幅度比较大,在后坡输出电压随着位移的增大不再增大而是相应的减小,减小的幅度较小,并逐渐的趋于稳定。

光电探测原理实验报告 南邮

光电探测原理实验报告 南邮

光电探测原理实验报告南邮摘要:采用四象限探测器作为光电定向实验,学习四象限探测器的工作原理和特性,同时掌握四象限探测器定向的工作方法。

实验中,四象限探测器的四个限区验证了具有完全一样的光学特性,同时四象限的定向具有较良好的线性关系。

关键词:光电定向四象限探测器1、开场白随着光电技术的发展,光电探测的应用也越来越广泛,其中光电定向作为光电子检测技术的重要组成部分,是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。

光电定向方式有扫描式、调制盘式和四象限式,前两种用于连续信号工作方式,后一种用于脉冲信号工作方式。

,由于四象限光电探测器能够探测光斑中心在四象限工作平面的位置,因此在激光准直、激光通信、激光制导等领域得到了广泛的应用[1]. 本光电定向实验装置采用激光器作为光源,四象限探测器作为光电探测接收器,采用目前应用最广泛的`一种光电定向方式现直观,快速定位跟踪目标方位。

定向原理由两种方式完成:1、硬件模拟定向,通过模拟电路进行坐标运算,运算结果通过数字表头进行显示,从而显示出定向坐标;2、软件数字定向,通过AD转换电路对四个象限的输出数据进行采集处理,经过单片机运算处理,将数据送至电脑,由上位机软件实时显示定向结果。

本实验系统就是根据光学雷达和光学制导的原理而设计的,利用其光电系统可以轻易、间接地测定目标的方向。

使用650nm激光器搞光源,用四象限探测器表明光源方向和强度。

通过实验,可以掌控四象限光电探测器原理,并观测至红外红外线电磁辐射至四象限探测器上的边线和强度变化。

并利用实验仪展开设计性实验等内容,将光学定向应用领域至各领域中[2]。

2、实验原理2.1、系统了解光电定向是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域获得了广为的应用领域。

光电信息科学与工程实验报告

光电信息科学与工程实验报告

光电信息科学与工程实验报告一、实验目的本实验旨在通过实际操作,深入了解光电信息科学与工程的基本原理,掌握光电传感器的基本特性和应用,提高实验技能和实践能力。

二、实验原理光电信息科学与工程是研究光与物质相互作用的一门学科,主要涉及光的产生、传播、检测和应用。

光电传感器是一种利用光电效应将光信号转换为电信号的器件,广泛应用于各种光电检测系统中。

三、实验步骤1.搭建实验平台首先搭建一个简单的光电检测系统,包括光源、光电传感器、信号放大器和数据采集系统。

2.光源调整调整光源的波长和强度,使其符合实验要求。

3.光电传感器设置将光电传感器放置在合适的位置,调整其与光源的距离和角度,使其能够正常工作。

4.数据采集与处理通过数据采集系统采集光电传感器的输出信号,并对其进行处理和分析。

5.实验结果记录记录实验过程中的数据和结果,包括光源波长、强度、光电传感器的输出信号等。

四、实验结果与分析1.光源波长与光电传感器输出信号的关系通过实验发现,随着光源波长的增加,光电传感器的输出信号逐渐减小。

这是因为不同波长的光对光电传感器的响应不同,波长越长,响应越弱。

2.光源强度与光电传感器输出信号的关系实验结果表明,随着光源强度的增加,光电传感器的输出信号也逐渐增加。

这是因为光源强度越高,光子数量越多,光电传感器接收到的光子数量也越多,从而输出信号增强。

五、结论与展望通过本次实验,我们深入了解了光电信息科学与工程的基本原理和光电传感器的特性,掌握了相关实验技能和方法。

实验结果证实了光源波长和强度对光电传感器输出信号的影响规律,为实际应用提供了重要参考。

展望未来,随着科技的不断进步和创新,光电信息科学与工程将在更多领域发挥重要作用,为人类生活带来更多便利和进步。

光电信息实验报告

光电信息实验报告

一、实验目的1. 了解光电信息科学与工程的基本原理和实验方法。

2. 掌握光电效应的基本规律及其应用。

3. 学习光电检测技术的原理和操作方法。

4. 培养实验操作能力和数据处理能力。

二、实验原理光电效应是指当光照射到某些物质表面时,物质中的电子吸收光能并逸出表面的现象。

光电效应的基本规律包括:1. 光电子的逸出功与光的频率有关,当光的频率大于某一特定值时,光电子才能逸出。

2. 光电子的动能与光的频率成正比,与光强度无关。

3. 光电流与光强度成正比。

光电检测技术是利用光电效应将光信号转换为电信号的技术。

常见的光电检测元件有光电管、光电二极管、光电三极管等。

三、实验仪器与材料1. 光源:卤钨灯、激光笔2. 光电检测元件:光电管、光电二极管、光电三极管3. 测量仪器:示波器、万用表、信号发生器4. 实验架、导线、连接器等四、实验内容1. 光电效应实验1.1. 调节光源,使其照射到光电检测元件上。

1.2. 使用示波器观察光电流的变化。

1.3. 改变光源的频率和强度,观察光电流的变化。

1.4. 分析光电效应的基本规律。

2. 光电检测技术实验2.1. 调节信号发生器,产生不同频率和强度的光信号。

2.2. 使用光电检测元件检测光信号。

2.3. 利用示波器观察光电流的变化。

2.4. 分析光电检测技术的原理和操作方法。

五、实验步骤1. 准备实验仪器和材料,检查设备是否正常。

2. 将光电检测元件连接到示波器和信号发生器上。

3. 调节光源,使其照射到光电检测元件上。

4. 使用示波器观察光电流的变化,记录实验数据。

5. 改变光源的频率和强度,重复步骤4,观察光电流的变化。

6. 分析实验数据,得出结论。

六、实验结果与分析1. 光电效应实验结果:1.1. 当光的频率大于光电检测元件的截止频率时,光电流随光强度的增加而增加。

1.2. 光电子的动能随光的频率增加而增加。

1.3. 光电流与光强度成正比。

2. 光电检测技术实验结果:2.1. 光电检测元件能够将光信号转换为电信号。

光电检测实验报告

光电检测实验报告

光电检测实验报告光电检测实验报告引言:光电检测是一种常见的实验方法,通过光电效应原理,将光信号转化为电信号进行测量和分析。

本次实验旨在通过搭建光电检测系统,探索光电效应在不同条件下的特性,并研究其在实际应用中的潜力。

一、实验装置的搭建实验装置由光源、光电探测器和信号处理器组成。

光源可以选择激光器、LED 等,而光电探测器则包括光电二极管、光电倍增管等。

信号处理器用于放大和转换光电信号,常见的有放大器、滤波器等。

二、光电效应的研究光电效应是指当光照射到物质表面时,光子能量被物质吸收,从而产生电子的现象。

实验中,我们通过改变光源的强度和波长,以及调整光电探测器的位置和方向,研究光电效应的特性。

1. 光源强度对光电效应的影响在实验中,我们使用不同强度的光源照射光电探测器,记录下光电流的变化情况。

实验结果显示,光源强度越大,光电流也越大,这表明光电效应与光源的强度呈正相关关系。

2. 光源波长对光电效应的影响我们使用不同波长的光源照射光电探测器,观察光电流的变化。

实验结果显示,不同波长的光源对光电效应的影响不同。

在可见光范围内,短波长的光源产生的光电流较大,而长波长的光源产生的光电流较小。

这说明光电效应与光源的波长呈负相关关系。

三、光电检测在实际应用中的潜力光电检测技术在许多领域中有着广泛的应用,如光电传感器、光电测距仪等。

以下是一些实际应用案例:1. 光电传感器在自动化生产中的应用光电传感器可以通过光电效应检测物体的存在与否,广泛应用于自动化生产线上。

例如,在汽车制造过程中,光电传感器可以检测零件的位置和质量,实现自动化装配和质量控制。

2. 光电测距仪在测量领域中的应用光电测距仪利用光电效应测量物体与测距仪之间的距离。

它可以应用于建筑测量、地质勘探等领域。

例如,在建筑测量中,光电测距仪可以快速、准确地测量建筑物的高度和距离,提高测量效率。

结论:通过本次实验,我们搭建了光电检测系统,并研究了光电效应在不同条件下的特性。

第五章 光电信号的检测方法

第五章 光电信号的检测方法
L= 2/‫•ג‬N
这就是双频干涉测长装置的测量公式。
2、萨格纳克效应(光程差随转速而改变的现象)和转动差频 当封闭的光路相对于惯性空间有一转动速度Ω时,顺时针光路和
逆时针光路之间形成与转速成正比的光程差ΔL,其数值满足下列 关系:
式中,c为光速,A为封闭光路包围的面积;φ为转速矢量与面积 A的法线间的夹角。当光路平面垂直于Ω时,上式简化为:
图5-13给出像偏移测量轴向位移的原理示意图。
下图为采用PSD和半导体激光器的距离传感器示意图。
驱动电路
半导体 激光器
聚光 透镜
光学 滤光 片
PSD 器件
模拟开关 取样放大器
A/D变 换器
成像聚光镜
信号电 极距 PSD光 敏区中
放大器 输出
电脑 Z K I A I B
IA IB
入射光 点距中
像点的ΔZ′偏移引起原像面上的离焦,使像面照 度分布扩散,如图所示。
2、像点轴外偏移检测的像偏移法
像点偏移法又称光切法。它是一种三角测量方式的轴 向位移测量方法。当将光束照射到被测物体时,用成 像物镜从另外的角度对物体上的光点位置成像,通过 三角测量关系可以计算出物面的轴向位移大小。这种 方法数毫米到数米的距离范围可实现高精度的测量。 在工业领域内的离面位移检测中常常用到。
这一光程差随转速而改变的现象称作萨格纳克效应,图5-22给 出这一效应的图解说明。
三个或三个以上反射绕组成的激光谐振腔使光路转折形 成闭合环路。这种激光器称作环形激光器(如图5-23)。
小型化的环形激光器及相应的光学差频检测装置组成了 激光陀螺。它可以感知相对惯性空间的转动,在惯性导 航中作为光学陀螺仪使用。此外,作为一种测角装置, 它是一种以物理定律为基准的客观角度基准,有很高的 测角分辨率。图5-23(b)给出了早期激光陀螺的结构示 意图。

光电技术实验报告

光电技术实验报告

一、实验目的1. 理解光电效应的基本原理和规律。

2. 掌握光电探测器的性能参数测量方法。

3. 学习光电技术在实际应用中的具体应用。

二、实验原理光电效应是指光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应方程,光子的能量与电子的动能之间存在以下关系:E = hν = Ek + W其中,E为光子的能量,h为普朗克常数,ν为光的频率,Ek为电子的动能,W为金属的逸出功。

光电探测器是一种将光信号转换为电信号的装置,常用的光电探测器有光电二极管、光电三极管、光电倍增管等。

本实验主要研究光电二极管的性能参数。

三、实验仪器与设备1. 光电效应实验装置:包括光电管、光源、放大器、示波器等。

2. 光电探测器性能参数测试仪:用于测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。

3. 电源:提供实验所需的电压。

四、实验步骤1. 光电效应实验:(1)将光电管接入实验装置,调整光源的电压和电流,使光电管正常工作。

(2)打开示波器,观察光电管在不同电压下的伏安特性曲线。

(3)改变光源的频率,观察光电效应的规律。

2. 光电探测器性能参数测试:(1)将光电二极管接入性能参数测试仪,调整测试仪的电压和电流,使光电二极管正常工作。

(2)测量光电二极管的暗电流、饱和电流、光电流、响应时间等参数。

五、实验结果与分析1. 光电效应实验结果:(1)伏安特性曲线:随着电压的增加,光电管的电流逐渐增大,当电压达到一定值时,电流达到饱和。

(2)光电效应规律:光电效应的电流与光强成正比,与光的频率有关,当光的频率低于截止频率时,光电效应不发生。

2. 光电探测器性能参数测试结果:(1)暗电流:在无光照条件下,光电二极管的电流为暗电流,其大小反映了光电二极管的漏电流。

(2)饱和电流:当光强增加时,光电二极管的电流逐渐增大,当电流达到饱和时,光强的增加对电流的影响不再明显。

(3)光电流:光电二极管的光电流与光强成正比,其比例系数称为光电流灵敏度。

光电实验技术的使用中常见问题

光电实验技术的使用中常见问题

光电实验技术的使用中常见问题近年来,光电实验技术在科学研究、工程应用和教育培训等方面发挥着重要作用。

然而,在使用光电实验技术的过程中,我们常常会遇到一些问题。

本文将探讨光电实验技术使用中的常见问题,并提供解决方案,以帮助读者更好地应对这些挑战。

一、实验环境与装备问题1.1 光源问题光源的选择是光电实验的关键因素之一。

然而,在实践中我们经常会遇到光源亮度不足、波长不准确等问题。

解决这些问题的方法包括:提高光源功率、选择适合实验需求的光源波长、优化光源配置等。

1.2 检测器问题常见的检测器问题包括响应速度慢、灵敏度低等。

为解决这些问题,可以选择更先进的检测器,并注意合理调整参数以提高检测器的性能,如增加光电二极管的工作电流。

1.3 信号干扰问题在光电实验中,信号干扰可能会导致实验数据的不准确。

为减小信号干扰,可以采取屏蔽措施、优化电路设计等方法。

此外,选择频率较低的信号接口,如USB接口,也可以减少干扰。

二、数据采集与处理问题2.1 数据采集问题在光电实验中,数据采集是一个重要的环节。

然而,我们常常会遇到采集速度慢、采集精度不高等问题。

为解决这些问题,可以采用更先进的数据采集设备,提高采样率和分辨率。

2.2 数据处理问题实验数据的处理是光电实验的另一个关键步骤。

在处理过程中,我们常常会遇到数据分析方法不准确、结果不可靠等问题。

解决这些问题的方法包括:学习和运用统计分析方法、进行合理的数据校正和滤波处理等。

2.3 数据存储与共享问题随着实验数据的积累,数据存储和共享也成为了光电实验中的问题。

为解决这些问题,可以选择适当的数据存储设备,如云存储或外部硬盘。

在共享数据时要注意保护个人隐私和知识产权,尊重相关法律法规。

三、实验设置与实施问题3.1 实验装置设置问题实验装置的设置需要考虑到光电实验的目的和要求。

然而,在实践中我们常常会遇到实验装置不稳定、安装不当等问题。

解决这些问题的方法包括:仔细阅读实验手册、定期维护设备、保持实验室环境整洁等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 光敏电阻特性实验实验原理:利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管。

是一种均质的半导体光电器件,其结构如图1-1所示。

光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。

光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻。

利用光敏电阻制成的光控开关在日常生活中随处可见。

当光电效应发生时,光敏电阻电导率的改变量为:p n p e n e σμμ∆=∆⋅⋅+∆⋅⋅在上式中,e 为电荷电量,p ∆为空穴浓度的改变量,n ∆为电子浓度的改变量,μ表示迁移率。

当两端加上电压U 后,光电流为:ph AI U dσ=⋅∆⋅ 式中A 为与电流垂直的表面,d 为电极间的间距。

在一定的光照度下,σ∆为恒定的值,因而光电流和电压成线性关系。

光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照度发生变化。

光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。

图1-2光敏电阻的伏安特性曲线 图1-3 光敏电阻的光照特性曲线光敏电阻的光照特性则如图 1-3 所示。

不同的光敏电阻的光照特性是不同的,但是在大多数的情况下,曲线的形状都与图1-3 类似。

由于光敏电阻的光照特性是非线性的,因此不适宜作测量型的线性敏感元件,在自动控制中光敏电阻常用作开关量的光电传感器。

图1-4 几种光敏电阻的光谱特性实验所需部件:稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器实验步骤:1.测试光敏电阻的暗电阻、亮电阻、光电阻观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为暗电阻R暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R亮,暗电阻与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。

结果:用万用表欧姆档测得的暗电阻为∞,超出万用表的量程。

在环境光照下的亮电阻为6.5kΩ。

在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。

2.光敏电阻的暗电流、亮电流、光电流按照图1-5接线,分别在暗光及有光源照射下测出输出U暗和U亮,电流L暗=U暗/R,亮电流L亮=U亮/R,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

结果:暗光时电流为0。

有光源照射时光电流为71uA。

3. 光敏电阻的伏安特性测试按照图1-5接线,电源可从直流稳压电源+2~+12V间选用,每次在一定的光照条件下,测出当加在光敏电阻上电压为+2V;+4V;+6V;+8V;+10V时电阻R两端的电压U R,和电流数据,同时算出此时光敏电阻的阻值,并填入以下表格,根据实验数据画出光敏电阻的伏安特性曲线。

图1-5 光敏电阻的测量电路光敏电阻伏安特性测试数据表(暗光)电源电压(毫伏)2 4 6 8 10U R(伏) 1.98 3.98 5.98 7.98 9.87电阻(欧姆)∞∞∞∞∞电流(毫安)0 0 0 0 0电源电压(伏)2 4 6 8 10U R(伏) 1.50 3.01 4.51 6.00 7.50电阻(k欧姆) 3.1876 3.0137 3.0059 2.8744 2.8000电流(毫安)0.56 1.15 1.73 2.32 2.93光敏电阻伏安特性测试数据表(白炽灯照射)电源电压(伏)2 4 6 8 10U R(伏)0.92 1.86 2.79 3.71 4.63电阻(k欧姆)0.7583 0.7625 0.7514 0.7495 0.7455电流(毫安)1.142.293.454.615.78结果:光敏电阻的阻值随光照强度增加而变小,光照强度的变化不改变光敏电阻伏安特性形状,始终呈线性4. 光敏电阻的光照特性测试按照图1-5接好实验线路,负载电阻R选定1K,光源用白炽灯,(实验者可仔细调节光源控制旋钮,得到不同的光源亮度),每确定一种亮度后改变测试电路工作电压从0V-12V。

从电源电压U CC=2V开始到U CC=10V,每次在一定的外加电压下测出光敏电阻在相对光照度从“弱光”到逐步增强(通过白炽灯亮度调节)的电流数据,即:1.00RphUIK=Ω,同时求出此时光敏电阻的阻值,即:cc RgPhU URI-=。

这里要求尽量多的测点(不少于4个)不同照度下的电流数据,尤其要在弱光位置选择较多的数据点,以使所得到的数据点能够绘出较为完整的光照特性曲线。

照度很弱较弱中等较强很强U R(伏)0.185 0.245 1.05 1.25 1.34光电流0.176 0.239 1.07 1.19 1.32(mA)照度很弱较弱中等较强很强0.365 0.495 2.11 2.52 2.69U R(伏)0.357 0.508 2.114 2.65 2.73光电流(mA)照度很弱较弱中等较强很强0.551 0.759 3.18 3.79 4.04U R(伏)0.547 0.762 3.15 3.84 4.18光电流(mA)照度很弱较弱中等较强很强0.78 1.03 4.25 5.06 5.4U R(伏)光电流0.72 1.12 4.36 5.12 5.48(mA)光敏电阻光照特性测试数据表(电源电压:10V )照度很弱较弱中等较强很强1.023 1.305 5.34 6.35 6.76U R(伏)光电流1.04 1.38 5.45 6.42 6.89(mA)图(b)不同电源电压下光敏电阻光照特性曲线结果:光照强度很弱时,光敏电阻光电流值很小,且几乎不随光照强度变化而变化;随着光照强度进一步增加,在未达光照饱和前,光电流值与光照强度近似呈线性变化;光强继续增加,光敏电阻光照特性达到饱和,这时光电流值将不再随光照强度增加而继续变大,其值主要取决于光敏电阻两端电压,电压越大,饱和光电流越大。

在总的变化过程中,两端电压高的光敏电阻的光电流总是要高于两端电压低的光敏电阻光电流值。

5. 光敏电阻的光谱特性:用不同的半导体材料制成的光敏电阻有着不同的光谱特性,见图1-4。

当不同波长的入射光照到光敏电阻的光敏面上,光敏电阻就有不同的灵敏度。

用高亮度LED(红、黄、绿、蓝)作为光源,发光管与光敏电阻顶端可用附件中的黑色软管连接。

分别测出光敏电阻在各种光源照射下的光电流,再用固体激光器、日光(白光)作为光源,测得光电流,将测得的数据记入下表,据此做出两种光电阻大致的光谱特性曲线:共测试两个光敏电阻:光源激光红黄绿蓝白光电流4.78 4.18 4.02 4.04 3.10 4.78( 毫安)第二个光敏电阻:光源激光红黄绿蓝白光电流20.2 5.9 6.1 1.1 0.5 20.2( 毫安)第一个光敏电阻:第二个光敏电阻:结果:不同的光敏电阻的光照特性是不同的,但大多数的情况下,其曲线的形状大体相同如上图,在特定的波长处存在吸收峰值,其他波长处光吸收则较之要小,吸收峰波长与光敏电阻特性有关。

6.光敏电阻的温度特性:光敏电阻与其他半导体器件一样,性能受温度影响较大。

随着温度的升高电阻值增大,灵敏度下降。

请按图1-5测试电路,分别测出常温下和加温(可白炽灯光照加热3~5分钟)后的伏安特性曲线。

常温:电压(V) 2 4 6 8 10U R(伏)0.427 0.873 1.323 1.776 2.24光电流0.435 0.883 1.332 1.786 2.28(毫安)很弱较弱中等较强很强电压(V)U R(伏)0.482 0.94 1.41 1.82 2.290.49 0.94 1.41 1.84 2.30光电流(毫安)结果:利用吹风机加热光敏电阻,但其温度特性未有很好的体现,测得的光电流没有变化。

其原因可能是白炽灯离光敏电阻较近,在进行之前的实验过程中,白炽灯处于打开状态,其热辐射已经将光敏电阻进行了加热。

因此再利用吹风机加热光敏电阻后,其光电流无明显边缘。

注意事项:实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LU光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。

实验时各种不同波长光源选用的高亮度LED在不发光时均为透明材料封装,查看颜色及亮度均可从其顶端透镜前观察。

用做光源时也应将透镜发光点对准光敏器件。

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:光电信号检测实验题目:光敏二极管特性测试班级:1021102姓名:居旺学号:1102100501同组人:伟文红春雨爽实验地点:电机楼10008室实验时间:2013 年5 月11 日实验成绩:教师评语:实验二光敏二极管特性实验实验原理:光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。

光敏二极管的伏安特性相当于向下平移了的普通二极管,无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。

当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。

光敏二极管结构见图2-1。

图2-1光敏二极管原理实验所需部件:光敏二极管、稳压电源、负载电阻(实验选配单元中可变电阻)、遮光罩、光源、电压表(万用表)、微安表(万用表上的200mA档)实验步骤:按图2-2接线,要注意光敏二极管是工作在反向工作电压的。

由于硅光敏二极管的反向电流非常小,所以应视实验情况逐步提高工作电压,如有必要可用稳压电源上的±10V或±12V串接。

图2-2 光敏二极管测试电路1.暗电流测试用遮光罩盖住光电器件模板,选择合适的电路反向工作电压,选择适当的负载电阻。

打开仪器电源,调节负载电阻值,微安表显示的电流值即为暗电流,或用4 1/2位万用表200mV档测得负载电阻R上的压降U暗,则暗电流L暗=U暗/R。

一般锗光敏二极管的暗电流要大于硅光敏二极管暗电流数十倍。

可在试件插座上更换其他光敏二极管进行测试做性能比较。

测试结果:暗电流0.4mA(电源电压2V)。

2.光电流测试:缓慢揭开遮光罩,观察微安表上的电流值的变化,(也可将照度计探头置于光敏二极管同一感光处,观察当光照强度变化时光敏二极管光电流的变化)或是用4 1/2位万用表200mV档测得R上的压降U光,光电流L光=U光/R。

如光电流较大,则可减小工作电压或调节加大负载电阻。

测试结果:随着照度增加,光电流由0.4mA上升到10.1mA,进一步上升到51.9mA(电源电压2V)。

3. 伏安特性测试实验按图3-2连接实验线路,光源选用高亮度卤素灯,分别调节至“弱光”、“中光”和“强光”三种照度。

负载电阻用万用表确定阻值1K欧姆。

将可调光源调至一种照度,每次在该照度下,测出加在光敏二极管上的各反向偏压与产生的光电流的关系数据,其中光电流 1.00Rph U I K =Ω(1K Ω为取样电阻),在三种光照度下重复上述实验。

相关文档
最新文档