一元二次方程根与系数的关系各种类型题与训练

合集下载

一元二次方程根与系数关系及应用题(习题)

一元二次方程根与系数关系及应用题(习题)

一元二次方程根与系数关系及应用题(习题)例题示范例1:设x1,x2是方程2760x x ++=的两个根,利用根与系数的关系,求221211x x +的值. 解:那个地点a=1,b=7,c=6.∴x1+x2=-7,x1·x2=6例2:某商场服装部销售一种名牌衬衫,平均每天售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价2元时,平均每天可多卖出3件.若商场要求该服装部每天盈利1 200元,每件衬衫应降价多少元?解:设衬衫应降价x 元,依照题意,得解得:x1=20,x2=0(不合题意,舍去)∴每件衬衫应降价20元.巩固练习某品牌服装原售价为173元,通过连续两次降价后售价为127元,设平均每次降价x%,则所列方程为_______________.小丽要在一幅长为80 cm ,宽为50 cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅矩形挂图,使整幅挂图的面积是5 400 cm2,设金色纸边的宽度为x cm ,则x 满足的方程是_______________.一种商品经连续两次降价后,价格是原先的14,若两次降价的百分率相同,则那个百分率为_______________.若x1,x2是一元二次方程23540x x --=的两个根,则x1+x2与12x x ⋅的值分别是_____________.若关于x 的方程2250x x a -+-=有两个正根,则a 的取值范畴是_______________.设x1,x2是方程23620x x +-=的两个根,利用根与系数的关系,求下列各式的值.(1)12(1)(1)x x ++; (2)221212x x x x +;(3)1211x x +; (4)212()x x -.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根x1,x2. (1)求实数k 的取值范畴.(2)若方程两实数根x1,x2满足1212x x x x +=⋅,求k 的值.某市为争创全国文明卫生都市,2021年市政府对市区绿化工程投入的资金是2 000万元,2021年投入的资金是2 420万元,且从2021年到2021年,每年投入资金的年平均增长率相同.(1)求该市政府对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市政府在2021年需投入多少万元?小明家有一块长为8 m ,宽为6 m 的矩形空地,妈妈预备在该空地上建筑一个花园,并使花园面积为空地面积的一半.小明设计了如下的两种方案供妈妈选择,请你选择其中的一种方案帮小明求出图中的x 值.方案一200件的售价每提高0.5元,售时,才能使每天的利润为1 210元?汽车站水果批发市场经销一种水果,假如每千克盈利10元,每天可售出500千克.经市场调查发觉,在进价不变的情形下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.假如市场每天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果盈利了多少元?摸索小结从应用题处理框架角度来回忆经济型应用题:①明白得题意,梳理信息(列表、画图)借助_____方式梳理信息,注意从变化基础,变化关系,目标情形三个层面来进行分别梳理,操作时注意边写边进行表达.②建立数学模型依照题目中包蕴的经济关系或其他增长变化关系建立数学模型. 若满足等量关系,则建立_______模型.若满足不等关系,则建立_______模型.若描述的是两个变量的关系,则建立_______模型.通常利用函数性质来求解最大最小,最多最少的问题.③求解验证数据是否专门,结果是否符合题目要求及取值范畴;结果是否符合实际意义.结合本章知识图梳理本章知识,并回答下列问题:①解一元二次方程的差不多思想是___________,即通过_____或_____把一个一元二次方程转化为两个一元一次方程来解.②一元二次方程的解法中,_______是由________推导而来.③一元二次方程___________能够用来快速检验方程的解的正确性.【参考答案】巩固练习173(1-x%)2=127(50+2x)(80+2x)=5 40050%(1)53-; (2)43; (3)3; (4)203. (1)34k > (2)k=2 (1)10% (2)2 928.2万元方案一中x=2,方案二中x=2.将每件商品提高9元出售时,才能使每天的利润为1 210元.每千克这种水果盈利了15元.摸索小结①列表;②方程;不等式;函数;①降次;配方;因式分解;②公式法;配方法;③根与系数关系。

(完整版)一元二次方程根与系数的关系习题(配答案)

(完整版)一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数的关系习题一、单项选择题:1.关于x 的方程0122=+-x ax 中,如果0<a ,那么根的情况是( ) (A)有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定2.设21,x x 是方程03622=+-x x 的两根,则2221x x +的值是( ) (A )15 (B )12 (C )6 (D )33.下列方程中,有两个相等的实数根的是( )(A ) 2y 2+5=6y (B )x 2+5=2,5 x(C)错误!x 2-错误!x+2=0(D )3x 2-2错误!x+1=04.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D)y 2-5y -6=05.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x •等于( ) (A )2 (B )-2 (C ) 1 (D)-1 二、填空题:1、如果一元二次方程0422=++k x x 有两个相等的实数根,那么k = .2、如果关于x 的方程012)14(222=-++-k x k x 有两个不相等的实数根,那么k 的取值范围是 。

3、已知21x x ,是方程04722=+-x x 的两根,则21x x += ,21x x = ,221)(x x -=4、若关于x 的方程01)2()2(22=+---x m x m 的两个根互为倒数,则m = 。

5、当m = 时,方程042=++mx x 有两个相等的实数根;6、已知关于x 的方程07)3(102=-++-m x m x ,若有一个根为0,则m = ,这时方程的另一个根是 ;若两根之和为-错误!,则m = ,这时方程的 两个根为 .7、如果5)1(222+++-m x m x 是一个完全平方式,则m = ;8、方程6)4(22-=-x mx x 没有实数根,则最小的整数m = ;9、已知方程)4()3)(1(2-=--m x m x x 两根的和与两根的积相等,则m = ; 10、设关于x 的方程062=+-k x x 的两根是m 和n ,且2023=+n m ,则k 值为 ; 11、若方程01)12(22=++--m x m x 有实数根,则m 的取值范围是 12、一元二次方程02=++q px x 两个根分别是32+和32-,则p= ,q= 13、已知方程01932=+-m x x 的一个根是1,那么它的另一个根是 ,m= ;14、若方程012=-+mx x 的两个实数根互为相反数,那么m 的值是 ;15、n m 、是关于x 的方程01)12(22=++--m x m x 的两个实数根,则代数式n m = . 16、已知方程0132=+-x x 的两个根为α,β,则α+β= , αβ= ;17、如果关于x 的方程042=+-m x x 与022=--m x x 有一个根相同,则m 的值为 ; 18、已知方程0322=+-k x x 的两根之差为2错误!,则k= 19、若方程03)2(22=--+x a x 的两根是1和-3,则a=20、①、若关于x 的方程04)1(222=+-+m x m x 有两个实数根,且这两个根互为倒数,那么m 的值为 ; ②、已知关于x 的一元二次方程01)1()1(22=++--x a x a 两根互为倒数,则a= 。

一元二次方程的根与系数的关系(八大题型提分练)(解析版)

一元二次方程的根与系数的关系(八大题型提分练)(解析版)

21.2.4一元二次方程的根与系数的关系(八大题型提分练)题型一、利用根与系数的关系求两根之和与两根之积1.(2024·天津红桥·三模)若一元二次方程22320x x +-=的两个根分别为1x ,2x ,则12x x +的值为()A .32-B .32C .1-D .12.(2024·天津宝坻·二模)若12x x ,是方程2320x x --=的两个根,则()A .122x x =-B .122x x =C .123x x +=-D .1223x x +=3.(2024·甘肃兰州·二模)若1x ,2x 是方程2650x x -+=两个根,则()A .126x x +=-B .126x x +=C .1256x x ⋅=-D .125x x ⋅=-【答案】B【分析】本题考查根与系数的关系,解题的关键是记住1x ,2x 是一元二次方程200ax bx c a ++=≠()的两根题型二、利用根与系数的关系求代数式的值4.(2024·山东菏泽·一模)已知m ,n 是一元二次方程²220260x x +-=的两个实数根,则代数式²3m m n ++的值等于()A .2026B .2025C .2024D .2023【答案】C【分析】本题主要考查了一元二次方程的根与系数的关系,一元二次方程解的定义,正确将原式变形为()()22mm m n +++是解题的关键.根据一元二次方程的根与系数的关系和一元二次方程解的定义得到2220262m m m n +=+=-,,再把原式变形为()()22m m m n +++,由此代值计算即可.【详解】解:∵m 、n 是一元二次方程²220260x x +-=的两个实数根,∴22202602m m m n +-=+=-,,∴222026m m +=,∴²3m m n++()()2222m m m n =+++()()22m m m n =+++()20262=+-2024=,故选C .5.(2024·山东济宁·一模)设α,β是一元二次方程23170x x +-=的两个根,则252a αβ++=.【答案】11【分析】此题主要考查了根与系数的关系,由α,β是一元二次方程23170x x +-=的两个根,得出3αβ+=-,23170αα+-=,再把252a αβ++变形为()232αααβ+++,即可求出答案.【详解】解:∵α,β是一元二次方程23170x x +-=的两个根,∴3αβ+=-,23170αα+-=,∴2317αα+=,∴()()225232172311ααβαααβ++=+++=+⨯-=,故答案为:11.6.(2024·江苏盐城·二模)已知:α,β是方程2240x x +-=有两个实数根.求出下列代数式的值(1)()1αβα++;(2)242ααβ++.【答案】(1)6-(2)0【分析】本题考查了一元二次方程根与系数的关系,代数式求值,解题的关键是掌握一元二次方程根与系数的关系.(1)根据根与系数的关系可得2αβ+=-,4αβ=-,再将所求代数式变形,最后代入求解即可;(2)根据题意可得2240αα+-=,2αβ+=-,推出224αα+=,再将所求式子变形,最后代入求解即可.【详解】(1)解: α,β是方程2240x x +-=有两个实数根,∴2αβ+=-,4αβ=-,∴(1)246αβαααββ++=++=--=-;(2) α,β是方程2240x x +-=有两个实数根,∴2240αα+-=,∴224αα+=,∴242ααβ++2(2)(22)αααβ=+++()()222αααβ=+++()422=+⨯-0=题型三、已知代数式的值求参数7.(2024·四川乐山·二模)已知一元二次方程230x x k -+=的两个实数根为12,x x ,若1212221x x x x ++=,则实数k 的值为()A .5-B .7C .1-D .18.(2024·黑龙江大庆·模拟预测)已知1x 、2x 是关于x 的方程2230x x k -+-=的两实数根,且2211221x x x x x x +=+-,则k 的值为.9.(2024·广东东莞·一模)已知一元二次方程()22210x m x m +-+=(1)若方程有两个实数根,求m 的取值范围;(2)若方程的两个实数根为12,x x ,且121210x x x x ++-=求m 的值.10.(23-24九年级上·江西南昌·阶段练习)已知一元二次方程2102x x m -+=.(1)若方程有实数根,求m 的取值范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值.∴0m =.题型四、已知方程的一根求另一根和参数的值11.(23-24九年级下·山东烟台·期中)250x x m --=的一个根,则该方程的另一根是()A .1-B .1C .2D .312.(23-24九年级下·海南省直辖县级单位·期中)已知关于x 的方程230x x n --=有一个根是1-,则另一个根为.【答案】4【分析】本题考查根与系数的关系,设另一个根为a ,由两根之和等于3,进行求解即可.【详解】解:设方程的另一个根为a ,则:()13a +-=,∴4a =;即:另一个根为4;故答案为:4.13.(23-24九年级上·河南郑州·阶段练习)已知关于x 的一元二次方程()22210x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)已知方程一个根为2,求k 的值.【答案】(1)见解析(2)1k =,或2k =【分析】本题主要考查了一元二次方程根的判别式及根与系数的关系,解一元二次方程.熟练掌握一元二次方程根的判别式判定根的情况,一元二次方程根与系数的关系,是解题的关键.(1)根据一元二次方程写出根的判别式,根据根的判别式的值为正数即可证明方程有两个不相等的实数根;(2)设方程的另一根为α,根据根与系数的关系列方程组,消去a ,得到k 的一元二次方程,解方程即得.【详解】(1)解:∵()()2222Δ21414414410k k k k k k k ⎡⎤=-+-⨯⨯+=++--=>⎣⎦,故方程有两个不相等的实数根.(2)设方程的另一根为a ,则22212a k a k k+=+⎧⎨=+⎩,∴2320k k -+=,∴()()120k k --=,∴10k -=,或20k -=,解得,1k =,或2k =.题型五、根与系数的关系与判别式综合问题14.(2024·江苏宿迁·三模)关于x 的一元二次方程()²00ax bx c ac ++=≠,有以下命题:①若0a b c -+=,则²40b ac -≥②若方程的两根为3-和1,则30a c +=③若上述方程有两个相等的实数根,则²1ax bx c ++=-必有实数根;④若m 是该方程的一个根,则1m一定是²0cx bx a ++=的一个根.其中真命题的个数()A .4B .3C .2D .1【答案】B【分析】本题考查了一元二次方程的知识,掌握一元二次方程解的概念和计算方法,根与系数的关系是解题的关键.根据一元二次方程的解,把131x x x =-==,,代入可判定命题①②;根据根的判别式240b ac ∆=-≥可判15.(23-24九年级下·重庆·阶段练习)已知两个实数x 、y ,可按如下规则进行运算:计算(1)(1)1x y ---的结果,得到的数记为1z ,称为第一次操作.再从x 、y 、1z 中任选两个数,操作一次得到的数记为2z ;再从x 、y 、1z 、2z 中任选两个数,操作一次得到的数记为3z ,依次进行下去.以下结论正确的个数为()①若x 、y 为方程240m m +-=的两根,则1 2z =-;②对于整数x 、y ,若x y +为偶数,在操作过程中,得到的n z 一定为偶数;③若4,2x y =-=,要使得2024n z >成立,则n 至少为4.A .0B .1C .2D .3【答案】B 【分析】本题考查新定义的实数运算和一元二次方程根与系数的关系,理解题目中的算法是解题的关键.①先化简(1)(1)1x y ---,根据根与系数的关系得1x y +=-,4xy =-,即可求解;②对于整数x 、y ,若x y +为偶数,则x 、y 同为偶数或同为奇数,xy 为偶数或奇数,计算结果可能为奇数或偶数;③先计算1z ,然后从中选取绝对值较大的两个数,进行计算,即可求解.【详解】解:①x 、y 为方程240m m +-=的两根,∴1x y +=-,4xy =-,∴()()(1)(1)111413x y xy x y xy x y ---=--+-=-+=---=-故说法错误;②对于整数x 、y ,若x y +为偶数,则x 、y 同为偶数或同为奇数,∴xy 为偶数或奇数,∴(1)(1)1x y ---的结果可能为奇数或偶数,∴得到的n z 一定为偶数说法错误;③若4,2x y =-=,则1826z =-+=-,然后从中选取绝对值较大的两个数,进行计算,则()()()2464634z =-⨯----=()()3346346232z =⨯---=-,()4232342323467690z =-⨯--+=-,16.(23-24九年级上·广东广州·期中)已知关于x 的一元二次方程22560x x p -+-=.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)若方程的两实数根为12,x x ,且满足124x x =,试求出p 的值.17.(23-24九年级下·江苏泰州·阶段练习)对于代数式2ax bx c ++,若存在实数n ,当时,代数式的值也等于n ,则称n 为这个代数式的不变值.例如:对于代数式2x ,当0x =时,代数式等于0;当1x =时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值A=.与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则0 (1)代数式22x x-的不变值是________,A=_______.(2)已知代数式2x bx b-+,A=,求b的值;①若0②若12A≤≤,b为整数,求所有整数b的和.题型六、根与系数的关系与三角形问题18.(23-24九年级下·江苏苏州·阶段练习)已知关于x 的方程()2330x k x k -++=.(1)求证:无论k 取任何实数,该方程总有实数根;(2)若等腰三角形的三边长分别为a b c ,,,其中1a =,并且b c ,恰好是此方程的两个实数根,求此三角形的周长.【答案】(1)见解析(2)7【分析】此题考查了根与系数的关系,根的判别式,三角形三边关系,以及等腰三角形的性质,熟练掌握各自的性质是解本题的关键.(1)表示出方程根的判别式,判断其值大于等于0即可得证;(2)分两种情况考虑:当b c =时,求出方程的解,进而得到三角形周长;当1a c ==或1a b ==时,把1x =代入方程求出k 的值,进而求出周长即可.【详解】(1)证明:∵()()222Δ34136930k k k k k ⎡⎤=-+-⨯⨯=-+=-≥⎣⎦,∴无论k 取任何实数,方程总有实数根;(2)解:当b c =时,3k =,方程为2690x x -+=,解得:123x x ==,此时三边长为133,,,周长为1337++=;当1a b ==或1a c ==时,把1x =代入方程得:()1330k k -++=,解得:1k =,此时方程为:2430x x -+=,解得:1231x x ==,,此时三边长为113,,不能组成三角形,综上所述,ABC 的周长为7.19.(2023·四川绵阳·一模)已知关于x 的方程()()2340x x p p ---+=;(1)求证:方程总有实数根;(2)若方程的两根12,x x 为直角三角形的两边长,且25x =,求P 的值及该直角三角形的周长.20.(22-23九年级上·黑龙江七台河·期末)已知1x ,2x 是关于x 的一元二次方程222(1)50x m x m -+++=的两实数根.(1)若12(1)(1)28x x --=,求m 的值;(2)已知等腰ABC 的一边长为7,若1x ,2x 恰好是ABC 另外两边的边长,求这个三角形的周长.【详解】(1)解:根据题意得判别式()()2241450m m =+-+≥,解得2m ≥,122(1)x x m +=+,2125=+x x m ,121)18)(2(x x --= ,即1212()128x x x x -++=,252(1)128m m ∴+-++=,整理得22240m m --=,解得16m =,24m =-,而2m ≥,m ∴的值为6;(2)解:当腰长为7时,则7x =是一元二次方程222(1)50x m x m -+++=的一个解,把7x =代入方程得24914(1)50m m -+++=,整理得214400m m -+=,解得110m =,24m =,当10m =时,122(1)22x x m +=+=,解得215x =,而7715+<,故舍去;当4m =时,122(1)10x x m +=+=,解得23x =,则三角形周长为37717++=;当7为等腰三角形的底边时,则12x x =,所以2m =,方程化为2690x x -+=,解得123x x ==,则337+<,故舍去,所以这个三角形的周长为17.题型七、根与系数的关系与四边形问题21.(2023·江西新余·一模)已知平行四边形ABCD 的两邻边的长m ,n 分别是关于x 的一元二次方程21024k x kx -+-=的两个实数根.(1)求k 的取值范围;(2)当k 为何值时,四边形ABCD 是菱形;(3)当k 为何值时,四边形ABCD 的两条对角线的长相等,且都等于102,求出这时四边形ABCD 的周长和面积.题型八、新定义及材料探究题22.(2023·江西新余·一模)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如:方程2430x x -+=的两个根是1和3,则这个方程就是“三倍根方程”.(1)方程2320x x -+=______(填“是”或“否”)“三倍根方程”;(2)若关于x 的方程240x x c -+=是“三倍根方程”,求c ;(3)若()20x m n x mn -++=是关于x 的“三倍根方程”,求代数式22mnm n +的值.23.(23-24九年级上·江苏泰州·阶段练习)如果关于x 的一元二次方程()200ax bx c a ++=≠有两个不相等的实数根,且其中一个根为另一个根的2倍,则称这样的方程为“2倍根方程”,(1)方程2680x x -+=“2倍根方程”(填“是”或“不是”);(2)若一元二次方程290x x c -+=是“2倍根方程”,求出c 的值.(3)若()()()300x ax b a --=≠是“2倍根方程”,求代数式32a ba b-+的值.1.(2024·安徽合肥·二模)已知关于x 的方程2230x x k -+=的两根分别为1x 和2x ,若1240x x +=,则k 的值为()A .23-B .2-C .23D .22.(2024·湖北黄石·二模)设m n ,分别为一元二次方程2220240x x +-=的两个实数根,则23m m n ++=()A .2020B .2022C .2024D .2026【答案】B【分析】本题考查了一元二次方程根的定义,一元二次方程根和系数的关系,代数式求值,由一元二次方程根的定义可得2220240m m +-=,进而得222024m m +=,由一元二次方程根和系数的关系可得2m n +=-,再把23m m n ++转化为()22m m m n +++,代入前面所得式子的值计算即可求解,掌握一元二次方程根的定义及根和系数的关系是解题的关键.【详解】解:∵m n ,分别为一元二次方程2220240x x +-=的两个实数根,∴2220240m m +-=,2m n +=-,∴222024m m +=,∴()2232202422022m m n m m m n ++=+++=-=,故选:B .3.(2024·江苏南京·二模)若关于x 的方程()200ax bx c a ++=≠的两根之和为p ,两根之积为q ,则关于y的方程()()2110a y b y c -+-+=的两根之积是()A .1p q ++B .1p q -+C .1q p -+D .1q p --【答案】A【分析】本题考查根与系数的关系,设关于x 的方程()200ax bx c a ++=≠的两个根为12,x x ,得到1212,x x p x x q +==,换元法,得到()()2110a y b y c -+-+=的两个根为121,1x x ++,再进行求解即可.【详解】解:设关于x 的方程()200ax bx c a ++=≠的两个根为12,x x ,则:1212,x x p x x q +==,∴关于y 的方程()()2110a y b y c -+-+=的两根为11221,1y x y x =+=+,∴()()()121212121111y y x x x x x x q p =++=+++=++;故选A .4.(2024·江苏南京·二模)关于x 的方程22x kx +=(k 为常数)的根的情况,下列结论中正确的是()A .两个正根B .两个负根C .一个正根,一个负根D .无实数根5.(2024·四川达州·二模)若一个菱形的两条对角线长分别是关于x 的一元二次方程2120x x m -+=的两个实数根,且其面积为20,则该菱形的边长为()A .B .C .4D .66.(2024·内蒙古乌兰察布·二模)设1x 、2x 是一元二次方程260x mx --=的两个根,且121x x =+,则12x x -=.【答案】5【分析】本题考查了一元二次方程的根与系数的关系,解一元二次方程,由一元二次方程根与系数的关系得出121x x m +==,再利用因式分解法解一元二次方程,最后代入计算即可得出答案,熟练掌握一元二次方程根与系数的关系是解此题的关键.【详解】解: 1x 、2x 是一元二次方程260x mx --=的两个根,且121x x =+,121x x m ∴+==,7.(2024·四川内江·二模)已知实数a ,b 满足251a a -=-,215b b +=,则b aa b+=.8.(2024·山东济宁·三模)若关于x 的方程2220(x x m m m +--=为正整数)的两根分别记为m α,m β,如:当1m =时,方程的两根记为1α,1β,则112220232023111111αβαβαβ++++⋯++=.9.(2024·甘肃天水·三模)已知关于x的方程2220x mx m m+++=有两个不相等的实数根1x,2x.(1)求m的取值范围;(2)若22121240x x x x m++=,求m的值.解得:0m =或1或2m =-,0m < ,2m ∴=-.10.(2024·四川南充·三模)已知关于x 的一元二次方程()221230x k x k -+--=有两个不相等的实数根.(1)求实数k 的取值范围,(2)当2k =时,设方程的两个实数根分别为12,x x ,求32221121243x x x x x -+++的值.913=++13=.11.(2024·安徽合肥·二模)类比是探索发展的重要途径,是发现新问题、新结论的重要方法.阅读材料:设20x px q ++=的两个根为1x 和2x ,那么22121212()()()x px q x x x x x x x x x x ++=--=-++比较系数,可得12x x p +=-,12x x q =.类比推广,回答问题:设320x px qx r +++=的三个根为1x ,2x ,3x ,那么323123()()()x px qx r x x x x x x x +++=---=+___________()2x +(___________)x +(___________).比较系数,可以得到一元三次方程的根与系数的关系:123x x x ++=___________,___________q =,123x x x =___________.【答案】123x x x ---,122313x x x x x x ++,r -,p -,122313x x x x x x ++,r【分析】本题主要考查根据一元二次方程中根和系数之间的关系推理一元三次方程中根与系数的关系,掌握一元二次方程中根与系数的关系,多项式乘以多项式的运算法则是解题的关键.将一元三次方程按照一元二次方程的方式因式分解为,再将其按照多项式乘以多项式的方式展开,得到()()32123122313123x x x x x x x x x x x x x x x =-+++++-,最后得到根与系数关系123x x x p ++=-,122313q x x x x x x +=+,123x x x r =即可;【详解】解:根据材料提示得,32123()()()x px qx r x x x x x x +++=---,()212123()x x x x x x x x ⎡⎤=-++-⎣⎦,()()32231212312123x x x x x x x x x x x x x x x x ⎡⎤=--++++-⎣⎦,()()32123122313123x x x x x x x x x x x x x x x ⎡⎤=-+++++-⎣⎦,()()32123122313123x x x x x x x x x x x x x x x =-+++++-,32x px qx r +++=,∴123x x x p ++=-,122313q x x x x x x +=+,123x x x r =-;故答案为:123x x x ---,122313x x x x x x ++,123x x x ,p -,122313x x x x x x ++,-r .12.(2024·四川南充·二模)已知关于x 的一元二次方程()232100x m x m --+-=.(1)求证:此一元二次方程总有实数根;(2)已知ABC 两边长a ,b 分别为该方程的两个实数根,且第三边长3c =,若ABC 的周长为偶数,求m 的值.13.(2024·四川南充·二模)关于x 的一元二次方程()222120x m x m -+++=有实数根.(1)求m 的取值范围;。

一元二次方程根与系数的关系习题精选(含答案)

一元二次方程根与系数的关系习题精选(含答案)

一元二次方程根与系数的关系一.选择题:1.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( )A . x 2+3x ﹣2=0B . x 2﹣3x+2=0C . x 2﹣2x+3=0D . x 2+3x+2=0 2.已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( )A . ﹣4B . ﹣1C . 1D . 43.x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的结论是( )A . m =0时成立B . m =2时成立C . m =0或2时成立D . 不存在4.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( )A . 10B . 9C . 7D . 55若关于x 的一元二次方程x 2+bx+c=0的两个实数根分别为x 1=﹣2,x 2=4,则b+c 的值是( )A . ﹣10B . 10C . ﹣6D . ﹣16.关于x 的方程x 2﹣ax+2a=0的两根的平方和是5,则a 的值是( )A . ﹣1或5B . 1C . 5D . ﹣17.(2014•攀枝花)若方程x 2+x ﹣1=0的两实根为α、β,那么下列说法不正确的是( )8.方程x 2﹣(m+6)x+m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( )A . ﹣2或3B . 3C . ﹣2D . ﹣3或29.若关于x 的一元二次方程x 2+(k+3)x+2=0的一个根是﹣2,则另一个根是( )A . 2B . 1C . ﹣1D . 010.设a ,b 是方程x 2+x ﹣2015=0的两个实数根,则a 2+2a+b 的值为( )A . 2012B . 2013C . 2014D . 201511.一元二次方程x 2﹣2x ﹣3=0与3x 2﹣11x+6=0的所有根的乘积等于( )A . ﹣6B . 6C . 3D . ﹣312.已知x 1、x 2是方程x 2﹣(k ﹣2)x+k 2+3k+5=0的两个实数根,则的最大值是( )A . 19B . 18C . 15D . 1313.已知:x 1、x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( ) A .a=﹣3,b=1 B . a =3,b=1 C . a=﹣,b=﹣1 D . a=﹣,b=1 14.已知α,β是一元二次方程x 2﹣5x ﹣2=0的两个实数根,则α2+αβ+β2的值为( )A . ﹣1B . 9C . 23D . 2715.已知关于x 的一元二次方程x 2+2x+a ﹣1=0有两根为x 1和x 2,且x 12﹣x 1x 2=0,则a 的值是( )A . a =1B . a =1或a=﹣2C . a =2D . a =1或a=216.已知一元二次方程x 2﹣4x+3=0两根为x 1、x 2,则x 1+x 2=( )A . 4B . 3C . ﹣4D . ﹣317.已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( ) A . 9 B . ±3 C . 3 D . 5A . α+β=﹣1B . αβ=﹣1C . α2+β2=3D . +=﹣118.如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a 的值为()A.3B.﹣3 C.13 D.﹣1319.若△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,则△ABC的周长为()A.9B.10 C.9或10 D.8或9或10 二.填空题20.若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k=_________.21.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=_________.22.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.23.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k 的值是_________.三.解答题24.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.25.已知x1,x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,其满足(3x1﹣x2)(x1﹣3x2)=﹣80.求实数a的所有可能值.26.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.27.已知关于x的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.。

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)-2023年新九年级数学(苏科版)(解析版)

一元二次方程根与系数的关系(5种题型)1.探索一元二次方程的根与系数的关系.(重点)2.不解方程利用一元二次方程的根与系数的关系解决问题.(难点)韦达定理:如果12x x ,是一元二次方程 20(0)ax bx c a −+=≠的两个根,由解方程中的公式法得,12x x ==. 那么可推得1212b cx x x x a a+=−⋅=,这是一元二次方程根与系数的关系.题型1:求根与系数关系例1.(2023春·江苏南京·九年级专题练习)若1x ,2x 是一元二次方程2230x x −−=的两个根,则12x x +的值是( ) A .2 B .2− C .3 D .3−【答案】A【分析】根据一元二次方程根与系数的关系可得12x x +的值.【详解】解:一元二次方程2230x x −−=的二次项系数是1a =,一次项系数2b =−,∴由根与系数的关系,得122x x +=.故选:A .【点睛】本题考查了一元二次方程根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,12b x x a +=−,12cx x a =,牢记公式是解题的关键.12x x 是【答案】D【分析】利用两根之积等于ca 即可解决问题.【详解】解:一元二次方程22410x x −+=的两个根为1x、2x ,1212x x ∴=,故选:D .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于ba −,两根之积等于c a ”是解题的关键.题型2:利用根与系数的关系式求代数式的值【答案】4/0.75【分析】根据根与系数的关系求出12x x +和12x x ⋅的值,然后代入221212x x x x +计算即可.【详解】解:∵22310x x +−=,∴1232x x +=−,1212x x ⋅=−,∴()2212121212313224x x x x x x x x ⎛⎫==−⨯−=⎪⎝++⎭. 故答案为:34.【点睛】本题考查了一元二次方程根与系数的关系,若1x ,2x 为方程20(0)ax bx c a ++=≠的两个根,则1x ,2x 与系数的关系式:12b x x a +=−,12cx x a ⋅=. 例4.(2023春·江苏南京·九年级专题练习)若m ,n 分别是一元二次方程2410x x −+=的两个根,则23m m n −+的值为( ) A .3 B .4 C .5 D .6【答案】A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m −+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x −+=的两个根,∴2410m m −+=,m +n =4, ∴241m m −=−,∴2234143m m n m m m n −+=−++=−+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=−,12cx x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 例5.已知12x x ,是方程2133022x x −−=的两根,求下列各式的值:(1)1211x x +;(2)2212x x −;(3)2212x x +;(4)12||x x−.【答案】(1)2−;(2)−3)42;(4). 【解析】解:由韦达定理,得:126x x +=,123x x =−.原式=12122x x x x +=−;原式()()()1212126x x xx x x=+−=−=±6=±=±•=±原式=()21212242x x x x +−=;原式12x x −==.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用.例6.已知2212510520.1m m n n mn n m−−=+−=≠+,,求的值. 【答案】5−.【解析】由22510m m −−=,可得:25120m m −−=,整理得:21520m m +−=,又由于2520n n +−=,所以可知1m 、n 是方程2520x x +−=的两根, 由韦达定理,可得:15n m +=−.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,而且还考查了一元二次方程的根的灵活应用,要注意观察.例7.已知αβ,是方程:2240x x −−=的两根,求代数式3+8+6αβ的值. 【答案】30.【解析】由题及韦达定理可得:2240αα−−=,2αβ+=,得:224αα=+.3+8+6αβ=286ααβ⋅++=()2486ααβ+++=22486ααβ+++=()224486ααβ++++=()81430αβ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,运用了降次等的思想方法.题型3:已知含字母的一元二次方程的一个根,求另一个根及字母的值例8.(2023春·江苏徐州·九年级校考阶段练习)已知关于x 的方程220x x a +−=的一个根为2,则另一个根是______. 【答案】4−【分析】根据一元二次方程根与系数的关系即可求解.【详解】解:设方程220x x a +−=的另一个根为2x ,则222x +=− 解得:24x =−, 故答案为:4−.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200axbx c a ++=≠的两根,12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解题的关键.例9.若方程:2980kx x −+=的一个根为1x =,则k =________;另一个根为________. 【答案】1;8x =.【解析】将1x =代入方程,可得:1k =,再由韦达定理可得:128x x =,得另一根为8x =.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的应用.题型4:有关一元二次方程的根与系数关系的创新题例10.已知一个直角三角形的两个直角边的长恰好是方程:22870x x −+=两个根,求这个直角三角形的周长. 【答案】7.【解析】解:设直角三角形的三边长为a ,b ,c ,且c 是斜边长,由题知,4a b +=,72ab =,由勾股定理,可得:222c a b =+,所以3c =,所以直角三角形的周长7a b c ++=.【总结】本题考查韦达定理12b x x a +=−,12cx x a =的灵活应用,并且考查了直角三角形的性质,即勾股定理的应用.例11.(2023春·江苏苏州·九年级苏州中学校考开学考试)已知关于x 的一元二次方程22430x mx m −+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x −=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==−=,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=,∵122x x −=,∴()()2222121212416124x x x x x x m m −=+−=−=,解得:1m =±, ∵0m >, ∴1m =.根与系数的关系是解题的关键.【答案】(1)③;(2)4;(3)10【分析】(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)设关于x 的方程260x x c −+=的两个根为12,x x ,然后根据“三倍根方程”可令213x x =,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)先把一元二次方程进行因式分解变形,然后根据“三倍根方程”的关系可进行求解.【详解】(1)解:由2320x x −+=可得:121,2x x ==,不满足“三倍根方程”的定义;由230x x −=可得:120,3x x ==,不满足“三倍根方程”的定义;由28120x x −+=可得:122,6x x ==,满足“三倍根方程”的定义;故答案为③;(2)解:设关于x 的方程260x x c −+=的两个根为12,x x ,由一元二次方程根与系数的关系可知:126x x +=,12x x c =,令213x x =,则有146x =, ∴132x =,292x =, ∴274c =; (3)解:由()20x m n x mn −++=可得:()()0x m x n −−=,∴12,x m x n==,令3m n =,则有:2222233910mn n m n n n ==++.【点睛】本题主要考查一元二次方程根与系数的关系及解法,熟练掌握一元二次方程根与系数的关系是解题的关键.一、单选题1.(2022秋·江苏无锡·九年级统考期中)关于下列一元二次方程,说法正确的是( ) A .2560x x ++=的两根之和等于5 B .231x x −=的两根之积等于1C .20x x m ++=两根不可能互为倒数D .210x mx ++=中m =0时,两根互为相反数【答案】C【分析】根据一元二次方程根的判别式以及一元二次方程根与系数的关系进行判断即可求解.【详解】A. 2560x x ++=的两根之和等于5−,故该选项不正确,不符合题意;B. 231x x −=,即方程2310x x −−=的两根之积等于1−,故该选项不正确,不符合题意;C. 20x x m ++=,∵1,1,a b c m ===,24140b ac m ∆=−=−≥,解得14m ≤,∵1m ≠,两根之积为m ,∴方程两根之积不可能互为倒数,故该选项正确,符合题意;D. 210x mx ++=中0m =时,即21x =−,此方程无实根,故该选项不正确,不符合题意.故选C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=≠的两根,12bx x a +=−,12c x x a =.一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【答案】A【分析】利用根与系数的关系12bx x a +=−即可求解.【详解】解:利用根与系数的关系,可得:1222b a a x x a +=−−=−=,x 的方程220ax ax c −+=的一个解为11x =−,()212213x x ∴=−=−−=,故选:A .【点睛】本题主要考查根与系数的关系,解题的关键是熟练掌握根与系数的关系.【答案】D【分析】根据两根之和为10−,以及两根之间的数量关系,求出两个根,再根据两根之积等于26a +,求出a 的值即可.【详解】解:设方程的两个根为,m n ,4=m n ,由根与系数的关系可得:10m n +=−,即:410n n +=−, 解得:2n =−, ∴()428m =⨯−=−,∵()268216mn a =+=−⨯−=,∴5a=; 故选D .【点睛】本题考查一元二次方程根与系数的关系.熟练掌握两根之和等于ba −,两根之积等于c a ,是解题的关键.【答案】A【分析】根据:若一元二次方程()200ax bx c a ++=≠ 两根分别为12x x ,,则有:1212b x x a c x x a ⎧+=−⎪⎪⎨⎪⋅=⎪⎩, 代入数据计算即可.【详解】解:设方程的另一根为1x ,由根据根与系数的关系可得:11115x mx +=⎧⎨⨯=⎩,解得:156x m =⎧⎨=⎩故选:B.【点睛】本题考查了一元二次方程的根与系数的关系,关键要理解一元二次方程的两根之和只与二次项系数和一次项系数有关,两根之积只与二次项系数和常数项有关,从而快速计算结果.5.(2022·江苏南京·南师附中树人学校校考二模)方程()()1210x x +−+=的根的情况,下列结论中正确的是( ) A .两个正根 B .两个负根 C .一个正根,一个负根 D .无实数根【答案】C 【分析】先把方程()()1210x x -++=化为210x x +−=,再根据2Δ41450b ac =-=+=>可得方程有两个不相等的实数根. 【详解】解:∵()()1210x x -++=(p 为常数),∴210x x +−=,∴2Δ41450b ac =-=+=>,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为1−, ∴一个正根,一个负根. 故选:C .【点睛】本题考查一元二次方程根的判别式以及根与系数关系,注意利用偶次方的非负性判断代数式的符号是解决问题的关键. 二、填空题6.(2023·江苏盐城·统考一模)已知关于x 的一元二次方程280x kx +−=的一个根是2-,则它的另一个根为______. 【答案】4【分析】利用根与系数之间的关系来求解. 【详解】解:设方程的另一个根为m ,关于x 的一元二次方程280x kx +−=的一个根是2-,由根与系数之间的关系可得 28m −=− 4m ∴=,故答案为:4.【点睛】本题主要考查了一元二次方程根与系数之间的关系.解题的关键是一元二次方程20ax bx c ++=的两根如果为1x 、2x ,则有12b x x a +=−,12cx x a ⋅=. 7.(2022秋·江苏盐城·九年级统考期中)已知一元二次方程2202210x x −−=的两个根分别是1x 、2x ,则代数式221212x x x x +的值为______. 【答案】2022−【分析】结合题意利用一元二次方程根与系数的关系求得122022x x +=,121x x =−,代入即可求解.【详解】解:一元二次方程2202210x x −−=的两个根分别是1x、2x ,122022x x ∴+=,121x x =−,()2212121212x x x x x x x x ∴+=+12022=−⨯2022=−,故答案为:2022−.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值;熟练掌握根与系数的关系是解题的关键.【答案】2【分析】由根与系数的关系可得12123x x x x m+==,,结合12121x x x x +−=可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:∵12x x ,是方程230x x m −+=的两个根,∴12123x x x x m+==,, ∵121231x x x x m +−=−=,∴2m =. 故答案为2.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程()200ax bx c a ++=≠的两根时,1212cb a a x x x x +=−=,.9.(2023秋·江苏扬州·九年级校考期末)已知1x、2x 是关于x 的方程2250x x −−=的两个根,则12x x +值等于________. 【答案】2【分析】根据一元二次方程根与系数的关系得出两根之和即可求解. 【详解】解:1x 、2x 是关于x 的方程2250x x −−=的两个根,12221x x −∴+=−=,故答案为:2.【点睛】本题主要考查了一元二次方程的根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系为:12b x x a +=−,12cx x a ⋅=.【答案】6【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案. 【详解】解:由题意可得, ∵1x ,2x 是一元二次方程2560x x +−=的两个根,∴12551x x +=−=−,12661x x −==−,∴121212115566x x x x x x +−+===− 故答案为:56.【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握12b x x a +=−,12cx x a =.11.(2023秋·江苏南京·九年级统考期末)关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,则p 的取值范围是______. 【答案】21p −<<−【分析】根据一元二次方程根的判别式和根与系数得关系解答即可.【详解】由题意得: 221x x p −−=,∴22(1)0x x p −−+=,∴[]224(2)41(1)48b ac p p ∆=−=−−⨯⨯−+=+,∴122b x x a +=−=,12(1)cx x p a ⋅==−+,∵关于x 的方程221x x p −−=(p 为常数)有两个不相等的正根,∴480(1)0p p +>⎧⎨−+>⎩,解得:21p −<<− ∴p 的取值范围是:21p −<<− 故答案为:21p −<<−【点睛】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握相关知识点是解题的关键.【答案】1−/1−【分析】依据根与系数的关系即12bx x a +=−,12c x x a =代入即可求出m n 、的值,最后代入计算即可.1是方程20x mx n ++=的两个根,))11m∴+=−,)()1·1n=,即m =−1n =,1m n ∴+=−, 故答案为:1−.【点睛】本题考查了根与系数的关系,二次根式的混合运算;解题的关键是熟练掌握一元二次方程根与系数的关系.13.(2023·江苏南京·统考二模)若α、β为2240x x +−=的两根,则22ααβα++的值为______. 【答案】0【分析】由已知中α,β是方程2240x x +−=的两个实数根,结合根与系数的关系转化求解即可.【详解】解:α,β是方程2240x x +−=的两个实数根,可得2αβ+=−,∴22()2220ααβαααβααα++=++=−+=.∴22ααβα++的值为0.故答案为:0.【点睛】本题考查的知识点是一元二次方程根与关系,若α,β是一元二次方程20(0)ax bx c a ++=≠的两根时,b a αβ+=−,ca αβ=.14.(2023秋·江苏南京·九年级统考期末)设12,x x 是关于x 的方程2320x x −+=的两个根,则12x x +=_____________.【答案】3【分析】直接利用根与系数的关系12bx x a +=−求解.【详解】解∶根据根与系数的关系12bx x a +=−得123x x +=.故答案为:3.【点睛】本题考車了根与系数的关系∶若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.15.(2023秋·江苏南京·九年级南京外国语学校仙林分校校考期末)设1x 、2x 是方程230x mx m +−+=的两个根,则1212x x x x +−=___________. 【答案】3−【分析】根据根与系数关系,求出两根之和、两根之积即可. 【详解】解:1x 、2x 是方程230x mx m +−+=的两个根,所以,12x x m+=−,123x x m =−+,1212(3)3x x x x m m +−=−−−+=−,故答案为:3−.【点睛】本题考查了一元二次方程根与系数关系,解题根据是熟记根与系数关系,求出两根之和、两根之积.16.(2022秋·江苏淮安·九年级校考期末)若一元二次方程2220x x −−=有两个实数根1x ,2x ,则1212x x x x +−的值是________. 【答案】4【分析】根据一元二次方程根与系数的关系,即可求得.【详解】解:一元二次方程2220x x −−=有两个实数根1x ,2x,122x x ∴+=,122x x =−,()1212224x x x x ∴+−=−−=,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,代数式求值问题,熟练掌握和运用一元二次方程根与系数的关系是解决本题的关键. 三、解答题17.(2023·江苏扬州·统考二模)已知关于x 的一元二次方程()2120x m x m −−+−=(1)求证:该方程总有两个实数根.(2)若该方程两个实数根的差为3,求m 的值. 【答案】(1)证明见解析 (2)0或6【分析】(1)由()2120x m x m −−+−=,可知1a =,()1b m =−−,2c m =−,根据()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,证明即可;(2)由()2120x m x m −−+−=,可得121bx x m a +=−=−,122c x x m a ⋅==−,由该方程两个实数根的差为3,可得()2129x x −=,即()()221212124x x x x x x −=+−⋅,()()21429m m −−−=,计算求解即可.【详解】(1)证明:()2120x m x m −−+−=,1a =,()1b m =−−,2c m =−,∴()()()222414230b ac m m m =−=−−−−=−≥⎡⎤⎣⎦,∴该方程总有两个实数根;(2)解:∵()2120x m x m −−+−=,∴121b x x m a +=−=−,122cx x m a ⋅==−,∵该方程两个实数根的差为3,∴()2129x x −=,∵()()221212124x xx x x x −=+−⋅,∴()()21429m m −−−=,解得0m =或6m =, ∴m 的值为0或6.【点睛】本题考查了一元二次方程根的判别,一元二次方程根与系数的关系,完全平方公式的变形.解题的关键在于对知识的熟练掌握与灵活运用.18.(2020秋·江苏南京·九年级统考期中)已知关于x 的方程()220x mx m −+=−.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 【答案】(1)见解析(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到2(2)4m ∆=−+,然后根据判别式的意义得到结论; (2)设方程的另一个为t ,利用根与系数的关系得到2,22t m t m +==−,然后解方程组即可. 【详解】(1)证明:∵1,,2a b m c m ==−=−,∴22224()41(2)48(2)4b ac m m m m m −=−−⨯⨯−=−+=−+, ∵2(2)0m −≥, ∴2(2)40m −+>,∴0∆>,∴不论m 为何值,该方程都有两个不相等的实数根; (2)解:设方程的另一个为t ,根据根与系数的关系得:2,22t m t m +==−, ∴222t t +−=,解得0=t , ∴2m =,∴m 的值为2,另一个根为0.【点睛】本题考查了判别式的意义以及根与系数的关系:若x1,x2是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−=.一、单选题1.(2022·江苏·九年级专题练习)设一元二次方程2210x x −−=的两根为1x ,2x ,则1122x x x x −+的值为( ) A .1 B .﹣1 C .0 D .3【答案】D【分析】先利用一元二次方程根与系数的关系得122x x +=,121x x =−,再变形得到11221212x x x x x x x x −+=+−,然后利用整体代入的方法计算.【详解】解:根据根与系数的关系得122x x +=,121x x =−,∴1122x x x x −+1212x x x x =+−()21=−−3=,故选:D .【点睛】本题考查利用一元二次方程根与系数的关系求代数式的值,若1x ,2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a +=−,12cx x a =,掌握一元二次方程根与系数的关系是解决问题的关键.2.(2022秋·江苏常州·九年级校考阶段练习)若m 、n 是方程210x x +−=的两个实数根,则22m m n ++的值为( ) A .4 B .2 C .0 D .-1【答案】C【分析】根据根与系数的关系及方程的解的定义即可求解.【详解】∵m 、n 是方程210x x +−=的两个实数根,∴210m m +−=,1bm n a +=−=−,∴21m m +=,∴()()222110m m n m m m n ++=+++=−=,故选:C .【点睛】此题主要考查根与系数的关系,解题的关键是熟知根与系数的关系、一元二次方程根的定义. 3.(2022秋·江苏南京·九年级校考阶段练习)若关于x 的方程260x mx =--的一个根是2−,则另一个根是( ) A .2 B .﹣2 C .﹣3 D .3【答案】D【分析】根据根与系数关系得出两根之积为-6,进而可以求出另一个根. 【详解】解:关于x 的方程260x mx =--的一个根是2−, 根据根与系数关系可知,两根之积为-6,则另一个根为632=−-,故选:D .【点睛】本题考查了一元二次方程根与系数关系,解题关键是利用根与系数关系求出两根之积为-6. 4.(2022秋·九年级课时练习)若α和β是关于x 的方程210x bx +−=的两根,且2211αβαβ−−=−,则b 的值是( ) A .-3 B .3C .-5D .5【答案】C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ−=−,代入2211αβαβ−−=−得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +−=的两根,∴+=,1b αβαβ−=−,∴222()1211b αβαβαβαβ−−=−+=−+=− ∴=5b − 故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为ca 是解题的关键.5.(2022秋·江苏苏州·九年级校考阶段练习)设x 1,x 2是方程x 2+5x ﹣6=0的两个根,则x 12+x 22的值是( ) A .5 B .13C .35D .37【答案】D【分析】根据根与系数的关系可以得到x1+x2=-5,x1x2=-6,然后利用将代数式的值代入,计算x12+x22=(x1+x2)2-2x1x2的值.【详解】解:根据题意得x1+x2=-5,x1x2=-6, x12+x22=(x1+x2)2-2x1x2=25+12=37. 故选:D .【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx x a +=−,12cx x a •=.【答案】C【分析】设直角三角形的斜边为c ,两直角边分别为a 与b .根据一元二次方程根与系数关系可得8a b +=,14ab =.再根据勾股定理即可求.【详解】解:设直角三角形的斜边为c ,两直角边分别为a 与b ,直角三角形两直角边是方程28140x x −+=的两根,8a b ∴+=,14ab =,根据勾股定理可得:2222()2642836c a b a b ab =+=+−=−=,6c ∴=.故选:C .【点睛】本题考查勾股定理,一元二次方程根与系数关系,熟练掌握一元二次方程根与系数关系是解题的关键.7.(2020秋·江苏连云港·九年级校考阶段练习)两根均为负数的一元二次方程是( ) A .2712+5=0x x - B .26135=0x x -- C .24215=0x x ++ D .2158=0x x -+【答案】C【分析】因为两根均为负数,所以两实数根的和小于零,两根之积大于零.解题时检验两根之和ba −是否小于零,及两根之积ca 是否大于零.【详解】解:A.125>07x x =,1212>07x x +=,两根均为正数;B.125<06x x =-,1213>06x x +=,两根为一正一负;C.125>04x x =,1221<04x x +=-,两根均为负数;D.128<0x x =-,1215<0x x +=-,两根为一正一负.故答案为:C .【点睛】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()2=00ax bx c a ++¹的两根时,12=bx x a +−,12=c x x a .二、填空题8.(2022秋·江苏连云港·九年级校考阶段练习)若a ,b 是方程2220x x +−=的两个实数根,则代数式23a a b ++的值为______. 【答案】0【分析】由一元二次方程的解的定义可得出2220a a +−=,即得出222a a +=.根据一元二次方程根与系数的关系可得出2a b +=−,从而即可求出22320a a b a a a b ++=+++=.【详解】∵a ,b 是方程2220x x +−=的两个实数根,∴2220a a +−=,221a b +=−=−,∴222a a +=,∴22322(2)0a b a a a a b ++=+++=+−=. 故答案为:0.【点睛】本题考查一元二次方程的解的定义,一元二次方程根与系数的关系.掌握方程的解就是使方程成立的未知数的值和熟记一元二次方程根与系数的关系:12b x x a +=−、12cx x a ⋅=是解题关键. 9.(2023春·江苏泰州·九年级泰州市姜堰区第四中学校考阶段练习)设方程2202310x x −−=的两个根分别为12x x 、,则1212x x x x +−的值是___________. 【答案】2024【分析】先根据根与系数的关系可求121220231x x x x +==−,,再把12x x +,12x x 的值整体代入所求代数式计算即可.【详解】解:∵方程2202310x x −−=的两个根分别为12x x、,∴121220231x x x x +==−,,∴1212202312024x x x x =−++=.故答案是:2024.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与系数的关系:若方程的两根为12x x、,则1212b cx x x x a a +=−⋅=,.10.(2023·江苏南京·九年级专题练习)已知1x 、2x 是一元二次方程250x x −−=的两个实数根,则221122x x x x −+的值是________.【答案】16【分析】先根据根与系数的关系得到121215x x x x +==−,,然后利用整体代入的方法计算.【详解】解:根据题意得121215x x x x +==−,,所以()222211221212313516x x x x x x x x −+=+−=−⨯−=().故答案为:16.【点睛】本题考查了根与系数的关系:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,b cx x x x a a +=−⋅=.11.(2022春·江苏南通·九年级校考阶段练习)已知:m 、n 是方程2310x x +−=的两根,则22(33)(33)m m n n ++++=_____.【答案】16【分析】根据m 、n 是方程2310x x +−=的两根,即可得到3m n +=−,1mn =−,2310m m +−=,2310n n +−=,从而得到231m m +=,231n n +=,代入计算即可得到答案.【详解】解:∵m 、n 是方程2310x x +−=的两根,∴3m n +=−,1mn =−,2310m m +−=,2310n n +−=,∴231m m +=,231n n +=,∴()()22(33)(33)131316m m n n ++++=++=,故答案为:16.【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定义,根与系数的关系,并根据题意将所求代数式变形是解题关键. 三、解答题12.(2022秋·江苏·九年级专题练习)已知关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x . (1)求m 的取值范围;(2)当11x =−时,求另一个根2x 的值. 【答案】(1)3m ≤ (2)23x =【分析】(1)根据题意得()()22420m ∆=−−−≥,解不等式即可求解; (2)根据根与系数的关系得122x x +=,根据11x =−,即可求解.【详解】(1)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴()()22420m ∆=−−−≥,解得3m ≤,所以m 的取值范围为3m ≤;(2)解:∵关于x 的一元二次方程2220x x m −+−=有两个实数根1x ,2x∴122x x +=, ∵11x =−, ∴23x =.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.13.(2022秋·江苏盐城·九年级滨海县第一初级中学校联考阶段练习)已知关于x 的一元二次方程22430x mx m −+=.(1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的平方和为10,求m 的值. 【答案】(1)见解析 (2)1m =【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m −+=的两实数根为1x,2x ,然后根据一元二次方程根与系数的关系可得124x x m+=,2123x x m ⋅=,再根据两个实数根的平方和为10,可得()222121212210x x x x x x +=+−=,由此可解.【详解】(1)证明:由题意得:1a =,4b m =−,23c m =,∴22224164134b ac m m m ∆=−=−⨯⨯=,∵20m ≥,∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m −+=的两实数根为1x ,2x ,则有124x x m +=,2123x x m ⋅=,∵221210x x +=,∴()222222121212216231010x x x x x x m m m +=+−=−⨯==,解得:1m =±, ∵0m >, ∴1m =.【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.14.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程()21360x m x m −++−=.(1)求证:方程总有两个实数根; (2)若12127x x x x ++=,求m 的值. 【答案】(1)见解析 (2)3m =【分析】(1 (2)根据一元二次方程根与系数的关系可得1212136x x m x x m +=+=−,,整体代入12127x x x x ++=中,解出m 的值即可.【详解】(1)∵该一元二次方程为()21360x m x m −++−=,∴()1136a b m c m ==−+=−,,,∴()()2222414361025(5)0b ac m m m m m ⎡⎤−=−+−⨯−=−+=−≥⎣⎦,∴该方程总有两个实数根; (2)∵1212136b cx x m x x m a a +=−=+==−,,又∵12127x x x x ++=,∴1367m m ++−=,解得:3m =.【点睛】本题考查根据判别式判断一元二次方程根的情况,一元二次方程的根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根.熟记一元二次方程根与系数的关系:12b x x a +=−和12cx x a ⋅=是解题关键. 15.(2022秋·江苏·九年级专题练习)关于x 的方程:2(x ﹣k )=x ﹣4①和关于x 的一元二次方程:(k ﹣1)x 2+2mx+(3﹣k )+n =0②(k 、m 、n 均为实数),方程①的解为非正数. (1)求k 的取值范围;(2)如果方程②的解为负整数,k ﹣m =2,2k ﹣n =6且k 为整数,求整数m 的值;(3)当方程②有两个实数根x 1、x 2,满足(x 1+x 2)(x 1﹣x 2)+2m (x 1﹣x 2+m )=n+5,且k 为正整数,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≤2且k≠1;(2)m =﹣2或﹣3;(3)成立,见解析【分析】(1)先解出方程①的解,根据一元二次方程的定义和方程①的根为非正数,得出k 的取值范围,即可;(2)先把k =m+2,n =2m ﹣2代入方程②化简,通过因式分解法,用含m 的代数式表示出一元二次方程的两个实数根,根据方程②的解为负整数,m 为整数,即可求出m 的值;(3)根据(1)中k 的取值范围和k 为正整数得出k =2,化简一元二次方程,并将两根和与积代入计算,得出关于m 、n 的等式,结合根的判别式,即可得到结论. 【详解】(1)∵关于x 的方程:2(x ﹣k )=x ﹣4, 解得:x =2k ﹣4,∵关于x 的方程2(x ﹣k )=x ﹣4的解为非正数, ∴2k ﹣4≤0,解得:k≤2, ∵由一元二次方程②,可知k≠1, ∴k≤2且k≠1;(2)∵一元二次方程(k ﹣1)x2+2mx+(3﹣k )+n =0中k ﹣m =2,2k ﹣n =6, ∴k =m+2,n =2k ﹣6=2m+4﹣6=2m ﹣2,∴把k =m+2,n =2m ﹣2代入原方程得:(m+1)x2+2mx+m ﹣1=0, 因式分解得,[(m+1)x+(m ﹣1)](x+1)=0,∴x1=﹣11mm−+=211m−+,x2=﹣1,∵方程②的解为负整数,m为整数,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3;(3)|m|≤2成立,理由如下:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,∵(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=21mk−−=﹣2m,x1x2=31k nk−+−=1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5 ①,△=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣4(n+1)≥0 ②,把①代入②得:4m2﹣8m2+16≥0,即m2≤4,∴|m|≤2.【点睛】本题主要考查一元一次方程与一元二次方程,涉及解一元一次方程,一元二次方程以及一元二次方程的根与系数的关系,根的判别式,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系,根的判别式,是解题的关键.16.(2022秋·江苏·九年级专题练习)关于x的方程2220x ax a−++=有两个不相等的实数根,求分别满足下列条件的取值范围:(1)两根都小于0;(2)两根都大于1;(3)方程一根大于1,一根小于1.【答案】(1)-2<a<-1;(2)2<a<3;(3)a>3【分析】由关于x的方程x2-2ax+a+2=0有两个不相等的实根,得出△=(-2a)2-4(a+2)>0,解得a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,利用根与系数的关系得到α+β=2a,αβ=a+2,再分别根据:(1)由两根都小于0,得出α+β=2a<0,αβ=a+2>0,此求出a的取值范围;(2)由两根都大于1,得出(α-1)(β-1)>0,且对称轴212a−−>,依此求出a的取值范围;(3)由一根大于1,一根小于1,得出(α-1)(β-1)<0,依此求出a的取值范围;【详解】解:∵关于x的方程x2-2ax+a+2=0有两个不相等的实根,∴△=(-2a)2-4(a+2)>0,∴a<-1或a>2.设方程x2-2ax+a+2=0的两根为α,β,α+β=2a,αβ=a+2.(1)∵两根都小于0,∴α+β=2a<0,αβ=a+2>0,解得:-2<a<0,又22a−−<,a<0;∵a<-1或a>2,∴-2<a<-1;(2)∵两根都大于1,∴(α-1)(β-1)>0,∴αβ-(α+β)+1>0,∴a+2-2a>-1,∴a<3,又212a−−>,a>1;又a<-1或a>2,∴2<a<3;(3))∵一根大于1,一根小于1,∴(α-1)(β-1)<0,∴αβ-(α+β)+1<0,∴a+2-2a<-1,∴a>3.【点睛】本题考查了根的判别式,根与系数的关系,属于基础题,关键是要熟记x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=ba−,x1x2=ca.17.(2022秋·江苏·九年级专题练习)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:【答案】(1)43(2)4(3)存在,当k=﹣2时,1212212x xy yx x−−=【分析】(1)根据a,b是x2+15x+5=0的解,求出a+b和ab的值,即可求出a bb a+的值.(2)根据a+b+c=0,abc=16,得出a+b=-c,ab=16c,a、b是方程x2+cx+16c=0的解,再根据c2-4•16c≥0,即可求出c的最小值.(3)运用根与系数的关系求出x1+x2=1,x1•x2=k+1,再解y1y2-1221x xx x−=2,即可求出k的值.【详解】(1)∵a、b是方程x2+15x+5=0的二根,∴a+b=﹣15,ab=5,∴a bb a+=()22a b abab+−215255−−⨯=43,故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c,ab=16 c,∴a、b是方程x2+cx+16c=0的解,∴c2﹣4•16c≥0,c2﹣34c≥0,∵c是正数,∴c3﹣43≥0,c3≥43,c≥4,∴正数c的最小值是4.(3)存在,当k=﹣2时,1212212x xy yx x−−=.由x2﹣y+k=0变形得:y=x2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x2+k ,并整理得:x2﹣x+k+1=0, 由题意思可知,x1 , x2是方程x2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧−−+>⎪+⎪⎪=+⎪⎪=−−⎨⎪+−⎪−−=−−−=⎪⎪⎪⎩即:23420k k k ⎧<−⎪⎨⎪+=⎩解得:k=﹣2.【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【答案】(1)x1x2=x3x4= (2)454.【分析】(1)利用换元法解方程,设y =x2,则原方程可化为y2﹣5y+6=0,解关于y 的方程得到y1=2,y2=3,则x2=2或x2=3,然后分别解两个元二次方程即可;(2)根据已知条件,把a2、b2看作方程2x2﹣7x+1=0的两不相等的实数根,然后根据根与系数的关系求解.【详解】(1)解:42560x x −+=,设2y x =,则原方程可化为2560y y −+=,解得12y =,23y =,当=2y 时,22x =,解得1x 2=x当=3y 时,23x =,解得3x 4=x −所以原方程的解为1x 2=x 3x 4x =故答案为:1x ,2=x 3x =4x =(2)解:∴实数a ,b 满足:422710a a −+=,422710b b −+=且a b ≠,2a ∴、2b 可看作方程22710x x −+=的两不相等的实数根,2272a b ∴+=,2212a b =g ;∴2424222714522224a b a b a b +=+-=-´=g ()(); 故答案为:454.【点睛】本题主要考查了用“换元法”把高次方程转化为一元二次方程,韦达定理,完全平方公式,其中转化思想是解决问题的关键.。

专题2.4一元二次方程的根与系数的关系【十大题型】-2024-2025学年九年级数学上册[含答案]

专题2.4一元二次方程的根与系数的关系【十大题型】-2024-2025学年九年级数学上册[含答案]

专题2.4 一元二次方程的根与系数的关系【十大题型】【北师大版】【题型1 利用根与系数的关系直接求代数式的值】 【题型2 利用根与系数的关系求方程的根】【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】 【题型4 利用根与系数的关系降次求代数式的值】 【题型5 由一元二次方程的两根求值】 【题型6 构造一元二次方程求代数式的值】【题型7 由一元二次方程的根判断另一个一元二次方程的根】 【题型8 根与系数的关系与三角形、四边形的综合运用】 【题型9 由一元二次方程根的取值范围求字母的取值范围】【题型10 一元二次方程中的新定义问题】知识点1:一元二次方程的根与系数的关系若一元二次方程20ax bx c ++=(a 、b 、c 为常数,0a ¹)的两根为1x ,2x ,则12bx x a +=-,12c x x a×=.注意它的使用条件为,0a ¹,Δ0³.【题型1 利用根与系数的关系直接求代数式的值】【例1】(23-24九年级·黑龙江绥化·开学考试)1.已知一元二次方程256x x x +=+的两根分别为m 、n ,则11m n+= .【变式1-1】(23-24九年级·广西来宾·期中)2.若a ,b 是方程2250x x --=的两个实数根,则()()22a b --的值为 .【变式1-2】(23-24九年级·四川成都·阶段练习)3.设方程22310x x ++=的根为1x 、2x ,则2212x x += .【变式1-3】(23-24九年级·浙江宁波·期末)4.已知 12x x , 是方程 22370x x +-= 的两个根,则 331212x x x x + 的值为( )A .214B .2598-C .638-D .1338-【题型2 利用根与系数的关系求方程的根】【例2】(23-24九年级·全国·单元测试)5.若关于x 的方程()()()31212x x m m x --=-的两根之和与两根之积相等,则方程的根为.【变式2-1】(23-24·山东济南·二模)6.若关于x 的一元二次方程260x mx +-=有一个根为2x =,则该方程的另一个根为x =.【变式2-2】(23-24九年级·河北保定·阶段练习)7.若关于x 的一元二次方程2(0)ax b ab =>的两个根分别是m 与26m -,则m 的值为 ,方程的根为.【变式2-3】(23-24九年级·浙江台州·阶段练习)8.若关于x 的一元二次方程2(0)ax c a =¹的一根为2,则另一根为.【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】【例3】(23-24九年级·山东枣庄·期中)9.已知m 、n 是关于x 的方程2220210x x --=的根,则代数式2422023m m n --+的值为( )A .2022B .2023C .4039D .4040【变式3-1】(23-24·江苏南京·模拟预测)10.设1x 、2x 是方程2320200x x --=的两个根,则21122x x x -+= .【变式3-2】(23-24九年级·辽宁大连·期中)11.设a ,b 是2180x x ++=的两个实数根,则232a a b ++的值是 .【变式3-3】(23-24九年级·河南新乡·期末)12.已知a ,b 是方程2570x x -+=的两个根,则243a a b -+-=.【题型4 利用根与系数的关系降次求代数式的值】【例4】(23-24九年级·湖北武汉·阶段练习)13.已知a 、b 是一元二次方程2310x x -+=的根,则代数式221111a b +++的值是( )A .3B .1C .3-D .1-【变式4-1】(23-24九年级·云南·期末)14.已知,m n 是方程230x x +-=的两个实数根,则332024m m n -++的值是 .【变式4-2】(23-24九年级·山东淄博·期中)15.已知12,x x 是方程220240x x --=的两个实数根,则代数式321122024x x x -+的值为( )A .4049B .4048C .2024D .1【变式4-3】(23-24九年级·江苏苏州·阶段练习)16.已知:m 、n 是方程2310x x +-=的两根,则355m m n -+= .【题型5 由一元二次方程的两根求值】【例5】(23-24九年级·河北保定·阶段练习)17.若关于x 的一元二次方程2(0)ax b ab =>的两个根分别是m 与26m -,则m 的值为 ,方程的根为.【变式5-1】(23-24九年级·四川成都·期末)18.已知关于x 的方程220x bx c ++=的根为12x =-,23x =,则+b c 的值是( )A .-10B .-7C .-14D .-2【变式5-2】(23-24九年级·江苏连云港·阶段练习)19.在解一元二次方程x 2+px +q =0时,小明看错了系数p ,解得方程的根为1和﹣3;小红看错了系数q ,解得方程的根为4和﹣2,则p = .【变式5-3】(23-24九年级·四川广安·阶段练习)20.已知关于x 的一元二次方程x 2﹣2kx +12k 2﹣2=0.设x 1,x 2是方程的根,且x 12﹣2kx 1+2x 1x 2=5,则k 的值为 .【题型6 构造一元二次方程求代数式的值】【例6】(23-24九年级·江苏无锡·阶段练习)21.已知s 满足22310s s --=,t 满足22310t t --=,且s t ¹,则s t += .【变式6-1】(23-24·湖南常德·一模)22.若两个不同的实数m 、n 满足21m m =+,21n n -=,则22m n += .【变式6-2】(23-24九年级·全国·竞赛)23.已知实数a b 、分别满足21163a a =+和21312b b =-,那么b a a b+的值是 .【变式6-3】(23-24九年级·浙江宁波·期末)24.若4231a a -=,231b b -=,且21a b ¹,则2ba 的值是 .【题型7 由一元二次方程的根判断另一个一元二次方程的根】【例7】(23-24九年级·浙江台州·期末)25.若关于x 的一元二次方程220ax ax c ++= (0)a ¹的一个根为m ,则方程21210a x a x c -+-+=()()的两根分别是( ).A .1m +,1m --B .1m +,1m -+C .1m +,2m +D .1m - ,1m -+【变式7-1】(23-24九年级·安徽合肥·期中)26.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,则a b c ++的值是 .【变式7-2】(23-24九年级·浙江·自主招生)27.设a 、b 、c 、d 是4个两两不同的实数,若a 、b 是方程2890x cx d --=的解,c 、d 是方程2890x ax b --=的解,则++a b c d +的值为 .【变式7-3】(23-24九年级·安徽合肥·期末)28.关于x 的一元二次方程20x px q ++=有两个同号非零整数根,关于y 的一元二次方程20y qy p ++=也有两个同号非零整数根,则下列说法正确的是( )A .p 是正数,q 是负数B .22(2)(2)8p q -+-<C .q 是正数,p 是负数D .22(2)(2)8p q -->+【题型8 根与系数的关系与三角形、四边形的综合运用】【例8】(23-24九年级·山东·课后作业)29.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或【变式8-1】(23-24九年级·黑龙江齐齐哈尔·期末)30.已知三角形的两边长分别是方程211300x x -+=的两个根,则该三角形第三边m 的取值范围是 .【变式8-2】(23-24九年级·安徽六安·阶段练习)31.已知正方形ABCD 的两邻边AB ,AD 的长度恰为方程210x mx -+=的两个实数根,则正方形ABCD 的周长为( )A .2B .4C .6D .8【变式8-3】(23-24九年级·浙江杭州·期中)32.已知关于x 的一元二次方程230x x k -+=有两个实根1x 和2x .(1)求实数k 的取值范围;(2)是否存在矩形,1x 和2x k 的值;若不存在,请说明理由.【题型9 由一元二次方程根的取值范围求字母的取值范围】【例9】(23-24·浙江宁波·模拟预测)33.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .【变式9-1】(23-24九年级·浙江金华·阶段练习)34.若关于x 的方程()24550x x m --+=的解中,仅有一个正数解,则m 的取值范围是 .【变式9-2】(23-24九年级·山东青岛·阶段练习)35.若关于x 的方程20x px q ++=的两根同为负数,其中240p q -³,则( )A .0p >且0q >B .0p >且0q <C .0p <且0q >D .0p <且0q <【变式9-3】(23-24九年级·河南南阳·期中)36.若关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,则实数m 的取值范围是( )A .0m >B .12m >C .12m <D .0m <【题型10 一元二次方程中的新定义问题】【例10】(23-24九年级·黑龙江哈尔滨·期中)37.定义:若x ₁、x ₂是方程()²00ax bx c a ++=¹的两个实数根,若满足2121x x x x -=×,则称此类方程为“差积方程”.例如:()1102x x æö--=ç÷èø是差积方程.(1)判断方程26510x x -+=是否为“差积方程”?并验证;(2)若方程()2220x m x m -++=是“差积方程”,直接写出m 的值;(3)当方程(()²00ax bx c a ++=¹为“差积方程”时,求a 、b 、c 满足的数量关系.【变式10-1】(23-24九年级·上海青浦·期中)38.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如 20x x +=是“差1方程”. 已知关于 x 的方程 ()210x m x m ---=(m 是常数)是“差1方程”,则 m 的值为【变式10-2】(23-24九年级·四川·阶段练习)39.已知对于两个不相等的实数a 、b ,定义一种新的运算:@a b ,如6@15===m ,n 是一元二次方程22170x x -+=的两个不相等的实数根,则[()@m n mn +=.【变式10-3】(23-24九年级·江苏盐城·阶段练习)40.定义:已知1x ,2x 是关于x 的一元二次方程()200ax bx c a ++=¹的两个实数根,若120x x <<,且1234x x <<,则称这个方程为“限根方程”.如:一元二次方程213300x x ++=的两根为110x =-,23x =-,因为1030-<-<,10343-<<-,所以一元二次方程213300x x ++=为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程29140x x ++=是否为“限根方程”,并说明理由;(2)若关于x 的一元二次方程()22980x k x k ++++=是“限根方程”,且方程的两根1x 、2x 满足12121111121x x x x ++=-,求k 的值.1.23-.【分析】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程()200,ax bx c a ++=¹,若1x ,2x 是该方程的两个实数根,则1212.,b c x x x x a a +=-=直接根据一元二次方程根与系数的关系得到4m n +=,6mn =-,再根据11m nm n mn++=进行求解即可.【详解】解:∵一元二次方程256x x x +=+可化为2460x x --=,这个方程的两根分别为m ,n ,∴4m n +=,6mn =-,114263m n m n mn +\+===--,故答案为:23-.2.5-【分析】本题考查了一元二次方程根于系数的关系,根据一元二次方程根于系数的关系可得2a b +=,7ab =-,代入即可求解,熟练掌握一元二次方程根于系数的关系是解题的关键.【详解】解:∵a ,b 是方程2250x x --=的两个实数根,2a b \+=,7ab =-,()()()228457245a b ab a b \--=-++-´+=-=-.故答案为:5-.3.54【分析】利用根与系数的关系求出两根之和与两根之积,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:Q 方程22310x x ++=的根为1x 、2x ,1232x x \+=-,1212x x =,则22221212123195()2()212244x x x x x x +=+-=--´=-=.故答案为:54.【点睛】本题考查了根与系数的关系,解一元二次方程-因式分解法,以及完全平方公式,解题的关键是熟练掌握根与系数的关系.4.B【分析】本题主要考查了根与系数的关系等知识点,根据一元二次方程根与系数的关系得出12x x +和12x x ,再利用整体思想即可解决问题,熟知一元二次方程根与系数的关系是解题的关键.【详解】∵1x ,2x 是方程22370x x +-=的两个根,∴1232x x +=-,1272x x =-,∴331212x x x x +()221212x x x x =+()21212122x x x x x x éù=+-ëû27372222éùæöæö=-´--´-êúç÷ç÷èøèøêúëû2598=-,故选:B .5.9x =±【分析】将已知方程化简成一般形式,再根据一元二次方程根与系数的关系和已知条件,列出关于m 的方程,解出方程,求出m 的值,再将m 代入原来方程,解出方程.【详解】解:将已知方程化简可得:3x 2+(9-7m )x +6m =0,根据一元二次方程根与系数的关系可得x 1+x 2=9-7m-3,x 1x 2=2m ,根据已知条件可得∶9-7m-3=2m ,解出:m =9,将m =9代入化简后的方程可得:x 2-18x +18=0,化成完全平方得:(x -9)2=63,解得x =9±故答案为∶ 9x =±【点睛】本题主要考查了一元二次方程的根与一元二次系数的关系,解此题的关键是掌握一元二次方程的根与一元二次系数的关系.6.3-【分析】本题考查的是一元二次方程根与系数的关系,直接利用:一元二次方程()200ax bx c a ++=¹两根分别是12,x x ,则1212,b cx x x x a a+=-=,进行解题即可.【详解】解:设关于x 的一元二次方程260x mx +-=的另一个根为t ,则26t =- ,解得3t =-,故答案为3-7.2122,2x x ==-【分析】若一元二次方程20(a 0)++=¹ax bx c 的两个根为12,x x ,则1212,b cx x x x a a+=-=g .【详解】解:整理方程得:20ax b -=由题意得:260m m +-=∴2m =故两个根为:122,262x m x m ===-=-故答案为:2;122,2x x ==-【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.8.2-【分析】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系得到20m +=是解题的关键.【详解】解:设方程的另一个根为m ,则20m +=,解得:2m =-,故答案为:2-.9.D【分析】根据一元二次方程解的定义及根与系数的关系得出222021m m -=,2bm n a+=-=,将原式化简求值即可.【详解】解:∵m 、n 是关于x 的方程2220210x x --=的根,∴222021m m -=,2bm n a+=-=,2422023m m n --+222()2023m m m n =--++2021222023=-´+4040=,故选:D .【点睛】题目主要考查一元二次方程的根及根与系数的关系,求代数式的值,熟练掌握一元二次方程根与系数的关系是解题关键.10.2023【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.首先根据根与系数关系得到123x x +=,之后将1x 代入方程中得到211320200x x --=,变形为21132020x x -=,两式相加即可得到答案.【详解】解:1x Q 、2x 是方程2320200x x --=的两个根,123x x \+=,211320200x x --=21132020x x -=\()()12211211220203202323x x x x x x x \=++=-+-+=.故答案为:2023.11.20-【分析】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=¹的两根时,则12bx x a +=-,12c x x a=.利用整体代入法是本题的关键.【详解】解:∵a ,b 是2180x x ++=的两个实数根,∴218a a +=-,1a b +=-,∴()()22322182(1)20a a b a a a b ++=+++=-+´-=-,故答案为:20-.12.5-【分析】本题考查一元二次方程根与系数的关系,掌握20ax bx c ++=的两根1x ,2x 满足12b x x a +=-,12c x x a=是解题的关键.【详解】解:∵a ,b 是方程2570x x -+=的两个根,∴257a a -=-,5a b +=,∴()()2537535a a a b -++-=-+-=-,故答案为:5-.13.B【分析】根据一元二次方程的根与系数的关系可得3a b +=,1ab =,再整体代入求解即可.【详解】解:∵a 、b 是一元二次方程2310x x -+=的根,∴3a b +=,1ab =,∴221111a b +++2211=a ab b ab+++()()11=a a b b a b +++11=33a b+=3a b ab+331=´1=,故选:B .【点睛】本题考查一元二次方程的根与系数的关系、分式的化简求值,熟练掌握一元二次方程的根与系数的关系是解题的关键.14.2020【分析】本题考查了根与系数的关系、一元二次方程的解,正确理解一元二次方程的解的定义是解题的关键.由一元二次方程根与系数关系得1m n +=-,23m m -=-,再代入求值即可.【详解】解:∵m n ,是方程230x x +-=的两个实数根,将x m =代入方程230x x +-=,得230m m +-=,即23m m -=-,23m m=-∴332024m m n -++()232024m m n =-++22024m n =-++,∵23m m =-,∴22024m n -++32024m n =-+++2021m n =++,∵1m n +=-,∴2021120212020m n ++=-+=.故答案为:2020.15.A【分析】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵1x ,2x 是方程220240x x --=的两个实数根,∴2112024x x -=,122024x x =-,121x x =+321122024x x x -+()()()2222211212121220242122024x x x x x x x x x =-+=+=+-=-´-4049=故选A16.18-【分析】先根据一元二次方程的解的定义得到2310m m +-=,即231m m =-+,323m m m =-+,再把355m m n -+化简为用m 和n 的一次式表示得到()53m n +-,再根据根与系数的关系得到3m n +=-,然后利用整体代入的方法计算即可.【详解】解:∵m 、n 是方程2310x x +-=的两根,∴2310m m +-=,且0m ¹,3m n +=-,∴231m m =-+,∴323m m m =-+,2355m m m n=-+-+()33145m m n=--+-+553m n =+-()53m n =+-,∴原式()53318=´--=-,故答案为:18-.【点睛】本题考查根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=¹的两根时,则12b x x a+=-,12c x x a =.掌握一元二次方程根与系数的关键是解题的关键,也考查一元二次方程的解的定义,运用了整体代入和恒等变换的思想.17. 2 122,2x x ==-【分析】若一元二次方程20(a 0)++=¹ax bx c 的两个根为12,x x ,则1212,b c x x x x a a+=-=g .【详解】解:整理方程得:20ax b -=由题意得:260m m +-=∴2m =故两个根为:122,262x m x m ===-=-故答案为:2;122,2x x ==-【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.18.C【分析】根据一元二次方程根与系数的关系分别求出b ,c 的值即可得到结论.【详解】解:∵关于x 的方程220x bx c ++=的根为12x =-,23x =,∴121222b c x x x x +=-=, ∴232322b c -+=--´=,,即b=-2,c=-12∴21214b c +=--=-.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-ba,x1•x2=ca.19.﹣2【分析】根据根与系数的关系及两同学得出的结论,即可求出p,q的值.【详解】解:由小明看错了系数p,解得方程的根为1和﹣3;可得q=1×(﹣3)=﹣3,小红看错了系数q,解得方程的根为4和﹣2,可得﹣p=4﹣2,解得p=﹣2,故答案为:﹣2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于﹣ba,两根之积等于ca.”是解题的关键.20.【分析】先计算出一元二次方程判别式,即△=2k2+8,从而得到△>0,于是可判断不论k为何值,方程总有两个不相等实数根;再利用方程的解的定义得到x12-2kx1=-12k2+2,根据根与系数的关系可得x1x2=12k2-2,则-12k2+2+2·(12k2-2)=5,然后解关于k的方程即可.【详解】(1)证明:△=(-2k)2-4(12k2-2)=2k2+8>0,所以不论k为何值,方程总有两个不相等实数根;(2)∵x1是方程的根,∴x12-2kx1+12k2-2=0,∴x12-2kx1=-12k2+2,∵x12-2kx1+2x1x2=5,x1x2=12k2-2,∴-12k2+2+2·(12k2-2)=5,整理得k2-14=0,∴.故答案为【点睛】本题考查一元二次方程的根与系数的关系,一元二次方程根的判别式,关键是熟练掌握一元二次方程根的判别式和根与系数的关系.21.32【分析】本题主要考查了一元二次方程根与系数的关系,正确得到31,22s t st +==-是解题的关键.由题意可知实数s 、t 是关于x 的方程22310x x --=的两个不相等的实数根,由此可得答案.【详解】解:Q 实数s 、t 满足22310s s --=,22310t t --=,且s t ¹,\实数s 、t 是关于x 的方程22310x x --=的两个不相等的实数根,32s t \+=.故答案为:32.22.3【分析】本题考查了一元二次方程根与系数的关系,完全平方公式的应用,先根据已知条件得到m 、n 是关于x 的一元二次方程的两个不等实数根,然后根据根和系数的关系得到结果,再根据完全平方公式计算即可,理解m 、n 是关于x 的一元二次方程的两个不等实数根是解题的关键.【详解】解:由题可得:210m m --=,210n n --=,∴m 、n 是关于x 的一元二次方程210x x --=的两个不等实数根,∴1,1m n mn +==-,∴()()222221213m n m n mn +=+-=-´-=,故答案为:3.23.2或16【分析】本题考查一元二次方程的根,一元二次方程根与系数的关系等,分情况讨论,当a b =时,2b a a b+=;当a b ¹时, a 和b 是方程2620x x -+=的两个根,再由根与系数的关系求出a b +和ab ,再将b a a b +变形为()22a b ab ab+-,即可求解.【详解】解:分两种情况:当a b =时,112b a a b+=+=;当a b ¹时,Q 21312b b =-,\21163b b =+,\2620b b -+=,又Q 21163a a =+,\2620a a -+=,\a 和b 是方程2620x x -+=的两个根,\661a b -+=-=,2ab =,\()22222622162a b ab b a b a a b ab ab +-+-´+====,故答案为:2或16.24【分析】本题考查一元二次方程根与系数的关系,根据题意可以得到2a 和b 是方程2310x x --=的两根,然后解方程即可.【详解】解:由题意得:42310a a --=()222310a a --=,2310b b --=,∴2a 2x=∴2b a =25.A 【分析】根据一元二次方程的根与系数的关系求出方程220ax ax c ++= 的另一个根,设1x t -=,根据方程220ax ax c ++= 的根代入求值即可得到答案;【详解】解:∵一元二次方程220ax ax c ++= (0)a ¹的一个根为m ,设方程另一根为n ,∴22a n m a+=-=-,解得:2n m =--,设1x t -=,方程21210a x a x c -+-+=()()变形为220at at c ++=,由一元二次方程220ax ax c ++= (0)a ¹的根可得,1t m =,22t m =--,∴12x m -=--,1x m -=,∴11x m =--,21x m =+,故答案为:A .【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.26.-3或29【分析】设方程20x ax b ++=的两个根为a b ,,其中a b ,为整数,且a ≤b ,则方程20x cx a ++=的两根为11a b ++,,根据题意列出式子,再进行变形即可求出.【详解】解:设方程20x ax b ++=的两个根为a b ,,其中a b ,为整数,且a ≤b ,则方程20x cx a ++=的两根为11a b ++,,由题意得,(1)(1)a a a b a b +=-++=,两式相加得2210ab a b +++=,即()()223a b ++=,所以21{23a b +=+=,;或23{2 1.a b +=-+=-,解得1{1a b =-=,;或5{ 3.a b =-=-,又因为(),,[(1)(1)]a b c a b ab a b =-+==-+++所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-或29.故答案为-3或29【点睛】主要考查一元二次方程的整数根与有理根,一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;27.648【分析】由根与系数的关系得a b +,+c d 的值,两式相加得的值,根据一元二次方程根的定义可得2890a ac d --=,代入可得272980a a c ac -+-=,同理可得272980c c a ac -+-=,两式相减即可得a c +的值,进而可得+++a b c d 的值.【详解】解:由根与系数的关系得8a b c +=,8c d a +=,两式相加得()8a b c d a c +++=+.因为a 是方程2890x cx d --=的根,所以2890a ac d --=,又8d a c =-,所以272980a a c ac -+-=①同理可得272980c c a ac -+-=②①-②得()()810a c a c -+-=.因为a c ¹,所以81a c +=,所以()8648a b c d a c +++=+=.故答案为648【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.28.D【分析】设方程x 2+px +q =0的两根为x 1、x 2,方程y 2+qy +p =0的两根为y 1、y 2.根据方程解的情况,结合根与系数的关系可得出x 1•x 2=q >0,y 1•y 2=p >0,即可判断A 与C ;②由方程有两个实数根结合根的判别式得出p 2﹣4q ≥0,q 2﹣4p ≥0,利用不等式的性质以及完全平方公式得出(p ﹣2)2+(q ﹣2)2>8,即可判断B 与D .【详解】解:设方程x 2+px +q =0的两根为x 1、x 2,方程y 2+qy +p =0的两根为y 1、y 2.∵关于x 的一元二次方程x 2+px +q =0有两个同号非零整数根,关于y 的一元二次方程y 2+qy +p =0也有两个同号非零整数根,∴x 1•x 2=q >0,y 1•y 2=p >0,故选项A 与C 说法均错误,不符合题意;∵关于x 的一元二次方程x 2+px +q =0有两个同号非零整数根,关于y 的一元二次方程y 2+qy +p =0也有两个同号非零整数根,∴p 2﹣4q ≥0,q 2﹣4p ≥0,∴(p ﹣2)2+(q ﹣2)2=p 2﹣4q +4+q 2﹣4p +4>8(p 、q 不能同时为2,否则两个方程均无实数根),故选项B 说法错误,不符合题意;选项D 说法正确,符合题意;故选:D .【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.29.A【分析】由题意可知:菱形ABCD 的边长是5,则2225AO BO +=,则再根据根与系数的关系可得:2213AO BO m AO BO m +=-+´=+,;代入22AO BO +中,得到关于m 的方程后,求得m 的值.【详解】由直角三角形的三边关系可得:2225AO BO +=,又有根与系数的关系可得:221,3AO BO m AO BO m +=-+´=+,∴()()()222222212325AO BO AO BO AO BO m m +=+-´=-+-+=,整理得:22150m m --=,解得:m =−3或5.又∵0D >,∴22(21)4(3)0,m m --+> 解得114m <-∴3m =-.故选:A.【点睛】考查一元二次方程根与系数的关系以及菱形的性质,注意掌握勾股定理在解题中的应用.30.111<<m 【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x 2−11x +30=0的两个根,∴x 1+x 2=11,x 1x 2=30,∵(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=121−120=1,∴x 1−x 2=1,又∵x 1−x 2<m <x 1+x 2,∴1<m <11.故答案为:1<m <11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.31.B【分析】此题考查了正方形的性质,一元二次方程根与系数的关系.首先根据正方形的性质得到AB AD =,然后根据一元二次方程根与系数的关系得到1AB CD ×=,进而求出1AB CD ==,即可得到正方形ABCD 的周长.【详解】∵四边形ABCD 是正方形∴AB AD=∵正方形ABCD 的两邻边AB ,AD 的长度恰为方程210x mx -+=的两个实数根,∴1AB CD ×=,∴1AB CD ==∴正方形ABCD 的周长为4.故选:B .32.(1)94k £(2)不存在,理由见解析【分析】本题考查了根与系数的关系和根的判别式,勾股定理,能熟记根与系数的关系和根的判别式的内容是解此题的关键.(1)求出D 的值,根据已知得出不等式,求出即可;(2)根据根与系数的关系得出123x x +=,12x x k =,根据已知得出22212x x +=,变形后代入求出k 的值,进行判断即可.【详解】(1)解:Q 关于x 的一元二次方程230x x k -+=有两个实根1x 和2x ,()23410k \D =--´´³,解得:94k £;(2)1x 和2x 一元二次方程230x x k -+=的两根,123x x \+=,12x x k =,1x Q 和2x ,22212x x \+=,()2121222x x x x \+-=,922k \-=,解得:72k =,94k £Q ,7924>,72k \=不符合题意,\不存在矩形,1x 和2x .33.10t -<<【分析】本题考查了一元二次方程根和系数的关系,不等式的性质,由根和系数的关系可得,12x x a +=-,12x x b =,得到()()12111t x x =---,由1212x x <<<可得()()120111x x <--<,即得到()()1211110x x -<---<,即可求解,掌握一元二次方程根和系数的关系是解题的关键.【详解】解:由根和系数的关系可得,12x x a +=-,12x x b =,∴()12a x x =-+,12b x x =,∴()()()121212111t a b x x x x x x =+=-++=---,∵1212x x <<<,∴1011x <-<,2011x <-<,∴()()120111x x <--<,∴()()1211110x x -<---<,即10t -<<,故答案为:10t -<<.34.5m ³-【分析】根据一元二次方程根的分布,根的判别式以及根与系数的关系列出不等式组,并解答求得m 的取值范围.本题主要考查了一元二次方程根的分布,根的判别式和根与系数的关系等知识点,解此题的关键是得到()()2Δ54450504m m ìéù=--´´-+³ëûïí+-£ïî.【详解】解:Q 关于x 的方程245(5)0x x m --+=的解中,仅有一个正数解,\()()2Δ54450504m m ìéù=--´´-+³ëûïí+-£ïî,解得5m ³-.故答案为:5m ³-.35.A【分析】据2p -4q ³0,得出方程有两个实数根,再根据已知条件得出两根之积>零、两根之和<零时,由此得到关于p ,q 的不等式,然后确定它们的取值范围即可.【详解】2p Q -4q ³0,\方程有两个实数根.设1x ,2x 是该方程的两个负数根,则有1x +2x <0,x 1x 2>0,1x +2x =-p,12x x =q ,\-p<0,,q>0.\p>0,,q>0.故选A.【点睛】本题考查一元二次方程根的符号的确定,应利用一元二次方程根与系数的关系与根的判别式.36.B【分析】利用根的判别式0D >及两根之积为负数,即可得出关于m 的一元一次不等式组,解之即可得出实数m 的取值范围.【详解】解:∵关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,∴()2Δ241120120m m ì=-´´->í-<î解得:12m >,∴实数m 的取值范围是12m >.故选:B .【点睛】本题考查了根与系数的关系以及根的判别式,牢记“当0D >时,方程有两个不相等的实数根”及“两根之积等于c a ”是解题的关键.37.(1)是,证明见解析(2)23m =或2-(3)224b ac c -=【分析】本题考查了根与系数的关系,解一元二次方程,理解新定义是解题的关键.(1)分别根据因式分解法解一元二次方程,然后根据定义判断即可;(2)先根据因式分解法解一元二次方程,然后根据定义列出绝对值方程,解方程即可求解;(3)根据求根公式求得1x ,2x ;根据新定义列出方程即可求解.【详解】(1)方程26510x x -+=是“差积方程”,证明:26510x x -+=,即(21)(31)0x x --=,解得112x =,213x =,11112323-=´Q ,26510x x \-+=是差积方程;(2)解:()2220x m x m -++=,()()20x m x --=解得方程的解为:12x =,2x m =,2(2)20x m x m -++=Q 是差积方程,22m m \-=,即:22m m -=或22m m -=-.解得:23m =或2-,(320 (0)a ¹解得1x =,2x =20ax bx c ++=Q (0)a ¹是差积方程,1212x x x x \-=×,即224b ac c -=.38.2-或0##0或―2【分析】本题考查根与系数的关系.设方程的两个根为()1212,x x x x <,由题意,得:12121,m m x x x x =+-=-,211x x -=,利用完全平方公式的变形式进行计算即可.【详解】解:设方程的两个根为()1212,x x x x <,由题意,得:12121,m m x x x x =+-=-,211x x -=,∴()()()2222112124141x x x x x x m m -=+-=-+=,解得:2m =-或0m =,故答案为:2-或0.39.25【分析】首先根据韦达定理求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由m ,n 是22170x x -+=的两个不相等的实数根可得:21m n +=,7mn =故[()@(21@m n mn +=======25=【点睛】本题考查了一元二次方程的根与系数关系(也叫韦达定理),实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.40.(1)此方程为“限根方程”,理由见解析(2)5【分析】本题考查了因式分解法解一元二次方程,一元二次方程的根与系数的关系.理解题意,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系是解题的关键.(1)因式分解法解一元二次方程得1272x x =-=-,,根据定义,求解作答即可;(2)由()22980x k x k ++++=,可得129x x k +=--,1228x k x =+,代入12121111121x x x x ++=-,整理得,211300k k -+=,解得,5k =或6k =,分当5k =时,当6k =时,两种情况求解,然后判断作答即可.【详解】(1)解:此方程为“限根方程”,理由如下:∵29140x x ++=,∴()()720x x ++=,解得,1272x x =-=-,,∵7342-<<-,∴方程为“限根方程”;(2)解:∵()22980x k x k ++++=,∴129x x k +=--,1228x k x =+,∵12121111121x x x x ++=-,∴()121211112x x x x ++=-,即()29812111k k --++=-,整理得,211300k k -+=,∴()()560k k --=,解得,5k =或6k =,①当5k =时,214330x x ++=,解得,12113x x =-=-,,∵11343-<<-,∴5k =符合题意;②当6k =时,215440x x ++=,解得,12114x x =-=-,,∵1134-<-,∴6k =不符合题意,舍去;∴k 的值为5.。

一元二次方程根与系数关系专题

一元二次方程根与系数关系专题

一元二次方程根与系数关系专项训练一.填空题1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。

2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。

3、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。

4、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。

5、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。

6、已知方程x 2-mx+2=0的两根互为相反数,则m= 。

7、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。

若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。

8、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。

9、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k=10、已知关于x 的方程x 2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。

二.解答题1、已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: x 31x 2+x 1x 322、已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: 2221x 1x 1+ 3、已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: (x 21-x 22)24、已知x1和x2是方程2x2-3x-1=0的两个根,利用根与系数的关系,求下列各式的值:x1-x25、已知关于x的方程2x2-(m-1)x+m+1=0的两根满足关系式x1-x2=1,求m的值及两个根。

一元二次方程根与系数的关系(韦达定理)专题训练(有答案)--

一元二次方程根与系数的关系(韦达定理)专题训练(有答案)--

一元二次方程根与系数的关系(韦达定理)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥(2)注意公式重12bx x a+=-的负号与b 的符号的区别已知x1,x2是方程2x 2-x-5=0的两个根考点:根与系数的关系.专题:应用题.分析:利用根与系数的关系,分别求得x1+x2,x1/x2的值,整体代入所求的代数式即可.解:∵x1,x2是方程2x 2-x-5=0的两个根 ∴x1+x2=-b/a=12,x1×x2=c/a=-5/2本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式:x1+x2=-b/a ,x1×x2=c/a .(1)计算对称式的值例一 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.(2)定性判断字母系数的取值范围例二 一个三角形的两边长是方程的两根,第三边长为2,求k 的取值范围。

例三 已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.例四 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.一元二次方程根与系数的关系练习题A 组1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2B .2-C .12 D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是()A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______ 7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ . 11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.12.若0n >,关于x 的方程21(2)04x m n x mn --+=有两个相等的的正实数根,求m n的值.13.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.14.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长.(1) k 取何值时,方程存在两个正实数根?(2) k 的值.B 组1.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围;(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.2.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.3.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.(1) 求实数k的取值范围;(2) 若121 2xx,求k的值.。

根与系数的关系及应用题(自己整理)

根与系数的关系及应用题(自己整理)

一元二次方程根的判别式,根与系数关系◆回顾归纳1.一元二次方程ax2+bx+c=0(a≠0)的根的判别式,常用符号“△”表示,即△=•______;△>0时,方程_____;△=0时,方程______;△<0时,方程______.2.如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,则x1+x2=____,x1x2=____.◆课堂测控1.(1)一元二次方程3x2+4x+1=0中,△=_____,因此该方程_____实数根.(2)一元二次方程ax2+2x+1=0有两个相等的实数根,则a=_____.2.若方程x2-2x-1=0的两个实数根为x1,x2,则x1+x2=______.3.一元二次方程x2+x-2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.有一个实数根4.设一元二次方程x2-6x+4=0的两实根分别为x1和x2,则x1+x2=_____,x1·x2=______.5.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,求m的值.解:当AB或AC的长为8时,64-10×8+m=0,∴m=_____;当AB=AC时,方程x2-10x+m=0有两个相等的实数根,则△=0,即______,∴m=____.测试点2 一元二次方程根与系数的关系6.一元二次方程x2-5x+6=0的一个实数根x1=2,则另一个实数根x2=(•)A.3 B.-3 C.6 D.-67.设一元二次方程x2-2x-4=0的两个实数为x1和x2,则下列结论正确的是()A.x1+x2=2 B.x1+x2=-4 C.x1x2=-2 D.x1x2=48.已知x=-1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A.0 B.1 C.2 D.-29.已知x1,x2是方程x2+3x=4的两根,则()A.x1+x2=-3,x1·x2=-4 B.x1+x2=3,x1·x2=4C.x1+x2=-3,x1·x2=4 D.x1+x2=3,x1·x2=-410.阅读材料:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空: (1)已知x 1,x 2是方程x 2+6x+3=0的两实数根,则2112x x x x 的值为_____. (2)已知x 1,x 2是方程x 2-9x+18=0的两个根,那么x 1-x 2=_______.◆课后测控1.若关于x 的一元二次方程x 2+2x -k=0没有实数根,则k 的取值范围是_____.2.在解方程x 2+bx+c=0时,甲看错了b ,解得两根为-1和6;乙看错了c ,•解得两根为-3与4,那么正确的方程是______.3.已知一个等腰三角形两边长为方程x 2-6x+8=0的两根,•则此等腰三角形的周长为_____.4.若关于x 的方程x 2-(m+2)x+m=0的根的判别式△=5,则m=_____.5.方程x (x+1)=3(x+1)的解情况是______.6.关于x 的一元二次方程kx 2-6x+1=0有两个不相等的实数根,•则k•的取值范围是_____.7.已知关于x 的方程x 2-2ax+a 2-2a+2=0的两个实数根x 1,x 2,满足x 12+x 22=2,•则a•的值是_____.8.已知一元二次方程x 2+3x+1=0的两根为x 1和x 2,那么(1+x 1)(1+x 2)的值为______.9.如果一元二次方程3x 2-2x=0的两个根是x 1和x 2,那么x 1·x 2等于( )A .2B .0C .23D .-2310.已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是( )A .x 2+5x+6=0B .x 2-5x+6=0C .x 2-5x -6=0D .x 2+5x -6=011.如果关于x 的方程2x 2-7x+m=0的两实数根互为倒数,那么m 的值为( )A .12B .-12C .2D .-2 12.若关于x 的方程kx 2+2x -1=0有两个不相等的实数根,则k•的取值范围是( )A .k>-1B .k<-1C .k≥-1且k≠0D .k>-1且k≠013.已知关于x 的一元二次方程x 2-mx+2m -1=0的两个实数根的平方和为7,那么m 的值是( )A .5B .-1C .5或-1D .-5或114.关于x 的一元二次方程x 2-5x+p 2-2p+5=0的一个根为1,则实数p•的值是( )A .4B .0或2C .1D .-115.已知关于x 的方程x 2-m=2x 有两个不相等的实数根,求m 的取值范围.16.已知关于x的一元二次方程x2+(2m-3)x+m2=0•的两个不相等的实数根α、β满足11αβ+=1,求m的值.17.若0是关于x的方程(m-2)x2+3x+m2+2m-8=0的解,求实数m的值,并讨论此方程解的情况.18.若关于x的一元二次方程x2+(m+1)x+m+4=0两实根的平方和为2,求m的值.解:设方程的两个实根为x1,x2,那么x1+x2=m+1,x1x2=m+4.∴x12+x22=(x1+x2)2-2x1x2=(m+1)2-2(m+4)=m2-7=2.即m2=9,解得m=3.答:错误或不完整之处有:__________.◆拓展创新实数k取何值时,一元二次方程x2-(2k-3)x+2k-4=0.(1)有两个正根;(2)有两个异号根,并且正根的绝对值较大;(3)一根大于3,一根小于3.一元二次方程应用题(一)传染问题与循环问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。

(完整版)一元二次方程根与系数关系(附答案)

(完整版)一元二次方程根与系数关系(附答案)

一元二次方程根与系数的关系(附答案)评卷人得分一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣13.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.65.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3评卷人得分二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.评卷人得分三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.参考答案与试题解析一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有实数根,∴△=22﹣4×1×(﹣m)=4+4m≥0,解得:m≥﹣1.故选:A.3.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.【解答】解:∵α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,∴α+β=5.故选:B.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0,解得:c=3.故选:D.二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为﹣5.【解答】解:∵关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p、q,∴p+q=3,pq=a,∵p2﹣pq+q2=(p+q)2﹣3pq=18,即9﹣3a=18,∴a=﹣3,∴pq=﹣3,∴+====﹣5.故答案为:﹣5.三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1)∵方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)=4k﹣3>0,∴k>.(2)当k=2时,原方程为x2﹣5x+5=0,设方程的两个为m、n,∴m+n=5,mn=5,∴==.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=.(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.【解答】(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.【解答】解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;(2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;(3)∵是方程的两个实数根,,∴.∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得a=﹣4,a=2(舍去),所以a的值为﹣412.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.【解答】解:(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=,∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,若2﹣=﹣成立,解上述方程得,k=,∵△=16k2﹣4×4k(k+1)=﹣16k>0,∴k<0,∵k=,∴矛盾,∴不存在这样k的值;(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5;(3)∵k=﹣2,λ=,x1+x2=1,∴λx2+x2=1,x2=,x1=,∵x1x2==,∴=,∴λ=3±3.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.【解答】解:(1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.。

初中一元二次方程根与系数的关系知识点及练习题

初中一元二次方程根与系数的关系知识点及练习题

学习必备欢迎下载知识点一、一元二次方程根与系数的关系(1)若方程ax2bx c 0(a≠ 0)的两个实数根是x1, x2,则 x1+x 2= - b, x1x2=ca a(2)若一个方程的两个根为x1,, x2,那么这个一元二次方程为a x 2x1x2 x x1 x2 0 (a≠0)(3)根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数 .③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于 x1和 x2的代数式的值,如;④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式 .二、解一元二次方程应用题:它是列一元一次方程解应用题的拓展, 解题方法是相同的。

其一般步骤为:1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;3.解:解所列方程,求出解来;4.验:一是检验是否为方程的解,二是检验是否为应用题的解;5.答:怎么问就怎么答,注意不要漏写单位名称。

一元二次方程的练习题1、若关于x 的二次方程(m+1)x 2-3x+2=0有两个相等的实数根,则m=__________2、设方程x 23x40 的两根分别为x1, x2,则x1+x 2=________, x1· x2=__________x 1 +x2 =_________,(x1-x 2)=__________,x1 +x1x2+3x1=____________ 24、两根之和等于-3,两根之积等于-7 的最简系数的一元二次方程是_____________2226、方程 kx +1=x-x 无实根,则k____________学习必备欢迎下载7、若方程 x2-x+p=0 的两根之比为3,则 p=__________8、方程 (x 2+3)(x 2-2)=0的解的个数是()(A)1 (B)2(C)3(D)49、方程x22(m 21) x3m0 的两个根是互为相反数,则m的值是()( A) m=± 1( B)m= -1(C) m=1( D) m=010、若方程2x( kx- 4)- x2+6=0 没有实数根,则k 的最小整数值是()A、 1B、 2C、 3D、 411、一元二次方程一根比另一根大8,且两根之和为6,那么这个方程是()A、 x2- 6x- 7=0 B 、 x2- 6x+7=0C、 x2+6x-7=0D、x2+6x+7=012、若方程 x2+px+q=0 的两根之比为 3∶2,则 p,q满足的关系式是( A) 3p2=25q( B) 6p2=25q( C) 25p2=3q(D)25p2=6q13 、设α、β是方程 x2+x-2012=0的两个实数根,则α2+2α + β的值(). A. 2009 B.2010 C.2011 D.201214、解方程:( 1)12x2402(3)(2x-3)2( 2)x +6x+6=0-5(2x-3)+6=0 215、方程 3x2-x-1=0的两个根是x ,x x1x2的值, 求代数式12x2 1x1 116、一元二次方程kx2(2k 1) x k 2 0 ,当k为何值时,方程有两个不相等的实数根?17、某城市居民最低生活保障在20XX年是 240 元,经过连续两年的增加,345.6 元,则该城市两年最低生活保障的平均年增长率是多少呢?到 20XX 年提高到。

专项06一元二次方程的根与系数关系(4大类型)(原卷版)

专项06一元二次方程的根与系数关系(4大类型)(原卷版)

专项06 一元二次方程的根与系数关系(4大类型)根与系数的关系:即0bx ax 2=++c 的两根为x x 21、,则a b x x 21-=+,a c x x 21=⋅。

利用韦达定理可以求一些代数式的值(式子变形),如解题锦囊:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。

【典例1】设a ,b 是方程x 2﹣x ﹣2021=0的两个实数根,则a +b ﹣ab 的值为( )A .2022B .﹣2022C .2020D .﹣2020【变式11】已知a ,b 是方程x 2+x ﹣3=0的两个实数根,则a +b +2022的值是( )A .2024B .2023C .2022D .2021【变式12】已知a ,b 是方程x 2+x ﹣3=0的两个不相等的实数根,则ab ﹣2020a ﹣2020b 的值是( )A .﹣2023B .﹣2017C .2017D .2023【变式13】已知x 1、x 2是一元二次方程x 2﹣6x +3=0的两个实数根,则的值为( )A .4B .﹣4C .D .2 【典例2】已知x 1,x 2是一元二次方程x 2+3x ﹣1=0的两个实数根,则x 22+2x 2﹣x 1的值为( )A .4B .1C .﹣2D .﹣1【变式21】设a ,b 是方程x 2﹣x ﹣2021=0的两个实数根,则a 2+b 的值为( )A .2022B .2021C .2020D .2019【变式22】若m ,n 是一元二次方程x 2+2x ﹣1=0的两个实根,则m 2+4m +2n 的值是( )A.﹣4B.﹣3C.3D.4【变式23】若m,n是一元二次方程x2+x﹣3=0的两个实数根,则m3﹣4n2+17的值为()A.﹣2B.6C.﹣4D.4【典例3】关于x的一元二次方程x2+(m+4)x+2m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1、x2是方程的两个实根,且x1+x2+x1x2=m2﹣4m,求m的值.【变式31】已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.【变式32】已知关于x的方程x2﹣2mx+m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,若x1+x2=6,求m的值.【典例4】已知关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且,求m的值.【变式41】(2021秋•蓬溪县期末)已知关于x的一元二次方程mx2﹣2x﹣1=0有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)当时,求m的值.【变式42】已知关于x的一元二次方程x2﹣(m﹣3)x﹣m=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且x12+x22﹣x1x2=13,求m的值.1.若x1,x2是一元二次方程x2−5x+6=0的两个根,则x1+x2,x1x2的值分别是()A.1和6B.5和6C.5和6D.5和62.(2021•贵港)已知α,β是一元二次方程x 2+x ﹣2=0的两个实数根,则α+β﹣αβ的值是( )A .3B .1C .﹣1D .﹣33.已知x 1,x 2是方程x 2−x −1=0的根,则1x 1+1x 2的值是( ) A .1 B .1 C .±1 D .0 4.已知m ,n 是方程 x 2−10x +1=0 的两根,则代数式 m 2−9m +n 的值等于( ) A .0 B .−11 C .9 D .115.若x 1,x 2是方程x 2﹣4x ﹣2022=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于( )A .2022B .2026C .2030D .20346.已知 a ,b 是关于 x 的方程 x 2+3x −2009=0 的两根,则 a 2−a −4b 的值是( )A .2018B .2019C .2020D .2021 7.已知方程 x 2−2021x +1=0 的两根分别为m 、n ,则 m 2−2021n的值为( ) A .1 B .−1 C .2021 D .−2021 8.设x 1,x 2是方程x 2-3x -1=0的两个根,则x 1+x 2= ,x 1x 2= . 9.若关于x 的一元二次方程 x 2−bx +2=0 有一个根为1,则方程另一个根为 .10.若一元二次方程x 2+√3x −2=0的两根分别为m 与n ,则m n +n m= . 11.已知关于x 的一元二次方程x 2−(2m−2)x+(m 2−2m)=0.(1)请说明该方程实数根的个数情况;(2)如果方程的两个实数根为x 1,x 2,且(x 1+1)⋅(x 2+1)=8,求m 的值.12.已知方程mx 2﹣4x +1=0的两个实数根为x 1和x 2.(1)求m 的取值范围;(2)若x 1+x 2+x 1x 2=m ,求m 的值.13.已知关于x的方程kx2﹣3x+1=0有实数根.(1)求k的取值范围;(2)若该方程有两个实数根,分别为x1和x2,当x1+x1x2=4﹣x2时,求k的值.14.已知关于x的方程x2−3ax−3a−6=0,(1)求证:方程恒有二不等实根;(2)若x1,x2是该方程的两个实数根,且(x1−1)(x2−1)=1,求a的值.15.关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)请问是否存在实数k,使得x1+x2=1﹣x1x2成立?若存在,求出k 的值;若不存在,说明理由.16.已知关于x的方程x2+(2k+1)x+k2﹣2=0(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两个实数根为x1、x2,且满足x12+x22=11,求k的值.17.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若=4m,求m的值18.已知关于x的一元二次方程x2﹣(m+2)x+m=0(m为常数).(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若x1,x2满足,求实数m的值.。

一元二次方程根与系数的关系专项练习(含解析)

一元二次方程根与系数的关系专项练习(含解析)

同步测验一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−42.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.23.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.24.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−35.已知a、b是方程x2−4x+2=0的两个根,则a2−2a+2b的值为()A.−4B.6C.−8D.86.若x1、x2是一元二次方程2x2−3x+1=0的两个根,则x12+x22的值是()A.54B.94C.114D.77.已知x1,x2是关于x的元二次方程x2−(5m−6)x+m2=0的两个不相等的实根,且满足x1+x2=m2,则m的值是()A.2B.3C.2或3D.−2或−38.x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.410.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.16.请写出方程两个根互为相反数的一个一元二次方程________.17.已知m,n是方程x2−2017x+2018=0的两根,则(n2−2018n+2 019)(m2−2018m+2019)=________.18.以−3,4为解的一元二次方程可以为________.19.已知关于x的一元二次方程x2+bx+c=0的两根分别为x1=1,x2=2,则b=________;c=________.20.关于x的方程x2−2√3x+1=0的两根分别为x1,x2,则x1x2+x2x1=________.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.同步测验学校:__________班级:__________姓名:__________考号:__________ 一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−4【解答】解:∵x2−4x−m2=0有两个实数根x1,x2,∴{x1+x2=4,x1x2=−m2,∴则m2(1x1+1x2)=m2⋅x1+x2x1x2=m2⋅4−m2=−4.故选D.2.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.2【解答】解:设关于x的一元二次方程x2+mx−6=0的另一个根为t,则3t=−6,解得t=−2.故选C.3.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.2【解答】解:∵x1,x2是方程x2−2x−1=0的两根,∴x1+x2=2.故选D.4.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−3【解答】解:x 1⋅x 2=−3. 故选D .5.已知a 、b 是方程x 2−4x +2=0的两个根,则a 2−2a +2b 的值为( ) A.−4 B.6 C.−8 D.8【解答】解:∵a 、b 是方程x 2−4x +2=0的两个根, ∴a 2−4a +2=0,a +b =4, ∴a 2−4a =−2,2a +2b =8, ∴a 2−4a +2a +2b =6, ∴a 2−2a +2b =6, 故选B .6.若x 1、x 2是一元二次方程2x 2−3x +1=0的两个根,则x 12+x 22的值是( )A.54 B.94C.114D.7【解答】 解:由题意知,x 1x 2=12,x 1+x 2=32,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=(32)2−2×12=54.故选A .7.已知x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( ) A.2 B.3 C.2或3 D.−2或−3【解答】∵x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m −6,△=[−(5m −6)]2−4m 2>0, 解得m <67或m >2, ∵x 1+x 2=m 2, ∴5m −6=m 2,解得m =2(舍)或m =3,8.x 1,x 2是关于x 的一元二次方程x 2−mx +m −2=0的两个实数根,是否存在实数m 使1x 1+1x 2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.4【解答】解:∵关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,∴x1+x2=k+3,x1⋅x2=3k,∵1x1+1x2=23,∴x1+x2x1⋅x2=23,即k+33k =23,解得k=3.经检验k=3符合题意.故选C.10.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0【解答】解:设两根是−2和−3的方程为:x2+ax+b=0,根据根与系数的关系,∴(−2)+(−3)=−a=5,(−2)×(−3)=b=6,故方程为:x2+5x+6=0.故选D.二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.【解答】解:∵一元二次方程x2−2x−1=0的两根为x1,x2,∴x12=1+2x1,x1x2=−1,x1+x2=2,∴x12+2x2−2x1x2=1+2(x1+x2)−2x1x2=1+4+2=7.故答案为:7.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.【解答】,解:根据题意得x1+x2=−2,x1x2=−32)=7.所以x12+x22=(x1+x2)2−2x1x2=(−2)2−2×(−32故答案为7.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.【解答】解:设方程的另一根为x2,根据题意得1⋅x2=3,则x2=3;∵1+x2=2a,∴1+3=2a,∴a=2;故答案为3,2.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.【解答】解:设方程的另一根为x1,由x1+2−√5=4,得x1=2+√5.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.【解答】解:∵一元二次方程x2−x−6=0的二次项系数a=1,一次项系数b=−1,又∵x1,x2分别是一元二次方程x2−x−6=0的两个实数根,∴根据韦达定理,知x 1+x 2=−b a =−−11=1;故答案是:1.16.请写出方程两个根互为相反数的一个一元二次方程________. 【解答】解:例如,x 2−4=0.(答案不唯一).17.已知m ,n 是方程x 2−2017x +2018=0的两根,则(n 2−2018n +2 019)(m 2−2018m +2019)=________. 【解答】∵m 、n 是方程x 2−2 017x +2 018=0的两根,∴m 2−2017m =−2018,n 2−2017n =−2018,m +n =2017,mn =2018, ∴原式=(−n +1)(−m +1)=mn −(m +n)+1=2018−2017+1=2. 18.以−3,4为解的一元二次方程可以为________. 【解答】解:根据根与系数的关系可知:在二次项系数为1时,一次项系数等于两根之和的相反数即−(−3+4)=−1,常数项等于两根之积即−3×4=−12, 故以−3,4为解的一元二次方程为:x 2−x +12=0, 故答案为:x 2−x +12=0.19.已知关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2,则b =________;c =________. 【解答】解:∵关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2, ∴1+2=−b ,1×2=c , ∴b =−3,c =2, 故答案为:−3,2.20.关于x 的方程x 2−2√3x +1=0的两根分别为x 1,x 2,则x 1x 2+x2x 1=________.【解答】解:根据题意得x 1+x 2=2√3,x 1x 2=1, 所以原式=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2=(2√3)2−2×11=10.故答案为10.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.【解答】解:根据题意得a+b=2,ab=−15,原式=(a+b)2−4ab+4ab−4b2+4b2=(a+b)2,所以原式=22=4.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.【解答】解:(1)由题意知:Δ=[−2(k−1)]2−4(k2−1)=−8k+8,∵方程有两个不相等的实数根,∴−8k+8>0,解得:k<1.故k的取值范围是k<1.(2)由韦达定理可知:x1x2=k2−1,x1+x2=2(k−1),∵|x1+x2|=2x1x2,∴|2(k−1)|=2k2−2,∵k<1,∴2−2k=2k2−2,整理得:k2+k−2=0,解得:k=1(舍去)或k=−2.故k的值为−2.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.【解答】解:(1)x2−2x−1=0,x2−2x=1,(x−1)2=2,x−1=±√2,∴x=√2+1或x=1−√2(2)由根与系数的关系可知,α+β=−2,αβ=−3,∴α2β+αβ2=αβ(α+β)=−3×(−2)=6..24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.【解答】解:(1)当Δ>0时,方程有两个不相等的实数根,即42−4(m−1)>0,解得m<5,∴m的最大正整数为m=4.(2)由(1)得x1x2=3,x1+x2=−4,则−x1−x2+x1x2=−(x1+x2)+x1x2=−(−4)+3=7.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.【解答】解:根据题意得x1+x2=−2,x1x2=−2,所以x2x1+x1x2=x12+x22x1x2=(x1+x2)2−2x1x2x1x2=(−2)2−2×(−2)−2=−4.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.【解答】解:(1)x1+x2=−3,x1x2=1;(2)x12+x22=(x1+x2)2−2x1x2=(−3)2−2×1=7.11。

初三数学《一元二次方程根与系数之间的关系》练习题(含答案)

初三数学《一元二次方程根与系数之间的关系》练习题(含答案)

一元二次方程根与系数之间的关系一 、选择题(本大题共2小题)1.已知方程260x kx ++=的两个实数根是1x 、2x ,同时方程260x kx -+=的两实数根是15x +,25x +,则k 的值等于( )A.5B.5-C.7D.7-2.若方程20ax bx c ++=(0)a ≠的一个根是另一个根的3倍,则a 、b 、c 的关系是()A.2316b ac =B.2316b ac =-C.2163b ac =D.2163b ac =-二 、填空题(本大题共8小题)3.若3-、2是方程20x px q -+=的两个根,则________p q +=4.以3-和2为根,二次项系数为1的一元二次方程为____________5.已知m 、n 是一元二次方程2310x x -+=的两根,那么代数式222461999m n n +-+的值为6.若方程210x px ++=的一个根为1,则它的另一根等于 ,p 等于7.关于x 的方程2210x bx +-=的一个根为2-,则另一个根是 ,______b =8.方程2380x x m -+=的两个根之比为3:1,则_______m =9.已知方程22430x x +-=的两个根为1x 、2x⑴12x x += ;⑵12_______x x ⋅=;⑶1211_______x x +=;⑷2212_______x x +=10.如果方程22430x x k ++=的两个根的平方和等于7,那么_______k =三 、解答题(本大题共12小题)11.不解方程224)0x x +-=,求两根之和与两根之积12.已知2240x x k -+=的一个根,求另一个根和k 的值13.设方程24730x x --=的两个根为1x 、2x ,不解方程求下列各式的值⑴12(3)(3)x x --;⑵211211x xx x +++;⑶12x x -14.已知实数1x 和2x 满足211620x x -+=和222620x x -+=,求2112x x x x +的值15.已知关于x 的方程22(21)10k x k x +-+=有两个不相等的实数根1x 、2x⑴求k 的取值范围。

一元二次方程的根与系数的关系【十大题型】(解析版)--九年级数学

一元二次方程的根与系数的关系【十大题型】(解析版)--九年级数学

一元二次方程的根与系数的关系【十大题型】【题型1 利用根与系数的关系直接求代数式的值】 (1)【题型2 利用根与系数的关系求方程的根】 (3)【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】 (4)【题型4 利用根与系数的关系降次求代数式的值】 (6)【题型5 由一元二次方程的两根求值】 (8)【题型6 构造一元二次方程求代数式的值】 (10)【题型7 由一元二次方程的根判断另一个一元二次方程的根】 (12)【题型8 根与系数的关系与三角形、四边形的综合运用】 (15)【题型9 由一元二次方程根的取值范围求字母的取值范围】 (18)【题型10 一元二次方程中的新定义问题】 (20)知识点1:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两根为x1,x2,则x1+x2=−b a,x1⋅x2=c a.注意它的使用条件为,a≠0,Δ≥0.【题型1 利用根与系数的关系直接求代数式的值】【例1】(23-24九年级·黑龙江绥化·开学考试)已知一元二次方程xx2+xx=5xx+6的两根分别为m、n,则1mm+1nn=.【答案】−23.【分析】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程aaxx2+bbxx+cc=0(aa≠0),,若xx1,xx2是该方程的两个实数根,则xx1+xx2=−bb aa,xx1xx2=cc aa.直接根据一元二次方程根与系数的关系得到mm+nn=4,mmnn=−6,再根据1mm+1nn=mm+nn mmnn进行求解即可.【详解】解:∵一元二次方程xx2+xx=5xx+6可化为xx2−4xx−6=0,这个方程的两根分别为m,n,∴mm+nn=4,mmnn=−6,故答案为:−23.【变式1-1】(23-24九年级·广西来宾·期中)若a,b是方程xx2−2xx−5=0的两个实数根,则(aa−2)(bb−2)的值为.【答案】−5【分析】本题考查了一元二次方程根于系数的关系,根据一元二次方程根于系数的关系可得aa+bb=2,aabb=−7,代入即可求解,熟练掌握一元二次方程根于系数的关系是解题的关键.【详解】解:∵a,b是方程xx2−2xx−5=0的两个实数根,∴aa+bb=2,aabb=−7,∴(aa−2)(bb−2)=aabb−8(aa+bb)+4=-5−7×2+4=−5.故答案为:−5.【变式1-2】(23-24九年级·四川成都·阶段练习)设方程2xx2+3xx+1=0的根为xx1、xx2,则xx12+xx22=.【答案】54【分析】利用根与系数的关系求出两根之和与两根之积,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:∵方程2xx2+3xx+1=0的根为xx1、xx2,∴xx1+xx2=−32,xx1xx2=12,则xx12+xx22=(xx1+xx2)2−2xx1xx2=(−32)2−2×12=94−1=54.故答案为:54.【点睛】本题考查了根与系数的关系,解一元二次方程−因式分解法,以及完全平方公式,解题的关键是熟练掌握根与系数的关系.(23-24九年级·浙江宁波·期末)已知xx1,xx2是方程2xx2+3xx−7=0的两个根,则xx13xx2+xx1xx23【变式1-3】的值为()A.214B.−2598C.−638D.−1338【答案】B【分析】本题主要考查了根与系数的关系等知识点,根据一元二次方程根与系数的关系得出xx1+xx2和xx1xx2,再利用整体思想即可解决问题,熟知一元二次方程根与系数的关系是解题的关键.【详解】∵xx1,xx2是方程2xx2+3xx−7=0的两个根,∴xx13xx2+xx1xx23=xx1xx2(xx12+xx22)=xx1xx2[(xx1+xx2)2−2xx1xx2]=−72×��−32�2−2×�−72��=−2598,故选:B.【题型2 利用根与系数的关系求方程的根】【例2】(23-24九年级·全国·单元测试)若关于xx的方程3(xx−1)(xx−2mm)=(mm−12)xx的两根之和与两根之积相等,则方程的根为.【答案】xx=9±3√7【分析】将已知方程化简成一般形式,再根据一元二次方程根与系数的关系和已知条件,列出关于m的方程,解出方程,求出m的值,再将m代入原来方程,解出方程.【详解】解:将已知方程化简可得:3x2+(9-7m)x+6m=0,根据一元二次方程根与系数的关系可得x1+x2=-9-7m3,x1x2=2m,根据已知条件可得∶-9-7m3=2m,解出:m=9,将m=9代入化简后的方程可得:x2-18x+18=0,化成完全平方得:(x-9)2=63,解得x=9±3√7.故答案为∶xx=9±3√7.【点睛】本题主要考查了一元二次方程的根与一元二次系数的关系,解此题的关键是掌握一元二次方程的根与一元二次系数的关系.【变式2-1】(23-24·山东济南·二模)若关于xx的一元二次方程xx2+mmxx−6=0有一个根为xx=2,则该方程的另一个根为xx=.【答案】−3【分析】本题考查的是一元二次方程根与系数的关系,直接利用:一元二次方程aaxx2+bbxx+cc=0(aa≠0)两根分别是xx1,xx2,则xx1+xx2=−bb aa,xx1xx2=cc aa,进行解题即可.【详解】解:设关于x的一元二次方程xx2+mmxx−6=0的另一个根为t,则2tt=−6,解得tt=−3,故答案为−3【变式2-2】(23-24九年级·河北保定·阶段练习)若关于xx的一元二次方程aaxx2=bb(aabb>0)的两个根分别是mm 与2mm−6,则mm的值为,方程的根为.【答案】2xx1=2,xx2=−2【分析】若一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两个根为xx1,xx2,则xx1+xx2=−bb aa,xx1·xx2=cc aa.【详解】解:整理方程得:aaxx2−bb=0由题意得:mm+2mm−6=0∴mm=2故两个根为:xx1=mm=2,xx2=2mm−6=−2故答案为:2;xx1=2,xx2=−2【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.【变式2-3】(23-24九年级·浙江台州·阶段练习)若关于x的一元二次方程aaxx2=cc(aa≠0)的一根为2,则另一根为.【答案】−2【分析】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系得到2+mm=0是解题的关键.【详解】解:设方程的另一个根为mm,则2+mm=0,解得:mm=−2,故答案为:−2.【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】【例3】(23-24九年级·山东枣庄·期中)已知mm、n是关于xx的方程xx2−2xx−2021=0的根,则代数式mm2−4mm−2nn+2023的值为()A.2022 B.2023 C.4039 D.4040【答案】D【分析】根据一元二次方程解的定义及根与系数的关系得出mm2−2mm=2021,mm+nn=−bb aa=2,将原式化简求值即可.【详解】解:∵mm、n是关于xx的方程xx2−2xx−2021=0的根,∴mm2−2mm=2021,mm+nn=−bb aa=2,mm2−4mm−2nn+2023=mm2−2mm−2(mm+nn)+2023=2021−2×2+2023=4040,故选:D.【点睛】题目主要考查一元二次方程的根及根与系数的关系,求代数式的值,熟练掌握一元二次方程根与系数的关系是解题关键.【变式3-1】(23-24·江苏南京·模拟预测)设xx1、xx2是方程xx2−3xx−2020=0的两个根,则xx12−2xx1+ xx2=.【答案】2023【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.首先根据根与系数关系得到xx1+xx2=3,之后将xx1代入方程中得到xx12−3xx1−2020=0,变形为xx12−3xx1=2020,两式相加即可得到答案.【详解】解:∵xx1、xx2是方程xx2−3xx−2020=0的两个根,∴xx1+xx2=3,xx12−3xx1−2020=0∴xx12−3xx1=2020∴xx12−2xx1+xx2=(xx12−3xx1)+(xx1+xx2)=2020+3=2023.故答案为:2023.【变式3-2】(23-24九年级·辽宁大连·期中)设αα,ββ是xx2+xx+18=0的两个实数根,则αα2+3αα+2ββ的值是.【答案】−20【分析】本题考查了根与系数的关系:若xx1,xx2是一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两根时,则xx1+xx2=−bb aa,xx1xx2=cc aa.利用整体代入法是本题的关键.【详解】解:∵αα,ββ是xx2+xx+18=0的两个实数根,∴αα2+αα=−18,αα+ββ=−1,∴αα2+3αα+2ββ=(αα2+αα)+2(αα+ββ)=−18+2×(−1)=−20,故答案为:−20.【变式3-3】(23-24九年级·河南新乡·期末)已知aa,bb是方程xx2−5xx+7=0的两个根,则aa2−4aa+bb−3=.【答案】−5【分析】本题考查一元二次方程根与系数的关系,掌握aaxx2+bbxx+cc=0的两根xx1,xx2满足xx1+xx2=−bb aa,xx1xx2=cc aa是解题的关键.【详解】解:∵aa,bb是方程xx2−5xx+7=0的两个根,∴aa2−5aa=−7,aa+bb=5,∴(aa2−5aa)+(aa+bb)−3=−7+5−3=−5,故答案为:−5.【题型4 利用根与系数的关系降次求代数式的值】【例4】(23-24九年级·湖北武汉·阶段练习)已知a、b是一元二次方程xx2−3xx+1=0的根,则代数式1aa2+1+ 1bb2+1的值是()A.3 B.1 C.−3D.−1【答案】B【分析】根据一元二次方程的根与系数的关系可得aa+bb=3,aabb=1,再整体代入求解即可.【详解】解:∵a、b是一元二次方程xx2−3xx+1=0的根,∴aa+bb=3,aabb=1,∴1aa2+1+1bb2+1=1aa2+aabb+1bb2+aabb=1aa(aa+bb)+1bb(aa+bb)=13aa+13bb=aa+bb3aabb=33×1=1,故选:B.【点睛】本题考查一元二次方程的根与系数的关系、分式的化简求值,熟练掌握一元二次方程的根与系数的关系是解题的关键.【变式4-1】(23-24九年级·云南·期末)已知mm,nn是方程xx2+xx−3=0的两个实数根,则mm3−3mm+nn+2024的值是.【答案】2020【分析】本题考查了根与系数的关系、一元二次方程的解,正确理解一元二次方程的解的定义是解题的关键.由一元二次方程根与系数关系得mm+nn=−1,mm2−3=−mm,再代入求值即可.【详解】解:∵mm,nn是方程xx2+xx−3=0的两个实数根,∴mm+nn=−1,将xx=mm代入方程xx2+xx−3=0,得mm2+mm−3=0,即mm2−3=−mm,mm2=3−mm∴mm3−3mm+nn+2024=mm(mm2−3)+nn+2024=−mm2+nn+2024,∵mm2=3−mm,∴−mm2+nn+2024=−3+mm+nn+2024=mm+nn+2021,∵mm+nn=−1,∴mm+nn+2021=−1+2021=2020.故答案为:2020.【变式4-2】(23-24九年级·山东淄博·期中)已知xx1,xx2是方程xx2−xx−2024=0的两个实数根,则代数式xx13−2024xx1+xx22的值为()A.4049 B.4048 C.2024 D.1【答案】A【分析】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵xx1,xx2是方程xx2−xx−2024=0的两个实数根,∴xx12−2024=xx1,xx1xx2=−2024,xx1+xx2=1xx13−2024xx1+xx22=xx1(xx12−2024)+xx22=xx12+xx22=(xx1+xx2)2−2xx1xx2=1−2×(−2024)=4049故选A【变式4-3】(23-24九年级·江苏苏州·阶段练习)已知:mm、nn是方程xx2+3xx−1=0的两根,则mm3−5mm+ 5nn=.【答案】−18【分析】先根据一元二次方程的解的定义得到mm2+3mm−1=0,即mm2=−3mm+1,mm3=−3mm2+mm,再把mm3−5mm+5nn化简为用mm和nn的一次式表示得到5(mm+nn)−3,再根据根与系数的关系得到mm+nn=−3,然后利用整体代入的方法计算即可.【详解】解:∵mm、nn是方程xx2+3xx−1=0的两根,∴mm2+3mm−1=0,且mm≠0,mm+nn=−3,∴mm2=−3mm+1,∴mm3=−3mm2+mm,∴mm3−5mm+5nn=−3mm2+mm−5mm+5nn=−3(−3mm+1)−4mm+5nn=5mm+5nn−3=5(mm+nn)−3,∴原式=5×(−3)−3=−18,故答案为:−18.【点睛】本题考查根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=−b a,x1x2=c a.掌握一元二次方程根与系数的关键是解题的关键,也考查一元二次方程的解的定义,运用了整体代入和恒等变换的思想.【题型5 由一元二次方程的两根求值】【例5】(23-24九年级·河北保定·阶段练习)若关于xx的一元二次方程aaxx2=bb(aabb>0)的两个根分别是mm与2mm−6,则mm的值为,方程的根为.【答案】2xx1=2,xx2=−2【分析】若一元二次方程aaxx2+bbxx+cc=0(aa≠0)的两个根为xx1,xx2,则xx1+xx2=−bb aa,xx1·xx2=cc aa.【详解】解:整理方程得:aaxx2−bb=0由题意得:mm+2mm−6=0∴mm=2故两个根为:xx1=mm=2,xx2=2mm−6=−2故答案为:2;xx1=2,xx2=−2【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.【变式5-1】(23-24九年级·四川成都·期末)已知关于x的方程2xx2+bbxx+cc=0的根为xx1=−2,xx2=3,则b+c的值是()A.-10 B.-7 C.-14 D.-2【答案】C【分析】根据一元二次方程根与系数的关系分别求出b,c的值即可得到结论.【详解】解:∵关于x的方程2xx2+bbxx+cc=0的根为xx1=−2,xx2=3,∴xx1+xx2=−bb2,xx1xx2=cc2∴−2+3=−bb2,−2×3=cc2,即b=-2,c=-12∴bb+cc=−2−12=−14.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-bb aa,x1•x2=cc aa.【变式5-2】(23-24九年级·江苏连云港·阶段练习)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=.【答案】﹣2【分析】根据根与系数的关系及两同学得出的结论,即可求出p,q的值.【详解】解:由小明看错了系数p,解得方程的根为1和﹣3;可得q=1×(﹣3)=﹣3,小红看错了系数q,解得方程的根为4和﹣2,可得﹣p=4﹣2,解得p=﹣2,故答案为:﹣2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于﹣bb aa,两根之积等于cc aa.”是解题的关键.【变式5-3】(23-24九年级·四川广安·阶段练习)已知关于x的一元二次方程x2﹣2kx+12k2﹣2=0.设x1,x2是方程的根,且x12﹣2kx1+2x1x2=5,则k的值为.【答案】±√14【分析】先计算出一元二次方程判别式,即△=2k2+8,从而得到△>0,于是可判断不论k为何值,方程总有两个不相等实数根;再利用方程的解的定义得到x12-2kx1=-12k2+2,根据根与系数的关系可得x1x2=12k2-2,则-12k2+2+2·(12k2-2)=5,然后解关于k的方程即可.【详解】(1)证明:△=(-2k)2-4(12k2-2)=2k2+8>0,所以不论k为何值,方程总有两个不相等实数根;(2)∵x1是方程的根,∴x12-2kx1+12k2-2=0,∴x12-2kx1=-12k2+2,∵x12-2kx1+2x1x2=5,x1x2=12k2-2,∴-12k2+2+2·(12k2-2)=5,整理得k2-14=0,∴k=±√14.故答案为±√14.【点睛】本题考查一元二次方程的根与系数的关系,一元二次方程根的判别式,关键是熟练掌握一元二次方程根的判别式和根与系数的关系.【题型6 构造一元二次方程求代数式的值】【例6】(23-24九年级·江苏无锡·阶段练习)已知ss满足2ss2−3ss−1=0,tt满足2tt2−3tt−1=0,且ss≠tt,则ss+tt=.【答案】32【分析】本题主要考查了一元二次方程根与系数的关系,正确得到ss+tt=32,sstt=−12是解题的关键.由题意可知实数ss、tt是关于xx的方程2xx2−3xx−1=0的两个不相等的实数根,由此可得答案.【详解】解:∵实数ss、tt满足2ss2−3ss−1=0,2tt2−3tt−1=0,且ss≠tt,∴实数ss、tt是关于xx的方程2xx2−3xx−1=0的两个不相等的实数根,∴ss+tt=32.故答案为:32.【变式6-1】(23-24·湖南常德·一模)若两个不同的实数m、n满足mm2=mm+1,nn2−nn=1,则mm2+nn2=.【答案】3【分析】本题考查了一元二次方程根与系数的关系,完全平方公式的应用,先根据已知条件得到m、n是关于x的一元二次方程的两个不等实数根,然后根据根和系数的关系得到结果,再根据完全平方公式计算即可,理解m、n是关于x的一元二次方程的两个不等实数根是解题的关键.【详解】解:由题可得:mm2−mm−1=0,nn2−nn−1=0,∴m、n是关于x的一元二次方程xx2−xx−1=0的两个不等实数根,∴mm+nn=1,mmnn=−1,∴mm2+nn2=(mm+nn)2−2mmnn=122×(−1)=3,故答案为:3.【变式6-2】(23-24九年级·全国·竞赛)已知实数aa、bb分别满足aa=16aa2+13和12bb2=3bb−1,那么bb aa+aa bb的值是.【答案】2或16【分析】本题考查一元二次方程的根,一元二次方程根与系数的关系等,分情况讨论,当aa=bb时,bb aa+aa bb=2;当aa≠bb时,a和b是方程xx2−6xx+2=0的两个根,再由根与系数的关系求出aa+bb和aabb,再将bb aa+aa bb变形为(aa+bb)2−2aabbaabb,即可求解.【详解】解:分两种情况:当aa=bb时,bb aa+aa bb=1+1=2;当aa≠bb时,∵12bb2=3bb−1,∴bb=16bb2+13,∴bb2−6bb+2=0,又∵aa=16aa2+13,∴aa2−6aa+2=0,∴a和b是方程xx2−6xx+2=0的两个根,∴aa+bb=−−61=6,aabb=2,∴bb aa+aa bb=bb2+aa2aabb=(aa+bb)2−2aabb aabb=62−2×22=16,故答案为:2或16.【变式6-3】(23-24九年级·浙江宁波·期末)若aa4−3aa2=1,bb2−3bb=1,且aa2bb≠1,则bb aa2的值是.【答案】−1【分析】本题考查一元二次方程根与系数的关系,根据题意先化为1aa4−3aa2−1=0,bb2−3bb−1=0,可以得到1aa2和b是方程xx2−3xx−1=0的两根,然后根据两根之积为cc aa解题即可.【详解】解:∵aa4−3aa2=1,∴1aa4−3aa2−1=0,∵aa2bb≠1,又∵bb2−3bb−1=0,∴1aa2和b是方程xx2−3xx−1=0的两根,∴bb aa2=−1,故答案为:−1.【题型7 由一元二次方程的根判断另一个一元二次方程的根】【例7】(23-24九年级·浙江台州·期末)若关于x的一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的一个根为m,则方程aa(xx−1)2+2aa(xx−1)+cc=0的两根分别是().A.mm+1,−mm−1B.mm+1,−mm+1C.mm+1,mm+2 D.mm−1,−mm+1【答案】A【分析】根据一元二次方程的根与系数的关系求出方程aaxx2+2aaxx+cc=0的另一个根,设xx−1=tt,根据方程aaxx2+2aaxx+cc=0的根代入求值即可得到答案;【详解】解:∵一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的一个根为m,设方程另一根为n,∴nn+mm=−2aa aa=−2,解得:nn=−2−mm,设xx−1=tt,方程aa(xx−1)2+2aa(xx−1)+cc=0变形为aatt2+2aatt+cc=0,由一元二次方程aaxx2+2aaxx+cc=0(aa≠0)的根可得,tt1=mm,tt2=−2−mm,∴xx−1=−2−mm,xx−1=mm,∴xx1=−mm−1,xx2=1+mm,故答案为:A.【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.【变式7-1】(23-24九年级·安徽合肥·期中)已知关于x的一元二次方程xx2+ccxx+aa=0的两个整数根恰好比方程xx2+aaxx+bb=0的两个根都大1,则aa+bb+cc的值是.【答案】-3或29【分析】设方程xx2+aaxx+bb=0的两个根为αα,ββ,其中αα,ββ为整数,且αα≤ββ,则方程xx2+ccxx+aa=0的两根为αα+1,ββ+1,根据题意列出式子,再进行变形即可求出.【详解】解:设方程xx2+aaxx+bb=0的两个根为αα,ββ,其中αα,ββ为整数,且αα≤ββ,则方程xx2+ccxx+aa=0的两根为αα+1,ββ+1,由题意得αα+ββ=−aa,(αα+1)(ββ+1)=aa,两式相加得ααββ+2αα+2ββ+1=0,即(αα+2)(ββ+2)=3,所以{αα+2=1,ββ+2=−1.ββ+2=3;或{αα+2=−3,解得{αα=−1,ββ=−3.ββ=1;或{αα=−5,又因为aa=−(αα+ββ),bb=ααββ,cc=−[(αα+1)+(ββ+1)]所以aa=0,bb=−1,cc=−2;或者aa=8,bb=15,cc=6,故aa+bb+cc=−3或29.故答案为-3或29【点睛】主要考查一元二次方程的整数根与有理根,一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;(23-24九年级·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程xx2−8ccxx−9dd=0【变式7-2】的解,c、d是方程xx2−8aaxx−9bb=0的解,则aa+bb+cc+dd的值为.【答案】648【分析】由根与系数的关系得aa+bb,cc+dd的值,两式相加得的值,根据一元二次方程根的定义可得aa2−8aacc−9dd=0,代入可得aa2−72aa+9cc−8aacc=0,同理可得cc2−72cc+9aa−8aacc=0,两式相减即可得aa+cc的值,进而可得aa+bb+cc+dd的值.【详解】解:由根与系数的关系得aa+bb=8cc,cc+dd=8aa,两式相加得aa+bb+cc+dd=8(aa+cc).因为aa是方程xx2−8ccxx−9dd=0的根,所以aa2−8aacc−9dd=0,又dd=8aa−cc,所以aa2−72aa+9cc−8aacc=0①同理可得cc2−72cc+9aa−8aacc=0②①-②得(aa−cc)(aa+cc−81)=0.因为aa≠cc,所以aa+cc=81+bb+cc+dd=8(aa+cc)=648.故答案为648【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.【变式7-3】(23-24九年级·安徽合肥·期末)关于x的一元二次方程xx2+ppxx+qq=0有两个同号非零整数根,关于y的一元二次方程yy2+qqyy+pp=0也有两个同号非零整数根,则下列说法正确的是()A.p是正数,q是负数B.(pp−2)2+(qq−2)2<8C.q是正数,p是负数D.(pp−2)2+(qq−2)2>8【答案】D【分析】设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.根据方程解的情况,结合根与系数的关系可得出x1•x2=q>0,y1•y2=p>0,即可判断A与C;②由方程有两个实数根结合根的判别式得出p2﹣4q≥0,q2﹣4p≥0,利用不等式的性质以及完全平方公式得出(p﹣2)2+(q﹣2)2>8,即可判断B【详解】解:设方程x2+px+q=0的两根为x1、x2,方程y2+qy+p=0的两根为y1、y2.∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴x1•x2=q>0,y1•y2=p>0,故选项A与C说法均错误,不符合题意;∵关于x的一元二次方程x2+px+q=0有两个同号非零整数根,关于y的一元二次方程y2+qy+p=0也有两个同号非零整数根,∴p2﹣4q≥0,q2﹣4p≥0,∴(p﹣2)2+(q﹣2)2=p2﹣4q+4+q2﹣4p+4>8(p、q不能同时为2,否则两个方程均无实数根),故选项B说法错误,不符合题意;选项D说法正确,符合题意;故选:D.【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.【题型8 根与系数的关系与三角形、四边形的综合运用】【例8】(23-24九年级·山东·课后作业)已知菱形ABCD的边长为5,两条对角线交于O点,且OA、OB 的长分别是关于xx的方程xx2+(2mm−1)xx+mm2+3=0的根,则mm等于()A.−3B.5C.5或−3D.−5或3【答案】A【分析】由题意可知:菱形ABCD的边长是5,则AAOO2+BBOO2=25,则再根据根与系数的关系可得:AAOO+BBOO=−2mm+1,AAOO×BBOO=mm2+3;代入AAOO2+BBOO2中,得到关于m的方程后,求得m的值.【详解】由直角三角形的三边关系可得:AAOO2+BBOO2=25,又有根与系数的关系可得:AAOO+BBOO=−2mm+1,AAOO×BBOO=mm2+3,∴AAOO2+BBOO2=(AAOO+BBOO)2−2AAOO×BBOO=(−2mm+1)2−2(mm2+3)=25,整理得:mm2−2mm−15=0,解得:m=−3或5.又∵Δ>0,∴(2mm−1)2−4(mm2+3)>0,解得mm<−114,∴mm=−3.【点睛】考查一元二次方程根与系数的关系以及菱形的性质,注意掌握勾股定理在解题中的应用. 【变式8-1】(23-24九年级·黑龙江齐齐哈尔·期末)已知三角形的两边长分别是方程xx2−11xx+30=0的两个根,则该三角形第三边mm的取值范围是.【答案】1<mm<11【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x2−11x+30=0的两个根,∴x1+x2=11,x1x2=30,∵(x1−x2)2=(x1+x2)2−4x1x2=121−120=1,∴x1−x2=1,又∵x1−x2<m<x1+x2,∴1<m<11.故答案为:1<m<11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.【变式8-2】(23-24九年级·安徽六安·阶段练习)已知正方形AABBAAAA的两邻边AABB,AAAA的长度恰为方程xx2−mmxx+ 1=0的两个实数根,则正方形AABBAAAA的周长为()A.2 B.4 C.6 D.8【答案】B【分析】此题考查了正方形的性质,一元二次方程根与系数的关系.首先根据正方形的性质得到AABB=AAAA,然后根据一元二次方程根与系数的关系得到AABB⋅AAAA=1,进而求出AABB=AAAA=1,即可得到正方形AABBAAAA的周长.【详解】∵四边形AABBAAAA是正方形∴AABB=AAAA∵正方形AABBAAAA的两邻边AABB,AAAA的长度恰为方程xx2−mmxx+1=0的两个实数根,∴AABB⋅AAAA=1,∴AABB=AAAA=1∴正方形AABBAAAA的周长为4.故选:B.【变式8-3】(23-24九年级·浙江杭州·期中)已知关于xx的一元二次方程xx2−3xx+kk=0有两个实根xx1和xx2.(1)求实数kk的取值范围;(2)是否存在矩形,xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2?若存在,求kk的值;若不存在,请说明理由.【答案】(1)kk≤94(2)不存在,理由见解析【分析】本题考查了根与系数的关系和根的判别式,勾股定理,能熟记根与系数的关系和根的判别式的内容是解此题的关键.(1)求出Δ的值,根据已知得出不等式,求出即可;(2)根据根与系数的关系得出xx1+xx2=3,xx1xx2=kk,根据已知得出xx12+xx22=�√2�2,变形后代入求出kk的值,进行判断即可.【详解】(1)解:∵关于xx的一元二次方程xx2−3xx+kk=0有两个实根xx1和xx2,∴Δ=(−3)2−4×1×kk≥0,解得:kk≤94;(2)xx1和xx2一元二次方程xx2−3xx+kk=0的两根,∴xx1+xx2=3,xx1xx2=kk,∵xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2,∴xx12+xx22=�√2�2,∴(xx1+xx2)2−2xx1xx2=2,∴9−2kk=2,解得:kk=72,∵kk≤94,72>94,∴kk=72不符合题意,∴不存在矩形,xx1和xx2是这个矩形两邻边的长,且矩形的对角线长为√2.【题型9 由一元二次方程根的取值范围求字母的取值范围】【例9】(23-24·浙江宁波·模拟预测)已知关于xx的一元二次方程xx2+aaxx+bb=0有两个根xx1,xx2,且满足1< xx1<xx2<2.记tt=aa+bb,则tt的取值范围是.【答案】−1<tt<0【分析】本题考查了一元二次方程根和系数的关系,不等式的性质,由根和系数的关系可得,xx1+xx2=−aa,xx1xx2=bb,得到tt=(xx1−1)(xx2−1)−1,由1<xx1<xx2<2可得0<(xx1−1)(xx2−1)<1,即得到−1< (xx1−1)(xx2−1)−1<0,即可求解,掌握一元二次方程根和系数的关系是解题的关键.【详解】解:由根和系数的关系可得,xx1+xx2=−aa,xx1xx2=bb,∴aa=−(xx1+xx2),bb=xx1xx2,∴tt=aa+bb=−(xx1+xx2)+xx1xx2=(xx1−1)(xx2−1)−1,∵1<xx1<xx2<2,∴0<xx1−1<1,0<xx2−1<1,∴0<(xx1−1)(xx2−1)<1,∴−1<(xx1−1)(xx2−1)−1<0,即−1<tt<0,故答案为:−1<t<0.【变式9-1】(23-24九年级·浙江金华·阶段练习)若关于x的方程4xx2−5xx−(mm+5)=0的解中,仅有一个正数解,则m的取值范围是.【答案】mm≥−5【分析】根据一元二次方程根的分布,根的判别式以及根与系数的关系列出不等式组,并解答求得mm的取值范围.本题主要考查了一元二次方程根的分布,根的判别式和根与系数的关系等知识点,解此题的关键是得到�Δ=(−5)2−4×4×[−(mm+5)]≥0−mm+54≤0.【详解】解:∵关于xx的方程4xx2−5xx−(mm+5)=0的解中,仅有一个正数解,∴�Δ=(−5)2−4×4×[−(mm+5)]≥0−mm+54≤0,解得mm≥−5.故答案为:m≥−5.【变式9-2】(23-24九年级·山东青岛·阶段练习)若关于xx的方程xx2+ppxx+qq=0的两根同为负数,其中pp2−4qq≥0,则()A.pp>0且qq>0B.pp>0且qq<0C.pp<0且qq>0D.pp<0且qq<0【答案】A【分析】据pp2-4q≥0,得出方程有两个实数根,再根据已知条件得出两根之积>零、两根之和<零时,由此得到关于p,q的不等式,然后确定它们的取值范围即可.【详解】∵pp2-4q≥0,∴方程有两个实数根.设xx1,xx2是该方程的两个负数根,则有xx1+xx2<0,xx1xx2>0,xx1+xx2=-p,xx1xx2=q,∴-p<0,,q>0.∴p>0,,q>0.故选A.【点睛】本题考查一元二次方程根的符号的确定,应利用一元二次方程根与系数的关系与根的判别式. 【变式9-3】(23-24九年级··期中)若关于xx的一元二次方程xx2+2xx+1−2mm=0的两个实数根之积为负数,则实数mm的取值范围是()A.mm>0B.mm>12C.mm<12D.mm<0【答案】B【分析】利用根的判别式Δ>0及两根之积为负数,即可得出关于mm的一元一次不等式组,解之即可得出实数mm的取值范围.【详解】解:∵关于xx的一元二次方程xx2+2xx+1−2mm=0的两个实数根之积为负数,∴�Δ=22−4×1×(1−2mm)>01−2mm<0解得:mm>12,∴实数m的取值范围是mm>12.故选:B.【点睛】本题考查了根与系数的关系以及根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”及“两根之积等于c a”是解题的关键.【题型10 一元二次方程中的新定义问题】【例10】(23-24九年级·黑龙江哈尔滨·期中)定义:若x₁、x₂是方程aaxx²+bbxx+cc=0(aa≠0)的两个实数根,若满足|xx1−xx2|=|xx1⋅xx2|,则称此类方程为“差积方程”.例如:�xx−12�(xx−1)=0是差积方程.(1)判断方程6xx2−5xx+1=0是否为“差积方程”?并验证;(2)若方程xx2−(mm+2)xx+2mm=0是“差积方程”,直接写出m的值;(3)当方程(aaxx²+bbxx+cc=0(aa≠0)为“差积方程”时,求a、b、c满足的数量关系.【答案】(1)是,证明见解析(2)mm=23或−2(3)bb2−4aacc=cc2【分析】本题考查了根与系数的关系,解一元二次方程,理解新定义是解题的关键.(1)分别根据因式分解法解一元二次方程,然后根据定义判断即可;(2)先根据因式分解法解一元二次方程,然后根据定义列出绝对值方程,解方程即可求解;(3)根据求根公式求得xx1,xx2【详解】(1)方程6xx2−5xx+1=0是“差积方程”,证明:6xx2−5xx+1=0,即(2xx−1)(3xx−1)=0,解得xx1=12,xx2=13,∵|12−13|=|12×13|,∴6xx2−5xx+1=0是差积方程;(2)解:xx2−(mm+2)xx+2mm=0,(xx−mm)(xx−2)=0解得方程的解为:xx1=2,xx2=mm,∵xx2−(mm+2)xx+2mm=0是差积方程,∴|2−mm|=|2mm|,即:2−mm=2mm或2−mm=−2mm.解得:mm=23或−2,(3)解:∵aaxx2+bbxx+cc=0(aa≠0),解得xx1=−bb+√bb2−4aacc2aa,xx2=−bb−√bb2−4aacc2aa,∵aaxx2+bbxx+cc=0(aa≠0)是差积方程,∴|xx1−xx2|=|xx1⋅xx2|,即|√bb2−4aacc aa|=|cc aa|,即bb2−4aacc=cc2.(23-24九年级·上海青浦·期中)如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例【变式10-1】如xx2+xx=0是“差1方程”.已知关于xx的方程xx2−(mm−1)xx−mm=0(mm是常数)是“差1方程”,则mm的值为【答案】−2或0/0或−2【分析】本题考查根与系数的关系.设方程的两个根为xx1,xx2(xx1<xx2),由题意,得:xx1+xx2=mm−1,xx1xx2=−mm,xx2−xx1=1,利用完全平方公式的变形式进行计算即可.【详解】解:设方程的两个根为xx1,xx2(xx1<xx2),由题意,得:xx1+xx2=mm−1,xx1xx2=−mm,xx2−xx1=1,∴(xx2−xx1)2=(xx1+xx2)2−4xx1xx2=(mm−1)2+4mm=1,解得:mm=−2或mm=0,故答案为:−2或0.【变式10-2】(23-24九年级·四川·阶段练习)已知对于两个不相等的实数aa、bb,定义一种新的运算:aa@bb=√aabb aa+bb,如6@15=√6×156+15=3√1021=√107,已知mm,nn是一元二次方程xx2−21xx+7=0的两个不相等的实数根,则[(mm+ nn)@mmnn]@√3=.【答案】25【分析】首先根据根与系数的关系求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由mm,nn是xx2−21xx+7=0的两个不相等的实数根可得:mm+nn=21,mmnn=7故[(mm+nn)@mmnn]@√3=(21@7)@√3=�√21×721+7�@√3=�√14728�@√3=7√328@√3=√34@√3=�√34×√3√34+√3=√32×45√3=25【点睛】本题考查了一元二次方程的根与系数关系,实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.【变式10-3】(23-24九年级·江苏盐城·阶段练习)定义:已知xx1,xx2是关于x的一元二次方程aaxx2+bbxx+cc= 0(aa≠0)的两个实数根,若xx1<xx2<0,且3<xx1xx2<4,则称这个方程为“限根方程”.如:一元二次方程xx2+ 13xx+30=0的两根为xx1=−10,xx2=−3,因为−10<−3<0,3<−10−3<4,所以一元二次方程xx2+13xx+ 30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程xx2+9xx+14=0是否为“限根方程”,并说明理由;(2)若关于x的一元二次方程xx2+(kk+9)xx+kk2+8=0是“限根方程”,且方程的两根xx1、xx2满足11xx1+ 11xx2+xx1xx2=−121,求k的值.【答案】(1)此方程为“限根方程”,理由见解析(2)5【分析】本题考查了因式分解法解一元二次方程,一元二次方程的根与系数的关系.理解题意,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系是解题的关键.(1)因式分解法解一元二次方程得xx1=−7,xx2=−2,根据定义,求解作答即可;(2)由xx2+(kk+9)xx+kk2+8=0,可得xx1+xx2=−kk−9,xx1xx2=kk2+8,代入11xx1+11xx2+xx1xx2=−121,整理得,kk2−11kk+30=0,解得,kk=5或kk=6,分当kk=5时,当kk=6时,两种情况求解,然后判断作答即可.。

1.3 一元二次方程的根与系数的关系(六大题型)-原

1.3 一元二次方程的根与系数的关系(六大题型)-原

1.3一元二次方程的根与系数的关系考点一.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21.注意它的使用条件为a≠0,Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.考点二.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++= ;③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=;⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k x x k =+++;⑦12||x x -==;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==;⑨12x x -=;⑩12||||x x +===.(4)已知方程的两根,求作一个一元二次方程;以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号.设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数;当△≥0且120x x >,120x x +<时,两根同为负数.②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a +a a ,b 为有理数).题型1:利用一元二次方程根与系数的关系求值1.若1x 、2x 是一元二次方程2750x x -+=的两根,则12x x 的值是()A .7B .7-C .5D .5-2.设方程22410x x -+=的两个根为1x ,2x ,则12x x +的值是()A .4-B .2-C .2D .4题型2:通过化简、变形利用一元二次方程根与系数的关系求值3.已知关于x 的一元二次方程220x mx --=有两个实数根1x ,2x ,若1212335x x x x +-=,则m 的值为()A .1B .1-C .2D .2-4.已知α、β是方程2220220x x --=的两个实数根,则2422ααβ---的值是()A .2016B .2018C .2022D .20245.若方程2240x x --=的两个实数根为1x 、2x ,则()()1211x x --的值为()A .7B .3C .-5D .96.已知1x ,2x 是一元二次方程2630x x -+=的两个实数根,则1211+x x =()A .14B .2C .4-D .47.设1x ,2x 是一元二次方程230x x +-=的两个根,那么3212419x x -+的值等于()A .4-B .8C .6D .0考点3:利用一元二次方程根与系数的关系求参数8.若关于x 的一元二次方程22(6)60x m m x ----=的两个根互为相反数,则m 的值为()A .3或2-B .2-C .3D .2或3-9.若关于x 的一元二次方程()2220x k x k +++=的两根互为倒数,则k =()A .3B .1C .1-D .1±10.12,x x 是方程20x x k ++=的两个实根,若22211222,x x x x k ++=恰成立,则k 的值为()A .1-B .12或1-C .12D .12-或1考点4:利用一元二次方程根与系数的关系分析、判断命题真假11.关于x 的方程(x ﹣1)(x +2)=p 2(p 为常数)根的情况下,下列结论中正确的是()A .两个正根B .一个正根,一个负根,正根的绝对值比负根的绝对值大C .两个负根D .一个正根,一个负根,正根的绝对值比负根的绝对值小12.有两个关于x 的一元二次方程:2:0M ax bx c ++=,2:0N cx bx a ++=,其中a +c =0,以下列四个结论中,①如果0a b c ++=,那么方程M 和方程N 有一个公共根为1;②方程M 和方程N 的两根符号异号,而且它们的两根之积必相等;③如果2是方程M 的一个根,那么12一定是方程N 的一个根;④如果方程M 和方程N 有一个相同的根,那么这个根必定是1x =.其中错误的结论的个数是()A .0个B .1个C .2个D .3个考点5:利用一元二次方程根与系数的关系比较根的大小13.设1x ,2x 是关于x 的一元二次方程2x x n mx ++=的两个实数根.若120x x <<,则()A .1,0m n >⎧⎨>⎩B .1,0m n >⎧⎨<⎩C .1,0m n <⎧⎨>⎩D .1,0m n <⎧⎨<⎩14.关于x 的方程()()23x x m --=有两个不相等的实数根1x ,()212x x x <,则下列结论一定正确的是()A .14m >-B .12522x x +=C .当0m >时,1223x x <<<D .当0m >时,1223x x <<<考点6:解答证明题15.已知关于x 的方程:220x ax a ++-=.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若方程的两个实数根,1x ,2x 满足22127x x +=,求a 的值.16.关于x 的一元二次方程:()222110x k x k ++++=(1)若方程有两个不等的实数根,求k 的取值范围;(2)若1x 、2x 是方程的两根,且12122x x x x +=-⋅.求k 的值.17.已知关于x 的方程()22204m x m x ---=(1)求证:无论m 取什么实数,这个方程总有两个相异的实数根;(2)若这个方程的两个实数根12x x 、满足212x x -=,求m 的值及相应的12x x 、.18.阅读下列材料并完成练习题:已知一元一次方程()200ax bx c a ++=≠的两个实数根分别为1x 和2x ∵()()212++=--ax bx c a x x x x ∴()221212ax bx c ax a x x x ax x ++=-++对比系数可得:12b x x a+=-,12c x x a ⋅=类比上面的证明方法:(1)如果一元三次方程()3200ax bx cx d a +++=≠的两个实数根分别为1x ,2x ,3x ,123x x x ++=______,123x x x =______,121323x x x x x x ++______.(2)已知方程322310x x x --+=,求值:222123x x x ++=______.19.阅读下列材料:韦达定理:若一元二次方程()200ax bx c a ++=≠的两根分别为12,x x .则12 b x x a +=-,12c x x a=.阅读下面应用韦达定理的过程:若一元二次方程22340x x -++=的两根分别为12,x x .求()()1211x x ++的值.解:该一元二次方程的判别式()2243424410b ac -∆=-=⨯-⨯=>,由韦达定理可得:12 3 2b x x a +=-=,122c x x a==-,()()()12121231111 2122x x x x x x ++=+++=-++=解答下列问题:(1)设方程23510x x --=的两根分别为12,x x ,不解方程,利用韦达定理求代数式()()123131x x +--的值;(2)若关于x 的一元二次方程()222 120x k x k +++=-的两实数根分别为,αβ,且()()212121αβ++=,利用韦达定理求k 的值.二、填空题11.1x =是关于x 的一元二次方程250x mx +-=的一个根,则此方程的另一个根是______12.若a ,b 是方程2210x x --=的两个实数根,则()()11a b ++的值为________.三、解答题答案与解析题型1:利用一元二次方程根与系数的关系求值1.若1x 、2x 是一元二次方程2750x x -+=的两根,则12x x 的值是()A .7B .7-C .5D .5-【点睛】本题考查了一元二次方程根与系数的关系:若1x 、2x 是一元二次方程()200ax bx c a ++=≠的两根,则12b x x a+=-,12c x x a =,熟练掌握一元二次方程根与系数的关系是解答本题的关键.2.设方程22410x x -+=的两个根为1x ,2x ,则12x x +的值是()A .4-B .2-C .2D .4题型2:通过化简、变形利用一元二次方程根与系数的关系求值3.已知关于x 的一元二次方程220x mx --=有两个实数根1x ,2x ,若1212335x x x x +-=,则m 的值为()A .1B .1-C .2D .2-【答案】A【分析】根据一元二次方程根与系数关系代入求解即可得到答案.【解析】解:由题意可得,【点睛】本题考查一元二次方程根与系数关系:12x x a+=-,12c x x a =.4.已知α、β是方程2220220x x --=的两个实数根,则2422ααβ---的值是()A .2016B .2018C .2022D .2024【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,掌握以上知识是解题的关键.5.若方程2240x x --=的两个实数根为1x 、2x ,则()()1211x x --的值为()A .7B .3C .-5D .9421=--+=5-,故选:C .【点睛】本题考查了一元二次方程根与系数的关系,熟知:若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则12b x x a+=-,12cx x a =;是解本题的关键.6.已知1x ,2x 是一元二次方程2630x x -+=的两个实数根,则1211+x x =()A .14B .2C .4-D .4【点睛】此题考查了一元二次方程根与系数的关系以及分式的运算,解题的关键是掌握一元二次方程根与系数的关系,1x ,2x 是一元二次方程20ax bx c ++=的两个实数根,则12b x x a+=-,12cx x a =.7.设1x ,2x 是一元二次方程230x x +-=的两个根,那么3212419x x -+的值等于()A .4-B .8C .6D .0【答案】D【分析】根据一元二次方程解的定义和根与系数的关系得到121x x +=-,2113x x =-,2223x x =-,进而推出31143x x =-,再推出()32121241944x x x x -+=++,代入121x x +=-即可得到答案.【解析】解:∵1x ,2x 是一元二次方程230x x +-=的两个根,∴21130x x +-=,22230x x +-=,121x x +=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数的关系应用例析及训练一、根据判别式,讨论一元二次方程的根。

例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的的取值围中筛选符合条件的的整数值。

解:∵方程(1)有两个不相等的实数根,∴解得;∵方程(2)没有实数根,∴解得;于是,同时满足方程(1),(2)条件的的取值围是其中,的整数值有或当时,方程(1)为,无整数根;当时,方程(1)为,有整数根。

解得:所以,使方程(1)有整数根的的整数值是。

总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。

二、判别一元二次方程两根的符号。

例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。

因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。

解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。

设方程的两个根为,∵<0∴原方程有两个异号的实数根。

总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。

例2:已知方程的一个根为2,求另一个根及的值。

分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。

解法一:把代入原方程,得:即解得当时,原方程均可化为:,解得:∴方程的另一个根为4,的值为3或—1。

解法二:设方程的另一个根为,根据题意,利用韦达定理得:,∵,∴把代入,可得:∴把代入,可得:,即解得∴方程的另一个根为4,的值为3或—1。

总结:比较起来,解法二应用了韦达定理,解答起来较为简单。

例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。

分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。

解:∵方程有两个实数根,∴△解这个不等式,得≤0设方程两根为则,∵∴∴整理得:解得:又∵,∴总结:当求出后,还需注意隐含条件,应舍去不合题意的。

四、运用判别式及根与系数的关系解题。

例5:已知、是关于的一元二次方程的两个非零实数根,问和能否同号?若能同号,请求出相应的的取值围;若不能同号,请总结理由,解:因为关于的一元二次方程有两个非零实数根,∴则有∴又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得:假设、同号,则有两种可能:(1)(2)若,则有:;即有:解这个不等式组,得∵时方程才有实树根,∴此种情况不成立。

若,则有:即有:解这个不等式组,得;又∵,∴当时,两根能同号总结:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。

知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出现频率很高,应是同学们重点练习的容。

六、运用一元二次方程根的意义及根与系数的关系解题。

例:已知、是方程的两个实数根,求的值。

分析:本题可充分运用根的意义和根与系数的关系解题,应摒弃常规的求根后,再带入的方法,力求简解。

解法一:由于是方程的实数根,所以设,与相加,得:)(变形目的是构造和)根据根与系数的关系,有:,于是,得:∴=0解法二:由于、是方程的实数根,∴∴总结:既要熟悉问题的常规解法,也要随时想到特殊的简捷解法,是解题能力提高的重要标志,是努力的方向。

有关一元二次方程根的计算问题,当根是无理数时,运算将十分繁琐,这时,如果方程的系数是有理数,利用根与系数的关系解题可起到化难为易、化繁为简的作用。

这类问题在解法上灵活多变,式子的变形具有创造性,重在考查能力,多年来一直受到命题老师的青睐。

七、运用一元二次方程根的意义及判别式解题。

例8:已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。

分析:当设两方程的相同根为时,根据根的意义,可以构成关于和的二元方程组,得解后再由根与系数的关系求值。

解:设两方程的相同根为,根据根的意义,有两式相减,得当时,,方程的判别式方程无实数解当时,有实数解代入原方程,得,所以于是,两方程至少有一个相同的实数根,4个实数根的相乘积为总结:(1)本题的易错点为忽略对的讨论和判别式的作用,常常除了犯有默认的错误,甚至还会得出并不存在的解:当时,,两方程相同,方程的另一根也相同,所以4个根的相乘积为:;(2)既然本题是讨论一元二次方程的实根问题,就应首先确定方程有实根的条件:且另外还应注意:求得的的值必须满足这两个不等式才有意义。

【趁热打铁】一、填空题:1、如果关于的方程的两根之差为2,那么。

2、已知关于的一元二次方程两根互为倒数,则。

3、已知关于的方程的两根为,且,则。

4、已知是方程的两个根,那么:;;。

5、已知关于的一元二次方程的两根为和,且,则;。

6、如果关于的一元二次方程的一个根是,那么另一个根是,的值为。

7、已知是的一根,则另一根为,的值为。

8、一个一元二次方程的两个根是和,那么这个一元二次方程为:。

二、求值题:1、已知是方程的两个根,利用根与系数的关系,求的值。

2、已知是方程的两个根,利用根与系数的关系,求的值。

3、已知是方程的两个根,利用根与系数的关系,求的值。

4、已知两数的和等于6,这两数的积是4,求这两数。

5、已知关于x的方程的两根满足关系式,求的值及方程的两个根。

6、已知方程和有一个相同的根,求的值及这个相同的根。

三、能力提升题:1、实数在什么围取值时,方程有正的实数根?2、已知关于的一元二次方程(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。

(2)若这个方程的两个实数根、满足,求的值。

3、若,关于的方程有两个相等的正的实数根,求的值。

4、是否存在实数,使关于的方程的两个实根,满足,如果存在,试求出所有满足条件的的值,如果不存在,请总结理由。

5、已知关于的一元二次方程()的两实数根为,若,求的值。

6、实数、分别满足方程和,求代数式的值。

答案与提示:一、填空题:1、提示:,,,∴,∴,解得:2、提示:,由韦达定理得:,,∴,解得:,代入检验,有意义,∴。

3、提示:由于韦达定理得:,,∵,∴,∴,解得:。

4、提示:由韦达定理得:,,;;由,可判定方程的两根异号。

有两种情况:①设>0,<0,则;②设<0,>0,则。

5、提示:由韦达定理得:,,∵,∴,,∴,∴。

6、提示:设,由韦达定理得:,,∴,解得:,,即。

7、提示:设,由韦达定理得:,,∴,∴,∴8、提示:设所求的一元二次方程为,那么,,∴,即;;∴设所求的一元二次方程为:二、求值题:1、提示:由韦达定理得:,,∴2、提示:由韦达定理得:,,∴3、提示:由韦达定理得:,,∴4、提示:设这两个数为,于是有,,因此可看作方程的两根,即,,所以可得方程:,解得:,,所以所求的两个数分别是,。

5、提示:由韦达定理得,,∵,∴,∴,∴,化简得:;解得:,;以下分两种情况:①当时,,,组成方程组:;解这个方程组得:;②当时,,,组成方程组:;解这个方程组得:6、提示:设和相同的根为,于是可得方程组:;①②得:,解这个方程得:;以下分两种情况:(1)当时,代入①得;(2)当时,代入①得。

所以和相同的根为,的值分别为,。

三、能力提升题:1、提示:方程有正的实数根的条件必须同时具备:①判别式△≥0;②>0,>0;于是可得不等式组:解这个不等式组得:>12、提示:(1)的判别式△>0,所以无论取什么实数值,这个方程总有两个不相等的实数根。

(2)利用韦达定理,并根据已知条件可得:解这个关于的方程组,可得到:,,由于,所以可得,解这个方程,可得:,;3、提示:可利用韦达定理得出①>0,②>0;于是得到不等式组:求得不等式组的解,且兼顾;即可得到>,再由可得:,接下去即可根据,>,得到,即:=44、答案:存在。

提示:因为,所以可设();由韦达定理得:,;于是可得方程组:解这个方程组得:①当时,;②当时,;所以的值有两个:;;5、提示:由韦达定理得:,,则,即,解得:6、提示:利用求根公式可分别表示出方程和的根:,,∴,∴,∴,又∵,变形得:,∴,∴。

相关文档
最新文档