材料学基本知识介绍

合集下载

材料科学基础考研复习

材料科学基础考研复习

材料科学基础考研复习材料科学基础是材料科学与工程学科中的一门基础课程,其内容涉及材料科学的基本理论、基本原理和基本方法,是进行材料科学研究和工程应用的基础。

考研复习材料科学基础需要系统地学习和理解相关知识点,加深对材料科学的理论和实践应用的认识。

1.材料工程基础知识:包括材料科学的发展历史、材料分类与特性等知识。

这些知识对于理解和掌握材料科学的基础概念和原理非常重要。

2.结构与性能关系:掌握材料的微观结构与宏观性能之间的关系。

了解材料的结构特点,如晶体结构、非晶态结构等,并能够解释材料性能改善的原因。

3.材料制备技术:学习不同材料的制备方法与工艺,如液相法、气相法、固相法等。

了解各种制备方法的特点及其对材料性能的影响。

4.材料测试与分析技术:包括材料的物理性能、化学性能和机械性能等测试方法与技术。

学习各种常用测试仪器和分析方法,如扫描电镜、透射电镜、X射线衍射等。

5.材料性能与应用:了解材料的各种性能指标,如强度、硬度、导电性、磁性等,并能够解释不同材料的性能应用特点。

在复习材料科学基础时,可以通过以下几个途径进行:1.整理笔记:将课堂上的重点内容进行整理和归纳,形成自己的复习笔记。

可以通过制作思维导图、总结重要公式和推导过程等方式,帮助加深对知识点的记忆和理解。

2.刷题巩固:通过解答一些典型的习题和试题,巩固所学知识。

可以选择一些综合性的考研试题进行模拟考试,提高解题能力和应试技巧。

3.参考教材和相关资料:选择几本优质的教材和参考书进行阅读和学习。

可以参考一些考研辅导资料和复习指南,了解相关知识点的掌握程度和考点分布。

4.学习小组讨论:可以与其他考研学生组成学习小组,一起讨论和解答问题。

通过讨论和交流,加深对知识点的理解和运用,并及时纠正和改进自己的思路和方法。

在复习材料科学基础时,还需要注意以下几点:1.提前规划:合理安排复习时间和目标,制定合理的学习计划。

根据自己的掌握情况和考试时间,合理安排每一阶段的复习内容和进度,保证复习进程的顺利进行。

材料加工学相关知识点总结

材料加工学相关知识点总结

材料加工学相关知识点总结一、材料加工学的基本概念1.材料的力学性能材料的力学性能是指在外力作用下产生的变形,包括塑性变形和弹性变形。

其弹性变形是指物体在外力的作用下发生形变,当撤去外力后,它能恢复到原来的形状,这种形变称为弹性变形;而塑性变形是指在外力的作用下,物体发生的不可逆形变。

2.材料的加工性能材料的加工性能是指材料在外力作用下的变形和断裂性能。

材料的加工性能决定了它是否适合进行某种特定的加工工艺,例如冷镦、冷锻、冲压等。

3.材料的切削性能材料的切削性能是指材料在切削过程中的性能。

材料的切削性能包括硬度、韧性、断裂性和耐磨性等。

4.材料的热加工性能材料的热加工性能是指材料在高温条件下的变形、变质和断裂性能。

材料的热加工性能是决定材料在热加工过程中能否顺利进行的重要因素。

5.材料的切削加工切削加工是通过刀具对工件进行相对运动,以实现工件形状、尺寸和表面质量的要求。

切削加工是常见的金属加工方式,包括车削、铣削、镗削、刨削等。

6.材料的非切削加工非切削加工是不通过刀具对工件进行相对运动而实现加工的一种加工方式。

非切削加工包括压铸、锻造、冷锻、冷镦、冲压、拉伸、折弯等。

7.材料的热处理热处理是通过加热、保温和冷却过程,改变材料的组织结构和性能,以达到提高材料力学性能、物理性能和化学性能的目的。

热处理包括退火、正火、淬火、回火、等温退火、调质处理等。

8.材料的表面处理表面处理是通过对材料表面进行改性,以实现对材料表面性能的改善。

表面处理包括镀层、喷涂、表面改性、电化学处理、化学处理等。

9.材料的加工原理材料的加工原理包括变形加工原理、切削加工原理、热处理原理、表面处理原理等。

这些原理是材料加工的理论基础,对于指导和改进加工工艺具有重要的意义。

10.材料的加工工艺材料的加工工艺是指在具体的加工条件下,通过采取一定的措施,使材料获得所需的形状、尺寸和表面质量的一系列工艺技术。

二、材料加工的基本方法1.切削加工切削加工是以切削刀具对工件进行相对运动,通过对工件的材料进行断屑的方式,实现对工件形状、尺寸和表面质量的要求。

大一材料化学知识点

大一材料化学知识点

大一材料化学知识点一、材料分类和材料性质1. 金属材料金属材料是由金属元素组成的材料,具有良好的导电性、导热性和可塑性。

常见的金属材料包括铁、铝、铜等。

金属材料在工业生产和建筑领域得到广泛应用。

2. 非金属材料非金属材料主要由非金属元素或化合物组成,具有较差的导电性和导热性。

常见的非金属材料有陶瓷、聚合物和复合材料等。

非金属材料在电子、医疗和环保等领域有重要应用价值。

3. 高分子材料高分子材料是由长链分子组成的材料,具有良好的可塑性和耐磨性。

常见的高分子材料有塑料、橡胶和纤维素等。

高分子材料广泛应用于塑料制品、橡胶制品和纺织品等行业。

4. 纳米材料纳米材料是指具有纳米级尺寸的材料,具有特殊的物理和化学性质。

常见的纳米材料有纳米颗粒、纳米管和纳米线等。

纳米材料在电子、光电和医学等领域发展迅速,具有广阔的应用前景。

二、材料结构和组织1. 晶体结构晶体结构是指材料中原子或离子的排列方式。

晶体结构的种类包括立方晶系、正交晶系和六方晶系等。

不同的晶体结构决定了材料的物理和化学性质。

2. 晶体缺陷晶体缺陷是指晶体中存在的原子或离子排列不完整的区域。

常见的晶体缺陷包括点缺陷、线缺陷和面缺陷等。

晶体缺陷对材料的强度和导电性能有重要影响。

3. 材料组织材料组织是指材料中各种组成成分的分布和排列方式。

常见的材料组织有均匀组织、层状组织和颗粒组织等。

不同的材料组织决定了材料的宏观性能和微观行为。

三、材料性能1. 机械性能机械性能是指材料在外力作用下的表现。

常见的机械性能包括强度、硬度和韧性等。

不同的材料具有不同的机械性能,适用于不同的工程应用。

2. 热学性能热学性能是指材料在热力学过程中的表现。

常见的热学性能包括热导率、膨胀系数和热稳定性等。

热学性能对材料的加工和使用具有重要的影响。

3. 电学性能电学性能是指材料在电场中的表现。

常见的电学性能包括电导率、介电常数和电阻率等。

不同的材料具有不同的电学性能,适用于不同的电子器件制备。

材料学基础知识(口腔材料学课件)

材料学基础知识(口腔材料学课件)
5.天然聚合物有专门名称
➢ 蛋白质、纤维素、淀粉、天然橡胶、脂肪
聚合成的高分子化合物
➢ 均聚物:一种单体 ➢ 共聚物:两种或两种以上的单体
➢ 聚甲基丙烯酸甲酯为均聚物
➢ 丁苯橡胶为共聚物
----( CH2--CH=CH--CH2 -)x--(-CH2--CH-y)--n--
(二)高分子材料分类
材料的微观结构
课程标准
➢ 能描述口腔常用材料的基本知识 ➢ 知道口腔材料的微观结构的基本概念
一、原子间结合键
结合键类型 离子键
实例
LiCl NaCl KCl RbCl
共价键
金属键
金刚石 Si Ge Sn
Li Na K Rb
分子键(范德华键)
Ne Ar
氢键
H2O
HF
结合能 ev/mol
8.63 7.94 7.20 6.90
➢ 晶格畸变 ➢ 强度、硬度增加 ➢ 韧性、延展性、塑性下降
2.金属间化合物
➢ 晶体结构与组成元素的晶体结构均不相同
➢ 可用分子式表示组成,如银汞合金
➢ 高熔点
➢ 硬度、脆性、强度、硬度和耐磨性提高
➢ 塑性降低
金属化合物MgCu2晶体结构
二、金属的熔融与凝固 熔融 凝固、体积收缩
(一)金属的凝固——结晶
➢ 口腔潮湿环境中耐腐蚀、耐氧化的金属,包括金 (Au)、铂 (Pt)、铱(Ir)、锇(Os)、钯(Pd)、铑(Rh)和钌(Ru),不包括 银
➢ 贵金属合金(noble metal alloy)和非贵金属合金(base-
metal alloy)
➢ 一种或几种贵金属元素总含量≥25wt%
五、金属的形变与热处理
三、高分子的分子结构

大一建筑材料学知识点

大一建筑材料学知识点

大一建筑材料学知识点建筑材料学是建筑工程专业的重要基础课程之一,它主要研究建筑材料的性能、特点以及在建筑中的应用。

对于建筑工程专业的学生来说,掌握建筑材料学的基础知识是非常重要的。

本文将介绍大一建筑材料学的一些重要知识点。

一、建筑材料的分类建筑材料可以根据其组成和性质的不同进行分类。

一般来说,建筑材料可以分为以下几类:1. 无机非金属材料:如水泥、石膏、玻璃等;2. 金属材料:如钢材、铝材、铜材等;3. 聚合物材料:如塑料、橡胶等;4. 复合材料:由两种或两种以上的材料组成,如钢筋混凝土等。

二、常见建筑材料1. 水泥:水泥是建筑中最常用的材料之一,主要用于制作混凝土和砂浆。

水泥具有硬化快、强度高等特点。

2. 砂浆:砂浆是一种由水泥、砂子和适量水混合而成的材料,用于修补和粘结建筑构件。

3. 砖:砖是一种常见的建筑材料,主要分为红砖和空心砖两种。

砖具有轻、强度高等特点。

4. 钢材:钢材是一种强度高、耐腐蚀的金属材料,常用于制作建筑结构中的梁、柱等构件。

5. 玻璃:玻璃具有透光性好、绝缘性能好等特点,广泛应用于建筑中的门窗、隔墙等。

三、建筑材料的性能与检测1. 强度:建筑材料的强度是指其抗压、抗弯等能力。

常用的检测方法有拉伸试验、压缩试验等。

2. 导热性能:建筑材料的导热性能直接影响着建筑的保温性能。

常用的检测方法有导热系数测定等。

3. 防火性能:建筑材料的防火性能是指在火灾中的耐高温性能。

常用的检测方法有燃烧试验等。

4. 耐候性:建筑材料的耐候性是指在不同气候条件下具有一定的稳定性。

常用的检测方法有湿热试验等。

四、建筑材料的应用1. 混凝土:混凝土是一种由水泥、骨料和适量水拌和而成的人造石材,广泛应用于建筑中的梁、柱等构件。

2. 钢材:钢材常用于建筑结构中,如制作钢结构框架、钢柱等。

3. 玻璃:玻璃作为建筑材料的重要组成部分,广泛应用于建筑中的窗户、隔断等。

总结:本文介绍了大一建筑材料学的一些重要知识点,包括建筑材料的分类、常见建筑材料、建筑材料的性能与检测以及建筑材料的应用。

上海交大材料科学基础知识点总结

上海交大材料科学基础知识点总结

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料学基础知识

材料学基础知识

材料学基础知识1. 材料抵抗冲击载荷而不破坏的能力称为冲击韧性。

2. 材料在弹性范围内,应力与应变的比值εσ/称为弹性模量E (单位MPa )。

E 标志材料抵抗弹性变形的能力,用以表示材料的刚度。

3. 强度是指材料在外力作用下抵抗永久变形和破坏的能力。

4. 塑性是材料在外力作用下发生塑性变形而不破坏的能力。

5. 韧性是材料在塑性应变和断裂全过程中吸收能量的能力,它是强度和塑性的综合表现。

6. 硬度是指材料对局部塑性变形、压痕或划痕的抗力。

7. 应力场强度因子I K ,这个I K 的临界值,称为材料的断裂韧度,用C K I 表示。

换言之,断裂韧度C K I 是材料抵抗裂纹失稳扩展能力的力学性能指标。

8. 晶体是指原子在其内部沿三维空间呈周期性重复排列的一类物质。

9. 非晶体是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。

10. 把原子看成空间的几何点,这些点的空间排列称为空间点阵。

用一些假想的空间直线把这些点连接起来,就构成了三维的几何格架称为晶格。

从晶格中取出一个最能代表原子排列特征的最基本的几何单元,称为晶胞。

11. 体心立方晶格(bcc );面心立方晶格(fcc );密排六方晶格(hcp )12. 在晶体中,由一系列原子所组成的平面称为晶面。

任意两个原子的连线称为原子列,其所指的方向称为晶向。

立方晶系中,凡是指数相同的晶面与晶向是相互垂直的。

13.在晶体中,不同晶面和晶向上原子排列方式和密度不同,则原子间结合力的大小也不同,因而金属晶体不同方向上性能不同,这种性质叫做晶体的各向异性。

14.所谓位错是指晶体中一部分晶体沿一定晶面与晶向相对另一部分晶体发生了一列或若干列原子某种有规律的错排现象。

位错的基本类型有两种,即刃型位错和螺旋位错。

15.由于塑性变形过程中晶粒的转动,当形变量达到一定程度(70%以上)时,会使绝大部分晶粒的某一位向与外力方向趋于一致,形成特殊的择优取向。

择优取向的结果形成了具有明显方向性的组织,称为织构。

材料力学的基本知识与基本原理

材料力学的基本知识与基本原理

材料力学的基本知识与基本原理材料力学是研究材料在外力作用下的力学性能和力学行为的学科。

它是材料科学与工程中的重要基础学科,对于材料的设计、制备和应用具有重要意义。

本文将介绍材料力学的基本知识与基本原理,帮助读者更好地理解材料的力学性质。

一、材料力学的基本概念材料力学是研究材料在外力作用下的力学行为的学科,它主要包括静力学、动力学和弹性力学等内容。

静力学研究材料在力的作用下的平衡状态,动力学研究材料在力的作用下的运动状态,而弹性力学则研究材料在外力作用下的弹性变形。

二、材料力学的基本原理1. 牛顿第一定律牛顿第一定律也被称为惯性定律,它指出物体在没有外力作用下将保持静止或匀速直线运动。

在材料力学中,这一定律可以解释材料在没有外力作用下的静力平衡状态。

2. 牛顿第二定律牛顿第二定律是描述物体受力后的运动状态的定律,它表明物体所受合力与物体的加速度成正比。

在材料力学中,牛顿第二定律可以用来描述材料在外力作用下的运动状态,从而研究材料的力学性能。

3. 弹性力学原理弹性力学原理是研究材料在外力作用下的弹性变形的原理。

它基于胡克定律,即应力与应变成正比。

应力是单位面积上的力,应变是单位长度上的变形量。

弹性力学原理可以用来计算材料在外力作用下的应力和应变,从而研究材料的弹性性能。

4. 应力与应变的关系应力与应变的关系是材料力学中的重要内容,它可以通过应力-应变曲线来描述。

应力-应变曲线是材料在外力作用下的应力和应变之间的关系曲线,它可以反映材料的力学性能和变形特性。

在应力-应变曲线中,通常有线弹性阶段、屈服阶段、塑性阶段和断裂阶段等不同的阶段。

5. 杨氏模量和泊松比杨氏模量和泊松比是材料力学中的两个重要参数。

杨氏模量是描述材料在拉伸或压缩时的刚度的参数,它越大表示材料越硬。

泊松比是描述材料在拉伸或压缩时的体积变化与形变的比值,它越小表示材料越不易变形。

三、材料力学的应用材料力学的研究成果广泛应用于材料科学与工程领域。

工程学材料力学基础知识

工程学材料力学基础知识

工程学材料力学基础知识工程学材料力学是工程学领域中的重要学科,它研究材料在受力作用下的力学行为和性能。

本文将为读者介绍工程学材料力学的基础知识,包括材料力学的定义、应力、应变、弹性和塑性行为以及应力-应变曲线等内容。

一、材料力学的定义工程学材料力学是研究材料在受力作用下的力学行为和性能的学科。

它研究材料的强度、刚度、韧性等力学性质,为工程设计和材料选用提供理论基础。

二、应力与应变应力是指单位面积内的力的大小,常用符号为σ,单位为帕斯卡(Pa)。

应力分为正应力和剪应力两种形式。

正应力是垂直于考察平面的力的作用,剪应力是平行于考察平面的力的作用。

应变是指受力下物体形变的程度,常用符号为ε,无单位。

应变分为纵向应变和横向应变两种形式。

纵向应变是物体沿受力方向的形变,横向应变是物体垂直于受力方向的形变。

三、弹性与塑性行为弹性是材料在受力作用下的瞬时回复能力,即材料在去除外力后能够恢复到原始形状的性质。

当材料受到小范围的外力作用时,其应力与应变之间呈现线性关系,这种关系称为胡克定律。

塑性是材料在受力作用下发生永久性形变的性质。

当材料受到较大范围的外力作用时,其应力与应变之间不再呈线性关系,会出现非弹性变形,导致材料的塑性行为。

四、应力-应变曲线应力-应变曲线是揭示材料力学性质的重要工具。

它反映了材料在受力作用下的力学变化过程。

一般来说,应力-应变曲线包括线性弹性阶段、屈服阶段、强化阶段和断裂阶段。

线性弹性阶段是指应力与应变之间呈线性关系的阶段。

在这个阶段,材料会根据外力大小发生弹性变形,而在去除外力后能够恢复到原始形状。

屈服阶段是指应力-应变曲线开始出现非线性关系的阶段。

当材料受到足够大的外力作用时,应力将突破一定值,材料会发生塑性变形。

强化阶段是指应力-应变曲线继续上升的阶段。

在该阶段,材料的应力逐渐增加,但不会再出现明显的塑性变形。

断裂阶段是指应力-应变曲线突然下降并最终断裂的阶段。

在这个阶段,材料无法承受外力继续变形,出现了破坏现象。

材料学面试知识点总结

材料学面试知识点总结

材料学面试知识点总结材料学是研究材料的组成、性能以及制备、改性、应用等方面的学科。

在材料学的面试中,面试官会主要考察面试者对于材料学领域的基础知识掌握和应用能力。

下面我们将对材料学面试的知识点进行总结,希望对准备面试的同学有所帮助。

1. 材料的基本分类面试者需要了解几种常见的材料分类,如金属材料、聚合物材料、陶瓷材料以及复合材料等。

对不同材料的性质、结构和特点进行分析,并能举例说明典型的材料在实际工程中的应用。

2. 结构与性能的关系面试者需要理解材料的结构与性能之间的关系,比如晶体结构对材料性能的影响、晶界对材料强度的影响以及晶格缺陷对材料的性能影响等。

对于晶体结构的基本概念、晶体缺陷的种类和性质、以及晶界的类型和性质等有一定的了解。

3. 材料的物理性能需要熟悉材料的各种物理性能,包括力学性能(强度、塑性、韧性等)、热学性能(热膨胀系数、热导率等)、电学性能(导电性、介电常数等)以及磁学性能(磁化强度、磁滞回线等)。

对于这些性能参数的测试方法、影响因素以及提高方法都需要有一定的了解。

4. 材料的化学性能面试者需要对材料的化学性能有所了解,包括材料的化学成分、化学反应、腐蚀行为等。

此外,对于材料的表面处理和防腐蚀方法也需要有一定的了解。

5. 材料的加工工艺需要了解材料的制备和加工工艺,对于材料的熔炼、铸造、热处理、成形、焊接等加工工艺有一定的了解。

还需要对于不同材料的加工特点、加工方法以及加工工艺对材料性能的影响有所了解。

6. 材料的表征与分析面试者需要了解材料的表征与分析方法,包括显微组织分析、表面形貌观测、化学成分分析以及性能测试等。

对于常见的材料分析仪器和测试方法有一定的了解,能够分析测试数据并对测试结果进行合理解释。

7. 材料的性能改性与应用面试者需要对材料的性能改性方法有所了解,包括材料的改性方式、改性方法以及改性后的效果。

此外,对于材料在各种工程领域中的应用也需要有一定的了解,能够举例说明材料在航空航天、汽车、建筑等领域的具体应用案例。

材料学基础知识

材料学基础知识

晶型转变
应力 亚稳态四方晶型氧化锆 → 单斜晶型氧化锆
镍钛合金晶型转变—镍钛合金丝的超弹性
奥氏体相 (面心立方)
降温 受力
升温 卸载
马氏体相 (体心立方)
弹性模量大 刚性强
弹性模量小 刚性弱,柔软
超弹性:
非晶体
是从一种过冷状态液体中得到的
一、金第属二的结节构 金属材料基本知识
腐蚀:与周围介质发生化学或电化学反应而破坏的现象。
1. 化学腐蚀 金属和介质直接反应(化学)使金属损坏。
2.电化学腐蚀 金属与电解质 溶液接触,形成原电池而发生 腐蚀损坏现象。
容易形成电化学腐蚀的情况:
(1) 不同金属或合金间的接触; (2) 金属化学成分、组织结构和物理状态的不均匀性等。
如: 合金内有两种不同组成的合金相; (3) 表面裂纹、铸造缺陷、污物覆盖等,降低该处唾液 中氢离子浓度而成为正极。
第三节 陶瓷材料基本知识 一、陶瓷的概念及分类
陶瓷的定义: 以黏土、长石、石英为主要原料, 经过粉碎、混炼、成型、煅烧等制作的产品。
广义陶瓷:用陶瓷生产方法制造的无机非金属固 体材料。
粉体
成型
坯体
烧结
陶瓷
53
分类:
❖ 普通陶瓷(传统陶瓷) ❖ 特种陶瓷(精细陶瓷、高技术陶瓷)
二、陶瓷的结构 通常由晶相、玻璃相和气相组成
获得具有一定形状和尺寸锻件的加工方法。
(三)机械切削
(四)粉末冶金 特点:适合于难熔金属,具有多孔结构。
粉料压 制成型
烧结
金+铂+有机 赋形剂
(五)电铸
知道电镀吗?
成型产品
(六) 激光选择性快速烧结成型
(selective Laser sintering)

建筑材料学知识点

建筑材料学知识点

建筑材料学知识点---------------------------------------绪论1.、建筑材料的基本要求:1具备设计的强度等级和结构稳定w性2建筑物的适用性3建筑物的耐久性这三者总称建筑物的可靠性。

2. 度量建筑物可靠性的数值指标叫做建筑物的可靠度。

其定义为:建筑物在规定的期间内(分析时的时间参数,也称设计基准期),在规定的条件下(指设计建筑物时所确定的正常设计、正常施工和正常适用的条件及环境条件,而不受人为过失影响),具有预订功能的概率。

3 从环境改善角度出发,具有环境改善功能的材料、高效率利用和低耗能材料、全寿命环境协调性和零排放的制备技术的材料,都属于环境协调性材料。

4 这种环境协调性材料的基本特征是;无毒无害,减少污染,包括避免温室效应和臭氧层破坏;全寿命过程对资源和能源消耗小;可再生循环利用,且容易回收;能做到高的使用率。

第一章建筑材料的基本性质1 材料密度:νρm =表观密度:aa v m =ρ 体积密度:00v m ,=ρ 堆积密度:通常所指的堆积密度是材料在自然堆积状态和气干状态下的,称为气干堆积密度。

,p v m =ρ 紧密密度:对于散粒体材料按规定方法填实后单位体积的质量称为紧密密度。

空隙率;散粒材料的空隙体积占堆积体积的百分数。

2 化学组成:无机非金属材料通常以各种氧化物含量的百分数表示。

无机非金属材料的基元是矿物,有机高分子化合物是链节。

3 硅氧骨架形式结构分别为:岛状结构、环状结构、链状结构、层状结构和架装结构。

4 建筑材料的宏观结构按空隙尺寸可分为;(1)致密结构(2)空隙结构(3)多孔结构5 当材料受到外力作用时产生变形,外力解除时变形能完全消失的性质称为弹性,这种变形称为弹性变形;若还存在永久变形的性质称为塑性,这种永久变形称为塑性变形。

6材料在外力作用下,破坏时不产生塑性变形,即使产生其数量很小,这种性质称为脆性,具有这种性质的材料称为脆性材料。

材料力学的基本知识及应用领域

材料力学的基本知识及应用领域

材料力学的基本知识及应用领域材料力学是研究材料在外力作用下的力学行为和性能的学科。

它是工程学和物理学的重要基础学科,广泛应用于材料科学、机械工程、土木工程、航空航天等领域。

本文将介绍材料力学的基本知识和一些典型的应用领域。

一、弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的弹性变形和应力分布规律。

弹性力学的基本原理是胡克定律,即应力与应变之间的线性关系。

根据胡克定律,可以计算材料的应力、应变、弹性模量等参数,进而预测材料的弹性行为和性能。

弹性力学在工程中的应用非常广泛。

例如,在设计建筑结构时,需要计算材料在外力作用下的变形和应力分布,以保证结构的安全性和稳定性。

此外,弹性力学还可以应用于材料的弹性模量测量、弹性形变的分析和材料的弹性失效分析等方面。

二、塑性力学塑性力学研究材料在外力作用下的塑性变形和应力分布规律。

与弹性力学不同,塑性力学考虑了材料的塑性变形,即材料在超过弹性限度后会出现不可逆的形变。

塑性力学的基本原理是屈服准则,根据不同的屈服准则可以计算材料的屈服强度、塑性应变等参数,进而预测材料的塑性行为和性能。

塑性力学在工程中的应用也非常广泛。

例如,在金属加工中,需要考虑材料的塑性变形,以实现材料的塑性成形。

此外,塑性力学还可以应用于材料的塑性失效分析、塑性变形的模拟和预测等方面。

三、断裂力学断裂力学研究材料在外力作用下的断裂行为和断裂韧性。

材料的断裂是指在外力作用下,材料出现裂纹并扩展至破裂的过程。

断裂力学的基本原理是线弹性断裂力学理论,根据该理论可以计算材料的断裂韧性、断裂强度等参数,进而预测材料的断裂行为和性能。

断裂力学在工程中的应用也非常重要。

例如,在设计结构时,需要考虑材料的断裂韧性,以确保结构的抗断裂能力。

此外,断裂力学还可以应用于材料的断裂失效分析、裂纹扩展的预测和控制等方面。

四、疲劳力学疲劳力学研究材料在交变应力作用下的疲劳寿命和疲劳失效机制。

材料的疲劳是指在交变应力作用下,材料由于应力集中、裂纹扩展等原因导致失效的过程。

材料学概论重点.doc

材料学概论重点.doc

材料学概论重点.doc材料学概论是材料学的入门课程,主要介绍材料科学的基本概念、理论和方法。

本文将重点介绍材料学概论中的一些重要内容。

1. 材料的基本分类材料可以按照其组成、特性及用途等方面进行分类。

从组成角度来看,材料可以分为金属材料、无机非金属材料和有机高分子材料等。

从特性角度来看,材料可以分为金属材料、陶瓷材料、塑料材料、纤维材料和半导体材料等。

从用途角度来看,材料可以分为结构材料、功能材料和生物材料等。

2. 材料的物理性质材料的物理性质包括密度、热力学性质、光学性质、磁性和导电性等。

密度是指单位体积内的质量,可以反映材料的重量和体积之间的关系。

热力学性质包括热容、热导率、热膨胀系数等,这些指标可以反映材料的热响应能力。

光学性质包括折射率、吸收系数、反射率等,可以反映材料的光传播和吸收能力。

磁性是指材料对磁场的响应能力,主要包括铁磁性、顺磁性和抗磁性。

导电性是指材料对电场的响应,主要包括导电材料和绝缘材料。

材料的化学性质包括化学组成、化学稳定性、反应性等。

化学组成是指材料中元素或化合物的种类和相对量,可以决定材料的性质和用途。

化学稳定性是指材料在不同环境下的稳定性,主要包括氧化性、还原性和腐蚀性等。

反应性是指材料与其他物质发生各种化学反应的能力。

4. 材料的制备和表征材料的制备包括物理制备和化学制备两类。

物理制备包括熔融法、凝固法、沉淀法和气相沉积法等,化学制备包括溶胶-凝胶法、水热法、电化学沉积法等。

材料的表征主要包括物理性质表征和化学性质表征。

物理性质表征主要包括形貌表征、结构表征和力学性质表征等,化学性质表征主要包括元素定量分析、化学反应等。

5. 材料的应用材料的应用涉及到多个领域,主要包括电子材料、光学材料、结构材料、生物材料等。

电子材料包括半导体材料、金属材料和磁性材料等,可以用于电子元件的制造;光学材料包括玻璃、透镜等,可以用于光学仪器和装置等;结构材料包括钢铁、混凝土等,可用于建筑和工程结构;生物材料包括医用材料和食品包装材料等。

材料学必备基础知识

材料学必备基础知识

材料学必备基础知识:材料性能的数值分析一、引言材料学作为一门涉及物质科学和工程应用的综合性学科,对于理解材料的性能及其变化规律具有重要意义。

本文将介绍材料学必备的基础知识,并重点探讨如何利用数值分析方法对材料性能进行深入研究。

二、材料学基础知识1.材料组成与结构:了解材料的元素组成、分子结构及晶体结构等信息,有助于分析材料的性能特点。

2.材料性质与性能:材料的物理性质(如密度、电导率、热导率等)、机械性质(如弹性模量、屈服强度、断裂韧性等)以及化学性质(如耐腐蚀性、抗氧化性等)是决定材料应用范围的关键因素。

3.材料制备与加工:了解材料的制备工艺、加工方法及热处理过程,有助于控制材料的组织和性能。

4.材料测试与表征:借助各种现代测试手段(如X射线衍射、电子显微镜、光谱分析等),可以获取材料的微观结构和性能信息。

三、数值分析在材料性能研究中的应用1.材料性能模拟:利用计算机建模和仿真技术,对材料的性能进行预测和优化。

例如,通过有限元分析(FEA)方法,可以对材料的力学行为进行模拟,以预测其强度、刚度和韧性等机械性能。

2.材料数据库建设:通过对大量材料的性能数据进行采集、整理和分析,可以建立材料性能数据库,为材料设计提供参考。

例如,利用机器学习算法对材料性能数据进行训练和预测,可以提高材料设计的效率和准确性。

3.多尺度建模与仿真:通过建立跨尺度模型,从微观分子层面到宏观力学性能层面,对材料的性能进行全面分析。

例如,在纳米尺度上,利用量子力学方法可以研究材料的电子结构和化学反应性质;在宏观尺度上,利用连续介质力学方法可以研究材料的变形和破坏行为。

4.材料优化设计:通过数值分析和优化算法,可以针对特定性能要求进行材料设计。

例如,通过遗传算法等进化算法对材料成分、组织结构进行优化,以实现最佳的力学性能、电学性能或热学性能等。

5.工艺过程模拟与优化:利用数值模拟技术,可以对材料的加工过程进行仿真和优化。

例如,通过计算机流体动力学(CFD)方法模拟熔融金属的流动行为,以优化铸造工艺参数;通过有限元分析方法模拟材料的冲压成型过程,以优化模具设计和加工参数。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在外力作用下的力学行为的一门学科,它是材料科学和工程学中的重要基础学科。

在材料力学中,我们需要了解一些基本的知识点,这些知识点对于理解材料的性能和行为具有重要意义。

本文将对材料力学的一些重要知识点进行总结,希望能够帮助读者更好地理解材料力学的基本概念。

1. 应力和应变。

在材料力学中,应力和应变是两个基本的概念。

应力是单位面积上的力,它描述了材料受力的程度。

而应变则是材料在受力作用下的变形程度。

应力和应变之间存在着一定的关系,这种关系可以通过杨氏模量和泊松比来描述。

了解应力和应变的概念对于分析材料的力学性能非常重要。

2. 弹性模量。

弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。

不同材料的弹性模量是不同的,它反映了材料的硬度和脆性。

了解材料的弹性模量有助于我们选择合适的材料,并且在工程设计中能够更好地预测材料的性能。

3. 屈服强度和抗拉强度。

材料在受力作用下会发生塑性变形,而屈服强度和抗拉强度则是描述材料抵抗塑性变形的能力。

屈服强度是材料开始发生塑性变形的应力值,而抗拉强度则是材料抵抗拉伸破坏的能力。

这两个参数对于材料的强度和韧性具有重要意义。

4. 疲劳强度。

在实际工程中,材料往往需要承受交变载荷,这就会导致材料的疲劳破坏。

疲劳强度是描述材料在交变载荷作用下能够承受的最大应力值,了解材料的疲劳强度有助于我们预防材料的疲劳破坏。

5. 断裂韧性。

材料在受到外力作用下会发生断裂,而断裂韧性则是描述材料抵抗断裂的能力。

了解材料的断裂韧性有助于我们预测材料的寿命,并且在工程设计中能够更好地选择合适的材料。

总结。

材料力学是材料科学和工程学中的重要学科,它对于理解材料的力学性能具有重要意义。

本文对材料力学的一些重要知识点进行了总结,希望能够帮助读者更好地理解材料力学的基本概念。

通过了解应力和应变、弹性模量、屈服强度和抗拉强度、疲劳强度以及断裂韧性等知识点,我们可以更好地选择合适的材料,并且预测材料的性能和寿命,从而更好地应用于工程实践中。

材料学知识点总结

材料学知识点总结

材料学知识点总结材料学是一门研究材料的结构、性能、制备及应用的学科。

它包括从材料的原子结构和晶体结构到材料的力学性能、电学性能、热学性能、光学性能等方面的研究。

在现代工业和科技的发展中,材料学发挥着重要的作用,因为材料的性能决定了产品的品质和耐久性。

在这篇文章中,我们将对材料学的若干知识点进行总结。

第一部分:材料的分类按照不同的分类标准,材料可以被分成不同的类别。

以下是一些常见的材料分类方法:1.按化学成分分类。

根据材料的化学成分可将其分为金属材料、无机非金属材料和有机材料三类。

2.按组织结构分类。

根据材料的组织结构可将其分为晶体材料和非晶体材料两类。

3.按制备方法分类。

根据材料的制备方法可将其分为铸造材料、粉末冶金材料、热塑性塑料、热固性塑料、合成材料、复合材料等几类。

4.按性能分类。

根据材料的性能可将其分为导电材料、磁性材料、光学材料、超导材料、高温材料等几类。

第二部分:晶体结构晶体是一种具有规则的、周期性的三维结构的固体。

在晶体中,原子或离子沿着一定方向排列,形成了三维周期性的结构,即晶格。

晶体的结构是由晶胞重复平移得来的。

晶体结构有以下几种类型:1.简单立方结构。

简单立方结构的晶胞由一个正方形的基本面和八个固定在角落上的原子组成。

这种结构适用于金属钠、银、铝等。

2.面心立方结构。

在面心立方结构中,晶胞是由四个面心构成的正方形基本面和八个位于每个面的中心的原子构成。

这种结构适用于金属铁、铜等。

3.体心立方结构。

在体心立方结构中,晶胞由一个立方体的基本面和一个位于体心的原子构成。

这种结构适用于金属钨、铁等。

4.六方最密堆积结构。

六方最密堆积结构由最密堆积的六个六面体单元构成,每个六面体由12个原子构成,其中6个位于底面上,3个位于顶面上,3个位于底面上相邻六面体的中心处。

这种结构适用于金属镁、钙等。

第三部分:材料的物理性能材料的物理性能是指材料在各种条件下的物理反应和现象。

这些性能可以通过物理实验来测定,例如材料的密度、导电性、热导率、伸长率等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钨、钼、钒、钛等
放射性金属 镭、铀等
3.683 . 6 8 Å
2.652 . 6 5 Å
铜及其合金
铜的导电、导热性好,仅次于银位居第二位。
工业纯金属的导电导热性:银、铜、金、铝、镁、锌、镍、镉、钴、铁、 铂、锡、铅、锑
纯铜 :又称紫铜 黄铜 :铜锌合金 青铜 :锡青铜、铝青铜、铍青铜 白铜 :铜镍合金
铜的热处理:铜无同素异构转变,不能热处理强化,铜的热 处理主要是退火,包括低温退火和再结晶退火。
金属基复合材料
通常按增强体的形式分类:
连续纤维增强 短纤维或晶须增强 颗粒增强以及片层叠合
继电器触点材料
对触点材料的要求
(1) 良好的导电性和导热性。这是对触点材料的基本要求, 材料本身要具有低而稳定的电阻,同时在工作一段时间后, 要保证接触电阻不会急剧增大,温度不会升高太多。
当前高新科学技术领域的三大支柱:
信息技术 生物技术 新 材 料
材料科学是基础,即信 息技术和生物工程必须依 托于新材料的研究和开发. 没有新材料,就没有高技术 的应用和发展.
晶体学基础
晶体结构 空间点阵 晶面 晶向 晶粒 金属的结晶过程
三种典型的金属晶体结构
面心立方
(2) 耐电磨损。小型化的大功率继电器无疑会使触点材料在 大电流、高电压下工作,而且由于触点尺寸较小,承受的电 流密度较大,触点材料必须要能经受强电弧的侵蚀,保证有 足够的使用寿命。
(3) 抗熔焊能力强。小型大功率继电器在使用中往往还存在 着大的浪涌电流,极易造成触点熔焊或剧烈烧损,触点材 料在选择材料成分和结构时要充分考虑到这一点。
形的发生必先经历弹性变形;在材料加工过程中,工件的塑
性变形与工模具的弹性变形共存。
提高金属塑性的主要途径
提高塑性的主要途径有以下几个方面:
1. 控制化学成分、改善组织结构,提高材料的 成分和组织的均匀性;
2. 采用合适的变形温度—速度制度; 3. 选用三向压应力较强的变形过程,减小变形
的不均匀性,尽量造成均匀的变形状态; 4. 避免加热和加工时周围介质的不良影响。
钢的高倍缺陷
•带状组织 •液析 •非金属夹杂物
钢的低倍缺陷
•疏松 •缩孔残余 •偏析 •气泡 •裂纹 •夹杂
铸铁
白口铸铁 麻口铸铁 灰口铸铁
有色金属及其合金
轻金属
比重小于3.5的金属,如铝、镁、铍、锂等
重金属
比重大于3.5的金属,如铜、锌、铅、镍等
贵金属 金、银、铂等
稀有金属
金属材料学基本知识介绍
20世纪中国科技的发展
新中国建立之初,中国只有500人的科研队伍, 80%的国民为文盲,与发达国家的科技实力差距为100 年。
现在,中国在高科技的某些领域已经赶上或超过 了世界先进水平。但在有些领域与发达国家相比还要 落后几十年。
20世纪中国科技的发展
原子弹和氢弹爆炸成功; 6000米水下无缆机器人研制成功; 作为唯一的发展中国家参与人类基因组计划; 导弹和人造卫星成功发射,宇宙飞船顺利遨游太空; ……
弹性、塑性变形的力学特征
可逆性:弹性变形——可逆;塑性变形——不可逆 -关系:弹性变形——线性;塑性变形——非线性 对组织和性能的影响:弹性变形——无影响;塑性变形——
影响大(加工硬化、晶粒细化、位错密度增加、形成织构等) 变形机理: 弹性变形——原子间距的变化;
塑性变形——位错运动为主 弹塑性共存:整体变形中包含弹性变形和塑性变形;塑性变
体心立方
密排六方
塑性的基本概念
什么是塑性 塑性是金属在外力作用下产生永久变形
而不破坏其完整性的能力。
单晶体的塑性变形
在常温和低温下,单晶体的塑性变形主要通过滑移方式进行的, 此外,尚有孪生和扭折等方式。
滑移
孪生
多晶体的塑性变形
实际使用的材料通常是由多晶体组 成的。室温下,多晶体中每个晶粒 变形的基本方式与单晶体相同,但 由于相邻晶粒之间取向不同,以及 晶界的存在,因而多晶体的变形既 需克服晶界的阻碍,又要求各晶粒 的变形相互协调与配合,故多晶体 的塑性变形较为复杂。多晶体试样 经拉伸后,每一晶粒中的滑移带都 终止在晶界附近。
(4) 良好的机械加工性。触点材料要加工成各种形状,特别 是大量的铆钉型触点,材料应具有高强度兼顾很好的塑性。
继电器触点材料
AgNi
AgCdO
1972 年日本限制使用AgCdO 触点材料并寻找代替品, 随后美国、法国、英国等也相继研制AgCdO的代替品。 2004年8月欧洲议会和欧盟部长理事会共同批准了《关于 限制在电子电气设备中使用某些有害物质的指令》,要求 各成员国确保从2006年7月1日起投放于市场的新的电子和 电器设备不包含铅、汞、镉等六种有害物质,并规定了六 种有害物质的浓度上限,要求同质物料所含铅、汞、镉等 的最高浓度不得超过重量的0.01%(100ppm)。
钢铁材料的分类
按冶炼方法分类: 平炉钢、转炉钢、电炉钢 按用途分类:结构钢、工具钢、特殊性能钢 按正火组织分类:珠光体钢、贝氏体钢、马氏体钢、
奥氏体钢
按化学成分分类:碳素钢、合金钢
钢的热处理
退火 淬火 回火 正火 时效
钢的合金化 置换ຫໍສະໝຸດ 溶体 间隙固溶体 金属间化合物
金属材料塑性加工的几个基本概念
弹性(elasticity):卸载后变形可以恢复特性,可逆性 塑性(plasticity):物体产生永久变形的能力,不可逆性 屈服(yielding):开始产生塑性变形的临界状态 损伤(damage):材料内部缺陷产生及发展的过程 断裂(fracture):宏观裂纹产生、扩展到变形体破断的过程
20世纪中国科技的发展
“神州”五号载人飞 船
科学技术成为国家安全的核心要素
科技水平将在相当程度上决定 各国在政治舞台上的地位,“为了 外交的科技”将彻底转变为“为了 科技的外交”。 以军事安全为核心的安全观正 在拓展为包括经济安全、军事安全 、文化安全、等内容的现代大安全 观。
未来战争将成为核威慑、信息威慑及生物威慑的高技术战争,其影响和 破坏范围将远远超过传统战争。 可以说,没有强大的科学技术为后盾,就没有未来的国家安全保障。
相关文档
最新文档