【必考题】高一数学上期末模拟试题附答案
高一数学上学期期末模拟质量检测试卷含答案
高一数学上学期期末模拟质量检测试卷含答案一、选择题1.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则UA( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-2.函数()102f x x =+的定义域为( ) A .(),3-∞-B .[)3,2--C .()()3,22,--⋃-+∞D .()3,2--3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3πB .3π-C .23π D .23π-4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A.⎝⎭ B.⎝⎭C.⎝⎭D.⎝⎭5.方程e 10x x ++=的根所在的区间是( ) A .()0,1B .()1,0-C .()2,1--D .()1,26.为净化水质,向游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg /L )随时间t (单位:小时)的变化关系为220()t aC t t b+=+(,a b 为常数,0t ≥),当0t =时池水中药品的浓度为0mg /L ,当1t =小时池水中药品的浓度为4mg /L ,则池水中药品达到最大浓度需要( ) A .2小时B .3小时C .4小时D .5小时7.定义在R 上的偶函数()f x 在[)0,+∞上是增函数,且()20f =,则不等式()0f x x>的解集为( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()(),20,2-∞-D .()()2,02,-+∞8.已知函数121(02)()(2)(2)x x f x f x x -⎧-≤≤⎪=⎨->⎪⎩,()log (1)a g x x =+(0a >,且1a ≠),若()()()F x f x g x =-在[0,)+∞上至少有5个不相同的零点,则实数a 的取值范围为( )A .()3,4B .()4,5C .()2,3D .()5,+∞二、填空题9.下列函数中,既为奇函数又在定义域内单调递增的是( ) A .1010x x y -=- B .()22log 1y x =+ C .3y x =D .|sin |y x =10.使得“a b >”成立的充分不必要条件可以是( )A .1a b >-B .11a b< C D .10.30.3a b -<11.已知a ,b ,c 满足a b c >>,且0ac <,则下列不等式中恒成立的有( ) A .0a >,0c <B .b c a a>C .22b a c c>D .ab bc >12.下列说法正确的是( )A .“0x R ∃∈,0202x x >”的否定是“x R ∀∈,22x x ≤”B .函数()f x =的最小值为6C .函数1()2g x ⎛= ⎪⎝⎭1,12⎡⎤-⎢⎥⎣⎦D .a b >的充要条件是a a b b三、多选题13.若命题“2000,(1)10x R x a x ∃∈+-+<”是真命题,则实数a 的取值范围是_____________.14.函数()2xf x =和()3g x x =的图像的示意图如图所示,设两函数的图像交于点()11,A x y ,()22,B x y ,且12x x <.若[]1,1x a a ∈+,[]2,1x b b ∈+,且a ,{}1,2,3,4,5,6,7,8,9,10,11,12b ∈,则a b +=__________.15.已知函数22()tf x x t x =-+有最小值且最小值与t 无关,则t 的取值范围是_________. 16.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.四、解答题17.已知函数()1ln3x f x x-=-的定义域为集合A ,关于x 的不等式()()2110ax a x a R +++>∈的解集为B .(1)求集合A ;(2)若A B ⋂≠∅,求实数a 的取值范围. 18.已知函数()223sin cos 2cos f x x x x =⋅+. (1)求函数()f x 的最小正周期; (2)求该函数的单调递增区间;(3)求函数()f x 在区间π5π,612⎡⎤-⎢⎥⎣⎦上的最小值和最大值.19.已知函数1()(0xxb f x a a a -=+>且1)a ≠是奇函数. (1)求b 的值;(2)令函数()()1x g x f x a =--,若关于x 的方程2()3t g x t +=+在R 上有解,求实数t 的取值范围.20.对于等式b a c =(0a >,1a ≠),如果将a 视为自变量x ,b 视为常数,c 为关于a (即x )的函数,记为y ,那么b y x =是幂函数;如果将a 视为常数,b 视为自变量x ,c 为关于b (即x )的函数,记为y ,那么x y a =是指数函数;如果将a 视为常数,c 视为自变量x ,b 为关于c (即x )的函数,记为y ,那么log a y x =是对数函数.事实上,由这个等式还可以得到更多的函数模型.如果c 为常数e (e 为自然对数的底),将a 视为自变量x (0x >,1x ≠),则b 为x 的函数,记为y ,那么y x e =,记将y 表示成x 的函数为()f x .(1)求函数()f x 的解析式,并作出其图象;(2)若0m n >>且均不等于1,且满足()()f m f n =,求证:243m n +≥.21.已知函数()()sin 20,02f x A x A πϕϕ⎛⎫=+><< ⎪⎝⎭的最大值为2,其图象与y 轴交点为()0,1.(1)求()f x 的解析式;(2)求()f x 在[]0,π上的单调增区间;(3)对于任意的0,3x π⎡⎤∈⎢⎥⎣⎦,()()240f x mf x -+≥恒成立,求实数m 用的取值范围.22.已知函数()x x f x a a -=-(0a >且1a ≠).(1)若(1)0f <,对任意[0,)x ∈+∞,恒有()2221a f x kx k a ⋅--+,求k 的最大值;(2)若3(1)2f =,函数()g x 满足(2)()()0(0)f x f x g x x +-⋅=≠.就实数m 的取值,讨论关于x 的方程()(2)10m g x g x ⋅=+的实数根的个数.【参考答案】1.B 【分析】先求出集合A ,根据补集运算,即可求出UA .【详解】由21x < 得: 11x -<<,又x U ∈,所以{}0A = ,因此{}1,1,2UA =- .故选:B. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.D 【分析】根据函数有意义列出式子求解即可. 【详解】解:由题可知()1330log 3020x x x ⎧+>⎪⎪+≥⎨⎪⎪+≠⎩,解得:322x x x >-⎧⎪≤-⎨⎪≠-⎩,故()32x ∈--,. 故选:D. 3.B 【分析】因为时针经过2小时相当于转了一圈的16,且按顺时针转所形成的角为负角,综合以上即可得到本题答案. 【详解】因为时针旋转一周为12小时,转过的角度为2π,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为11263ππ-⨯=-.故选:B本题主要考查正负角的定义以及弧度制,属于基础题. 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D. 5.C 【分析】设e (1)x f x x =++,逐一分析各个选项,结合零点存在性定理,即可得答案. 【详解】设e (1)x f x x =++, 2211(2)10,(1)0,(0)2,(1)e 20,(2)e 30e ef f f f f -=-<-=>==+>=+> 因为(2)(1)0f f -⋅-<,根据零点存在性定理,可得()f x 的零点在区间()2,1--内. 故选:C6.A 【分析】由题意求出解析式,再由定义证明4,0y t t t=+>的单调性得出其最小值,进而得出池水中药品达到最大浓度需要的时间. 【详解】由题意可得02041a ba b ⎧=⎪⎪⎨+⎪=⎪+⎩,解得0,4a b ==当0t =时,(0)0C =,当0t >时,22020()44t C t t t t==++令4,0y t t t=+>任取()12,0,t t ∈+∞,且12t t <,则()()121212121212444t t t t y y t t t t t t --⎛⎫-=+-+= ⎪⎝⎭ 当2t ≥时,12120,4t t t t -<>,即12y y <;当02t <<时,12120,4t t t t -<<,即12y y > 则函数4,0y t t t=+>在()0,2上单调递减,在2,上单调递增,即min 4224t t ⎛⎫+=+= ⎪⎝⎭,即当2t =时,max ()(2)5C t C == 故选:A 【点睛】关键点睛:解决本题的关键是由定义证明函数4,0y t t t=+>的单调性进而得出其最小值.7.D 【分析】分0x >和0x <两种情况讨论,利用函数的奇偶性和单调性可解得结果. 【详解】 当0x >时,()0f x x>可化为()0f x >, 又()f x 为偶函数且(2)0f =,所以不等式()0f x >可化为(||)(2)f x f >, 因为()f x 在[)0,+∞上是增函数,所以||2x >,解得2x >; 当0x <时,()0f x x>可化为()0f x <, 又()f x 为偶函数且(2)0f =,所以不等式()0f x <可化为(||)(2)f x f <, 因为()f x 在[)0,+∞上是增函数,所以||2x <,解得20x -<<;综上所述:不等式()0f x x>的解集为()()2,02,-+∞.故选:D 【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键. 8.D 【分析】根据题意将问题转化为“()(),f x g x 的图象在[)0,+∞上至少有5个交点”,由此作出()(),f x g x 的图象,根据交点数分析出a 的取值范围.【详解】由题意可知:()(),f x g x 的图象在[)0,+∞上至少有5个交点; 因为2x >时,()()2f x f x =-,所以()()2f x f x +=, 所以()f x 为周期函数且一个周期为2, 当01a <<时,图象如下图所示:由图象可知:()(),f x g x 的图象没有交点,故不符合题意; 当1a >时,图象如下图所示:因为()(),f x g x 的图象至少有5个交点,所以由图象可得:()log 411a +<即可, 所以g 5log lo a a a <,所以5a >,即()5,a ∈+∞, 故选:D.【点睛】思路点睛:求解函数零点个数的问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.二、填空题9.AC 【分析】分别利用奇偶性的定义判断每个选项中函数的奇偶性,对于符合奇函数的选项再接着判断其单调性即可. 【详解】四个函数的定义域为x ∈R ,定义域关于原点对称A :记()1010-=-x x f x ,所以()1010()x x f x f x --=-=-,所以函数()1010-=-x x f x 是奇函数,又因为10x y =是增函数,10x y -=是减函数,所以1010x x y -=-是增函数,符合题意;B :记()22()log 1=+g x x ,则()22()log 1()⎡⎤-=-+=⎣⎦g x x g x ,所以函数()22()log 1=+g x x 是偶函数,不符合题意;C :记3()h x x =,则33)()()(=-=--=-h x h x x x ,所以函数3()h x x =是奇函数,根据幂函数的性质,函数3()h x x =是增函数,符合题意;D :记()|sin |=t x x ,则()|sin()||sin |()-=-==t x x x t x ,所以函数()|sin |=t x x 为偶函数.故选:AC 10.CD 【分析】因为判断的是充分不必要条件,所以所选的条件可以推出a b >,且a b >无法推出所选的条件,由此逐项判断即可. 【详解】A .因为1a b >-不能推出a b >,但a b >可以推出1a b >-,所以1a b >-是a b >成立的必要不充分条件,故不满足;B .因为11a b <不能推出a b >(例如:1,1a b =-=),且a b >也不能推出11a b<(例如:1,1a b ==-),所以11a b<是a b >成立的既不充分也不必要条件,故不满足;C >0a b >≥能推出a b >,且a b >1,1a b ==-),a b >成立的充分不必要条件,故满足;D .因为函数0.3x y =在R 上单调递减,所以10.30.3a b -<可以推出1a b ->,即1a b >+, 所以10.30.3a b -<可以推出a b >,且a b >不一定能推出10.30.3a b -<(例如:1,1a b ==), 所以10.30.3a b -<是a b >成立的充分不必要条件,故满足, 故选:CD. 【点睛】结论点睛:充分、必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分也不必要条件,则p 对应集合与q 对应集合互不包含. 11.AB 【分析】根据不等式的基本性质,分别判断四个答案中的不等式是否恒成立,可得结论. 【详解】解:a b c >>,且0ac <,0a ∴>,0c <,故A 成立;所以10a> ∴由b c >,所以b ca a>恒成立,故B 成立; 对于C :若1a =,1b =-,则22b ac c =,故C 错误;对于D :若0b =,ab bc =,故D 错误; 故选:AB . 12.ACD 【分析】根据含全称量词、存在量词的命题的否定形式可判断A 选项是否正确; 根据基本不等式及等号成立的条件可判断B 选项是否正确; 利用复合函数单调性“同增异减”可判断C 选项的正误; 构造函数利用单调性判断D 选项是否正确. 【详解】对于A 选项,由特称命题的否定形式可知,A 选项正确;对于B 选项,若利用基本不等式有()6f x =≥,等号不能成立,故B 选项错误;对于C 选项,因为函数12ty ⎛⎫= ⎪⎝⎭为递减函数,若1()2g x ⎛= ⎪⎝⎭22y x x =--+递减,且220x x --+≥,解得112x -≤≤,故C 正确; 对于D 选项,设函数()22,0,0x x f x x x x x ⎧≥==⎨-<⎩,则函数[)0,+∞上递增,在(),0-∞上也递增,故()f x 为R 上的单调增函数,所以a b >时a ab b ;当a a b b 时,有a b >. 故a b >的充要条件是a ab b ,D 选项正确.故选:ACD.三、多选题13.{1a a <-或}3a > 【分析】根据存在命题的定义,结合一元二次不等式的解集性质进行求解即可. 【详解】因为命题“2000,(1)10x R x a x ∃∈+-+<”等价于200(1)10x a x +-+=有两个不等实数根,所以2(1)40a ∆=-->,即2230a a -->,解得1a <-或3a >.故答案为:{1a a <-或}3a >.14.10【分析】根据解析式与图像,判断12,C C 分别对应的解析式.根据零点存在定理,可判断两个交点所在的整数区间,即可求得,a b 的值,进而求得+a b . 【详解】根据函数()2x f x =过定点0,1,所以2C 对应函数()2xf x =;函数()3g x x =过()0,0,所以1C 对应函数()3g x x =因为()()()(),2211g f g f <> 所以由图像可知[]11,2x ∈,故1a = 因为()()()()9900,11g f g f >< 所以由图像可知[]29,10x ∈,故9b = 所以10a b += 故答案为:10 【点睛】本题考查了指数函数与幂函数的图像与性质应用,数形结合思想的应用,函数零点存在定理的应用,15.[1,)+∞【分析】本题可分为0t ≤、0t >两种情况进行讨论,然后0t >又可分为0u t <<、u t ≥进行讨论,最后对每种情况下是否有最小值以及最小值与t 是否有关进行研究,即可得出结果. 【详解】当0t ≤时,22()t f x x t x =-+, 令2u x =,则0>u ,ty u t u=+-在(0,)u ∈+∞时是增函数,无最小值. 当0t >时,令2u x =,0>u ,,0()(),t u t u t t uf xg u u t t u u t u t u ⎧-++<<⎪⎪==-+=⎨⎪+-≥⎪⎩,若0u t <<,()tg u u t u=-++是减函数,则()11g u t t >-++=, 若u t ≥,()t g u u t t t u =+-≥=,当且仅当u =时等号成立,t ,即1t ≥时,()g u 在[,)t +∞上递增,min ()()11g u g t t t ==-++=,t >,即01t <<时,min ()g u t =与t 有关,故答案为:[1,)+∞. 【点睛】关键点点睛:本题考查求函数的最值.对含绝对值的函数一般根据绝对值定义分类讨论去掉绝对值符号,然后可分段求最小值,最后比较可得.而利用函数的单调性是求最值的基本方法,有时也可用基本不等式求最值,但要注意基本不等式成立的条件,在条件不满足时,可用单调性得最值.16.130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭【分析】 根据题意可得22T π≥,从而可得2ω≤,讨论0>ω,0ω=或0ω<,再求出()sin()f x x ωϕ=+的单调递增区间,只需,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集即可求解.【详解】()()sin f x x ωϕ=+,0,4πϕ⎡⎤∈⎢⎥⎣⎦,由正弦函数的性质,()f x 的每个增区间的长度为2T,其中函数()f x 的最小正周期为2T ωπ=.函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调地藏,可得22T π≥,即2ω≤.①当0>ω时,此时02ω<≤,x ωϕ+单调递增,当2,2,22x k k k Z ππωϕππ⎡⎤+∈-+∈⎢⎥⎣⎦,()f x 单调递增,解得112,2,22x k k k Z πππϕπϕωω⎡⎤⎛⎫⎛⎫∈--+-∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,只需11,2,2,222k k k Z πππππϕπϕωω⎡⎤⎡⎤⎛⎫⎛⎫⊆--+-∈ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦,从而可得1222,122k k Z k πππϕωπππϕω⎧⎛⎫≥-- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩, 解得2141,2,2k k k Z ϕϕωππ⎡⎤∈--+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 则21410214k k πωππ--⨯≤≤+-⨯,即141,2,4k k k Z ω⎡⎤∈-+∈⎢⎥⎣⎦,由124141204k k k ⎧+>-⎪⎪⎨⎪+>⎪⎩,解得1588k -<<,k Z ∈,0k ∴=.所以,10,4ω⎛⎤∈ ⎥⎝⎦;②当0ω=时,函数()sin f x ϕ=为常函数,不合乎题意; ③当0ω<时,20ω-≤<,x ωϕ+单调递减, 由322,22k x k k Z πππωϕπ+≤+≤+∈, 解得13122,22k x k k Z πππϕπϕωω⎛⎫⎛⎫+-≤≤+-∈ ⎪ ⎪⎝⎭⎝⎭对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 可得13222,122k k Z k πππϕωπππϕω⎧⎛⎫≥+- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩,解得122,43,2k k k Z ϕϕωππ⎡⎤∈+-+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立,于是12210434k k πωππ+-⨯≤≤+-⋅,即521,4,2k k k Z ω⎡⎤∈++∈⎢⎥⎣⎦,由5142225402k k k ⎧+≥+⎪⎪⎨⎪+<⎪⎩,解得518k -≤<-,由k Z ∈,1k =-,此时,32ω=-.综上所述,实数ω的取值范围是130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.故答案为:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是求出函数的单调递增区间,使,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集,考查了分类讨论的思想. 四、解答题17.(1){}13A x x =<<;(2){}1a a >-. 【分析】(1)利用对数的真数大于零可求得集合A ;(2)对实数a 的取值进行分类讨论,求出集合B ,根据A B ⋂≠∅可得出关于实数a 的不等式,综合可得出实数a 的取值范围. 【详解】(1)对于函数()1ln3x f x x -=-,103x x ->-,可得103x x -<-,解得13x <<, 因此,{}13A x x =<<;(2)由()2110ax a x +++>,可得()()110ax x ++>.①当0a =时,则有10x +>,解得1x >-,即{}1B x x =>-,此时A B ⋂≠∅成立; ②当0a <时,因为10a ->,解不等式()()110ax x ++>可得11x a-<<-,即11B x x a ⎧⎫=-<<-⎨⎬⎩⎭,因为A B ⋂≠∅,则11a ->,即10a a+<,解得10a -<<; ③当1a >时,110a -<-<,解不等式()()110ax x ++>可得1x <-或1x a>-, 即{1B x x =<-或1x a ⎫>-⎬⎭,此时A B ⋂≠∅成立;④当1a =时,则有()210x +>,解得1x ≠-,即{}1B x x =≠-,此时A B ⋂≠∅成立;⑤当01a <<时,11-<-a ,解不等式()()110ax x ++>可得1x a<-或1x >-, 即1B x x a ⎧=<-⎨⎩或}1x >-,此时A B ⋂≠∅成立.综上所述,实数a 的取值范围是{}1a a >-.18.(1)πT =;(2)πππ,π36k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(3)最大值为3,最小值为0.【分析】(1)利用二倍角公式以及辅助角公式化简()f x ,再由正弦函数的周期公式即可求解; (2)解不等式πππ2π22π262k x k -+≤+≤+,()k ∈Z 即可求解;(3)根据π5π,612x ⎡⎤∈-⎢⎥⎣⎦求出π26x +的范围,根据正弦函数的性质即可求解.【详解】(1)()2cos 2cos 2cos21f x x x x x x =⋅+=++π2sin 216x ⎛⎫=++ ⎪⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==, (2)令πππ2π22π262k x k -+≤+≤+,解得:ππππ36k x k -+≤≤+,()k ∈Z所以该函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(3)因为π5π,612x ⎡⎤∈-⎢⎥⎣⎦,所以ππ2,π66x ⎡⎤+∈-⎢⎥⎣⎦,所以当ππ266x +=-即π6x =-时,πsin 26⎛⎫+ ⎪⎝⎭x 最小为12-,当ππ262x +=即π6x =时,πsin 26⎛⎫+ ⎪⎝⎭x 最大为1,所以1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,π12sin 226x ⎛⎫-≤+≤ ⎪⎝⎭, ()[]π2sin 210,36f x x ⎛⎫=++∈ ⎪⎝⎭,所以函数()f x 在区间π5π,612⎡⎤-⎢⎥⎣⎦上的最小值为0,最大值为3.19.(1) 0b = (2) 532t -<<- 【分析】(1)由()f x 的定义域为R ,且奇函数,则(0)0f =,从而可求出答案. (2)由题意1()1x g x a -=-,先求出函数()g x 的值域,方程2()3t g x t +=+在R 上有解,则max 2()3t g x t +>+,从而得出答案. 【详解】 (1)函数1()(0)x x b f x a a a-=+>的定义域为R ,又()f x 是奇函数 所以(0)110f b b =+-==当0b =时,1()xx f x a a =-,11()()xx x xf x a a f x a a --⎛⎫-==-=- ⎪⎝⎭-- 满足()f x 是奇函数,所以0b =(2) 11()()111x xxx xg x f x a a a a a --=--=--=- 由0x a >,则10x a >,所以10x a -<,所以111xa -<-- 即()g x 的值域为()1-∞-,方程2()3t g x t +=+在R 上有解,则213t t +<-+,解得532t -<<- 所以满足条件的实数t 的取值范围:532t -<<- 20.(1)1()ln f x x=,作图见解析;(2)证明见解析. 【分析】(1)对y x e =两边取对数,并化简即得到1ln y x =,即得到函数1()ln f x x=及图象; (2)结合图象化简关系得到ln ln n m -=,即1mn =,22144m n n n+=+,再构造函数21()4(01)g x x x x=+<<,结合单调性求其最小值为3,即得证,或者拼凑22211144422m n n n n n n+=+=++,利用三项的基本不等式证明结果即可. 【详解】(1)解:由(0,1)y x e x x =>≠两侧取以e 为底的对数,得ln ln y x e =,即1ln y x=, 所以1()ln f x x=,其图象如图所示.(2)证明:因为|()||()|f m f n =,且0m n >>, 所以(0,1),(1,)n m ∈∈+∞,且ln ln n m -=, 即ln ln 0,ln()0m n mn +==,故1mn =,则22144m n n n+=+. 法一:记21()4(01)g x x x x=+<<.任取12,x x ,且1201x x ,因为()()()2222121212121211114444g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1212211212211212144x x x x x x x x x x x x x x x x -+-=+-+=-⋅, 因为1201x x ,所以21120,0x x x x ->>. 当12102x x ≤<<时,()121241x x x x +<,所以()()120g x g x ->,即()()12g x g x >; 当12112x x ≤<<时,()121241x x x x +>,所以()()120g x g x -<,即()()12g x g x <. 所以21()4(01)g x x x x =+<<在10,2⎛⎤ ⎥⎝⎦上为减函数,在1,12⎡⎫⎪⎢⎣⎭上为增函数,所以当12x =时,min ()3g x =,所以243m n +≥. 法二:22223111114443432222m n n n n n n n n n+=+=++⋅⋅=≥(当且仅当2142n n =即12n =时取“=”),所以243m n +≥.21.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(3)4m ≤. 【分析】(1)先由最值,求出2A =,再由函数过点()0,1,求出6π=ϕ,即可得出函数解析式; (2)根据正弦函数的单调性,即可求出函数在区间[]0,π上的增区间;(3)先由0,3x π⎡⎤∈⎢⎥⎣⎦,得到()[]1,2f x ∈,令()t f x =,将问题化为240t mt -+≥在[]1,2t ∈时恒成立,进而可求出结果. 【详解】(1)因为最大值为2,所以2A =.因为()f x 过点()0,1,所以2sin 1=ϕ,又因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为222,262k x k k Z πππππ-≤+≤+∈,所以,36k x k k Z ππππ-≤≤+∈.当0k =时,36x ππ-≤≤;当1k =时,2736x ππ≤≤. 又因为[]0,x π∈,所以()f x 在[]0,π上的单调增区间是06,π⎡⎤⎢⎥⎣⎦和2π,π3. (3)因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以()[]1,2f x ∈.令()t f x =,则240t mt -+≥在[]1,2t ∈时恒成立, 即4m t t≤+在[]1,2t ∈时恒成立, 令()4g t t t=+,[]1,2t ∈,任取1212t t ≤<≤,则120t t -<,124t t <,所以()()()121212121244410g t g t t t t t t t t t ⎛⎫-=+--=--> ⎪⎝⎭,即()()12g t g t >, 所以()4g t t t=+在[]1,2t ∈上单调递减,则()()min 42242g t g ==+=,所以只需4m ≤,即实数m 用的取值范围是4m ≤. 【点睛】 思路点睛:求解含三角函数的二次型不等式恒成立的问题时,一般需要先根据三角函数的性质,确定所含三角函数的值域,再由换元法,将问题转化为一元二次不等式的形式,进行求解. 22.(1)12-;(2)答案见解析.【分析】(1)由(1)0f <得01a <<,利用()f x 的单调性得到212x k x -≤+当[)0,x ∈+∞时恒成立,再求212x x -+在[)0,x ∈+∞上的最小值即可; (2)由已知得到()22x x f x -=-,求出()g x ,问题等价于讨论关于()22222210x x x x m --⋅+=++实数根的个数,令()222x x s s -=+>问题转化为讨论y m =与8y s s =+()2s >交点的个数,结合8y s s=+的单调性可得答案. 【详解】(1)因为(1)0f <,所以110(1)f a a -=-<,解得01a <<, 所以()f x 在[)0,x ∈+∞上单调递减,由()2221a f x kx k a ⋅--+,得()2211(1)2a f x kx k a f a a-=-=--≤, 所以221x kx k --≥,所以212x k x -≤+当[)0,x ∈+∞时恒成立,()()2224231324222x x x x x x x +-++-==++-+++, 令2t x =+()2t ≥,3()4m t t t=+-,设122t t >≥,则()121212*********()()t t m t m t t t t t t t t t ⎛⎫--=+--=- ⎪⎝⎭, 因为122t t >≥,所以12120,4t t t t ->>,所以12()()0m t m t ->, ()m t 在 2t ≥时是单调递增函数,所以11()(2)2422m t m ≥=+-=-,所以12k ≤-,k 的最大值为12-;(2)若3(1)2f =,则113)2(1f a a -=-=,解得2a =,或12a =-舍去, ()22xxf x -=-,由(2)()()0(0)f x f xg x x +-⋅=≠得()2222()22022x xx x x xg x x ----==+≠-,问题等价于讨论关于()22222210x x x xm --⋅+=++实数根的个数, 令()222x xs s -=+>,则由28m s s ⋅=+,即8m s s=+()2s >, 即讨论y m =与8y s s=+()2s >交点的个数,设12s s >>8()n s s s=+,则()121212*********()()s s n s n s s s s s s s s s ⎛⎫--=+--=- ⎪⎝⎭,因为12s s >>12120,8s s s s ->>,所以12()()0n s n s ->,()n s 在s >()n s n >=设122s s <<< 则()121212*********()()s s n s n s s s s s s s s s ⎛⎫--=+--=- ⎪⎝⎭,因为122s s <<≤12120,8s s s s -<<,所以12()()0n s n s ->,()n s 在2s <≤()(2)n n s n ≤<,即()6n s <, 所以,当m <()(2)10m g x g x ⋅=+没有实数根;当m =6m ≥时,方程()(2)10m g x g x ⋅=+有2个实数根;当6m <时,方程()(2)10m g x g x ⋅=+有4个实数根. 【点睛】本题考查了利用函数的单调性解不等式、讨论实数根的个数,关键点是构造函数利用函数的单调性解决问题,考查了学生分析问题、解决问题的能力.。
2020-2021高一数学上期末模拟试题带答案(3)
2020-2021高一数学上期末模拟试题带答案(3)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ).A .b a c <<B .c b a <<C .c a b <<D .a b c <<3.函数()()212log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞D .()1,+∞4.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10935.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 6.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C.(D.)27.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .48.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( )A .[]3,5B .()3,5C .[]4,6D .()4,69.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .11.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.15.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________. 16.求值:2312100log lg += ________ 17.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______.18.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.19.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.20.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____.三、解答题21.已知函数()log (12)a f x x =+,()log (2)a g x x =-,其中0a >且1a ≠,设()()()h x f x g x =-.(1)求函数()h x 的定义域; (2)若312f ⎛⎫=-⎪⎝⎭,求使()0h x <成立的x 的集合. 22.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x取得最大值2,当23x π=时,()f x取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.23.已知函数2,,()lg 1,,x x m f x x x m ⎧⎪=⎨+>⎪⎩…其中01m <….(Ⅰ)当0m =时,求函数()2y f x =-的零点个数;(Ⅱ)当函数2()3()y f x f x =-的零点恰有3个时,求实数m 的取值范围.24.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围. 25.已知集合,,.(1)若,求的值; (2)若,求的取值范围.26.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好. 附:80()f x x x=+在5)单调递减,在(45,)+∞单调递增.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-.令2()2log 10x x h x =-=,则22log 1x x =,21log 22xx x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞U . 内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞.故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.4.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.5.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.6.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解7.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解. 【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y x a a -[0,1]上单调递减,值域是[0,1], 所以f (0)1a -1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.8.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn ne e ==,由此解得5m =,应选答案D 。
2020-2021学年高一数学上学期期末考试仿真模拟试卷一(全国通用)解析版
A.−1B.1C.−2D.2
【答案】ABC
【解析】因为B⊆A,所以 ,
,解得 .故选:ABC
【点睛】本题考查子集的概念,属于基础题.
10.下列计算结果为有理数的有().
A. B.lg2 +lg5C. D.
【答案】ABCD
要使 ,结合图象可得 或
解得 或
故不等式的解集为 故选: .
【点睛】本题考查函数的奇偶性,数形结合思想,考查运算能力,属于基础题.
6.已知函数 , , 的图象如图所示,则()
A. , B. ,
C. , D. ,
【答案】D
【解析】由图可知, ,所以 ,
当 时,函数取得最大值,
所以 ,则 ,解得 ,
∵ ,∴ .故选:D.
(Ⅱ)当 时, : ,
由 得: : 或 ,
所以 : ,
因为 是 的必要条件,
所以 ,
所以 ,解得 ,
所以实数 的取值范围是 .
【点睛】本题主要考查了一元二次不等式、分式不等式的解法以及根据充分条件和必要条件条件求解参数范围,这里需要注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.
【答案】B
【解析】由题意,函数 是增函数并且是连续函数,
因为 , , ,
,
所以 ,
所以函数的零点在区间 .故选:B.
【点睛】本题考查函数零点存在性定理,属于基础题.
5.已知 是奇函数,且当 时 ,则不等式 的解集为()
A. 或 B. 或
C. 或 D. 或
【答案】B
高一数学上册期末试卷(附答案)
高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。
新高一数学上期末模拟试卷含答案
新高一数学上期末模拟试卷含答案一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .2 D .24.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]5.函数ln x y x=的图象大致是( )A .B .C .D .6.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}7.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .()31,4D .()34,29.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c << B .a c b <<C .c a b <<D .b c a <<11.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .12.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 二、填空题13.已知()y f x =是定义在R 上的奇函数,且当0x …时,11()42x xf x =-+,则此函数的值域为__________.14.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.15.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 16.0.11.1a =,122log 2b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.2()2f x x x =+(0x ≥)的反函数1()f x -=________19.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.20.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.三、解答题21.计算或化简:(1)1123021273log 161664π⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (2)6log 2332log 27log 2log 36lg 2lg 5+⋅-++.22.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.23.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫=⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.24.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 25.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?26.已知函数31()31x x f x m -=⋅+是定义域为R 的奇函数.(1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 2.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=,且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x ===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.6.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解,则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
高一数学上册期末模拟质量检测试卷附答案
高一数学上册期末模拟质量检测试卷附答案一、选择题1.已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则()⋃=U B A ( ) A .{}1,2,3,6,7 B .{}6,7 C .{}1,2,3,4,6,7D .{}1,2,3,4,5,6,72.下列函数是R 上的递减函数是( ) A .12xy ⎛⎫= ⎪⎝⎭B .2y xC .1y x=D .12log y x =3.若cos 0α<,tan 0α>,则α是( ) A .第四象限角 B .第三象限角 C .第二象限角 D .第一象限角 4.已知角α的终边经过点(3,4)P ,则5sin 10cos αα+的值为( )A .11B .10C .12D .135.若函数31()log 1f x x x =-+的零点为0x ,则0x 属于( ) A .(0,1)B .(1,2)C .52,2⎛⎫ ⎪⎝⎭D .5,32⎛⎫ ⎪⎝⎭6.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,2x y =与()2log y x =-的图像可能是( )A .B .C .D .7.已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 8.已知定义域为[]7,7-的函数()f x 的图象是一条连续不断的曲线,且满足()()0f x f x -+=.若(]12,0,7x x ∀∈,当12x x <时,总有()()2112f x f x x x >,则满足()()()()212144m f m m f m --≤++的实数m 的取值范围为 ( )A .[]1,3-B .[]1,5-C .[]3,5-D .[]3,3-二、填空题9.下列说法正确的是( )A .若定义在R 上的函数()f x 满足()()11f f -=,则()f x 是偶函数B .若定义在R 上的函数()f x 满足()()11f f -≠,则()f x 不是偶函数C .若定义在R 上的函数()f x 满足()()11f f -<,则()f x 在R 上是增函数D .若定义在R 上的函数()f x 满足()()11f f -<,则()f x 在R 上不是减函数 10.下列说法正确的是( ) A .函数1y x x=+的值域是[)2,+∞ B .3,2x x R x ∀∈>的否定为3,2x x R x ∃∈≤C .若0xy >且1x y +=,则11x y+的最小值为4D .若0a b <<,则11a b< 11.若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+ 12.若函数()f x 的定义域为R ,且存在非零常数T ,对任意的x ∈R ,都有()()f x T f x T +=+,则称()f x 为类周期函数,T 为()f x 的类周期.则( )A .函数()f x x =是类周期函数B .函数()2xf x =是类周期函数C .若函数()f x 是类周期为T 的类周期函数,则函数()y f x x =-为周期函数D .若()sin k f x x x =+为类周期函数,则1k =三、多选题13.集合sin ,2kx A x x k Z ⎧⎫=∈⎨⎬⎩⎭的真子集的个数是______;14.22(lg 2)(lg5)lg 4lg5++⋅=________.15.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又()20f =,则不等式sin ()0x f x ⋅>,[,]x ππ∈-的解集为_________.16.已知函数()f x 是R 上的奇函数,(2)()f x f x +=,当(0,1)x ∈时,()212f x x =,则(7.5)=f ________.四、解答题17.已知{}2230A x x x =--≤,()(){}40B x x k x k =--+>.(1)若[]0,3AB =R,求实数k 的值;(2)若p :x A ∈,q :x B ∈,若p 是q 的充分条件,求实数k 的取值范围.18.已知函数())0,22f x x ππωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭的图像关于直线3x π=对称,且图像与x 轴的相邻交点的距离为2π.(Ⅰ)求4f π⎛⎫⎪⎝⎭的值;(Ⅱ)将函数()y f x =的图像向右平移12π个单位长度后,得到()y g x =的图像,求()g x 的单调递减区间. 19.已知函数3()1f x x =-. (1)画出函数的草图,并用定义证明函数的单调性; (2)若[]2,7x ∈,求函数的最大值和最小值.20.杭州市将于2022年举办第19届亚运会,本届亚运会以“绿色、智能、节位、文明”为办赛理念,展示杭州生态之美、文化之韵,充分发挥国际重大赛事对城市发展的牵引作用,从而促进经济快速发展,筹备期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放当地市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:()()()()1802,0202000900070,201x x G x x x x x ⎧-<≤⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.21.已知函数()()sin 20,02f x A x A πϕϕ⎛⎫=+><< ⎪⎝⎭的最大值为2,其图象与y 轴交点为()0,1.(1)求()f x 的解析式;(2)求()f x 在[]0,π上的单调增区间;(3)对于任意的0,3x π⎡⎤∈⎢⎥⎣⎦,()()240f x mf x -+≥恒成立,求实数m 用的取值范围.22.已知函数2()2(1)1f x x a x a =-+-+,a R ∈. (1)若()f x 在区间[1,1]-上不单调,求a 的取值范围;(2)设2()[(2)()]g x x ax a f x x =---⋅,若函数lg ()y g x =在区间[,1]t 恒有意义,求实数t的取值范围;(3)已知方程2()|2|0f x x x ++=在(1,2)-有两个不相等的实数根,求实数a 的取值范围.【参考答案】一、选择题 1.A 【分析】根据补集和并集的定义求解即可. 【详解】∵{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =, ∴{}1,6,7UA =,(){}1,2,3,6,7UB A ⋃=.故选:A . 【点睛】本题考查集合的并集和补集的计算,侧重考查对基础知识的理解和掌握,属于常考题. 2.A 【分析】根据二次函数、反比例函数、指数函数和对数函数的单调性和定义域进行判断每个选项的正误即可. 【详解】解:对于A,1()2xy =的定义域为R ,且在R 上单调递减,∴该选项正确;对于B.2yx 在R 上不单调,∴该选项错误;对于C.1y x=的定义域不是R ,∴该选项错误; 对于D .12log y x=的定义域不是R ,∴该选项错误.故选:A . 3.B 【分析】根据三角函数的符号,确定终边上的点所处的象限,从而得到结果. 【详解】 cos 0xrα=< 0x ⇒< tan yxα=0y ⇒< 则(),x y 对应第三象限的点,即α是第三象限角本题正确选项:B 【点睛】本题考查各象限内三角函数值的符号,属于基础题. 4.B 【分析】由角α的终边经过点(3,4)P ,根据三角函数定义,求出sin cos αα,,带入即可求解. 【详解】∵角α的终边经过点(3,4)P ,∴43sin cos 55||5,O y x r r r P αα===∴===,=, ∴435sin 10cos =510=1055αα++. 故选:B 【点睛】利用定义法求三角函数值要注意:(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2) 当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论. 5.B 【分析】根据零点存在性定理分析即可. 【详解】()f x 是增函数,1(1)02f =-<,311(2)log 2log 033f =->>,∴0(1,2)x ∈. 故选:B 【点睛】本题主要考查了根据零点存在性定理判断零点所在的区间,属于基础题. 6.B 【分析】结合指数函数和对数函数的图像即可. 【详解】2x y =是定义域为R 的增函数,2log ()y x =-:-x >0,则x <0.结合选项只有B 符合. 故选:B 7.D 【分析】由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解. 【详解】由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤, 因为()0,1A -,()3,1B 是函数()f x 图象上的两点, 所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤, 因为()f x 是定义在R 上的增函数,可得02sin 13x ≤+≤,解得:1sin 12x -≤≤,由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤. 8.A 【分析】根据(]12,0,7x x ∀∈,当12x x <,时,总有()()2112f x f x x x >,转化为(]12,0,7x x ∀∈,当12x x <,时,总有()()2211x f x x f x >,令()()g x xf x =,则()g x 在(]0,7上递增,再根据()()0f x f x -+=,得到()g x 在[]7,7-上是偶函数,将()()()()212144m f m m f m --≤++,转化为()()214g m g m -≤+求解.【详解】 令()()g x xf x =,因为(]12,0,7x x ∀∈,当12x x <时,总有()()2112f x f x x x >, 即(]12,0,7x x ∀∈,当12x x <时,总有()()2211x f x x f x >,即(]12,0,7x x ∀∈,当12x x <时,总有()()21g x g x >, 所以()g x 在(]0,7上递增, 又因为()()0f x f x -+=, 所以()g x 在[]7,7-上是偶函数,又因为()()()()212144m f m m f m --≤++, 所以()()214g m g m -≤+,即()()214g m g m -≤+, 所以21747214m m m m ⎧-≤⎪+≤⎨⎪-≤+⎩即3411315m m m -≤≤⎧⎪-≤≤⎨⎪-≤≤⎩,解得13m -≤≤,所以实数m 的取值范围为 []1,3- 故选:A 【点睛】关键点点睛:本题令()()g x xf x =是关键,利用()g x 在(]0,7上递增,结合()g x 在[]7,7-上是偶函数,将问题转化为()()214g m g m -≤+求解.二、填空题9.BD 【分析】取函数()()21f x x x =-,可判断A 选项的正误;利用函数奇偶性的定义可判断B 选项的正误;取函数()2f x x x =+,可判断C 选项的正误;利用反证法可判断D 选项的正误.【详解】对于A 选项,取函数()()21f x x x =-,则()()110f f -==,函数()f x 的定义域为R ,()()()21f x x x f x -=--=-,此时,函数()f x 为奇函数,A 选项错误;对于B 选项,若函数()f x 为定义在R 上的偶函数,对任意的x ∈R ,必有()()f x f x -=, 因为()()11f f -≠,所以,()f x 不是偶函数,B 选项正确;对于C 选项,取函数()2f x x x =+,则()10f -=,()12f =,()()11f f -<, 但函数()2f x x x =+在R 上不单调,C 选项错误;对于D 选项,假设函数()f x 是定义在R 上的减函数,则()()11f f ->,这与题设矛盾, 假设不成立,所以,函数()f x 在R 上不是减函数,D 选项正确. 故选:BD.【分析】A.当0x <时,显然0y <,所以该选项错误;B.由全称命题的否定得该选项正确;C.由基本不等式得到函数的最小值为4,所以该选项正确;D. 由题得11a b>,所以该命题错误. 【详解】 A. 函数1y x x=+的值域不是[)2,+∞,当0x <时,显然0y <,所以该选项错误; B. 3,2x x R x ∀∈>的否定为3,2x x R x ∃∈≤,所以该选项正确;C. 由题得,0x y >且1x y +=,则()()2241111y x x y x x x y y y +=++=++≥+(当且仅当12x y ==时取等),所以函数的最小值为4,所以该选项正确; D. 若0a b <<,则110b aa b ab --=>,所以11a b>,所以该命题错误. 故选:BC 【点睛】关键点睛:解答本题的关键在于选项C 的判断,这种题目求最值,一般利用先常量代换,再利用基本不等式求解. 11.AD 【分析】根据不等式的性质及作差法判断即可. 【详解】解:对于A ,()()()()111111b a a b b b b aa a a a a a +-++--==+++0a b >>,所以0a b ->,所以()01b aa a -<+,所以11b b a a +<+,故选项A 一定不成立;对于B ,不妨取2a =,1b =,则11a b a b +>+,故选项B 可能成立; 对于C ,不妨取2a =,1b =,则11a b b a+>+,故选项C 可能成立; 对于D ,222(2)(2)02(2)(2)a b a a b b a a b b a a b b b a b b a b ++-+--==<+++,故22a b aa b b+<+,故选项D 一定不成立; 故选:AD .【分析】对A ,B ,D 由类周期函数的定义即可判断;对C ,由类周期函数的定义以及周期函数的定义即可求解. 【详解】 解:对A ,()f x x =,()()f x T x T f x T ∴+=+=+, 故()f x 为类周期函数,即A 正确; 对B ,()2x f x =,()()()2222x T x T T f x f x T T f x ++==⋅=⋅≠∴+ 故B 错误;对C ,令()()F x f x x =-, 则 ()()()F x T f x T x T +=+-+, 函数()f x 是类周期为T 的类周期函数,()()f x T f x T ∴+=+,()()()()()()F x T f x T x T f x T x T f x x F x ∴+=+-+=+--=-=, ∴函数()()F x y f x x ==-为周期函数,故C 正确;对D ,若()sin k f x x x =+为类周期函数,即存在非零常数T ,对任意的x ∈R ,都有()()f x T f x T +=+, 即()()()()sin sin f x T x T k x T x kx T f x T +=+++=++=+, 即()()sin sin x T k x T x kx T +++=++, 令0x =,得sin T kT T +=①令x π=,得()()sin sin T k T k T ππππ+++=++, 化简得:sin T kT T -+=②, 由①+②得:22kT T =, 又0T ≠, 故1k =,即D 正确. 故选:ACD. 【点睛】关键点点睛:本题解题的关键是对类周期函数定义的理解.三、多选题13.7 【分析】对k 进行分类,求出集合{}1,0,1A =-,再根据集合元素个数和真子集的个数关系,即可求出结果. 【详解】当4,k n n Z =∈时,sin 20x n π==;当41,k n n Z =+∈时,sin 2+12x n ππ⎛⎫== ⎪⎝⎭;当42,k n n Z =+∈时,()sin 20x n ππ=+=; 当43,k n n Z =+∈时,3sin 212x n ππ⎛⎫=+=- ⎪⎝⎭; 所以集合{}1,0,1A =-,集合A 的真子集的个数为3217-=. 故答案为:7. 【点睛】本题主要考查了集合的真子集个数,属于基础题. 14.1; 【分析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg 5)lg 4lg 5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+()2lg 25=⨯⎡⎤⎣⎦21= 1=故答案为:1 【点睛】本题考查对数的运算,属于基础题.15.()()2,02,π-【分析】设()()sin g x x f x =⋅,先分析出()g x 的奇偶性,然后分类讨论()g x 在[]0,π上的取值情况,最后根据()g x 的奇偶性求解出()0g x >在[],ππ-上的解集. 【详解】设()()sin g x x f x =⋅,因为sin y x =为奇函数,()f x 为偶函数,所以()()()()()sin sin g x x f x x f x g x -=-⋅-=-⋅=-,且定义域为R 关于原点对称,所以()g x 为奇函数,因为()f x 在()0,∞+上单调递增,且()20f =, 当0x =时,sin 0x =,所以sin ()0x f x ⋅=,当()0,2x ∈时,()sin 0,0x f x ><,所以sin ()0x f x ⋅<, 当2x =时,()20f =,所以sin ()0x f x ⋅=,当()2,x π∈时,()sin 0,0x f x >>,所以sin ()0x f x ⋅>, 所以当[]0,x π∈时,若()0g x >,则()2,x π∈,又因为()g x 为奇函数,且[],x ππ∈-,根据对称性可知:若()0g x >,则()()2,02,x π∈-,故答案为:()()2,02,π-.【点睛】方法点睛:已知()f x 的单调性和奇偶性,求解不等式()()00f x ><在指定区间上的解集的常用方法:(1)分类讨论法:根据临界值采用分类讨论的方法将区间分成几段,分别考虑每一段上()f x 的正负,由此求解出不等式的解集;(2)数形结合法:根据题意作出()f x 的草图,根据图象直接写出不等式()()00f x ><的解集.16.18-【分析】利用函数的周期与奇函数的性质,将(7.5)f 转化为(0.5)f -代入解析式计算. 【详解】因为(2)()f x f x +=,所以函数()f x 的周期为2,所以(7.5)(0.524)(0.5)f f f =-+⨯=-,又因为函数()f x 是奇函数,所以1(0.5)(0.5)8f f -=-=-.四、解答题17.(1)4k =;(2)7k >或1k <-. 【分析】(1)化简集合,A B ,求出B R,解不等式40,3,k k -=⎧⎨≥⎩得解; (2)由题得A B ⊆,即43k ->或1k <-,解不等式即得解.【详解】解:因为{}2230A x x x =--≤,所以{}13A x x =-≤≤,因为()(){}40B x x k x k =--+>,所以{B x x k =>或4}x k <-. (1)因为{}4R B x k x k =-≤≤, 若[]0,3RAB =,则40,3,k k -=⎧⎨≥⎩即4,3,k k =⎧⎨≥⎩所以4k =.(2)若p :x A ∈,q :x B ∈,p 是q 的充分条件, 即A B ⊆,所以43k ->或1k <-, 即7k >或1k <-.18.(Ⅰ)32;(Ⅱ)511,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】(1)先根据已知求出()26f x x π⎛⎫- ⎪⎝⎭,再求4f π⎛⎫ ⎪⎝⎭的值;(2)根据平移变换先求出函数()g x 的解析式,再求函数()g x 的单调递减区间得解. 【详解】(Ⅰ)∵()f x 的图像与x 轴相邻交点的距离为2π, ∴()f x 的最小正周期T π=,从而22Tπω==. 又()f x 的图像关于直线3x π=对称,∴2()32k k Z ππϕπ⨯+=+∈,∵22ππϕ-≤<,∴2236ππϕπ=-=-. ∴()26f x x π⎛⎫- ⎪⎝⎭,∴3244632f ππππ⎛⎫⎛⎫⨯-= ⎪ ⎪⎝⎭⎝⎭.(Ⅱ)将()f x 的图像向右平移12π个单位长度后,得到12y f x π⎛⎫=- ⎪⎝⎭的图像,∴()22121263g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=---=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.令3222()232k x k k Z πππππ+≤-≤+∈, 则511()1212k x k k Z ππππ+≤≤+∈. ∴()g x 的单调递减区间为511,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 19.(1)图象见解析,证明见解析;(2)最大值为3,最小值为12. 【分析】(1)画出()f x 图象,利用定义法,证明()()120f x f x ->,结合()f x 的定义域,证得()f x 的单调区间.(2)结合()f x 的单调性来求得()f x 在区间[]2,7上的最大值和最小值. 【详解】(1)()f x 的图象如下图所示:()f x 的定义域为{}|1x x ≠,当1x <时,任取121x x <<,()()()()211212123331111x x f x f x x x x x --=-=⨯----,其中21120,10,10x x x x ->-<-<,所以()()120f x f x ->,所以()f x 在区间(),1-∞上递减.同理可证得()f x 在区间()1,+∞上递减. (2)由(1)得()f x 在区间[]2,7上递减, 所以2x =时,()f x 取得最大值为3321=-, 当7x =时,()f x 取得最小值为31712=-. 20.(1)()2210050,020{9000195010,201x x x W x x x x -+-<≤=-->+;(2)29x =万台时最大利润为1360万元. 【分析】(1)由题意有()()8050W x xG x x =--,即可写出利润()W x (万元)关于年产量x (万台)的函数解析式.(2)利用二次函数的性质、基本不等式分别求出020x <≤、20x >上的最值,进而确定年利润最大时对应生产的台数及最大利润值. 【详解】(1)由题意知:()()8050W x xG x x =--,∴2210050,020()9000101950,201x x x W x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩. (2)由(1)知:()()()22251200,020{90001960101,201x x W x x x x --+<≤=⎡⎤-+->⎢⎥+⎣⎦, ∴020x <≤时,()W x 单调递增,则max ()(20)1150W x W ==;20x >时,()19601360W x ≤-=,当且仅当29x =时等号成立. 综上,当年产量为29万台时,该公司获得的年利润最大为1360万元.21.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(3)4m ≤. 【分析】(1)先由最值,求出2A =,再由函数过点()0,1,求出6π=ϕ,即可得出函数解析式; (2)根据正弦函数的单调性,即可求出函数在区间[]0,π上的增区间;(3)先由0,3x π⎡⎤∈⎢⎥⎣⎦,得到()[]1,2f x ∈,令()t f x =,将问题化为240t mt -+≥在[]1,2t ∈时恒成立,进而可求出结果.【详解】(1)因为最大值为2,所以2A =.因为()f x 过点()0,1,所以2sin 1=ϕ,又因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为222,262k x k k Z πππππ-≤+≤+∈,所以,36k x k k Z ππππ-≤≤+∈.当0k =时,36x ππ-≤≤;当1k =时,2736x ππ≤≤. 又因为[]0,x π∈,所以()f x 在[]0,π上的单调增区间是06,π⎡⎤⎢⎥⎣⎦和2π,π3. (3)因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以()[]1,2f x ∈.令()t f x =,则240t mt -+≥在[]1,2t ∈时恒成立, 即4m t t≤+在[]1,2t ∈时恒成立, 令()4g t t t=+,[]1,2t ∈,任取1212t t ≤<≤,则120t t -<,124t t <,所以()()()121212121244410g t g t t t t t t t t t ⎛⎫-=+--=--> ⎪⎝⎭,即()()12g t g t >, 所以()4g t t t=+在[]1,2t ∈上单调递减,则()()min 42242g t g ==+=,所以只需4m ≤,即实数m 用的取值范围是4m ≤. 【点睛】 思路点睛:求解含三角函数的二次型不等式恒成立的问题时,一般需要先根据三角函数的性质,确定所含三角函数的值域,再由换元法,将问题转化为一元二次不等式的形式,进行求解.22.(1)(2,0)-;(2)1(,1)2;(3)91,)5.【分析】(1)根据()f x 的对称轴在区间()1,1-内列不等式,解不等式求得a 的取值范围.(2)先求得()g x 表达式,将函数lg ()y g x =在区间[,1]t 恒有意义,转化为“对于任意的实数[,1]x t ∈,不等式()(21)||0g x x x =->恒成立”,对t 分成11,22t t ≤>两种情况进行分类讨论,由此求得t 的取值范围.(3)构造函数()2=()|2|h x f x x x ++,将()h x 写出分段函数的形式,对a 分成2,2a a =-≠-两种情况进行分类讨论,结合()h x 在(1,2)-有两个不相等的实数根,求得实数a 的取值范围. 【详解】(1)因为()f x 在区间[1,1]-上不单调,则111a -<+<,解得20a -<< 即a 的取值范围(2,0)-;(2)222()[(2)()]||[(2)(2(1)1)]||g x x ax a f x x x ax a x a x a x =---⋅=----+-+⋅(21)||x x =- 函数lg ()y g x =在区间[,1]t 恒有意义,等价于对于任意的实数[,1]x t ∈,不等式()(21)||0g x x x =->恒成立,(*) 当12t ≤时,1[,1]2t ∈,此时1()02g =,与(*)式矛盾,不合题意 当12t >时,由[,1]x t ∈可知,210x ,||0x >,所以()0>g x 恒成立,即(*)成立 又在区间[,1]t 上实数t 必须满足1t <综上,所求实数t 的取值范围为1(,1)2;(3)令()2=()|2|h x f x x x ++方程2()|2|0f x x x ++=在(1,2)-有两个不相等的实数根 等价于函数()h x 在区间(1,2)-上存在两个零点因为222(2)1,10(=()2221,? 02a x a x h x f x x x x ax a x -+-+-<<⎧++=⎨--+≤<⎩)且()h x 在0x =处图象不间断当2a =-时,23,?10()=243,?02x h x x x x -<<⎧⎨++≤<⎩无零点; 当2a ≠-时,由于()2(2)1h x a x a =-+-+在(1,0)-单调,∴在(1,0)-内()h x 至多只有一个零点,不妨设()h x 的两个零点为12,x x ,并且12x x <若()h x 有一个零点为0,则1a =,于是26,?10()22,02x x h x x x x --<<⎧=⎨-≤<⎩,零点为0或1,所以1a =满足题意若0不是函数()h x 零点,则函数()h x 在区间(1,2)-上存在两个零点有以下两种情形: ①若110x -<<,202x <<,则15(1)(0)0(1)(5)0919(0)(2)0(1)(95)0515a a h h a a a h h a a a ><-⎧-⋅<-+<⎧⎧⎪⇒⇒⇒<<⎨⎨⎨⋅<--<<<⎩⎩⎪⎩或.②若1202x x <<<,则248(1)01104 022111(0)09(2)05(1)(0)051a a a a a a a h a h h h a ⎧⎧∆=-->-⎪⎪<<⎪⎪<<⎪⎪<⇒⇒<<⎨⎨>⎪⎪<⎪⎪>⎪⎪->-<<⎩⎩. 综合①②得,实数a的取值范围是91,)5.【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查函数定义域问题的求解,考查方程的根的问题求解,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,考查运算求解能力,属于难题.。
2020-2021高一数学上期末模拟试题(及答案)(1)
2020-2021高一数学上期末模拟试题(及答案)(1)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦3.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-154.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<5.函数ln x y x=的图象大致是( )A .B .C .D .6.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y =x7.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<8.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .9.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( )A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U10.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .11.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.14.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.15.已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑nin i xx x x L ,则1ni i x ==∑__________.16.若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,则实数m 的取值范围是______;17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.函数{}()min 2,2f x x x =-,其中{},min ,{,a a ba b b a b≤=>,若动直线y m =与函数()y f x =的图像有三个不同的交点,则实数m 的取值范围是______________.19.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____. 20.已知函数1()41x f x a =+-是奇函数,则的值为________. 三、解答题21.已知函数22()21x xa f x ⋅+=-是奇函数. (1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.22.已知幂函数35()()m f x x m N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.23.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 24.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好.附:80()f x x x=+在单调递减,在)+∞单调递增. 25.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年).(1)当020x <≤时,求函数()v x 的表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.3.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <Q ,解得15a =-,故选:A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.4.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.6.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.7.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3,1)2c ∈, 所以a c b <<,故选B.8.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.9.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 ,综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.10.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.11.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221xf x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23,故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.14.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),⎡-∞-+∞⎣U ,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.15.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解. 【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标因为lg y x =和10x y =互为反函数,所以函数lg y x =和10xy =图像关于y x =对称所以函数4y x =-+与函数lg y x =和10x y =图像的两个交点也关于y x =对称 所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b +=所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++=解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x = 所以()()12121ni i x ==-+-+=-∑故答案为:1- 【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.16.【解析】【分析】根据条件可化为分段函数根据函数的单调性和函数值即可得到解不等式组即可【详解】当时当时且当时且当时且若函数在时取得最小值根据一次函数的单调性和函数值可得解得故实数的取值范围为故答案为: 解析:[)5,+∞【解析】 【分析】根据条件可化为分段函数,根据函数的单调性和函数值即可得到()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩解不等式组即可.当1x <时,()()121861927f x x m mx x m m x =-+-+-=+-+, 当12x ≤<时,()()121861725f x x m mx x m m x =-+-+-=+-+, 且()112f m =+,当23x ≤<时,()()121861725f x x mx m x m m x =-+-+-=-+-, 且()27f =,当3x ≥时,()()126181927f x x mx m x m m x =-+-+-=--++, 且()32f m =+,若函数() 1263f x x m x x =-+-+-在2x =时取得最小值,根据一次函数的单调性和函数值可得()()7050507027127m m m m m m ⎧-+≤⎪-+≤⎪⎪-≥⎪⎨+≥⎪⎪+≥⎪+≥⎪⎩,解得5m ≥,故实数m 的取值范围为[)5,+∞ 故答案为:[)5,+∞ 【点睛】本题考查了由分段函数的单调性和最值求参数的取值范围,考查了分类讨论的思想,属于中档题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】【详解】试题分析:由可知是求两个函数中较小的一个分别画出两个函数的图象保留较小的部分即由可得x2﹣8x+4≤0解可得当时此时f (x )=|x ﹣2|当或时此时f (x )=2∵f(4﹣2)= 解析:0232m <<【解析】 【分析】 【详解】试题分析:由{},min ,{,a a ba b b a b≤=>可知{}()min 2,2f x x x =-是求两个函数中较小的一个,分别画出两个函数的图象,保留较小的部分,即由22x x ≥-可得x 2﹣8x +4≤0,解可得423423x -≤≤+当423423x -≤+22x x ≥-,此时f (x )=|x ﹣2| 当423x +>或0433x ≤-<22x x -<,此时f (x )=x ∵f (4﹣332其图象如图所示,0232m <<时,y =m 与y =f (x )的图象有3个交点 故答案为0232m <<考点:本小题主要考查新定义下函数的图象和性质的应用,考查学生分析问题、解决问题的能力和数形结合思想的应用.点评:本小题通过分别画出两个函数的图象,保留较小的部分,可以很容易的得到函数的图象,从而数形结合可以轻松解题.19.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】 【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x > 结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b-=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩ ,解得:3,3a b =-=所以6b a -= 故答案为:6【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.20.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12三、解答题21.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=---∴2a =.(2)222()421x x f x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥--即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x x f x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题. 22.(Ⅰ)2()f x x =(Ⅱ)3,4⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(I )根据幂函数的奇偶性和在区间(0,)+∞上的单调性,求得m 的值,进而求得()f x 的解析式.(II )先求得()g x 的解析式,由不等式()0<g x 分离常数λ得到122xx λ<-,结合函数122xy x =-在区间[]1,2上的单调性,求得λ的取值范围. 【详解】 (Ⅰ)∵幂函数35()()m f x xm -+=∈N 为偶函数,且在区间(0,)+∞上单调递增,350m ∴-+>,且35m -+为偶数. 又N m ∈,解得1m =,2()f x x ∴=.(Ⅱ)由(Ⅰ)可知2()()2121g x f x x x x λλ=+-=+-. 当[1,2]x ∈时,由()0<g x 得122xx λ<-. 易知函数122xy x =-在[1,2]上单调递减, min 1123222224x x λ⎛⎫∴<-=-=- ⎪⨯⎝⎭.∴实数λ的取值范围是3,4⎛⎫-∞- ⎪⎝⎭. 【点睛】本小题主要考查幂函数的单调性和奇偶性,考查不等式在给定区间上恒成立问题的求解策略,属于中档题.23.(1)证明见解析(2)44a -≤≤ 【解析】 【分析】(1)先由函数()f x 为奇函数,可得1m =,再利用定义法证明函数的单调性即可;(2)结合函数的性质可将问题转化为2sin sin 30x a x ++≥在R 上恒成立,再利用二次不等式恒成立问题求解即可. 【详解】解:(1)∵函数31()31x xf x m -=⋅+是定义域为R 的奇函数, ()()f x f x ∴-=-31313131x x x x m m ----∴=-⋅+⋅+3131331x x x xm m --∴=+⋅+,()(1)310x a ∴--=,等式()(1)310xm --=对于任意的x ∈R 均恒成立,得1m =,则31()31x x f x -=+,即2()131x f x =-+, 设12,x x 为任意两个实数,且12x x <,()()()()()121212122332231313131x x x x x x f x f x -⎛⎫-=---= ⎪++++⎝⎭, 因为12x x <,则1233x x ≤,所以()()120f x f x -<,即()()12f x f x <, 因此函数()f x 在R 上是增函数; (2)由不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立, 则()2cos sin 3(1)f x a x f --≤.由(1)知,函数()f x 在R 上是增函数,则2cos sin 31x a x --≤,即2sin sin 30x a x ++≥在R 上恒成立.令sin x t =,[1,1]t ∈-,则222()33024a a g t t at t ⎛⎫=++=++-≥ ⎪⎝⎭在[1,1]-上恒成立.①当12a->时,即2a <-,可知min ()(1)40g t g a ==+≥,即4a ≥-, 所以42a -≤<-;②当112a -≤-≤时,即22a -≤≤,可知2min ()3024a a g t g ⎛⎫=-=-≥ ⎪⎝⎭.即a -≤≤22a -≤≤; ③当12a-<-时,即2a >,可知min ()(1)40g t g a =-=-≥,即4a ≤, 所以24a <≤,综上,当44a -≤≤时,不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立. 【点睛】本题考查了利用函数奇偶性求函数解析式及定义法证明函数的单调性,重点考查了含参二次不等式恒成立问题,属中档题.24.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天.【解析】 【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ; (2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案. 【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克),所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+,当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++, 所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈.设平均每天支付的费用为()f x 元, 当06x ≤≤时,2109090()210x f x x x+==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭,可知()f x 在单调递减,在)+∞单调递增,又89<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少. 【点睛】本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.25.(1)2(2){}2log 5x|2<x <【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案. 【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用. 26.(1)=**2,04,{15,420,82x x N x x x N<≤∈-+≤≤∈(2)当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米. 【解析】 【分析】 【详解】(1)由题意:当04x <≤时,()2v x =; 当420x <≤时,设,显然在[4,20]是减函数,由已知得200{42a b a b +=+=,解得18{52a b =-=故函数=**2,04,{15,420,82x x N x x x N<≤∈-+≤≤∈(2)依题意并由(1)可得*2*2,04,{15,420,.82x x x N x x x x N <≤∈-+≤≤∈ 当04x ≤≤时,为增函数,故()max (4)f x f ==428⨯=;当420x ≤≤时,()22221511100(20)(10)82888f x x x x x x =-+=--=--+,()max (10)12.5f x f ==.所以,当020x <≤时,的最大值为12.5.当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值约为12.5千克/立方米.。
高一数学第一学期期末测试题和答案
高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。
2020-2021高一数学上期末模拟试题(及答案)(4)
2020-2021高一数学上期末模拟试题(及答案)(4)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞ B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .4.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称5.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭6.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>7.函数y =a |x |(a >1)的图像是( ) A .B .C .D .8.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<9.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .10.函数()f x 是周期为4的偶函数,当[]0,2x ∈时,()1f x x =-,则不等式()0xf x >在[]1,3-上的解集是 ( ) A .()1,3B .()1,1-C .()()1,01,3-UD .()()1,00,1-U11.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1112.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.14.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.15.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________16.函数()()25sin f x x g x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.17.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.18.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 19.若函数()22xxe a x ef x -=++-有且只有一个零点,则实数a =______.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.22.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫=⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.23.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在(0,)a 单调递减,在(,)a +∞单调递增) 24.已知函数21()f x x x =-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围. 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数. (1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示: 依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈因为1y xx=+,在()1,2x∈上单调递增,所以52,2y⎛⎫∈ ⎪⎝⎭,即44152,2xx⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x xx⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.B解析:B【解析】试题分析:设()ln(1)g x x x=+-,则()1xg xx'=-+,∴()g x在()1,0-上为增函数,在()0,∞+上为减函数,∴()()00g x g<=,1()0()f xg x=<,得0x>或10x-<<均有()0f x<排除选项A,C,又1()ln(1)f xx x=+-中,10ln(1)0xx x+>⎧⎨+-≠⎩,得1x>-且0x≠,故排除D.综上,符合的只有选项B.故选B.考点:1、函数图象;2、对数函数的性质.4.C解析:C【解析】由题意知,(2)ln(2)ln()f x x x f x-=-+=,所以()f x的图象关于直线1x=对称,故C正确,D错误;又()ln[(2)]f x x x=-(02x<<),由复合函数的单调性可知()f x在(0,1)上单调递增,在(1,2)上单调递减,所以A,B错误,故选C.【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 5.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.6.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.10x 1.1 1.11=>=Q , 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.7.B解析:B【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .8.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.9.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.C解析:C 【解析】若[20]x ∈-,,则[02]x -∈,,此时1f x x f x -=--Q (),()是偶函数,1f x x f x ∴-=--=()(), 即1[20]f x x x =--∈-(),,, 若[24]x ∈, ,则4[20]x -∈-,, ∵函数的周期是4,4413f x f x x x ∴=-=---=-()()(),即120102324x x f x x x x x ---≤≤⎧⎪=-≤≤⎨⎪-≤≤⎩,(),, ,作出函数f x ()在[13]-, 上图象如图, 若03x ≤<,则不等式0xf x ()> 等价为0f x ()> ,此时13x <<, 若10x -≤≤ ,则不等式0xf x ()>等价为0f x ()< ,此时1x -<<0 ,综上不等式0xf x ()> 在[13]-, 上的解集为1310.⋃-(,)(,)故选C.【点睛】本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.11.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<Q ,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.14.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.15.【解析】【分析】令可化为进而求有两个正根即可【详解】令则方程化为:方程有两个根即有两个正根解得:故答案为:【点睛】本题考查复合函数所对应的方程根的问题关键换元法的使用难度一般解析:1(,0)4-【解析】 【分析】令20x t =>,42x x a -=,可化为20t t a --=,进而求20t t a --=有两个正根即可. 【详解】令20x t =>,则方程化为:20t t a --=Q 方程42x x a -=有两个根,即20t t a --=有两个正根,1212140100a x x x x a ∆=+>⎧⎪∴+=>⎨⎪⋅=->⎩,解得:104a -<<.故答案为: 1(,0)4-. 【点睛】本题考查复合函数所对应的方程根的问题,关键换元法的使用,难度一般.16.6【解析】【分析】由题意可得由正弦函数和一次函数的单调性可得的范围是将已知等式整理变形结合不等式的性质可得所求最大值【详解】解:函数可得由可得递增则的范围是即为即即由可得即而可得的最大值为6故答案为解析:6 【解析】 【分析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++,由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦, ()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++, 即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+, 由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+,即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.17.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.18.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考解析:4 【解析】 【分析】 设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.19.2【解析】【分析】利用复合函数单调性得的单调性得最小值由最小值为0可求出【详解】由题意是偶函数由勾形函数的性质知时单调递增∴时递减∴因为只有一个零点所以故答案为:2【点睛】本题考查函数的零点考查复合 解析:2 【解析】 【分析】利用复合函数单调性得()f x 的单调性,得最小值,由最小值为0可求出a .【详解】由题意()22122xxx x e ex a e x a ef x -=++-=++-是偶函数, 由勾形函数的性质知0x ≥时,()f x 单调递增,∴0x ≤时,()f x 递减. ∴min ()(0)f x f =,因为()f x 只有一个零点,所以(0)20f a =-=,2a =. 故答案为:2. 【点睛】本题考查函数的零点,考查复合函数的单调性与最值.掌握复合函数单调性的性质是解题关键.20.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题解析:{}1,0,1-【解析】 【分析】求出函数()f x 的值域,由高斯函数的定义即可得解. 【详解】2(1)212192()2151551x x x x e f x e e e +-=-=--=-+++Q , 11x e +>Q ,1011xe∴<<+, 2201xe∴-<-<+, 19195515x e ∴-<-<+,所以19(),55f x ⎛⎫∈- ⎪⎝⎭,{}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1- 【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题21.(1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+- 换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-, 由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值.22.(1)47;(2)存在,3λ< 【解析】 【分析】(1)由指数幂的运算求解即可.(2)由函数()k f x 的性质可将问题转化为cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,分离变量后利用均值不等式求最值即可得解. 【详解】解:(1)由已知11221132f a a -⎛⎫=+= ⎪⎝⎭,21112229a a a a --⎛⎫∴+=++= ⎪⎝⎭,17a a -∴+=, ()2122249a a a a --∴+=++=,2247a a -∴+=,即221(2)47f a a -=+=.(2)若()k f x 为定义在R 上的奇函数, 则(0)10k f k =+=,解得1k =-,01a <<Q ,()x xk f x a a -∴=-,在R 上为减函数,则(cos 2)(2sin 5)0k k f x f x λ+->,可化为(cos 2)(2sin 5)(52sin )k k k f x f x f x λλ>--=-, 即cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,即25cos 22sin 42sin 2sin 2sin sin x x x x x xλ-+<==+,对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 令sin ,t x =[0,1]t ∈,则2y t t=+为减函数, 当1t =时,y 取最小值为3, 所以3λ<. 【点睛】本题考查了不等式恒成立问题,重点考查了均值不等式,属中档题.23.(Ⅰ)()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【解析】【分析】(Ⅰ)根据题意知利润等于销售收入减去可变成本及固定成本,分类讨论即可写出解析式(Ⅱ)利用二次函数求040x <<时函数的最大值,根据对勾函数求40x ≥时函数的最大值,比较即可得函数在定义域上的最大值. 【详解】(Ⅰ)当040x << 时,()()228001020025010600250Q x x x x x x =-+-=-+- ;当40x ≥时,()100001000080080194502509200Q x x x x x x ⎛⎫=-+--=--+ ⎪⎝⎭. ()210600250,040,100009200,40.x x x Q x x x x ⎧-+-<<⎪∴=⎨--+≥⎪⎩(Ⅱ)当040x <<时,()()210308750Q x x =--+,()()max 308750Q x Q ∴==万元;当40x ≥时,()100009200Q x x x ⎛⎫=-++ ⎪⎝⎭,当且仅当100x =时, ()()max 1009000Q x Q ==万元.所以,2020年年产量为100(千部)时,企业获得的利润最大,最大利润为9000万元. 【点睛】本题主要考查了分段函数,函数的最值,函数在实际问题中的应用,属于中档题. 24.(1)证明见解析(2)m 1≥ 【解析】 【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案. 【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭ ∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x >∴12()()f x f x >,∴()f x 在(0,)+∞单调递减; (2)()()2201f x x m f ++<=,故221x x m ++>,()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用.25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得:区间上是递减的,且在区间上恒成立;则,解得26.(1) ;(2)每次应拖挂节车厢才能使每天的营运人数最多为人.【解析】试题分析:(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值.试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节,则设. 将点代入,解得∴.(2)每次拖挂节车厢每天营运人数为,则,当时,总人数最多为人.故每次应拖挂节车厢才能使每天的营运人数最多为人.。
高一数学上学期期末考试试题(含答案)
高一上学期期末考试一、填空题1.集合{10},{0,1},{1,2})A B C A B C === -,,则(=___________. 2. 函数()f x =)12(log 21-x 的定义域为3.过点(1,0)且倾斜角是直线013=--y x 的倾斜角的两倍的直线方程是 .4.球的表面积与它的内接正方体的表面积之比是_______________ 5.点()1,1,2P -关于xoy 平面的对称点的坐标是 .6.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是_________7.以点C (-1,5)为圆心,且与y 轴相切的圆的方程为 . 8.已知点(,1,2)A x B 和点(2,3,4),且26AB =,则实数x 的值是_________. 9.满足条件{0,1}∪A={0,1}的所有集合A 的个数是_____.10.函数y=x 2+x (-1≤x ≤3 )的值域是 _________. 11.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则2a -b 的值是_________. 12.函数142+--=mx x y 在[2,)+∞上是减函数,则m 的取值范围是 .13.函数()(01)x f x a a a =>≠且在[1,2]上最大值比最小值大2a,则a 的值为 .14. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是 .二.解答题15、(1)解方程:lg(x+1)+lg(x-2)=lg4 ; (2)解不等式:41221>-x;16.(本小题12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1.⑴求f (x )的解析式;⑵当x ∈[-1,1]时,不等式:f (x ) 2x m >+恒成立,求实数m 的范围.17. 如图,三棱柱111ABC A B C -,1A A ⊥底面ABC ,且ABC ∆为正三角形,16A A AB ==,D 为AC 中点. (1)求三棱锥1C BCD -的体积; (2)求证:平面1BC D ⊥平面11ACC A ; (3)求证:直线1//AB 平面1BC D .18.已知圆22:(3)(4)4C x y -+-=,直线1l 过定点 A (1,0). (1)若1l 与圆C 相切,求1l 的方程; (2)若1l 的倾斜角为4π,1l 与圆C 相交于P ,Q 两点,求线段PQ 的中点M 的坐标; (3)若1l 与圆C 相交于P ,Q 两点,求三角形CPQ 的面积的最大值,并求此时1l 的直线方程.A BCA 1B 1C 1D19. (本题14分)已知圆M :22(2)1x y +-=,定点A ()4,2在直线20x y -=上,点P 在线段OA 上,过P 点作圆M 的切线PT ,切点为T .(1)若5MP =,求直线PT 的方程;(2)经过,,P M T 三点的圆的圆心是D ,求线段DO 长的最小值L .20.已知⊙C 1:5)5(22=++y x ,点A(1,-3)(Ⅰ)求过点A 与⊙C 1相切的直线l 的方程;(Ⅱ)设⊙C 2为⊙C 1关于直线l 对称的圆,则在x 轴上是否存在点P ,使得P到两圆的切线长之比为2?荐存在,求出点P 的坐标;若不存在,试说明理由.D 1A 1C 1B 1DACB参考答案一、填空题1.}{3,9 2.),1(+∞ 3.1 4.6 5.2370x y -+= 6.045 7. 22(1)(1)2x y -+-=8.异面 9.π8 10. 相交 11.π12 12.34π13.(A) (2)(4) (B )①③ 14.(A)415(B) (1,32) 二、解答题:15.设35212,x x y a y a +-==,(其中01a a >≠且)。
高一数学上册期末考试试卷及答案解析(经典,通用)
高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。
最全面【必考题】高一数学上期末模拟试卷(及答案)(精华版)
【必考题】高一数学上期末模拟试卷 ( 及答案 )一、选择题1. 已知 f 是( ) x 是偶函数,它在 0, .若 f lg x f 1 ,则 x 的取值范围上是增函数 1101101100, 10,,10 ,1A .B .C .0,1 10,D .a,b, c 的大小关系是(2. 设 a log 6 3 , cb lg5 ,c log 14 7 ,则 c) D . cb 时, a bA . ab B . a C . ba cb a a b a ;当3. 在实数的原有运算法则中,补充定义新运算“”如下:当2b ,已知函数 a b 时, f x 1 x x 2 2 x x2,2 ,则满足a b f m 1f 3m 的实数的取值范围是()1212 1 2 23,, 2,1, A . B . C . D .2 32,则 e 3c a , b ,c 的大小关系是( 4. 设 a log 2 3 , )3 ,cb ba C . bc axA . ab cB . D . a c bf x a ,且不等式 f 2x 的解集为 1,3 ,若方程5. 已知二次函数的二次项系数为 a f x6a 0 ,有两个相等的根,则实数 ( )1 51 51 5A .-B . 1C . 1或D .1或a x,x 1 f (x)6. 若函数是 R 上的单调递增函数,则实数a 的取值范围是a 24x 2, x 1( ) D . 4,8)1, A . B .( 1,8)C .( 4,8)1 41 4 a 163 b7. 已知 a log 13, 5,则( ),c c b c a bD . bc aA . a b cB .C . x 3 8. 用二分法求方程的近似解,求得f ( x) 2 x 9 的部分函数值数据如下表所示:x1 2 1.5 1.625 1.75 1.875 1.8125 f ( x)-63-2.625-1.459-0.141.34180.5793x3则当精确度为 0.1 时,方程 2x 9 0 的近似解可取为C . 1.8B . 1.7D . 1.9A . 1.6 9. 设 fx f xf x 0 ,当x ,恒有 是 R 上的周期为 2 的函数,且对任意的实数 x1 2log 10 x1,0 1 ,若关于 x 的方程 f xx 0 且 a 1 )a 时, f x( a a 的取值范围是 恰有五个不相同的实数根,则实数 ( )A . 3,5 4,64,63,5B .C .D .x7,7 上的奇函数 f x 26 ,则不等式10. 定义在,当 0 x 7 时, f xx f x0 的解集为A . 2,7 2,0 2,7B .2,02,7, 22,7C .D .f (x )=x ( e x +ae ﹣x )( x ∈ R ),若函数 f ( x )是偶函数,记 a=m ,若函数 f 11. 已知函数 (x )为奇函数,记 A .0 a=n ,则 B . 121 的值为( ) m+2n C . 2 D .﹣ 1x ,x 1f x2 的 fx1 log2 x, x 1,则满足 ()12. 设函数 的取值范围是 x A .1,2二、填空题B . 0,2C . 1,D . 0,1 4,( x xlog 2 x,(0 4)f ( x) k 有两个不同的实 f ( x).若关于 x 的方程, 13. 已知函数x 4)根,则实数k 的取值范围是.14. 对于函数 f (x ),若存在 x 0∈ R ,使 f ( x 0) =x 0,则称 x 0 是 f ( x )的一个不动点,已知 f ( x ) =x 2+ax+4 在 [1 , 3] 恒有两个不同的不动点,则实数 a 的取值范围 .1 1 y f ( x) x 0 时, 15. 已知 是定义在 R 上的奇函数,且当 f (x),则此函数xx42的值域为 .x2ax ax, x 1, 1,x 1, x 2 R, x 1 x 2 f ( x) { 16. 已知函数若f ( x 1 ) f ( x 2 ) 成立,,使得 1,.x 则实数 a 的取值范围是2f x 与g x 有g xf f x 17. 已知常数 ,若 a R ,函数 f xlog 2 xa , 相同的值域,则 a 的取值范围为.f x f x [0,) 上是减函数,则18. 已知函数是定义在 R 上的偶函数,且 在区间 f x f 2 的解集是 .2f x2xx a x a 3,0 19. 若函数 在区间 上不是单调函数,则实数a 的取值范围是 .x2x 1, m 1,10 m.20. 已知函数 y2 x 2 , .若该函数的值域为 ,则 三、解答题21. 已知集合 Ax | 2 3x 1 8 , B x | 2x 1 5 , Cx | x a 或xa 1 .A B, AB (1)求 ;C R CA ,求实数 a 的取值范围.(2)若22. 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某 x% (0 x 100 )的 地上班族 S 中的成员仅以自驾或公交方式通勤.分析显示:当30,0 S 中 30x 成员自驾时,自驾群体的人均通勤时间为f x(单位:1800 x90,30 2 xx 100x 影响,恒为 分钟),而公交群体的人均通勤时间不受 下列问题:40 分钟,试根据上述分析结果回答(1)当 x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? g x g x 的单调性,并说明其实(2)求该地上班族 S 的人均通勤时间 的表达式;讨论 际意义. m 2 2m 30,23. 已知幂函数 f x xm Z 为偶函数,且在区间 上单调递减 .(1)求函数f x 的解析式;b F x a f x的奇偶性 a, b R (2)讨论 .(直接给出结论,不需证明)xf x2x2在区间 f x 4x a , g x log x a 0, a 1 24. 已知函数 .a (1)若函数 f x 1,m m 的取值范围; 上不具有单调性,求实数 1 2f1g 1 , t 2g x x 0,1 t 1 , t 2 的大小 (2)若 ,设 t 1f x ,当 时,试比较 .2 2g( x)f ( x) 1 .25. 已知 f ( x) , x1 g(x) 的奇偶性;10 (1)判断函数10f ( i )f (i ) 的值 .(2)求i 1i 1f (5) f (2)xa ( 8 26. 已知函数 f ( x ) 0 , 且a 1), 且 a .f (2m 3)( x) f (m 2) , 求实数 m 的取值范围 ;( 1) 若 | f 1| t 有两个解 , 求实数 t 的取值范围 .( 2) 若方程【参考答案】 *** 试卷处理标记,请不要删除一、选择题1. C 解析: C 【解析】 【分析】f lg x f 1 变形为 f lg xf 1 利用偶函数的性质将不等式,再由函数y f x 0,lg x 1 ,利用绝对值不等式的解法和对数函数的单在 上的单调性得出调性即可求出结果 【详解】 . y f x f lg xf 1 f lg x f 1 由于函数是偶函数,由 得 ,函数 y f x 在 0,lg x 1,即 1 lg x 1 ,解得又 上是增函数,则1 10x 10 .故选: C.【点睛】 本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题2.A解析: A 【解析】 【分析】 .x 2 log x构造函数 f x ,利用单调性比较大小即可 .【详解】 x 210 1log 2 xf x 1,f x log x 1 log x 2 1构造函数 ,则 在 上是增函数,又 a f 6 , bf , c f 14 ,故 a b c .故选 A【点睛】 本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题3.C.解析: C【解析】 f x1 x2 2 x 3x4 ; 2 x 1 时, 当2当 1 x 2 时, f xx x 2 2 4 ;x x3x 4, 2 4,1 4 在 x x 12f x 所以 ,3xx f x2,1 f x4 在 1,2 易知, 单调递增, 单调递增,且2 x 1 时, f x 3, 1 2 时, f3 ,x max minfx 2,2 则 在 上单调递增,2 2 m m 1 3m 21 22 ,故选 3所以 f m 1 f 3m 得:2 ,解得 m C .1 3mx 4, 2 x 1 f x点睛:新定义的题关键是读懂题意,根据条件,得到 ,通过单调3x4,1 3m x 2f x f m 1f 在 2,2 上单调递增,解不等式 性分析,得到,要符合定义域2 2 m m 1 3m 22 和单调性的双重要求,则,解得答案. 1 3m4.A解析: A 【解析】【分析】 根据指数幂与对数式的化简运算 【详解】,结合函数图像即可比较大小.2e 3x因为 a log 2 3 , b 3 ,c x:令 fxlog 2 x , g 函数图像如下图所示2 , g 44 2则 f 4log 24 所以当 x3 时 , 23 log 2 3 ,即 a b b3 , ce 362 3 66 446b则 327 , cee2.753.1b6c 6,即 b 所以cca b 综上可知 故选 :A 【点睛】, 本题考查了指数函数、对数函数与幂函数大小的比较 及不等式性质比较大小 ,属于中档题 .5.A解析: A 【解析】 【分析】 ,因为函数值都大于 1,需借助函数图像2设 fx axbx c ,可知 1、 3 为方程 f x2x 0 的两根,且 0 ,利用韦达定a f x6a 0 有两个相等的根,由理可将 b 、c 用 a 表示,再由方程 值. 【详解】 a 的0 求出实数 由于不等式f x 2x 的解集为 1,3 , 2ax即关于 x 的二次不等式b 2 xc 0 的解集为 1,3 a 0 .,则 2由题意可知, 1、 3 为关于 x 的二次方程 axb 2 xc 0 的两根,b 2 ca由韦达定理得1 3 4 , 1 3 3 , b4a 2 , c 3a ,a4a 2f x ax 2 x 3a ,f x6a 0 有两相等的根,x 的二次方程由题意知,关于 2即关于 x 的二次方程 ax4a 2 x 9a 0 有两相等的根,1522a则4 a 2 36a10a 2 2 2a0 , a 0 ,解得 ,故选: A. 【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题 的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于 中等题 .解析: D 【解析】【分析】 根据分段函数单调性列不等式,解得结果 【详解】.xa ,x 1 因为函数f ( x)是 R 上的单调递增函数,a 24x 2, x 1a 1a 2 所以4 0 4 a 8a242 a故选: D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题7.C.解析: C 【解析】 【分析】首先将 b 表示为对数的形式,判断出 b 0 ,然后利用中间值以及对数、指数函数的单调性3 比较与 a, c 的大小,即可得到2【详解】 a, b, c 的大小关系 .1 41 4b因为 5b log 5 log 5 1 0 ,,所以 1 43 2alog 13 log 3 4log 3 3,log 3 3 3 又因为 ,所以 a1, , 1 33 1631,833 23, 2 2c 又因为 ,所以 c, c a C. b .所以 故选: 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.解析: C 【解析】【分析】 利用零点存在定理和精确度可判断出方程的近似解 【详解】 .根据表中数据可知f 1.75 0.14 0 , f 1.8125 0.5793 0 ,由精确度为 0.1 可知1.75 1.8 , 1.8125 1.8 ,故方程的一个近似解为 1.8 ,选 C.【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区 间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终 零点所在区间的端点的近似值相同,则近似值即为所求的近似解9.D.解析: D 【解析】 x1 2由 fx f x 0 ,知 f x 是偶函数,当 x1,0 时, 1 ,且f xf x 是 R 上的周期为 2 的函数,yf x y log a 1 x x 的方程作出函数 和 的函数图象,关于 f x log a x 10 ( y f x 和a 0 且 a 1 ) 恰有五个不相同的实数根,即为函数y log a 1 x 的图象有 5 个交点,a 3 5 1114 a 6 . 所以 log a log a D.1 ,解得 1故选点睛:对于方程解的个数 ( 或函数零点个数 ) 问题,可利用函数的值域或最值,结合函数的 单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从 图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.B解析: B 【解析】 【分析】 f (2)0 ,则 ( 2,0)f ( x) 0 的解集为 2,7 0x 7时, f ( x) 为单调增函数,且当 ,再结合f (x) 0 的解集为 (2,7] f ( x) 为奇函数,所以不等式 【详解】 .2x在(0,7] 0x 7时, f()6 ,所以 当 上单调递增,因为 x f ( x) 227 ,f ( x) 0 等价于 f (x)f (2) f (2) 2 6 0 ,所以当 0 x 7 时, ,即2 x [ 7,7] 在[ 2 7,0) 7 x 0 因为 f (x) 是定义在 上的奇函数,所以 时, f ( x) 上单调递增, f ( 2)f (x) f (2) 0 的解集为 0 ,所以 f ( x) (2,7]0 等价于 f ( x)f ( 2) ,即 x 0 ,所以不等且 ( 2,0) 式 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区 间上单调性相同,偶函数在其对称的区间上单调性相反.11.BB 解析: 【解析】试题分析:利用函数 f ( x ) =x ( e x +ae ﹣x )是偶函数,得到 g (x ) =e x +ae ﹣x为奇函数,然后利 m .函数 f ( x ) =x ( e x +ae ﹣x )是奇函数,所以 g ( x ) =e x +ae ﹣x 为偶函用 g (0) =0,可以解得 数,可得 n ,即可得出结论.解:设 g ( x ) =e x +ae ﹣x ,因为函数 数.f ( x ) =x ( e x +ae ﹣x )是偶函数,所以g ( x ) =e x +ae ﹣x 为奇函又因为函数 f ( x )的定义域为 R ,所以 g ( 0) =0, 即 g (0) =1+a=0,解得 a=﹣ 1,所以 m=﹣ 1.因为函数 f ( x ) =x ( e x +ae ﹣x )是奇函数,所以 g ( x ) =e x +ae ﹣x 为偶函数 所以( e ﹣x +ae x )=e x +ae ﹣x 即( 1﹣ a )( e ﹣x ﹣e x )=0 对任意的 x 都成立 所以 所以 故选 a=1,所以 n=1, m+2n=1 B .考点:函数奇偶性的性质.12.D解析: D 【解析】 【分析】分类讨论: ① ② 当 1 时; 当 1时,再按照指数不等式和对数不等式求解,最后x x 出它们的并集即可. 【详解】 21 xx 0 , 0 x 1.当 x12 的可变形为 1 x 1, 1 2当 x 1 时, 1 log 2 x 2 的可变形为 x1,故答案为0,, x .故选 D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函 数的图象与直线有两个交点时有 (1,2)解析: 【解析】作出函数 f (x) 的图象,如图所示,41单调递减,且 4 x当 x 4 时, f ( x) log x 单调f (x) 1 12 ,当 0 x 4 时, 2 xy k 有两个交点时,有递增,且 f ( x) log 2 x 2 ,所以函数 f ( x) 的图象与直线 k 2 .1 14.【解析】【分析】不动点实际上就是方程 f ( x0)=x0 的实数根二次函数 f( x )=x2+ax+4有不动点是指方程x=x2+ax+4 有实根即方程 x=x2+ax+4 有两个 不同实根然后根据根列出不等式解答即可 10 3, 3 解析:【解析】 【分析】f ( x 0) =x 0 的实数根,二次函数 f (x )=x 2+ax+4 有不动点,是指方不动点实际上就是方程x=x 2+ax+4 有实根,即方程 x=x 2+ax+4 有两个不同实根,然后根据根列出不等式解答即程 可.【详解】 解:根据题意, 两个实数根,f ( x ) =x 2+ax+4 在[1 , 3] 恒有两个不同的不动点,得x=x 2+ax+4 在 [1 , 3] 有x 2 +( a ﹣ 1) x+4=0 在 [1 , 3] 有两个不同实数根,令 g ( x ) =x 2+( a ﹣ 1) x+4 在 [1 ,3] 有两即 个不同交点,g (1) g (3) 0 0a 3a 4 10 0 0∴,即,1 a1 a131322 1) 22( a 1) 16 0(a 16 0103, 3 解得: a ∈; 103故答案为: , 3 . 【点睛】本题考查了二次函数图象上点的坐标特征、函数与方程的综合运用,属于中档题.15.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范 围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所 以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函 1 1 解析:, 4 4【解析】 【分析】 x 0 时函数值的取值范围,再由奇函数性质得出 x 0 时的范围,合并后可得值可求出 域. 【详解】 21 1 21 42x,所以 0 t 1 , 设 t,当 x0 时, , 21 ytt tx20, 1414f x所以 0 y,故当 x0 时, . 14因为 yf x 是定义在 x 0 时, R 上的奇函数,所以当 f x,0 ,故函数 1 1 , 4 4f x . 的值域是1 1 , 4 4故答案为: . 【点睛】本题考查指数函数的性质,考查函数的奇偶性,求奇函数的值域,可只求出 x 0 时的函x 0 时的范围,然后求并集即可.数值范围,再由对称性得出16.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为 .17.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为 当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值 范围为故答案为 :【点睛】本题考查对数型函数的值域要注意二次函数的值 0,1解析: 【解析】【分析】分别求出 【详解】f ( x), g(x) 的值域,对 a 分类讨论,即可求解 . 2a R , f xlog 2 xa log 2 a ,f x [log a,) ,的值域为 2 2g xf f xlog 2 ([ f ( x)]a) ,2当 0 a 1,log 2 a 0,[ f ( x)] 0, g (x) log 2 a ,g(x) 值域为 [log a,) ,函数 2 f (x), g (x) 的值域相同; 此时 221时, log 2a 0,[ f ( x)](log 2 a) 当 a ,2g( x) log 2[(log a) a] ,2 2当 1 2 时, log 2 a1,(log 1, log 2 a (log 2 a)aa 2当 a 2,log a a)log 2 a ,2 2 2log 2 a (log 2 a)a ,f (x),g (x) 的值域不同,a 1时,函数所以当 0,1 .故 a 的取值范围为 0,1 故答案为 : .【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.18.【解析】【分析】由题意先确定函数在上是增函数再将不等式转化为即可 求得的取值范围【详解】函数是定义在上的偶函数且在区间上是减函数函数在 区间上是增函数或解集为故答案为:【点睛】本题考查偶函数与单调性结合 , 2 2,解析:【解析】 【分析】 f x ,0 f 1 1 f 2 由题意先确定函数 在 上是增函数,再将不等式转化为 即可求得 x 的取值范围 【详解】 . 函数 f x R 上的偶函数,且 f ,0 上是增函数x 在区间 [0, ) 上是减函数,是定义在 函数 fx 在区间 f xf 2f xf 2x x 22 或 x ≤ , 2 22, 解集为 , 22,故答案为: 【点睛】本题考查偶函数与单调性结合解抽象函数不等式问题,直观想象能力,属于中等题型19.【解析】【分析】将函数转化为分段函数对参数分类讨论【详解】转化为 .分段函数:为更好说明问题不妨设:其对称轴为;其对称轴为 称轴显然不在则只需的对称轴位于该区间即解得:满足题意 ①当时因为的对 ②当时此时函数9,00,3解析: 【解析】 【分析】a 分类讨论 将函数转化为分段函数,对参数 【详解】.2f x 2xx a x a ,转化为分段函数:223x 2ax 2ax a , x a 2, x a af x.x2为更好说明问题,不妨设:a322h x 3x 2ax a ,其对称轴为 x ;22g x①当 x2ax a xa .,其对称轴为 a 0 时, a 3因为 h x 3,0 的对称轴 x显然不在,则 gx a3,0 只需 的对称轴位于该区间,即,a 0,3 0 时, 3x 2, x x , x 解得: ,满足题意 .a②当 0 0f x,此时2 3,0 函数在区间 是单调函数,不满足题意 .a 0 时, ③当 因为 g x 3,0的对称轴 xa 显然不在a 3hx 3,0只需 的对称轴位于该区间即可,即解得: a 9,0 ,满足题意 . a9,0 0,3 . 综上所述: 9,00,3 .故答案为: 【点睛】本题考查分段函数的单调性,难点在于对参数a 进行分类讨论 .20.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详 解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值 1 又4【点睛】此题考查二次因为当时所以当时且解得或(舍)故故答案为:解析: 4 【解析】【分析】 根据二次函数的单调性结合值域,分析最值即可求解 【详解】 .2二次函数 y x2x 2 的图像的对称轴为 x 1 ,x ,1 递减,在 x 1,函数在 递增,1时,函数 f x 取得最小值 5 ,所以当 x且当 1,y y 10 ,且 x m时,x 4 或 1 时, m1,又因为当 解得 m2 (舍),故m 4 .故答案为: 4【点睛】 此题考查二次函数值域问题,根据二次函数的值域求参数的取值三、解答题.A B x |1 x 3 , A B x | x 3 ;( 2)a 1,2 21. ( 1) 【解析】 【分析】 A 1,3 , B ,3 A B, A B 的值 . (2) (1)首先求得,由此求得 a 1a1,2 C R C a, a 1 a,a 11,3 ,解得 .,由于 ,故a 1 3【详解】 A x|1 x 3 , B x | x 3 解: ,(1) A Bx |1 x 3 , A B x | x 3 ;(2)∵ Cx | x a 或xa 1 x | a 1 ,∴ C R Cx a ,a a 1 1a 1,2 ∵ C R C A ,∴ ,∴ .322. (1) x45,100 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2) 见解析 . 【解析】 【分析】(1)由题意知求出 f ( x )> 40 时 x 的取值范围即可;(2)分段求出 【详解】g ( x )的解析式,判断 g ( x )的单调性,再说明其实际意义. (1)由题意知,当30 x 100 时,1800 x900 f x2x90 40 ,x2即65x 0 ,x 20 或 x 45 ,解得 ∴ x45,100 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;x 30 时,(2)当 x 10g x30 x% 40 1 x%40;当 30x 100 时,2180 xx1310g x2 x90 x% 40 1 x%x 58 ;50 x4010g x∴ ;2x13 x58 50 10 g x 单调递减; 0 x 32.5 时, 当 g x 32.5x 100 时, 当 单调递增;说明该地上班族 S 中有小于 32.5%的人自驾时,人均通勤时间是递减的; 有大于 32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为 32.5% 时,人均通勤时间最少.【点睛】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力. 423. ( 1) f x 【解析】 【分析】x ( 2)见解析2m0,f ( x) 在上单调递减 ,可推出 0 ( m Z ),再结合 f ( x) 为偶(1) 由幂函数 2m 3m ,得出结论 函数,即可确定 ; F (x) ,再依次讨论参数 a,b 是否为 f (x) 代入 ,即可得到 0 的情况即可 . (2) 将 【详解】 m 2 2m 30,f x xm Z (1) ∵幂函数 在区间 上是单调递减函数 ,2mm∴ ∵ 0 ,解得 0 或 m xm2 m3 3 ,2 .2m Z ,∴ 3 m 1 m 1或m2 ∵函数 f 1, xm Z 为偶函数 ,m f∴ 4xx ;∴ b b x4(2) F x a f xa x2bx 3,ax4xf xx 0 时, F x 当 a b 既是奇函数又是偶函数 ; 0, b ≠0 时 , F x 当 a 是奇函数 ; 0 时, F x a 0, b 当 是偶函数 ; 0, b ≠0 时, F x 当 a.是非偶非偶函数 【点睛】本题主要考查了幂函数单调性与奇偶性的综合应用 ,学生需要熟练掌握好其定义并灵活应用.;(2) t 1 t 21, 24. ( 1) 【解析】 【分析】(1)根据二次函数的单调性得到答案 .2a 2 ,再计算 (2)计算得到 0 ,t 2 log 2 x 0 ,得到答案 t 1x 1.【详解】 2(1)函数 f x 2x4 x a 的对称轴为 x 1 ,1,m m 1,f x 函数 在区间 上不具有单调性,故 m 1 ,即 .(2) f 1g 1 2 4 log a 1 0 ,故 ,即 a a 2 .1 2 22x当 x 0,1 时, 0 ; t g x log x 0 .t f x2 x 1 x 12 2 1t 1t 2故 【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综 合应用 .25. ( 1) g( x) 为奇函数;( 2) 20 【解析】【分析】 (1)先求得函数 g x 证得 g x 为奇函数 .g x g x 的定义域,然后由 (2)根据 gx 所求表达式的值 【详解】 g( i ) g(i ) 0 ,从而得到 f ( i ) f (i) 2 ,由此求得为奇函数,求得 . x 1 1 2 2x R x R x R .(1) ,定义域为,当 时, g( x)x11 x x1 12 22 1x2 ,所以 g( x) 为奇函数. 因为 g( x )g( x ) xx 11 2x21 g( 10i )g(i) 0 ,于是 f ( i)f (i ) 102 i 12 .(2)由( 1)得 1010f ( i )f (i ) [ f ( i)f (i )]10 2 20所以i 1i 1i 1【点睛】本小题主要考查函数奇偶性的判断,考查利用函数的奇偶性进行计算,属于基础题 .( ,5) ;( 2) 0,1 .26. ( 1) 【解析】 【分析】 f (5) f (2)8 求得 a 的值,再利用指数函数的单调性解不等式,即可得答案;(1)由y | f ( x) 1| 与 y t 的图象,利用两个图象有两个交点,可得实数t 的取(2)作出函数 值范围 . 【详解】 f (5) f (2) 8( 1) ∵ 5 a3∴ a8 则 a 22ax2 , 则函数 即 f ( x) 是增函数 f ( x ) f (2 m 3) f ( m 2) , 得 2m3 m 2由 得 m5 ,即实数 m 的取值范围是 ( ,5) . xxy t y 21 图象与 图象有两个不同交点 ( 2) f (x )2 ,, 由题知 t (0,1)由图知 :【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。
高一数学第一学期期末模拟试卷(二)(解析版)
2020—2021学年度高一数学第一学期期末模拟试卷(二)(解析版)(时间120分钟 满分150分)一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四 个选项中,只有一项是符合题意要求的.)1. 设集合A ={1,2,4},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}【解答】C . 2.已知,则x 的值为( )A. 12B. 2C. 3D. 4【答案】B3.已知命题p :∃x 0∈R ,x 02−x 0+14≤0,则¬p 为( ) A. ∃x 0∈R ,x 02−x 0+14>0 B. ∃x 0∈R ,x 02−x 0+14<0 C. ∀x ∈R ,x 2−x +14≤0D. ∀x ∈R ,x 2−x +14>0【答案】D4.不等式2−3xx−1>0的解集为( )A. (−∞,34)B. (−∞,23)C. (−∞,23)∪(1,+∞)D. (23,1)【答案】D5.已知函数f(3x +1)=x 2+3x +2,则f(10)=( )A. 30B. 6C. 20D. 9【答案】C6.设函数f(x)=cos(x +π3),则下列结论错误的是( )A. f(x)的一个周期为−2πB. y =f(x)的图象关于直线x =8π3对称C. f(x +π)的一个零点为x =π6D. f(x)在(π2,π)单调递减【答案】D7.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I(t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A. 60B. 63C. 66D. 69【答案】C【解析】 【分析】本题考查函数模型的实际应用,考查学生计算能力,属于中档题. 根据所给材料的公式列出方程K1+e −0.23(t−53)=0.95K ,解出t 即可. 【解答】解:由已知可得K1+e −0.23(t−53)=0.95K ,解得e −0.23(t−53)=119, 两边取对数有−0.23(t −53)=−ln19≈−3, 解得t ≈66, 故选:C .8.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 方程()()()()255660f x a f x a a R -++=∈⎡⎤⎣⎦有且仅有6个不同实数根,则a 的取值范围是() A .01a <≤或54a =B .01a ≤≤或54a =C .01a <<或54a =D .514a <≤或0a =【答案】A二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有 选错的得0分.)9.已知x ≥1,则下列函数的最小值为2的有( )A. y =2x +x 2B. y =4x +1xC. y =3x −1xD. y =x −1+4x+1【答案】ACD10.下列命题正确的是( )A. 三角形全等是三角形面积相等的充分不必要条件B.,x 2−x +1≠0C. 有些平行四边形是菱形是全称量词命题D. 至少有一个整数,使得n 2+n 为奇数是真命题【答案】AB11.下列各组函数是同一函数的是( )A. f(x)=√−2x 3与g(x)=x √−2x ;B. f(x)=x 与g(x)=√x 2;C. f(x)=x 0与g(x)=1x 0;D. f(x)=x 2−2x −1与g(t)=t 2−2t −1【答案】CD12.图象,则sin (ωx +φ)=( )A. sin (x +π3)B. sin (π3−2x)C.cos (2x +π6)D. cos (5π6−2x)【答案】BC三、填空题:(本题共4小题,每小题5分,共20分)13.已知集合A ={1,2},B ={a,a 2+3}.若A ∩B ={1},则实数a 的值为______.为1.14化简求值:(8116)−14+log 2(43×24)=______ .【答案】32315.关于x 的方程(12)|x|=|log 12x|的实数根的个数是________.【答案】216.已知a >0,设函数f(x)=2009x+1+20072009x +1+sinx(x ∈[−a,a])的最大值为M ,最小值为N ,那么M +N = ______ .【答案】4016 【解析】解:∵f(x)=2009x+1+20072009x +1+sinx(x ∈[−a,a])∴设g(x)=2009x+1+20072009x +1,则g(x)=2009x+1+2009−22009x +1=2009−22009x +1,∵2009x 是R 上的增函数,∴g(x)也是R 上的增函数. ∴函数g(x)在[−a,a]上的最大值是g(a),最小值是g(−a).∵函数y =sinx 是奇函数,它在[−a,a]上的最大值与最小值互为相反数,最大值与最小值的和为0.∴函数f(x)的最大值M 与最小值N 之和M +N =g(a)+g(−a) =2009−22009a +1+2009−22009−a +1…第四项分子分母同乘以2009a=4018−[22009a+1+2×2009a2009a+1]=4018−2=4016.四、解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合A={x|x≤−3或x≥2},B={x|1<x<5},C={x|m−1≤x≤2m} (Ⅰ)求A∩B,(∁R A)∪B;(Ⅱ)若B∩C=C,求实数m的取值范围.【答案】解:(Ⅰ)A∩B={x|2≤x<5},∁R A={x|−3<x<2},∴(∁R A)∪B={x|−3<x<5}.(Ⅱ)∵B∩C=C,∴C⊆B,当C=∅时,m−1>2m,∴m<−1;当C≠∅⌀时,{m−1≤2mm−1>12m<5,解得2<m<52,综上,m的取值范围是m<−1或2<m<52.【解析】本题考查了集合的交集,并集,补集运算,考查了集合包含关系的应用,属于基础题.(Ⅰ)根据定义,进行集合的交、并、补集运算,可得答案;(Ⅱ)分集合C=∅⌀和C≠⌀∅两种情况讨论m满足的条件,综合即可得m的取值范围.18.已知命题p:“方程x2+mx+1=0有两个不相等的实根”,命题p是真命题。
【典型题】高一数学上期末模拟试题及答案
【典型题】高一数学上期末模拟试题及答案一、选择题1.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 2.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .4.已知4213332,3,25a b c ===,则 A .b a c <<B .a b c <<C .b c a <<D .c a b <<5.函数y =a |x |(a >1)的图像是( ) A .B .C .D .6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .68.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .()31,4D .()34,210.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .11.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭12.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .4二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.14.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.15.已知函数()f x 满足1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,其中x ∈R 且0x ≠,则函数()f x 的解析式为__________16.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.17.函数()()4log 521x f x x =-+-的定义域为________.18.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.已知函数1()41xf x a =+-是奇函数,则的值为________. 20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.已知函数22()21x xa f x ⋅+=-是奇函数. (1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.22.已知定义域为R 的函数211()22x x f x a +=-+是奇函数.(Ⅰ)求实数a 的值;(Ⅱ)判断函数()f x 的单调性,并用定义加以证明.23.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 24.泉州是全国休闲食品重要的生产基地,食品产业是其特色产业之一,其糖果产量占全国的20%.现拥有中国驰名商标17件及“全国食品工业强县”2个(晋江、惠安)等荣誉称号,涌现出达利、盼盼、友臣、金冠、雅客、安记、回头客等一大批龙头企业.已知泉州某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1元/千克,每次购买配料需支付运费90元.设该厂每隔()*x x ∈N天购买一次配料.公司每次购买配料均需支付保管费用,其标准如下:6天以内(含6天),均按10元/天支付;超出6天,除支付前6天保管费用外,还需支付剩余配料保管费用,剩余配料按3(5)200x -元/千克一次性支付. (1)当8x =时,求该厂用于配料的保管费用P 元;(2)求该厂配料的总费用y (元)关于x 的函数关系式,根据平均每天支付的费用,请你给出合理建议,每隔多少天购买一次配料较好.附:80()f x x x=+在单调递减,在)+∞单调递增. 25.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.26.已知函数21()f x x x=-是定义在(0,)+∞上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式()220f x x m ++<恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤- ()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤ 本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.B解析:B 【解析】试题分析:设()ln(1)g x x x =+-,则()1xg x x'=-+,∴()g x 在()1,0-上为增函数,在()0,∞+上为减函数,∴()()00g x g <=,1()0()f xg x =<,得0x >或10x -<<均有()0f x <排除选项A ,C ,又1()ln(1)f x x x =+-中,10ln(1)0x x x +>⎧⎨+-≠⎩,得1x >-且0x ≠,故排除D.综上,符合的只有选项B.故选B. 考点:1、函数图象;2、对数函数的性质. 4.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.5.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .6.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a <⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2,故答案为,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解10.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.B解析:B 【解析】【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.二、填空题 13.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于 解析:-3【解析】 【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m. 【详解】 因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.14.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】【分析】 由已知可得()221xf x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x221++a =13, 解得:a =1,∴f (x )=﹣x221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.15.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详解】由题意用代换解析式中的可得……(1)与已知方程……(2)联立(1)(2)的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函 解析:()11(1)31f x x x =-≠-- 【解析】 【分析】用x -代换x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭,再结合换元法,即可求解. 【详解】由题意,用x -代换解析式中的x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,…….(1) 与已知方程1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x , (2)联立(1)(2)的方程组,可得113x f x x +⎛⎫=- ⎪⎝⎭, 令1,1x t t x+=≠,则11x t ,所以()1131f t t =--, 所以()11(1)31f x x x =-≠--. 故答案为:()11(1)31f x x x =-≠--. 【点睛】本题主要考查了函数解析式的求解,解答中用x -代换x ,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭是解答的关键,着重考查了函数与方程思想,以及换元思想的应用,属于中档试题.16.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+ 【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.17.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.18.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .19.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1220.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】 【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值. 【详解】令()3xf x t -=,所以()3xf x t =+,又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =, 所以()31xf x =+,所以()443182f =+=.故答案为:82. 【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式.三、解答题21.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=--- ∴2a =.(2)222()421x xf x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥-- 即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x xf x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题. 22.(Ⅰ)1α= (Ⅱ)在R 上单调递增,证明见解析【解析】 【分析】(1)函数的定义域为R ,利用奇函数的必要条件,(0)0f =,求出a ,再用奇函数的定义证明;(2)判断()f x 在R 上单调递增,用单调性的定义证明,任取12x x <,求出函数值,用作差法,证明()()12f x f x <即可. 【详解】解:(Ⅰ)∵函数21()22x x f x a =-+是奇函数,定义域为R ,∴(0)0f =,即11012a -=+, 解之得1α=,此时2121()2122(21)x x x x f x -=-=++ ()()2112()()221212x xx xf x f x -----===-++, ()f x ∴为奇函数,1a ;(Ⅱ)由(Ⅰ)知,()2121()212221x x x x f x -=-=++, 设12,x x R ∈,且12x x <,()()212121212122121x x x x f x f x ⎛⎫---=- ⎪++⎝⎭()()2211222121x xx x =++-∵12x x <,∴1222x x <,∴()()120f x f x -<,即()()12f x f x < 故()f x 在R 上单调递增. 【点睛】本题考查函数奇偶性的应用,注意奇偶性必要条件的运用,减少计算量但要加以证明,考查函数单调性的证明,属于中档题. 23.(1)证明见解析(2)44a -≤≤ 【解析】 【分析】(1)先由函数()f x 为奇函数,可得1m =,再利用定义法证明函数的单调性即可; (2)结合函数的性质可将问题转化为2sin sin 30x a x ++≥在R 上恒成立,再利用二次不等式恒成立问题求解即可. 【详解】解:(1)∵函数31()31x xf x m -=⋅+是定义域为R 的奇函数, ()()f x f x ∴-=-31313131x x x x m m ----∴=-⋅+⋅+3131331x x x xm m --∴=+⋅+,()(1)310x a ∴--=,等式()(1)310xm --=对于任意的x ∈R 均恒成立,得1m =,则31()31x x f x -=+,即2()131x f x =-+, 设12,x x 为任意两个实数,且12x x <,()()()()()121212122332231313131x x x x x x f x f x -⎛⎫-=---= ⎪++++⎝⎭, 因为12x x <,则1233x x ≤,所以()()120f x f x -<,即()()12f x f x <, 因此函数()f x 在R 上是增函数; (2)由不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立, 则()2cos sin 3(1)f x a x f --≤.由(1)知,函数()f x 在R 上是增函数,则2cos sin 31x a x --≤,即2sin sin 30x a x ++≥在R 上恒成立.令sin x t =,[1,1]t ∈-,则222()33024a a g t t at t ⎛⎫=++=++-≥ ⎪⎝⎭在[1,1]-上恒成立.①当12a->时,即2a <-,可知min ()(1)40g t g a ==+≥,即4a ≥-, 所以42a -≤<-;②当112a -≤-≤时,即22a -≤≤,可知2min ()3024a a g t g ⎛⎫=-=-≥ ⎪⎝⎭.即a -≤≤22a -≤≤; ③当12a-<-时,即2a >,可知min ()(1)40g t g a =-=-≥,即4a ≤, 所以24a <≤,综上,当44a -≤≤时,不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立. 【点睛】本题考查了利用函数奇偶性求函数解析式及定义法证明函数的单调性,重点考查了含参二次不等式恒成立问题,属中档题. 24.(1)78;(2)221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩,N x ∈,9天. 【解析】 【分析】(1)由题意得第6天后剩余配料为(86)200400-⨯=(千克),从而求得P ;(2)由题意得221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 求出分段函数取得最小值时,对应的x 值,即可得答案. 【详解】(1)第6天后剩余配料为(86)200400-⨯=(千克),所以3(85)6040078200P ⨯-=+⨯=; (2)当6x ≤时,200109021090y x x x =++=+,当6x >时,23(5)2009060200(6)3167240200x y x x x x -=+++⋅⋅-=++, 所以221090,063167240,6x x y x x x +≤≤⎧=⎨++>⎩其中N x ∈. 设平均每天支付的费用为()f x 元, 当06x ≤≤时,2109090()210x f x x x+==+, ()f x 在[0,6]单调递减,所以min ()(6)225f x f ==;当6x >时,2316724080()3167x x f x x x x ++⎛⎫==++ ⎪⎝⎭,可知()f x 在单调递减,在)+∞单调递增,又89<<,(8)221f =,2(9)2203f =,所以min 2()(9)2203f x f == 综上所述,该厂9天购买一次配料才能使平均每天支付的费用最少. 【点睛】本题考查构建函数模型解决实际问题、函数的单调性和最值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对勾函数图象的应用.25.(1)2(2){}2log 5x|2<x < 【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案. 【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+的定义域为{}|1x x >,并在其定义域内单调递增,∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.26.(1)证明见解析(2)m 1≥ 【解析】 【分析】(1)12,(0,)x x ∀∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据单调性得到221x x m ++>,即()221212m x x x >--=-++,得到答案. 【详解】(1)函数单调递减,12,(0,)x x ∀∈+∞,且12x x <,()()()()2221121212122222121211x x x x x x f x f x x x x x x x -++⎛⎫⎛⎫-=---= ⎪ ⎪⎝⎭⎝⎭ ∵120x x <<,∴210x x ->,2212120x x x x ++>,22110x x >∴12()()f x f x >,∴()f x 在(0,)+∞单调递减; (2)()()2201f x x m f ++<=,故221x x m ++>,()221212m x x x >--=-++,(0,)x ∈+∞,故m 1≥.【点睛】本题考查了定义法证明函数单调性,利用单调性解不等式,意在考查学生对于函数性质的灵活运用.。
高一数学上册期末模拟检测试卷附答案
高一数学上册期末模拟检测试卷附答案一、选择题1.对于全集U ,命题甲“所有集合A 都满足U A A U ⋃=”,命题乙为命题甲的否定,则命题甲、乙真假判断正确的是( ) A .甲、乙都是真命题 B .甲、乙都不是真命题 C .甲为真命题,乙为假命题 D .甲为假命题,乙为真命题 2.函数()ln 4f x x x =+-的定义域为( )A .(),4-∞B .(],4-∞C .[]0,4D .(]0,43.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1的角是周角的1360,1rad 的角是周角的12πC .1rad 的角比1的角要大D .用角度制和弧度制度量角,都与圆的半径有关 4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A .433343,22⎛⎫++ ⎪ ⎪⎝⎭ B .433343,22⎛⎫-+ ⎪ ⎪⎝⎭ C .343433,22⎛⎫-- ⎪ ⎪⎝⎭D .343433,22⎛⎫-+ ⎪ ⎪⎝⎭5.方程41log 2x x=-的解所在的区间是( )A .11,43⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .23,34⎛⎫ ⎪⎝⎭6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)是气球体积V (立方米)的反比例函数,其图象如图所示,则这个函数的解析式为( )A .p =96VB .p =96V- C .p =69VD .p =96V7.若R 上的奇函数()f x 在区间(,0)-∞上单调递增,且(3)0f =,则不等式()0f x >的解集是( )A .(,3)(3,)-∞-⋃+∞B .(,3)(0,3)-∞-C .(3,0)(3,)-⋃+∞D .()3,3-8.已知函数221,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,若函数()y f x k =-有三个零点,则实数k 的取值范围为( ) A .(2,1]--B .[2,1]--C .[1,2]D .[1,2)二、填空题9.已知函数()f x 的定义域为R ,对任意的实数想,x ,y 满足1()()()2f x y f x f y +=++,且1()02f =,下列结论正确的是( ) A .1(0)2f =-B .3(1)2f -=- C .()f x 为R 上的减函数 D .1()2+f x 为奇函数10.下列命题不正确的有( ) A .函数tan y x =在定义域内单调递增 B .若a b >,则lg lg a b >成立C .命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”D .已知()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()221f x x x =-++,则[)0,x ∈+∞时,函数解析式为()221f x x x =-- 11.设0b a <<,则下列不等式中正确的是( ) A .0a b +>B .2211ab a b< C .11b a a b+<+ D .22ln ln a b <12.已知函数()2cos 2,f x x x x =-∈R ,则( ) A .2()2f x -≤≤B .()f x 在区间(0,)π上只有1个零点C .()f x 的最小正周期为πD .,33x R f x f x ππ⎛⎫⎛⎫∀∈+=- ⎪ ⎪⎝⎭⎝⎭三、多选题13.已知集合{15}A x Nx =∈<<∣,则A 的非空真子集有________个. 14.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x=的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,,(4)k x k 所对应的点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k =均在直线y x =的同侧,则实数a 的取值范围是______.15.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为_______________.16.已知14a <<,函数()[][]129,1,,,4f x x x a x a x=+∃∈∈,使得()()1280f x f x ≥,则a 的取值范围________.四、解答题17.已知a R ∈,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若a =1,求A B ,R C A ; (2)若A B A ⋃=,求实数a 的取值范围.18.已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,3P -,当12()()4f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的单调减区间; (2)求函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域; (3)若方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解,求实数m的取值范围.19.已知函数()f x 的图象向左平移3个单位后,再关于y 轴对称可得到函数()22g x x x =-的图象. (1)求()f x 的表达式;(2)()g x 的图象与直线y b =有两个交点时,求b 的取值范围.20.如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.21.已知函数()f x x x a =-为R 上的奇函数. (1)求实数a 的值;(2)若不等式()()2sin 2cos 0f x f t x +-≥对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的最小值.22.已知函数()13x mf x -⎛⎫= ⎪⎝⎭,其中m R ∈.(1)当函数()f x 为偶函数时,求m 的值; (2)若0m =,函数()()31xg x f x k=+-,[]2,0x ∈-,是否存在实数k ,使得()g x 的最小值为0?若存在,求出k 的值,若不存在,说明理由; (3)设函数()2327mx h x x =+,()()(),39,3h x x g x f x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都有小于3的实数2x ,使得()()12g x g x =成立,求实数m 的取值范围.【参考答案】一、选择题1.C 【分析】根据集合的运算可知甲正确,由命题与其否定命题的关系可知乙的真假. 【详解】全集U ,命题甲“所有集合A 都满足U A A U ⋃=”,根据补集及并集的运算知,是真命题, 所以由乙为命题甲的否定知,乙是假命题. 故选:C 2.D 【分析】根据真数大于0,偶次根式被开方数大于等于0,即可求得答案. 【详解】由题意得040x x >⎧⎨-≥⎩,解得04x <≤,所以定义域为(]0,4.故选:D 3.D 【分析】根据角度和弧度的定义可判断各选项的正误. 【详解】对于A 选项,“度”与“弧度”是度量角的两种不同的度量单位,A 选项正确; 对于B 选项,1的角是周角的1360,1rad 的角是周角的12π,B 选项正确;对于C 选项,11180π=<,C 选项正确;对于D 选项,用角度制和弧度制度量角,都与圆的半径无关,D 选项错误. 故选:D. 【点睛】本题考查角度制与弧度制相关概念的判断,属于基础题. 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D. 5.B 【分析】令41()log 2f x x x=+-,则利用函数零点的判定定理求得函数()f x 的零点所在区间即可.【详解】解:令41()log 2f x x x=+-,则()f x 为连续函数,又因为44111()log 32log 10333f =+-=+>,44111()log 22log 0222f =+-=<,11()()032f f <, 所以方程的解所在区间为1(3,1)2, 故选:B . 6.D 【解析】因为气球内气体的气压是气球体积的反比例函数,所以可设kp V=,由图象可知,点()1.5,64 在函数图象上,所以64 1.5k =,解得96k =,故96p V=,故选D.7.C 【分析】由奇偶性可得()f x 在(0,)+∞上单调递增,()(3)3f f -=-0=,分类讨论,利用单调性可得到结论. 【详解】定义在R 上的奇函数()f x 在区间(,0)-∞上单调递增,且f (3)0=, 则()f x 在(0,)+∞上单调递增,且()(3)3f f -=-0=, 因为()0f x >,所以()()03x f x f <⎧⇒⎨>-⎩30x -<<或()()03x f x f >⎧⇒⎨>⎩3x >. 不等式()0f x >的解集是(3,0)(3,)-⋃+∞ 故选:C . 8.A 【分析】做出函数()f x 的图像,根据图像即可求解. 【详解】函数()y f x k =-有三个零点, 即()y f x =与y k =有三个交点,()f x 的图像如下:由图像可得21k -<≤- . 故选:A【点睛】本题考查函数的零点,利用数形结合转化为两个函数的交点,属于基础题.二、填空题9.ABD 【分析】利用赋值法确定ABC 选项的正确性,根据奇偶性的定义判断D 选项的正确性.依题意1()()()2f x y f x f y +=++,且1()02f =,令0x y ==,得()()()()110000022f f f f +=++⇒=-,故A 选项正确. 令11,22x y ==-,则1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即1111012222f f ⎛⎫⎛⎫-=+-+⇒-=- ⎪ ⎪⎝⎭⎝⎭, 令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()11131222222f f ⎛⎫-=-+=-+=- ⎪⎝⎭,故B 选项正确.由于()()10f f -<,故C 选项错误. 令y x =-,得()()()12f x x f x f x -=+-+, 即()()1122f x f x -=+-+,即()()11022f x f x ⎡⎤⎡⎤=++-+⎢⎥⎢⎥⎣⎦⎣⎦,所以()12f x +为奇函数,故D 选项正确. 故选:ABD 10.ABD 【分析】由正切函数的性质判断A ;由对数函数的性质判断B ;由特称命题的否定判断C ;由函数的奇偶性判断D. 【详解】对于选项A :因为tan y x =在其定义域内不具有单调性,故A 不正确; 对于选项B :若0a b >>,则lg lg a b >,故B 不正确;对于选项C :命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”,故C 正确;对于选项D :当0x >时,()()()222121f x f x x x x x =--=---+=+-,又()00f =,所以当[)0,x ∈+∞时,()20,021,0x f x x x x =⎧=⎨+->⎩. 故D 不正确. 故选:ABD.【分析】取特殊值判断A ,由不等式性质判断B ,由作差法判断C ,根据对数函数单调性判断D. 【详解】对于A ,1,2a b =-=-,显然不成立,故A 错;对于B ,两边同乘以22a b 可得a b <,与题意矛盾,故B 错误;对于C , 因为11111()+()(1)0a b a b a b b a b a ab +--=--=-+>,故11b a a b+<+,故C 正确;对于D ,因为0b a <<,所以22a b <,由对数函数ln y x =单调递增知22ln ln a b <,故D 正确. 故选:CD 12.ACD 【分析】利用二倍角公式和三角函数的性质对每一个选项进行判断即可. 【详解】已知函数()2cos 22sin(2)6f x x x x π=-=-,x ∈R ,A 、2()2f x -≤≤正确,B 、当26x k ππ-=,k Z ∈,即212k x ππ=+,k Z ∈,()f x 在区间(0,)π上只有2个零点7,1212x ππ=,则()f x 在区间(0,)π上只有1个零点错误,C 、()f x 的最小正周期为π,正确D 、当3x π=时,函数()2sin(2)6f x x π=-,x ∈R ,2sin 22336f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭所以3x π=为()f x 图象的一条对称轴,正确.故选:ACD .三、多选题13.6 【分析】由题意可得集合{}234A =,,,结合求子集个数的计算公式即可. 【详解】 由题意知,{}15A x N x =∈<<,所以{}234A =,,,所以集合A 的非空真子集的个数为:3226-=. 故答案为:614.()(),66,-∞-+∞【分析】原方程等价于34x a x +=,分别作出3y x a =+和4y x=的图象,分0a >和0a <讨论,利用数形结合即可得到结论. 【详解】因为方程440x ax +-=等价于34x a x+=, 原方程的实根是3y x a =+ 与曲线4y x=的交点的横坐标, 曲线3y x a =+是由曲线3y x =纵向平移||a 个单位而得到,若交点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k =均在直线y x =的同侧,因y x =与4y x=的交点为(2,2),(2,2)--,所以结合图象可得:3022a x a x >⎧⎪+>-⎨⎪≥-⎩或3022a x a x <⎧⎪+<⎨⎪≤⎩恒成立,所以32a x >--在[2,)-+∞上恒成立,或32a x <-+在(,2]-∞上恒成立,所以3max (2)a x >--=3(2)26---=,或33min (2)226a x <-+=-+=-,即实数a 的取值范围是()(),66,-∞-+∞.故答案为: ()(),66,-∞-+∞.【点睛】本题考查了数形结合思想,等价转化思想,函数与方程,幂函数的图象,属于中档题. 15.=4ω. 【分析】由所给函数图像 过点05(,)24y π,011(,)24y π-,列式115sin()sin()2424ππωϕωϕ+=-+,利用诱导公式可得. 【详解】 由函数图像过点05(,)24y π,011(,)24y π-,得05sin()24y πωϕ=+,011sin()24y πωϕ-=+,所以115sin()sin()2424ππωϕωϕ+=-+,又两点在同一周期,所以115()2424ππωϕπωϕ+=++,4ω=.故答案为4. 【点睛】本题考查三角函数的图像与性质,考查简单三角方程的解,考查图形识别与运算求解能力,属于基础题.16.(1,4【分析】由已知得出函数的单调性,再得出()()4f a f =时,a 的值,从而分91,4a <≤9<<44a 两种情况,分别由()()12max max 80f x f x ≥解得可得a 的取值范围. 【详解】 因为()9f x x x =+,所以函数()9f x x x=+在(]0,3上单调递减,在[)3,+∞上单调递增, 当()()99444f a a f a =+==+时,解得94a =(4a =舍去),(1)当()()()()12max max 991,110804a f x f x f f a a a ⎛⎫<≤==+≥ ⎪⎝⎭,解得(1,4a ∈; (2)当()()()()12max max 99<<4,141048044a f x f x f f ⎛⎫==⨯+≥ ⎪⎝⎭,不符题意.故答案为:(1,4. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <.四、解答题17.(1){}12A B =-,,()()13R C A =-∞-+∞,,;(2)713⎡⎤⎢⎥⎣⎦,. 【分析】(1)当1a =,先求出集合B ,再利用集合的交集和补集计算即可;(2)先利用已知条件得到B A ⊆,由一元二次方程的根的分布建立不等式组,即可得出结果. 【详解】(1)由题意知:{}[]223013A x x x =--≤=-,,当a =1时,{}{}22012B x x x =--==-,, 所以{}12A B =-,,()()13R C A =-∞-+∞,,; (2)A B A B A ⋃=∴⊆,,因为()2+8>0a =-∆恒成立,所以B ≠∅,所以要使B A ⊆,则需()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为:713⎡⎤⎢⎥⎣⎦,.18.(1)()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)(]0,2;(3)112⎧⎫⎨⎬⎩⎭或(]10,0- 【分析】(1)利用三角函数的定义求出ϕ的值,由题意知223T ππω==可得ω的值,进而可得()f x 的解析式,利用整体代入法以及正弦函数的单调性即可求解; (2)由x 的范围求出33x π-的范围,利用正弦函数的性质即可求解;(3)设()(]0,2f x t =∈,将问题转化为y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,数形结合可得112m -=-或010m ≤-<,即可求解. 【详解】(1)因为角ϕ的终边经过点(1,P,所以tan ϕ= 因为02πϕ-<<,所以3πϕ=-,因为当12()()4f x f x -=时,12x x -的最小值为3π, 所以223T ππω==,可得:3ω=,所以()2sin 33f x x π⎛⎫=- ⎪⎝⎭,令()3232232k x k k Z πππππ+≤-≤+∈解得:()52112183183k k x k Z ππππ+≤≤+∈, 所以函数()f x 的单调减区间为()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (2)当4,99x ππ⎛⎫∈ ⎪⎝⎭时,033x ππ<-<, 所以0sin 313x π⎛⎫<-≤ ⎪⎝⎭,所以()02sin 323f x x π⎛⎫<=-≤ ⎪⎝⎭,所以函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域为(]0,2, (3)设()(]0,2f x t =∈,因为方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 则230t t m -+=在(]0,2t ∈内有一根或两个相等的实根,因为23m t t -=-,所以y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,作出y m =-与(]23,0,2y t t t =-∈的图象,由图知:当16t =时211136612y ⎛⎫=⨯-=- ⎪⎝⎭;当0t =时,0y = ;当2t =时,232210y =⨯-=, 所以112m -=-或010m ≤-≤直线y m =-与(]23,0,2y t t t =-∈的图象只有一个交点, 当10m -=时,2t =,此时方程()2sin 323f x x π⎛⎫=-= ⎪⎝⎭只有一解,不符合题意,所以112m -=-或010m ≤-<,即方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 所以:112m =或100m -<≤ 所以实数m 的取值范围为:112⎧⎫⎨⎬⎩⎭或(]10,0-19.(1)()243f x x x =-+;(2)1b =-或0b >.【分析】(1)()g x 关于y 轴对称的函数()22F x x x =+,再根据函数的平移法则得到答案.(2)将()g x 化简为分段函数,画出函数图象,根据图象得到参数范围. 【详解】(1)()g x 关于y 轴对称的函数()()2222F x x x x x =--=+,()F x 的图象向右平移3个单位可得到函数()f x 的图象,()()()2232343f x x x x x ∴=-+-=-+;(2)()2222,022,0x x x g x x x x x x ⎧-≥=-=⎨+<⎩,作出()g x 的图象可知:()g x 的图象与直线y b =有两个交点时,b 的范围:1b =-或0b >.【点睛】本题考查了函数的平移和对称,利用分段函数图象解决交点个数问题,意在考查学生的计算能力和转化能力,画出图象是解题的关键. 20.(1)11224APQSπα=⎛⎫+ ⎪⎝⎭;定义域为0,4π⎛⎫⎪⎝⎭;(221 【分析】(1)在Rt ABP 与Rt ADQ 中,利用正方形的边长,求出,AP AQ,根据三角形的面积公式即可求解. (2)由(1)利用三角函数的性质即可求解. 【详解】(1)由BAP α∠=,4PAQ π∠=,则244ADQ πππαα∠=--=-,正方形的边长为1,在Rt ABP 中,1cos AP α=, 在Rt ADQ 中,1cos 4AQ πα=⎛⎫- ⎪⎝⎭,所以1111sin 242cos cos 4APQSAP AQ ππαα=⋅⋅=⋅⋅⎛⎫- ⎪⎝⎭()211112cos cos sin 2cos cos sin αααααα=⋅=⋅++12121cos 2sin 2124ααπα=⋅=++⎛⎫+ ⎪⎝⎭,由图可知04πα<<,所以函数的定义域为0,4π⎛⎫⎪⎝⎭. (2)由04πα<<,则32444πππα<+<,1124APQS πα=⎛⎫+ ⎪⎝⎭,当sin 214πα⎛⎫+= ⎪⎝⎭,即8πα=时,APQ 面积的最小,即APQ1=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值). 21.(1)0a =;(2)14.【分析】(1)由奇函数得到()x x a x x a -⋅--=-⋅-,再由多项式相等可得a ;(2)由()f x 是奇函数和已知得到()()2sin 2cos f x f x t ≥-,再利用()f x 是R 上的单调增函数得到2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.利用参数分离得22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,再求22cos sin x x -,π7π,36x ⎡⎤∈⎢⎥⎣⎦上最大值可得答案.【详解】(1)因为函数()f x x x a =-为R 上的奇函数, 所以()()f x f x -=-对任意x ∈R 成立, 即()x x a x x a -⋅--=-⋅-对任意x ∈R 成立, 所以--=-x a x a ,所以0a =.(2)由()()2sin 2cos 0f x f t x +-≥得()()2sin 2cos f x f t x ≥--,因为函数()f x 为R 上的奇函数, 所以()()2sin 2cos f x f x t ≥-.由(1)得,()22,0,,0,x x f x x x x x ⎧≥==⎨-<⎩是R 上的单调增函数,故2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.所以22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.因为()2222cos sin cos 2cos 1cos 12x x x x x -=+-=+-, 令cos m x =,由π7π,36x ⎡⎤∈⎢⎥⎣⎦,得1cos 1,2x ⎡⎤∈-⎢⎥⎣⎦,即11,2m ⎡⎤∈-⎢⎥⎣⎦.所以()212y m =+-的最大值为14,故14t ≥,即t 的最小值为14.【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到2sin 2cos x x t ≥-,再利用参数分离后求22cos sin x x -π7π,36x ⎡⎤∈⎢⎥⎣⎦的最大值,考查了学生分析问题、解决问题的能力.22.(1)0m =;(2)83k =;(3)06m <<【分析】(1)由()()f x f x =-可得m 的值; (2)当[]2,0x ∈-时,()()21x xg x k =+⋅-,令1,13x t ⎡⎤=∈⎢⎥⎣⎦,则()2221124k kg t t kt t ⎛⎫=+-=+-- ⎪⎝⎭,分类讨论求出()g t 的最小值,列方程即可求解;(3)将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点,分四种情况讨论即可得实数m 的取值范围. 【详解】(1)当函数()f x 为偶函数时,()()f x f x =-, 所以x m x m -=--,解得:0m =, 经检验,0m =符合,故0m =; (2)当[]2,0x ∈-时,()()21113xxx xg x k k ⎛⎫=+⋅-=+⋅- ⎪⎝⎭,令1,13xt ⎡⎤=∈⎢⎥⎣⎦,则()2221124k k g t t kt t ⎛⎫=+-=+-- ⎪⎝⎭,当123k -<即23k >-时,()g t 在1,13⎡⎤⎢⎥⎣⎦上单调递增, 所以2111033k ⎛⎫+-= ⎪⎝⎭,解得:83k =,符合;当1132k ≤-≤即223k -≤≤-时,2104k --=无解; 当12k ->即2k <-时,()g t 在1,13⎡⎤⎢⎥⎣⎦上单调递减, 所以110k +-=,解得:0k =,应舍去;综上,83k =;(3)()193m h x x x=⋅+,将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点. 当3x ≥时,9y x x=+是单调递增的,所以当0m ≠时,()h x 是单调函数, 分四种情况讨论:①当0m <时,()g x 在[)3,+∞上符号是负,而在(),3-∞上符号是正的,所以不满足题目的条件;②当0m =时,当3x ≥时,()0g x =,而当3x <时,()1303xg x ⎛⎫=⋅> ⎪⎝⎭,所以也不符合条件;③当03m <<时,要满足条件只需()()93f m h >即162m <,所以03m <<;④当3m ≥时,要满足条件只需()()933f h >即732mm ->,即3log 702mm +-<, 令()3log 72mt m m =+-, 因为()t m 在[)3,+∞上单调递增,且()60t =,所以解()()06t m t <=得6m <, 所以36m ≤<,综上,实数m 的取值范围为06m <<. 【点睛】关键点睛:本题的关键是能够将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点,结合图象就能求解出实数m 的取值范围;当然再分析当3m ≥情况时,需要构造函数()3log 72mt m m =+-,利用单调性求解不等式.。
【必考题】高一数学上期末模拟试卷附答案
【必考题】高一数学上期末模拟试卷附答案一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( )A .一定大于0B .一定小于0C .等于0D .正负都有可能2.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .10,10,10C .1,1010⎛⎫ ⎪⎝⎭D .()()0,110,⋃+∞3.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称 4.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >>B .y x z >>C .y z x >>D .x z y >> 5.设23a log =,3b =,23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b << 6.已知函数ln ()x f x x =,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .a c b <<D .c a b <<7.函数()2sin f x x x =的图象大致为( )A .B .C .D .8.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( ) A .1 B .-1 C .-3 D .39.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆,则a 的取值范围是( ) A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >10.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( ) A .1,02⎡⎫-⎪⎢⎣⎭ B .1,2⎡⎫-+∞⎪⎢⎣⎭ C .1,02⎛⎫- ⎪⎝⎭ D .1,2⎛⎫-+∞ ⎪⎝⎭11.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( )A .[]3,5B .()3,5C .[]4,6D .()4,612.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( ) A .1 B .2 C .3 D .4二、填空题13.若155325a b c ===,则111a b c +-=__________. 14.已知幂函数(2)m y m x =-在(0,)+∞上是减函数,则m =__________.15.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________ 16.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12b f x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 17.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .18.已知正实数a 满足8(9)a aa a =,则log (3)a a 的值为_____________. 19.已知二次函数()f x ,对任意的x ∈R ,恒有()()244f x f x x +-=-+成立,且()00f =.设函数()()()g x f x m m =+∈R .若函数()g x 的零点都是函数()()()h x f f x m =+的零点,则()h x 的最大零点为________.20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则()4f =______.三、解答题21.已知定义在R 上的函数()f x 是奇函数,且当(),0x ∈-∞时,()11x f x x +=-. ()1求函数()f x 在R 上的解析式;()2判断函数()f x 在()0,+∞上的单调性,并用单调性的定义证明你的结论.22.定义在()(),00,-∞⋃+∞上的函数()y f x =满足()()1f xy f x f y ⎛⎫=- ⎪⎝⎭,且函数()f x 在(),0-∞上是减函数.(1)求()1f -,并证明函数()y f x =是偶函数;(2)若()21f =,解不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭. 23.已知函数()x x k f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫= ⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.24.已知函数()22x x f x k -=+⋅,()()log ()2x a g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集;(3)若()82x t f x ≥+对x ∈R 恒成立,求t 的取值范围. 25.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳.26.已知()log a f x x =,()()()2log 2201,1,a g x x a a a =+>+≠∈R ,()1h x x x =+. (1)当[)1,x ∈+∞时,证明:()1h x x x=+为单调递增函数; (2)当[]1,2x ∈,且()()()F x g x f x =-有最小值2时,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+>即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.C解析:C【解析】【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果.【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <,又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C.【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.C解析:C【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a b x +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b +. 4.A解析:A【解析】【分析】利用指数函数、对数函数的单调性直接比较.【详解】解:0.10x 1.1 1.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>.故选A .【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.A解析:A【解析】【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g ==所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭ 所以66b c <,即b c <综上可知, a b c <<故选:A【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.6.D解析:D【解析】【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系.【详解】 ()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b .故选D .【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.7.C解析:C【解析】【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ; 又函数过点(),0π,可以排除A ,所以只有C 符合.故选:C .【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.8.C解析:C【解析】【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】()f x 为定义在R 上的奇函数,∴()()f x f x -=-, 又(1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴,∴()f x 在R 上为周期函数,周期为4,∴(2019)(50541)(1)(1)f f f f =⨯-=-=-函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f = ∴(2019)(1)3f f =-=-,故答案选C .【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.9.C解析:C【解析】【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为 R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C.【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 10.A解析:A【解析】【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解.【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-, ∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0 112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.11.D解析:D【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112x f x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.B解析:B【解析】【分析】根据零点存在定理判断023x <<,从而可得结果.【详解】因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =,故选:B.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 二、填空题13.1【解析】故答案为解析:1【解析】155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1. 14.-3【解析】【分析】根据函数是幂函数可求出m 再根据函数是减函数知故可求出m 【详解】因为函数是幂函数所以解得或当时在上是增函数;当时在上是减函数所以【点睛】本题主要考查了幂函数的概念幂函数的增减性属于解析:-3【解析】【分析】根据函数是幂函数可求出m,再根据函数是减函数知0m <,故可求出m.【详解】因为函数是幂函数所以||21m -=,解得3m =-或3m =. 当3m =时,3y x =在(0,)+∞上是增函数; 当3m =-时,y x =在(0,)+∞上是减函数, 所以3m =-. 【点睛】本题主要考查了幂函数的概念,幂函数的增减性,属于中档题.15.1【解析】【分析】根据二次函数的值域为结合二次函数的性质列出不等式组即可求解【详解】由题意函数的值域为所以满足解得即实数的值为1故答案为:1【点睛】本题主要考查了二次函数的图象与性质的应用其中解答中解析:1 【解析】 【分析】根据二次函数的值域为[0,)+∞,结合二次函数的性质,列出不等式组,即可求解. 【详解】由题意,函数()22f x mx x m =-+的值域为[0,)+∞,所以满足24400m m ⎧∆=-=⎨>⎩,解得1m =.即实数m 的值为1. 故答案为:1. 【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题.16.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤,由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .17.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为.18.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-, ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.19.4【解析】【分析】采用待定系数法可根据已知等式构造方程求得代入求得从而得到解析式进而得到;设为的零点得到由此构造关于的方程求得;分别在和两种情况下求得所有零点从而得到结果【详解】设解得:又设为的零点解析:4 【解析】 【分析】采用待定系数法可根据已知等式构造方程求得,a b ,代入()00f =求得c ,从而得到()f x 解析式,进而得到()(),g x h x ;设0x 为()g x 的零点,得到()()0000g x h x ⎧=⎪⎨=⎪⎩,由此构造关于m 的方程,求得m ;分别在0m =和3m =-两种情况下求得()h x 所有零点,从而得到结果. 【详解】设()2f x ax bx c =++()()()()2222244244f x f x a x b x c ax bx c ax a b x ∴+-=++++---=++=-+ 44424a a b =-⎧∴⎨+=⎩,解得:14a b =-⎧⎨=⎩ 又()00f = 0c ∴= ()24f x x x ∴=-+()24g x x x m ∴=-++,()()()222444h x x x x x m =--++-++设0x 为()g x 的零点,则()()0000g x h x ⎧=⎪⎨=⎪⎩,即()()2002220000404440x x m x x x x m ⎧-++=⎪⎨--++-++=⎪⎩ 即240m m m --+=,解得:0m =或3m =- ①当0m =时()()()()()()()22222244444442h x x x x x x x x x x x x =--++-+=-+-+=---()h x ∴的所有零点为0,2,4②当3m =-时()()()()()2222244434341h x x x x x x x x x =--++-+-=--+--+-()h x ∴的所有零点为1,3,2综上所述:()h x 的最大零点为4 故答案为:4 【点睛】本题考查函数零点的求解问题,涉及到待定系数法求解二次函数解析式、函数零点定义的应用等知识;解题关键是能够准确求解二次函数解析式;对于函数类型已知的函数解析式的求解,采用待定系数法,利用已知等量关系构造方程求得未知量.20.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】 【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值. 【详解】令()3xf x t -=,所以()3xf x t =+,又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =, 所以()31xf x =+,所以()443182f =+=.故答案为:82. 【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式.三、解答题21.(1)()1,010,01,01xx x f x x x x x+⎧<⎪-⎪==⎨⎪-⎪->+⎩(2)函数()f x 在()0,+∞上为增函数,详见解析【解析】 【分析】()1根据题意,由奇函数的性质可得()00f =,设0x >,则0x -<,结合函数的奇偶性与奇偶性分析可得()f x 在()0,+∞上的解析式,综合可得答案;()2根据题意,设120x x <<,由作差法分析可得答案.【详解】解:()1根据题意,()f x 为定义在R 上的函数()f x 是奇函数,则()00f =, 设0x >,则0x -<,则()11xf x x--=+, 又由()f x 为R 上的奇函数,则()()11xf x f x x-=-=-+, 则()1,010,01,01xx x f x x x x x+⎧<⎪-⎪==⎨⎪-⎪->+⎩;()2函数()f x 在()0,+∞上为增函数;证明:根据题意,设120x x <<,则()()()()()1212211212211221111111111x x x x x x f x f x x x x x x x -⎛⎫⎛⎫-----=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 又由120x x <<,则()120x x -<,且()110x +>,()210x +>; 则()()120f x f x ->,即函数()f x 在()0,+∞上为增函数. 【点睛】本题考查函数的奇偶性与单调性的判断以及应用,涉及掌握函数奇偶性、单调性的定义. 22.(1)()10f -=,证明见解析;(2)[1,2)(2,3]⋃ 【解析】 【分析】(1)根据函数解析式,对自变量进行合理赋值即可求得函数值,同时也可以得到()f x 与()f x -之间的关系,进而证明;(2)利用函数的奇偶性和单调性,合理转化求解不等式即可. 【详解】(1)令10y x =≠,则()111f x f x f x x ⎛⎫⎪⎛⎫⋅=- ⎪ ⎪⎝⎭ ⎪⎝⎭,得()()()10f f x f x =-=,再令1x =,1y =-,可得()()()111f f f -=--, 得()()2110f f -==,所以()10f -=, 令1y =-,可得()()()()1f x f x f f x -=--=, 又该函数定义域关于原点对称, 所以()f x 是偶函数,即证.(2)因为()21f =,又该函数为偶函数,所以()21f -=. 因为函数()f x 在(),0-∞上是减函数,且是偶函数 所以函数()f x 在()0,∞+上是增函数.又412f f x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭()2424x f x f x x -⎛⎫=⋅=-⎪⎝⎭, 所以()()242f x f -≤,等价于240,242,x x ->⎧⎨-≤⎩或240,242,x x -<⎧⎨-≥-⎩解得23x <≤或12x ≤<. 所以不等式4121f f x x ⎛⎫⎛⎫--≤ ⎪ ⎪⎝⎭⎝⎭的解集为[1,2)(2,3]⋃. 【点睛】本题考查抽象函数求函数值、证明奇偶性,以及利用函数奇偶性和单调性求解不等式. 23.(1)47;(2)存在,3λ< 【解析】 【分析】(1)由指数幂的运算求解即可.(2)由函数()k f x 的性质可将问题转化为cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,分离变量后利用均值不等式求最值即可得解. 【详解】解:(1)由已知11221132f a a -⎛⎫=+= ⎪⎝⎭,21112229a a a a --⎛⎫∴+=++= ⎪⎝⎭,17a a -∴+=, ()2122249a a a a --∴+=++=,2247a a -∴+=,即221(2)47f a a -=+=.(2)若()k f x 为定义在R 上的奇函数, 则(0)10k f k =+=,解得1k =-,01a <<,()x xk f x a a -∴=-,在R 上为减函数,则(cos 2)(2sin 5)0k k f x f x λ+->,可化为(cos 2)(2sin 5)(52sin )k k k f x f x f x λλ>--=-, 即cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 即25cos 22sin 42sin 2sin 2sin sin x x x x x xλ-+<==+,对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 令sin ,t x =[0,1]t ∈,则2y t t=+为减函数, 当1t =时,y 取最小值为3, 所以3λ<. 【点睛】本题考查了不等式恒成立问题,重点考查了均值不等式,属中档题.24.(1) 3k =;(2) 当1a >时,()2,log 3x ∈-∞;当01a <<时,()2log 3,x ∈+∞;(3)(],13-∞- 【解析】 【分析】(1)由函数过点()0,4,待定系数求参数值;(2)求出()g x 的解析式,解对数不等式,对底数进行分类讨论即可. (3)换元,将指数型不等式转化为二次不等式,再转化为最值求解即可. 【详解】(1)因为()22x xf x k -=+⋅且(0)4f =,故:14k +=,解得3k =.(2)因为()()log ()2xa g x f x =-,由(1),将()f x 代入得:()log (32?)x a g x -=,则log (32?)0x a ->,等价于:当1a >时,321x ->,解得()2,log 3x ∈-∞ 当01a <<时,321x -<,解得()2log 3,x ∈+∞. (3)()82xtf x ≥+在R 上恒成立,等价于: ()()228230xxt --+≥恒成立;令2x m =,则()0,m ∈+∞,则上式等价于:2830m m t --+≥,在区间()0,+∞恒成立.即:283t m m ≤-+,在区间()0,+∞恒成立,又()2283413m m m -+=--,故:2(83)m m -+的最小值为:-13,故:只需13t ≤-即可. 综上所述,(],13t ∈-∞-. 【点睛】本题考查待定系数求参数值、解复杂对数不等式、由恒成立问题求参数范围,属函数综合问题.25.(1)2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,;(2)当4x =时产品的性能达到最佳【解析】 【分析】(1)二次函数可设解析式为2y ax bx c =++,代入已知数据可求得函数解析式;(2)分段函数分段求出最大值后比较可得. 【详解】(1)当0≤x <7时,y 是x 的二次函数,可设y =ax 2+bx +c (a ≠0), 由x =0,y =﹣4可得c =﹣4,由x =2,y =8,得4a +2b =12①, 由x =6,y =8,可得36a +6b =12②,联立①②解得a =﹣1,b =8, 即有y =﹣x 2+8x ﹣4; 当x ≥7时,1()3x my -=,由x =10,19y =,可得m =8,即有81()3x y -=;综上可得2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,.(2)当0≤x <7时,y =﹣x 2+8x ﹣4=﹣(x ﹣4)2+12, 即有x =4时,取得最大值12; 当x ≥7时,81()3x y -=递减,可得y ≤3,当x =7时,取得最大值3.综上可得当x =4时产品的性能达到最佳. 【点睛】本题考查函数模型的应用,考查分段函数模型的实际应用.解题时要注意根据分段函数定义分段求解.26.(1)证明见解析(2)4a = 【解析】 【分析】(1)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可;(2)首先表示出()()()F x g x f x =-,再根据复合函数的单调性分类讨论可得。
【必考题】高一数学上期末模拟试题(附答案)
【必考题】高一数学上期末模拟试题(附答案)一、选择题1.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )A .B .C .D .2.设23a log =,3b =23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<3.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-154.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<5.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-16.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦7.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .48.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}9.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .110.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q ⋃=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.14.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 15.已知函数2()log f x x =,定义()(1)()f x f x f x ∆=+-,则函数()()(1)F x f x f x =∆++的值域为___________.16.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.17.求值:2312100log lg += ________ 18.已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.19.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.20.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.三、解答题21.已知函数2()ln(3)f x x ax =-+.(1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围; (2)当3a =时,解不等式()x f e x ≥.22.已知函数2()(8)f x ax b x a ab =+--- 的零点是-3和2 (1)求函数()f x 的解析式.(2)当函数()f x 的定义域是0,1时求函数()f x 的值域. 23.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.24.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围. 25.已知全集U=R ,集合{}12A x x x =-或 ,{}213UB x x p x p 或=-+.(1)若12p =,求A B ⋂; (2)若A B B ⋂=,求实数p 的取值范围. 26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:设()ln(1)g x x x =+-,则()1xg x x'=-+,∴()g x 在()1,0-上为增函数,在()0,∞+上为减函数,∴()()00g x g <=,1()0()f x g x =<,得0x >或10x -<<均有()0f x <排除选项A ,C ,又1()ln(1)f x x x =+-中,10ln(1)0x x x +>⎧⎨+-≠⎩,得1x >-且0x ≠,故排除D.综上,符合的只有选项B.故选B. 考点:1、函数图象;2、对数函数的性质. 2.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】因为23a log =,b =23c e =令()2f x log x =,()g x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.3.A解析:A 【解析】 【分析】设()2f x ax bx c =++,可知1、3为方程()20f x x +=的两根,且0a <,利用韦达定理可将b 、c 用a 表示,再由方程()60f x a +=有两个相等的根,由0∆=求出实数a 的值. 【详解】由于不等式()2f x x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则0a <.由题意可知,1、3为关于x 的二次方程()220ax b x c +++=的两根,由韦达定理得2134b a +-=+=,133ca=⨯=,42b a ∴=--,3c a =, ()()2423f x ax a x a ∴=-++,由题意知,关于x 的二次方程()60f x a +=有两相等的根, 即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()()()224236102220a a a a ∆=+-=+-=,0a <,解得15a =-,故选:A.【点睛】本题考查二次不等式、二次方程相关知识,考查二次不等式解集与方程之间的关系,解题的关键就是将问题中涉及的知识点进行等价处理,考查分析问题和解决问题的能力,属于中等题.4.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.6.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.7.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->,即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.8.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.9.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<,由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3(,1)c ∈, 所以a c b <<,故选B.11.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.14.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论.【详解】∵函数()12b f x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b b x a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤,由b D ∈,得20b -≤≤.∴22015201532019a b ≤-+≤.故答案为:[2015,2019].【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .15.【解析】【分析】根据题意以及对数的运算性质得出进而可由基本不等式可得出从而可得出函数的值域【详解】由题意即由题意知由基本不等式得(当且仅当时取等号)所以(当且仅当时取等号)即所以的值域为故答案为:【 解析:[)2,+∞【解析】【分析】根据题意以及对数的运算性质得出()21log 2F x x x ⎛⎫=++ ⎪⎝⎭,进而可由基本不等式可得出124x x++≥,从而可得出函数()F x 的值域. 【详解】由题意,()()()()22212log 1log F x f x f x x x =+-=+-,即()222211log log 2x x F x x x x ++⎛⎫==++ ⎪⎝⎭,由题意知,0x >,由基本不等式得12x x +≥=(当且仅当1x =时取等号), 所以124x x ++≥(当且仅当1x =时取等号),即221log 2log 42x x ⎛⎫++≥= ⎪⎝⎭, 所以()F x 的值域为[)2,+∞.故答案为:[)2,+∞.【点睛】本题考查了函数值域的定义及求法,对数的运算性质,基本不等式的运用,考查了计算能力,属于基础题.16.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x ≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.17.【解析】由题意结合对数指数的运算法则有: 解析:32- 【解析】由题意结合对数、指数的运算法则有:()2log 31532lg 3210022=-+-=-. 18.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题 解析:3,4⎛⎤-∞- ⎥⎝⎦ 【解析】【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足 max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21x g x a x x =+++, 设21x y x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需max min ()()f x g x ≤,当2x >-时,ln(2)x R +∈,若0,2,()a x g x >→-→-∞,若0,,()a x g x <→+∞→-∞所以0a =,min 21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-, 实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦. 故答案为;3,4⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.19.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可.【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减, ∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩, 即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.20.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】【分析】根据函数的奇偶性,令1x =-即可求解.【详解】()f x 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题. 三、解答题21.(1)24a ≤<;(2){0x x ≤或}ln3x ≥【解析】【分析】(1)根据复合函数单调性的性质,结合二次函数性质即可求得a 的取值范围.(2)将3a =代入函数解析式,结合不等式可变形为关于x e 的不等式,解不等式即可求解.【详解】(1)()f x 在(,1]-∞上单调递减,根据复合函数单调性的性质可知23y x ax =-+需单调递减则12130a a ⎧≥⎪⎨⎪-+>⎩解得24a ≤<.(2)将3a =代入函数解析式可得2()ln(33)f x x x =-+则由()xf e x ≥,代入可得 ()2ln 33x x e e x -+≥同取对数可得233x x x e e e -+≥即2(e )430x x e -+≥,所以()(e 1)30x x e --≥即e 1x ≤或3x e ≥ 0x ∴≤或ln x ≥3, 所以原不等式的解集为{}0ln3x x x ≤≥或【点睛】本题考查了对数型复合函数单调性与二次函数单调性的综合应用,对数不等式与指数不等式的解法,属于中档题.22.(1)2()3318f x x x =--+(2)[12,18]【解析】【分析】【详解】(1)832,323,5b a ab a b a a----+=--⨯=∴=-= ,()23318f x x x =--+ (2)因为()23318f x x x =--+开口向下,对称轴12x =- ,在[]0,1单调递减, 所以()()max min 0,18,1,12x f x x f x ====当当所以函数()f x 的值域为[12,18]【点睛】本题将函数的零点、解析式、最大小值等有关知识与性质有机整合在一起,旨在考查函数的表示、零点、最大小值等基础知识及综合运用.求解时先依据函数零点与方程的根之间的关系,求出函数解析式中的参数的值;解答第二问时,借助二次函数的图像和性质,运用数形结合的数学思想求出最大小值从而使得问题获解.23.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】【分析】(1)利用公式()()0f x f x --=,求实数k 的值;(2)由题意得()2log 21x a <+恒成立,求a 的取值范围;(3)()214x x h x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值.【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+. (2)由题意得()2log 21x a <+恒成立, ()2211log 2100x x a +>∴+>∴≤.(3)()214x x h x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去;2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<,21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去; 3°当0m <时,21y mt t =++开口向下,对称轴为102t m =->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值, min 14324y m m ∴=+=∴=-,不合题意,故舍去; 综上可知,316m =-. 【点睛】本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值. 24.(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-, 所以()()2320x ax a f x x =-+-+<, 所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩, 解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.25.(1)722⎛⎤ ⎥⎝⎦,; (2)342p p-或. 【解析】【分析】 由题意可得{}213B x p x p =-≤≤+, (1)当12p =时,结合交集的定义计算交集即可; (2)由题意可知B A ⊆.分类讨论B =∅和B ≠∅两种情况即可求得实数p 的取值范围. 【详解】 因为{}213U B x x p x p =-+,或,所以(){}213U U B B x p x p ==-≤≤+, (1)当12p =时,702B ⎡⎤=⎢⎥⎣⎦,,所以7=22A B ⎛⎤⋂ ⎥⎝⎦,, (2)当A B B ⋂=时,可得B A ⊆.当B =∅时,2p -1>p +3,解得p >4,满足题意;当B ≠∅时,应满足21331p p p -≤+⎧⎨+<-⎩或213212p p p -≤+⎧⎨->⎩解得44p p ≤⎧⎨<-⎩或432p p ≤⎧⎪⎨>⎪⎩; 即4p <-或342p <≤. 综上,实数p 的取值范围342p p-或. 【点睛】本题主要考查交集的定义,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.26.(1)(,5)-∞;(2)()0,1.【解析】【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围.【详解】(1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,由图知:(0,1)t ∈【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。
(必考题)数学高一上期末基础卷(答案解析)
一、选择题1.(0分)[ID :12117]设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<2.(0分)[ID :12114]已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,23.(0分)[ID :12089]已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( )A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.(0分)[ID :12087]已知函数()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,则实数a 的取值范围是( )A .2,3⎛⎫+∞⎪⎝⎭B .2,13⎛⎫⎪⎝⎭C .()0,2D .()0,∞+5.(0分)[ID :12127]在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦6.(0分)[ID :12126]设23a log =,3b =,23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<7.(0分)[ID :12125]函数y =a |x |(a >1)的图像是( ) A .B .C .D .8.(0分)[ID :12122]定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-9.(0分)[ID :12105]已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>10.(0分)[ID :12058]已知函数()2log 14x f x x ⎧+=⎨+⎩00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .611.(0分)[ID :12057]设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a取值范围是( ) A .()()1,00,1-⋃ B .()(),11,-∞-⋃+∞ C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃12.(0分)[ID :12051]函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}13.(0分)[ID :12043]已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣114.(0分)[ID :12035]已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .1115.(0分)[ID :12029]对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值2,最小值1 C .有最大值1,无最小值D .有最大值2,无最小值二、填空题16.(0分)[ID :12220]已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213x f f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.17.(0分)[ID :12216]已知函数()f x 满足1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,其中x ∈R 且0x ≠,则函数()f x 的解析式为__________18.(0分)[ID :12191]已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.19.(0分)[ID :12188]若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________. 20.(0分)[ID :12187]求值: 233125128100log lg -+= ________ 21.(0分)[ID :12185]如图,矩形ABCD 的三个顶点,,A B C 分别在函数22logy x=,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.22.(0分)[ID :12182]已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.23.(0分)[ID :12151]函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.24.(0分)[ID :12139]已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;25.(0分)[ID :12134]已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.三、解答题26.(0分)[ID :12306]节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n pn r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)27.(0分)[ID :12294]已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由. 28.(0分)[ID :12264]计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 332log log 2log 36⋅--29.(0分)[ID :12255]某上市公司股票在30天内每股的交易价格P (元)关于时间t(天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q(万股)关于时间t (天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?30.(0分)[ID :12260]如图,OAB ∆是等腰直角三角形,ABO 90∠=,且直角边长为,记OAB ∆位于直线()0x t t =>左侧的图形面积为()f t ,试求函数()f t 的解析式.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.B5.C6.A7.B8.A9.C10.C11.C12.D13.B14.B二、填空题16.【解析】【分析】由已知可得=a恒成立且f(a)=求出a=1后将x=log25代入可得答案【详解】∵函数f(x)是R上的单调函数且对任意实数x都有f=∴=a恒成立且f (a)=即f(x)=﹣+af(a)17.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详解】由题意用代换解析式中的可得……(1)与已知方程……(2)联立(1)(2)的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函18.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题19.(-22)【解析】【详解】∵函数f(x)是定义在R上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x<2时f(x)<0即f(x)<20.【解析】由题意结合对数指数的运算法则有:21.【解析】【分析】先利用已知求出的值再求点D的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函22.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题23.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m的取值范围是故答案为:【点睛】24.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属25.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题三、解答题27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】 【分析】利用函数的单调性和定义域得出不等关系组,即得解. 【详解】已知函数()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,2112121113111a aa a a ->-⎧⎪∴-<-<∴<<⎨⎪-<-<⎩故选:B 【点睛】本题考查了利用函数的单调性解不等式,考查了学生转化划归,数学运算能力,属于基础题.5.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增,所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.6.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】 因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c <<【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.7.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .8.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行9.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.10.C【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.11.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 12.D【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.13.B解析:B 【解析】试题分析:利用函数f (x )=x (e x +ae ﹣x )是偶函数,得到g (x )=e x +ae ﹣x 为奇函数,然后利用g (0)=0,可以解得m .函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数,可得n ,即可得出结论.解:设g (x )=e x +ae ﹣x ,因为函数f (x )=x (e x +ae ﹣x )是偶函数,所以g (x )=e x +ae ﹣x 为奇函数.又因为函数f (x )的定义域为R ,所以g (0)=0, 即g (0)=1+a=0,解得a=﹣1,所以m=﹣1.因为函数f (x )=x (e x +ae ﹣x )是奇函数,所以g (x )=e x +ae ﹣x 为偶函数 所以(e ﹣x +ae x )=e x +ae ﹣x 即(1﹣a )(e ﹣x ﹣e x )=0对任意的x 都成立 所以a=1,所以n=1, 所以m+2n=1 故选B .考点:函数奇偶性的性质.14.B解析:B因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.15.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题16.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221xf x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13,∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.17.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详解】由题意用代换解析式中的可得……(1)与已知方程……(2)联立(1)(2)的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函 解析:()11(1)31f x x x =-≠-- 【解析】 【分析】用x -代换x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭,再结合换元法,即可求解. 【详解】由题意,用x -代换解析式中的x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, (1)与已知方程1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,……(2) 联立(1)(2)的方程组,可得113x f x x +⎛⎫=- ⎪⎝⎭, 令1,1x t t x+=≠,则11x t ,所以()1131f t t =--, 所以()11(1)31f x x x =-≠--. 故答案为:()11(1)31f x x x =-≠--. 【点睛】本题主要考查了函数解析式的求解,解答中用x -代换x ,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭是解答的关键,着重考查了函数与方程思想,以及换元思想的应用,属于中档试题.18.【解析】【分析】根据为奇函数且在上是减函数可知即令根据函数在上单调递增求解的取值范围即可【详解】为奇函数且在上是减函数在上是减函数∴即令则在上单调递增若使得不等式在上都成立则需故答案为:【点睛】本题 解析:0a ≤【解析】 【分析】根据()f x 为奇函数,且在[)0,+∞上是减函数,可知12ax x -≤-,即11a x≤-,令11y x =-,根据函数11y x=-在[]1,2x ∈上单调递增,求解a 的取值范围,即可. 【详解】()f x 为奇函数,且在[)0,+∞上是减函数∴()f x 在R 上是减函数.∴12ax x -≤-,即11a x≤-. 令11y x =-,则11y x=-在[]1,2x ∈上单调递增. 若使得不等式()()12f ax f x -≤-在[]1,2x ∈上都成立. 则需min 111101a x ⎛⎫≤-=-= ⎪⎝⎭. 故答案为:0a ≤ 【点睛】本题考查函数的单调性与奇偶性的应用,属于中档题.19.(-22)【解析】【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<解析:(-2,2) 【解析】 【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).20.【解析】由题意结合对数指数的运算法则有:解析:32-【解析】由题意结合对数、指数的运算法则有:()2log 31532lg 3210022=-+-=-. 21.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x在函数y x=的图像上,所以2Ax =,即212A x ==⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ⎛== ⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.22.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min 21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦. 故答案为;3,4⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.23.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围. 【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.24.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】 【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围. 【详解】函数()f x 的图像如下图所示,由图可知1,22a ba b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣. 故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.25.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-, ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.三、解答题 26.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可;(2)结合题意解指数不等式即可.【详解】解:(1)由题意得02r =,1 1.94r =,所以当1n =时,()0.510015p r r r r +=--⋅, 即0.51.942(2 1.94)5p +=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N . (2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-, 又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题.27.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】【分析】(1)利用公式()()0f x f x --=,求实数k 的值;(2)由题意得()2log 21x a <+恒成立,求a 的取值范围;(3)()214x x h x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值.【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+.(2)由题意得()2log 21x a <+恒成立, ()2211log 2100x x a +>∴+>∴≤.(3)()214x x h x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去;2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去; 3°当0m <时,21y mt t =++开口向下,对称轴为102t m =->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值, min 14324y m m ∴=+=∴=-,不合题意,故舍去; 综上可知,316m =-. 【点睛】本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值. 28.(1)99;(2)3-.【解析】【分析】(1)直接根据指数与对数的性质运算即可;(2)直接利用对数运算性质即可得出.【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=. (2)原式323log 313=--- 31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 29.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元.【解析】【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式.(2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值.【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩, ∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元.【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.30.()221,022144,2424,4t t f t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩【解析】【分析】分02t <≤、24t <≤和4t >三种情况讨论,当02t <≤时,直线x t =左边为直角边长为t 的等腰直角三角形;当24t <≤时,由AOB ∆的面积减去直角边长为4t -的等腰直角三角形面积得出()f t ;当4t >时,直线x t =左边为AOB ∆.综合可得出函数()y f t =的解析式.【详解】等腰直角三角形OAB ∆中,ABO 90∠=,且直角边长为22,所以斜边4OA =, 当02t <≤时,设直线x t =与OA 、OB 分别交于点C 、D ,则OC CD t ==,()212f t t ∴=;当24t <≤时,设直线x t =与OA 、AB 分别交于点E 、F ,则4EF EA t ==-,()()221112222444222f t t t t ∴=⨯⨯--=-+-.当4t >时,()4f t =.综上所述,()221,022144,2424,4t t f t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩. 【点睛】本题考查分段函数解析式的求解,解题时要注意对自变量的取值进行分类讨论,注意处理好各段的端点,考查分析问题和解决问题的能力,属于中等题.。
2020-2021高一数学上期末模拟试卷附答案(1)
2020-2021高一数学上期末模拟试卷附答案(1)一、选择题1.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >> 2.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫ ⎪⎝⎭D .()()0,110,⋃+∞ 3.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞ B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞ 4.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( ) A .4 B .3 C .2 D .15.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( ) A .()0,1 B .[)0,1 C .(]0,1 D .[]0,16.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1)A .1B .3C .5D .7 7.设函数()1x 2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( ) A .[]1,2- B .[]0,2 C .[)1,∞+ D .[)0,∞+ 8.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( )A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -9.已知()f x =22x x -+,若()3f a =,则()2f a 等于A .5B .7C .9D .1110.函数121y x x =-++的定义域是( ) A .(-1,2] B .[-1,2] C .(-1 ,2) D .[-1,2)11.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( ) A .1B .2C .3D .4 12.函数()()212ln 12f x x x =-+的图象大致是( ) A . B .C .D .二、填空题13.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______.14.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个15.已知函数()f x 满足1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,其中x ∈R 且0x ≠,则函数()f x 的解析式为__________16.设是两个非空集合,定义运算.已知,,则________. 17.已知log log log 22a a a x y x y +-=,则x y的值为_________________. 18.已知()y f x =是定义在R 上的奇函数,且当0x …时,11()42x x f x =-+,则此函数的值域为__________.19.函数()()4log 521x f x x =-+-________.20.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围;(3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.23.已知()1log 1a x f x x-=+(0a >,且1a ≠). (1)当(],x t t ∈-(其中()1,1t ∈-,且t 为常数)时,()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当1a >时,求满足不等式()()2430f x f x -+-≥的实数x 的取值范围.24.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3).(1)求实数a 的值;(2)解关于x 的不等式()()123122x x f f +-<-.25.已知()()1 22x x f x a a R +-=+∈n .(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明);(2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.26.已知集合{}121A x a x a =-<<+,{}01B x x =<<.(1)若B A ⊆,求实数a 的取值范围;(2)若A B =∅I ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2.C解析:C【解析】【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果.【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <,又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C.【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.B解析:B【解析】【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x fx x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭ 1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭ 故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题4.D解析:D【解析】【分析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+ ,则()g x 是R 上的奇函数, 又(2)3f =,所以(2)35g +=,所以(2)2g =,()22g -=-,所以(2)(2)3231f g -=-+=-+=,故选D.【点睛】本题主要考查函数的奇偶性的应用,属于中档题.5.B解析:B【解析】【分析】先化简集合A,B,再求B A ð得解.【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥. 所以{|01}B A x x =≤<ð.故选B【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.6.C解析:C【解析】【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解.【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL ,x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,所以()3002%1.x -<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= , 所以至少经过5个小时才能驾驶汽车.故选:C【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.7.D解析:D【解析】【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤.当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D .【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解. 8.D解析:D【解析】【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果.【详解】设()y g x =图象上任意一点的坐标为(,)x y ,则其关于直线y x =的对称点为(,)y x ,再将点(,)y x 向左平移一个单位,得到(1,)y x +,其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=,所以有()1y f x =-,即()()1g x f x =-,故选:D.【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.9.B解析:B【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7. 选B.10.A解析:A【解析】【分析】根据二次根式的性质求出函数的定义域即可.【详解】由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A .【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.11.B解析:B【解析】【分析】根据零点存在定理判断023x <<,从而可得结果.【详解】因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =,故选:B.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续. 12.A解析:A【解析】函数有意义,则:10,1x x +>∴>-,由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.二、填空题13.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:()0,1【解析】【分析】令()0f x =,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案.【详解】由题意,令()10f x mx x =--=,则1mx x =-,则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图, y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点.故答案为:()0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题. 14.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的 解析:3【解析】【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数.【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内, ()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3.故答案为:3.本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.15.【解析】【分析】用代换可得联立方程组求得再结合换元法即可求解【详解】由题意用代换解析式中的可得……(1)与已知方程……(2)联立(1)(2)的方程组可得令则所以所以故答案为:【点睛】本题主要考查了函 解析:()11(1)31f x x x =-≠-- 【解析】 【分析】用x -代换x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭,再结合换元法,即可求解. 【详解】由题意,用x -代换解析式中的x ,可得1121x x f f x x x +-⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,…….(1) 与已知方程1121-+⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭x x f f x x x ,……(2) 联立(1)(2)的方程组,可得113x f x x +⎛⎫=- ⎪⎝⎭, 令1,1x t t x +=≠,则11x t =-,所以()1131f t t =--,所以()11(1)31f x x x =-≠--. 故答案为:()11(1)31f x x x =-≠--. 【点睛】本题主要考查了函数解析式的求解,解答中用x -代换x ,联立方程组,求得113x f x x +⎛⎫=- ⎪⎝⎭是解答的关键,着重考查了函数与方程思想,以及换元思想的应用,属于中档试题.16.01∪2+∞【解析】【分析】分别确定集合AB 然后求解A×B 即可【详解】求解函数y=2x-x2的定义域可得:A=x|0≤x≤2求解函数y=2xx>0的值域可得B=x|x>1则A ∪B=x|x≥0A ∩B= 解析:【解析】分别确定集合A ,B ,然后求解即可.【详解】 求解函数的定义域可得:,求解函数的值域可得,则,结合新定义的运算可知:,表示为区间形式即.【点睛】本题主要考查集合的表示及其应用,新定义知识的应用等知识,意在考查学生的转化能力和计算求解能力.17.【解析】【分析】首先根据对数的运算性质化简可知:即解方程即可【详解】因为且所以即整理得:所以或因为所以所以故答案为:【点睛】本题主要考查对数的运算性质同时考查了学生的计算能力属于中档题 解析:322+【解析】 【分析】首先根据对数的运算性质化简可知:2()2x y xy -=,即2()6()10x x y y -+=,解方程即可.【详解】 因为log log log 22a a ax yx y +-=,且x y >, 所以2log log ()2aa x y xy -=,即2()2x y xy -=. 整理得:2260x y xy +-=,2()6()10x x y y-+=. 26432∆=-=,所以632322x y -=-322x y =+因为0x y >>,所以1xy >.所以322x y=+ 故答案为:322+【点睛】本题主要考查对数的运算性质,同时考查了学生的计算能力,属于中档题.18.【解析】【分析】可求出时函数值的取值范围再由奇函数性质得出时的范围合并后可得值域【详解】设当时所以所以故当时因为是定义在上的奇函数所以当时故函数的值域是故答案为:【点睛】本题考查指数函数的性质考查函解析:11,44⎡⎤-⎢⎥⎣⎦【分析】可求出0x ≥时函数值的取值范围,再由奇函数性质得出0x ≤时的范围,合并后可得值域. 【详解】设12x t =,当0x ≥时,21x ≥,所以01t <≤,221124y t t t ⎛⎫=-+=--+ ⎪⎝⎭, 所以104y ≤≤,故当0x ≥时,()10,4f x ⎡⎤∈⎢⎥⎣⎦. 因为()y f x =是定义在R 上的奇函数,所以当0x <时,()1,04f x ⎡⎫∈-⎪⎢⎣⎭,故函数()f x 的值域是11,44⎡⎤-⎢⎥⎣⎦.故答案为:11,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查指数函数的性质,考查函数的奇偶性,求奇函数的值域,可只求出0x ≥时的函数值范围,再由对称性得出0x ≤时的范围,然后求并集即可.19.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.20.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围. 【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤,整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)4或1-;(2)()0,1;(3)(]10,11. 【解析】 【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求; (2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求. 【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=, 解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠, 则210ax bx b ++-=恒有2个不同的实数根(0)a ≠, 所以△24(1)0b a b =-->恒成立, 即2440b ab a -+>恒成立, ∴216160a a ∆=-<,则01a <<, ∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解,令4()h x x x=+,04x <≤,结合对勾函数的性质可知,465m <-≤, 解可得,1011m <≤. 故m 的范围为(]10,11. 【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题. 23.(1)见解析(2)51,3⎛⎫ ⎪⎝⎭【解析】 【分析】(1)先判定函数的单调性,结合单调性来进行求解()f x 是否存在最小值;(2)先判断函数的奇偶性及单调性,结合奇偶性和单调性把()()2430f x f x -+-≥进行转化求解. 【详解】 (1)由101xx ->+可得1010x x ->⎧⎨+>⎩或1010x x -<⎧⎨+<⎩,解得11x -<<,即函数()f x 的定义域为()1,1-,设1211x x -<<<,则()()()211212122111111x x x x x x x x ----=++++,∵1211x x -<<<,∴210x x ->,()()12110x x ++>,∴12121111x x x x -->++, ①当1a >时()()12f x f x >,则()f x 在()1,1-上是减函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 有最小值,且最小值为()1log 1atf t t-=+; ②当01a <<时,()()12f x f x <,则()f x 在()1,1-上是增函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 无最小值.(2)由于()f x 的定义域为()1,1-,定义域关于原点对称,且()()111log log 11a a x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数()f x 为奇函数.由(1)可知,当1a >时,函数()f x 为减函数,由此,不等式()()2430f x f x -+-≥等价于()()234f x f x -≥-,即有2341211431x x x x -≤-⎧⎪-<-<⎨⎪-<-<⎩,解得513x <<,所以x 的取值范围是51,3⎛⎫ ⎪⎝⎭.【点睛】本题主要考查函数性质的综合应用,奇偶性和单调性常结合求解抽象不等式问题,注意不要忽视了函数定义域,侧重考查数学抽象和逻辑推理的核心素养. 24.(1)2(2){}2log 5x|2<x < 【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案. 【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.25.(1)答案见解析;(2)253,8⎛⎫ ⎪⎝⎭. 【解析】 试题分析:(1)函数为奇函数,则()()0f x f x -+=,据此可得2a =-,且函数()f x 在R 上单调递增;(2)原问题等价于22252x x a =-⋅+⋅在区间(0,1)上有两个不同的根,换元令2x t =,结合二次函数的性质可得a 的取值范围是253,8⎛⎫⎪⎝⎭.试题解析: (1)因为是奇函数,所以()()()()1122222220x x x x x x f x f x a a a -++---+=+⋅++⋅=++=,所以;在上是单调递增函数;(2) 在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根, 所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y =a 与函数的图象有2个交点时,所以的取值范围为.点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用. 26.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【解析】 【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩……解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围. 【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩……解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足A B =∅I . ②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅Q I ,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥.综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
(必考题)数学高一上期末经典习题(含答案解析)
一、选择题1.(0分)[ID :12115]已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( ) A .[]2,0-B .(],8∞--C .[)2,∞+D .(],0∞- 2.(0分)[ID :12113]已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.(0分)[ID :12089]已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( )A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.(0分)[ID :12126]设23a log =,b =23c e=,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<5.(0分)[ID :12103]已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .a c b <<D .c a b <<6.(0分)[ID :12084]对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-17.(0分)[ID :12055]用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6 B .1.7C .1.8D .1.98.(0分)[ID :12036]已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.(0分)[ID :12034]已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 10.(0分)[ID :12033]若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭11.(0分)[ID :12072]设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,612.(0分)[ID :12071]已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( ) A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,213.(0分)[ID :12069]已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( )A .1sin x +B .1sin x -C .1sin x --D .1sin x -+14.(0分)[ID :12067]已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .15.(0分)[ID :12042]若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题16.(0分)[ID :12228]定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___. 17.(0分)[ID :12227]已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______.18.(0分)[ID :12226]已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.19.(0分)[ID :12221]已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.20.(0分)[ID :12219]若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m的取值范围是__________.21.(0分)[ID :12197]函数22log (56)y x x =--单调递减区间是 .22.(0分)[ID :12193]定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________23.(0分)[ID :12182]已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.24.(0分)[ID :12177]已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.25.(0分)[ID :12158]对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.三、解答题26.(0分)[ID :12327]某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x (130x ≤≤,x +∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少?27.(0分)[ID :12275]设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.28.(0分)[ID :12262]已知函数()f x 是二次函数,(1)0f -=,(3)(1)4f f -==. (1)求()f x 的解析式;(2)函数()()ln(||1)h x f x x =-+在R 上连续不断,试探究,是否存在()n n ∈Z ,函数()h x 在区间(,1)n n +内存在零点,若存在,求出一个符合题意的n ,若不存在,请说明由. 29.(0分)[ID :12236]记关于x 的不等式x−a−1x+1<0的解集为P ,不等式(x −1)2≤1的解集为Q .(1)若a =3,求集合P ;(2)若a >0且Q ∩P =Q ,求a 的取值范围.30.(0分)[ID :12230]设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R(A∩B),(∁R A)∩B,A∪(∁R B).【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.B4.A5.D6.C7.C8.C9.D10.A11.D12.C13.B14.C15.C二、填空题16.-40∪4+∞)【解析】【分析】由奇函数的性质可得f(0)=0由函数单调性可得在(04)上f (x)<0在(4+∞)上f(x)>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根17.【解析】当时解得;当时恒成立解得:合并解集为故填:18.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象19.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有20.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根21.【解析】【分析】先求出函数的定义域找出内外函数根据同增异减即可求出【详解】由解得或所以函数的定义域为令则函数在上单调递减在上单调递增又为增函数则根据同增异减得函数单调递减区间为【点睛】复合函数法:复22.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式23.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题24.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即25.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤-()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤ 本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果.【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】因为23a log =,b =23c e = 令()2f x log x =,()g x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.5.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】 考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.7.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数()()11f f -=,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1;即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立;∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.10.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解.∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.11.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.13.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-,此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.14.C解析:C【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.15.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立, 则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数 ∴−x −1x <−12−2=52-, ∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题16.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根 解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.17.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 18.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象 解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a=与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.19.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.20.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根 解析:(0,3]【解析】 【分析】由题意根据函数1y mx m =+-在区间(),0-∞上为增函数及分段函数的特征,可求得m 的取值范围. 【详解】∵函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),-∞+∞上单调递增,∴函数1y mx m =+-在区间(),0-∞上为增函数,∴01212m m >⎧⎨-≤+=⎩,解得03m <≤, ∴实数m 的取值范围是(0,3].故答案为(0,3]. 【点睛】解答此类问题时要注意两点:一是根据函数()f x 在(),-∞+∞上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.21.【解析】【分析】先求出函数的定义域找出内外函数根据同增异减即可求出【详解】由解得或所以函数的定义域为令则函数在上单调递减在上单调递增又为增函数则根据同增异减得函数单调递减区间为【点睛】复合函数法:复 解析:(,1)-∞-【解析】 【分析】先求出函数的定义域,找出内外函数,根据同增异减即可求出. 【详解】由2560x x -->,解得6x >或1x <-,所以函数22log (56)y x x =--的定义域为(,1)(6,)-∞-+∞.令256u x x =--,则函数256u x x =--在(),1-∞-上单调递减,在()6,+∞上单调递增,又2log y u =为增函数,则根据同增异减得,函数22log (56)y x x =--单调递减区间为(,1)-∞-.【点睛】复合函数法:复合函数[]()y f g x =的单调性规律是“同则增,异则减”,即()y f u =与()u g x =若具有相同的单调性,则[]()y f g x =为增函数,若具有不同的单调性,则[]()y f g x =必为减函数.22.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.23.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题4 ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.4⎥⎝⎦【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.24.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.25.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1【解析】【分析】直接利用对数计算公式计算得到答案.【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣ 故答案为:1【点睛】本题考查了对数式的计算,意在考查学生的计算能力.三、解答题26.(1)40m =;(2)当第10天时,该商品销售收入最高为900元.【解析】【分析】(1)利用分段函数,直接求解(20)(20)600f g =.推出m 的值.(2)利用分段函数分别求解函数的最大值推出结果即可.【详解】(1)销售价格20,115,()50,1530,x x f x x x +<⎧=⎨-⎩第x 天的销售量(单位:件)()(g x m x m =-为常数),当20x 时,由(20)(20)(5020)(20)600f g m =--=,解得40m =.(2)当115x <时,(20)(40)y x x =+-2220800(10)900x x x =-++=--+,故当10x =时,900max y =,当1530x 时,22(50)(40)902000(45)25y x x x x x =--=-+=--,故当15x =时,875max y =,因为875900<,故当第10天时,该商品销售收入最高为900元.【点睛】本题考查利用函数的方法解决实际问题,分段函数的应用,考查转化思想以及计算能力,是中档题.27.(1)4,2a b ==(2)2log x =3)()[]0,240g x ∈ 【解析】【分析】(1)由()()211,2log 12f f ==解出即可(2)令0f x得421x x -=,即()22210x x --=,然后解出即可 (3)()42x xg x =-,令2x t =,转化为二次函数 【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42x x f x =-,令0f x 得421x x -=,即()22210x x --=,解得2x =,又20,2x x >∴=,解得2log x = (3)由(1)知()42x x g x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为g t 在[]1,16t ∈上单调递增所以()[]0,240g x ∈,28.(1)2()(1)f x x =+;(2)存在,1-.【解析】【分析】(1)由(3)(1)f f -=,知此二次函数图象的对称轴为1x =-, 由(1)0f -=可设出抛物线的解析式为2()(1)f x a x =+,再利用(1)4f =求得a 的值; (2)利用零点存在定理,证明(0)(1)0h h ⋅<即可得到n 的值.【详解】(1)由(3)(1)f f -=,知此二次函数图象的对称轴为1x =-,又因为(1)0f -=,所以(1,0)-是()f x 的顶点,所以设2()(1)f x a x =+,因为(1)4f =,即2(11)4a +=, 所以设1a =所以2()(1)f x x =+(2)由(1)知2()(1)ln(||1)h x x x =+-+因为2(1)(11)ln(|1|1)ln(2)0h -=-+--+=-<2(0)(01)ln(|0|1)10h =+-+=>即(0)(1)0h h ⋅<因为函数()()ln(||1)h x f x x =-+在R 上连续不断,由零点存在性定理,所以函数()h x 在(1,0)-上存在零点.所以存在1n =-使得函数()h x 在区间(,1)n n +内存在零点.【点睛】本题考查一元二次函数的解析式、零点存在定理,考查函数与方程思想考查逻辑推理能力和运算求解能力.29.(1)P =(−1,4);(2)(1,+∞).【解析】试题分析:(1)当a =3时,利用分式不等式的解法,求得P =[−1,4];(2)根据一元二次不等式的求解方法,解得Q =[0,2],由于a >0,故x−a−1x+1<0⇔−1<x <a +1.Q ∩P =Q ⇔Q ⊆P ,则a +1>2⇒a >1.试题解析:(1)当a =3时, 原不等式为:x−4x+1<0⇔(x −4)(x +1)<0⇔−1<x <4,∴集合P =(−1,4).(2)易知:P =(−1,a +1),Q =[0,2];由Q ∩P =Q ⇒Q ⊆P ,则a +1>2⇒a >1,∴a 的取值范围为(1,+∞).30.见解析【解析】【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A ∪B ={x |2<x <7},A ∩B ={x |3≤x <6}.∴∁R (A ∪B )={x |x ≤2或x ≥7},∁R (A ∩B )={x |x ≥6或x <3}.又∵∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={x |2<x <3}.又∵∁R B ={x |x ≤2或x ≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必考题】高一数学上期末模拟试题附答案、选择题1.已知函数 f x 是定义在 R 上的偶函数,且在 0, 上是增函数,若对任意x 1, ,都有 fxa f 2x1 恒成立,则实数 a 的取值范围是 ()A.2,0B .,8 C . 2,D .,02.已知函数 f (x) log 22x ,x 0, 关于 x 的方程 f(x)m,m R , 有四个不同的实数x 2x,x 0.解 x 1,x 2,x 3,x 4,则 x 1x 2+x 3 x 4 的取值范围为( )13A.(0,+ )B .0,12C .1,2D . (1,+ )a 2 x,x 2fx 1f x 2 3已知函数 fx1 x, 满足对任意的实数 x 1≠x 2 都有2< 01,x 2x 1x 22成立,则实数 a 的取值范围为 ( )13 13A . ( -∞, 2)B .,C . ( -∞, 2]D . ,2884.对于函数 f(x),在使 f (x) m 恒成立的式子中,常数 m 的最小值称为函数 f(x)的3x3“上界值”,则函数 f (x) 3x 3 的“上界值”为( )3x 3A .2B .- 2C .1D .- 15.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染 物总量的 0.5% .已知在过滤过程中的污染物的残留数量 P (单位:毫克 /升)与过滤时间 tktP P 0e( k 为常数, P 0 为原污染物总量) .若前 480%,那么要能够按规定排放废气,还需要过滤 n 小x11,若关于 x 的方程 f x log a x 1 0( a 0且 a 1)2(单位:小时)之间的函数关系为 个小时废气中的污染物被过滤掉了时,则正整数 n 的最小值为(参考数据:取 log 5 2 0.43)A .86.若二次函数B . 9C . 102x ax x 4对任意的 x 1,x 2 1,D .14,且 x 1 x 2 ,都有f x 1 f x 20,则实数 a 的取值范围为()x 1 x 2111 A . ,02 B . ,C .2,0 2D .2x ,恒有 f x x 0 ,当x 1,0 时, 7.设x 是 R 上的周期为 2 的函数,且对任意的实数恰有五个不相同的实数根,则实数 a 的取值范围是 ( )x 0 的解集为D .11. 已知 a log 32, b 20.1,c sin 789 ,则 a , b , c 的大小关系是A .abcB . a c bC . c a bD.bca12. 已知函数 f(x) g(x) x,对任意的 x R 总有 f ( x)f (x),且 g( 1) 1,则 g(1) ()A . 1B . 3C .3D.1、填空题值范围是18. 若存在实数 m,n m n ,使得 x m,n 时,函数 f xm,n ,其中 a 0且 a 1,则实数 t 的取值范围是A . 3,5B . 3,5C . 4,6D . 4,68. 定义在 7,7 上的奇函数 f x ,当 0 x7 时, f x 2xx 6 ,则不等式A . 2,7B .2,0 2,7 C .2,0 2,D .7,2,79. 已知函数 f(x)=log 1 x,x 1,1则 f( f (1)))等于( 1, 222 4x ,xA .B . -2C .D .10. 已知是定义在 R 上的偶函数,且在区间,0 上单调递增。
若实数 a 满足A .2a 1,则 B .a 的取值范围是 (,123,23 C . ,213. 若 15a 5b 3c25, 14. 若函数 f x mx则1a1 有两个不同的零点,则实数m 的取值范围是15. 若当 0 xxxln2 时,不等式 a e x e x2xe2xe0恒成立,则实数 a 的取16.已知函数 f (x) x 2 ax a 2, g(x) 有两个非.负.整.数. 解,则实数 a 的取值范围是 __17. f (x) x 212x ( x 0 )的反函数 f 1(x)2x若关于 x的不等式 f (x) g(x) 恰 2xlog a a 2x t 的值域也为x2x,0 x 1,19.已知函数 f (x)1则关于 x 的方程 4x f (x) k 0 的所有根的和f ( x 1),1 x 23,的最大值是 _____ .20. 定义在 R 上的函数f x 满足 f x f x 2 , f x f 2 x ,且当 x 0,121时, f x x 2 ,则方程 f x 在 6,10 上所有根的和为 _______________________x2三、解答题 21.已知函数 f(x) ln(x 2 ax 3) .(1)若 f(x)在 ( ,1]上单调递减,求实数 a 的取值范围; (2)当 a 3时,解不等式 f (e x ) x .数量为 2mg/m 3 ,首次改良后所排放的废气中含有的污染物数量为 1.94mg/m 3 .设改良工艺前所排放的废气中含有的污染物数量为 r 0 ,首次改良工艺后所排放的废气中含有的污染物数 量为 r 1 ,则第 n 次改良后所排放的废气中的污染物数量 r n ,可由函数模型0.5 n pr n r 0 r 0 r 1 50.5n p (p R ,n N*) 给出,其中 n 是指改良工艺的次数 . (1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求 ,企业所排放的废气中含有的污染物数量不能超过 0.08mg/m 3 ,试问 至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标 . (参考数据 :取lg 2 0.3 )23.科研人员在对某物质的繁殖情况进行调查时发现, 1月、2月、 3月该物质的数量分别为 3、5、9个单位 .为了预测以后各月该物质的数量,甲选择了模型 y ax 2 bx c ,乙选 择了模型 y pq x r ,其中 y 为该物质的数量, x 为月份数, a ,b ,c ,p ,q ,r 为常数 . (1)若 5 月份检测到该物质有 32个单位,你认为哪个模型较好,请说明理由 .(2)对于乙选择的模型,试分别计算 4月、 7月和 10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?24. 已知集合 A x 2 x 4 ,函数 f x log 2 3x 1 的定义域为集合 B. (1)求 A B ;(2)若集合 C x m 2 x m 1 ,且 C A B ,求实数 m 的取值范围 .25.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族 S 中的成员仅以自驾或公交方式通勤.分析显示:当 S 中 x%(0 x 100)的30,0 x 30分钟),而公交群体的人均通勤时间不受 x 影响,恒为 40分钟,试根据上述分析结果回答下列问题:22.节约资源和保护环境是中国的基本国策 使排放的废气中含有的污染物数量逐.某化工企业 ,积极响应国家要求 ,探索改良工艺.已知改良工艺前所排放的废气中含有的污染物 成员自驾时,自驾群体的人均通勤时间为x1800(单位2x 90,30 x 100(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g x 的表达式;讨论g x 的单调性,并说明其实际意义.226.已知函数f x 2x24x a,g x log a x a 0,a 1 .(1)若函数f x 在区间1,m 上不具有单调性,求实数m 的取值范围;1(2)若f 1 g 1 ,设t1 f x ,t2 g x ,当x 0,1 时,试比较t1,t2的大小.12【参考答案】*** 试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据偶函数的性质,可知函数在,0 上是减函数,根据不等式在x 1, 上恒成立,可得:x a 2x 1 在1, 上恒成立,可得 a 的范围.【详解】f x 为偶函数且在0, 上是增函数f x 在,0 上是减函数对任意x1,都有f x a f 2x 1 恒成立等价于xa2x 1 2x 1x a 2x 13x 1 a x 13x 1 a x 1 minmax min当x 1 时,取得两个最值3 1 a 1 1 2 a 0本题正确选项:A【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.B解析:B【解析】【分析】由题意作函数 y f(x)与 y m 的图象,从而可得 x 1 x 22,0 log 2 x 4 2,x 3 x 4 1 ,从而得解【详解】解:因为 f (x) log 2 2 x ,x 0,,可作函数图象如下所示:x 2 2x,x 0.依题意关于 x 的方程 f (x) m,m R ,有四个不同的实数解y f (x) 与 y m 的图象有四个不同的交点,由图可知令x1 1 x2 0 x3 1x 4 2 , 则x 1x22, log 2x3log 2 x 4 ,即 log 2 x 3 log 2 x 4,所以 x 3x 4 1,则1x 3x 4 1,2x41所以 x 1 x 2 x 3 x 42x4, x 4 1,2x 415 15因为 yx ,在 x 1,2 上单调递增,所以 y2, ,即 x 42,x2 x4211x1 x2 x3 x4 2x 4 0,x442【点睛】 本题考查了数形结合的思想应用及分段函数的应用.属于中档题 3.Bx 1,x 2,x 3,x 4 ,即函数解析: B 【解析】 【分析】 【详解】a20试题分析:由题意有 ,函数 f x 在 R 上为减函数 ,所以有 {1 2 ,解出 (a 2) 2 ( )2 1 213 a, 选 B.8考点:分段函数的单调性 . 【易错点晴】本题主要考查分段函数的单调性 ,属于易错题 . 从题目中对任意的实数 x 1 x 2,都有12 13象逐渐下降 ,故在分界点 x 2处,有(a 2) 2 ( )21,解出 a . 本题容易出错的地方 28是容易漏掉分界点 x 2 处的情况 .4.C解析: C 【解析】【分析】 利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令 t 3x ,t故选 C【点睛】 本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键 是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域5.C 解析: C 【解析】 【分析】4k1e 4k ,可得出5 围,即可得出正整数 n 的最小值 .f x 10成立,得出函数 x 在 R 上为减函数 ,减函数图象特征 : 从左向右看 ,图x 1x 2t3 y t t 3361 t3故函数 f 的“上界值”是 1;根据已知条件得出 k ln 45,然后解不等式 e kt 2010 ,解出 t 的取值范x【详解】由题意,前 4个小时消除了 80%的污染物,因为 P P 0 e kt ,所以1 80% P 0 P 0e 4k ,所以 0.2 e 4k ,即 4k ln0.2 ln5 ,所以 k 则由 0.5%P 0P 0e kt ,得 ln 0.005ln5t , 4所以 t 4ln 200 4log 5200 4log 5 52 238 12log 52 13.16 ,ln5故正整数 n 的最小值为 14 4 10.故选: C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题6.A 解析: A 【解析】 【分析】可求解. 【详解】 本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等 式与单调性相互关系的转化,属于中档题 .7.D解析: D 解析】由 f x f x 0 ,知 f x 是偶函数,当 x 1,0 时, f xln 5由已知可知, f x 在1,上单调递减,结合二次函数的开口方向及对称轴的位置即∵二次函数 f x2ax 4对任意的 x 1,x 2 1, ,且 x 1 x 2 ,都有f x 1 f x 20,x 1 x 21,上单调递减,∵对称轴 x12aa0 1 2a点睛】1,解可得 21 a 0,故选 A .1,且f x 是R上的周期为 2 的函数,作出函数y f x 和y log a x 1 的函数图象,关于x 的方程f x log a x 1 0( a 0且a 1 )恰有五个不相同的实数根,即为函数y f x 和y log a x 1 的图象有 5 个交点,a1所以log a 3 1 1,解得4 a 6.log a 5 1 1故选 D.点睛:对于方程解的个数( 或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.8.B解析:B【解析】【分析】当0 x 7时, f (x)为单调增函数,且f(2) 0,则f(x) 0的解集为2,7 ,再结合f (x) 为奇函数,所以不等式f (x) 0 的解集为( 2,0) (2,7] .【详解】当0 x 7时,f(x) 2x x 6,所以 f (x)在(0,7] 上单调递增,因为f(2) 222 6 0,所以当0 x 7时,f(x) 0等价于f(x) f (2),即2x 7 ,因为 f (x)是定义在[ 7,7] 上的奇函数,所以7 x 0时,f(x)在[ 7,0)上单调递增,且f ( 2) f (2) 0,所以f (x) 0 等价于f(x) f( 2),即2 x 0 ,所以不等式f (x) 0 的解集为( 2,0) (2,7]【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.间上单调性相同,偶函数在其对称的区间上单调性相反.9.B解析: B 【解析】1 121f 2 42 2 2 4 ,则 f f f 4 2210.D解析: D【解析】33 3由对数函数的性质可知 a log 3 2 log 334 3 3 由指数函数的性质 b 20.1 1,由三角函数的性质 c sin 7890 sin (2 3600 690)3c ( 23,1) ,所以 a c b ,故选 B.12.B解析: B 【解析】由题意, f (﹣ x )+f (x )=0可知 f ( x )是奇函数, ∵ f x g x x ,g (﹣1)=1, 即 f (﹣ 1) =1+1=2 那么 f (1)=﹣2.故得 f ( 1) =g ( 1)+1= ﹣ 2, ∴g (1)=﹣3, 故选: B应注意奇函数在其对称的区 log 1 4 2 ,故选 B.2f 2a 1f 2 f( 2a 1) f( 2) 2aa111 1 1 3a 1 a, 选 D.222 2 211.B解析: B【解析】【分析】【详解】12 2a 122sin 690 sin 600 ,所以二、填空题13.1【解析】故答案为解析: 1 【解析】因为15a 5b 3c 25, a log 15 25,b log 5 25,c log 3 25,111log 25 15 log 25 5 log 25 3 log 25 25 1 ,故答案为 1.abc 14.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如 下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析: 0,1【解析】 【分析】令 f x 0 ,可得 mx x 1 ,从而将问题转化为 y mx 和 y x 1 的图象有两个不同 交点,作出图形,可求出答案 .【详解】 由题意,令 f x mx x 1 0 ,则 mx x 1 , 则 y mx 和 y x 1 的图象有两个不同交点, 作出 y x 1 的图象,如下图,y mx 是过点 O 0,0 的直线,当直线斜率 m 0,1 时, y mx 和 y x 1 的图象有两 个交点 .本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题15.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法 转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时 显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【25 解析: [ 25, ) 6【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】t 0 时,显然成立,【点睛】 本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一 元二次不等式,再用分离参数法转化为求函数最值. 16.【解析】【分析】由题意可得 f (x )g ( x )的图象均过(﹣a >0a <0时 f (x )>g (x )的整数解情况解不等式即可得到所求范围 由函数可得的图象均过且的对称轴为当时对称轴大于 0 由题 解析: 23 ,130【解析】【分析】 由题意可得 f (x ), g ( x )的图象均过(﹣ 1, 1),分别讨论 a >0,a <0时, (x )的整数解情况, 【详解】 a,当 a 0时,对称轴大于 0.由题意可得 f (x ) g (x )恰有 0,1两x,txee1x是增函数,当 0 x eln2 时, 0 t 32 ,不等式 a 2xe2xe2 0 化为 at t 2 22 0 ,即 t 2at 4 0 ,不等式 t 2at0在t[0, 23] 上恒成立,3t (0, 32], a4t 对t3[0, 23]上恒成立,由对勾函数性质知4 3 3 t 在 (0, ] 是减函数, t 3 时, t 2 2 25 y min6 ,25 a6 即a25 6综上, a 25 6故答案为:25 6).11)分别讨论 详解】f (x )>g解不等式即可得到所求范围.由函数 f ( x) x 2ax a 2, g(x) 2x 1可得 f(x), g( x)的图象均过 (1,1),且f ( x ) 的对称轴为 xf (1) g(1) 3 10个整数解,可得a ;当 a 0时,对称轴小于0. 因为f (2) g(2) 2 3f 1g 1 ,3 10由题意不等式恰有-3,-2 两个整数解,不合题意,综上可得 a 的范围是, .233 10故答案为:3,10.23【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.17.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对解析:x 1 1(x 0 )【解析】【分析】2设f x y x22x(x 0),求出x -1+ y 1,再求出原函数的值域即得反函数f1x.【详解】设f x y x22x(x 0),所以x2+2x y 0, x 2 4 4y =-1 y 1,2因为x≥0,所以x -1+ y 1 ,所以f 1x x 1 1.因为x≥0,所以y≥0,所以反函数f 1x x 1 1,(x 0).故答案为x 1 1 ,(x 0)【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.18.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【1解析:0,4【解析】【分析】2x由已知可构造log a a2x t x有两不同实数根,利用二次方程解出t 的范围即可.详解】2xf ( x) log a a2 x t 为增函数,2x且x m, n 时,函数f x log a a2x t 的值域也为m,n ,f ( m) m, f (n) n ,相当于方程f (x) x 有两不同实数根,2xlog a a t x 有两不同实根,即a x a2 x t有两解,整理得:a2x a x t 0 ,令m a x, m 0 ,m 2m t 0有两个不同的正数根,1 4t 0只需t 0即可,1解得0 t ,41故答案为:0,4【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题. 19.5【解析】【分析】将化简为同时设可得的函数解析式可得当k等于8时与的交点的所有根的和的最大可得答案【详解】解:由可得:设由函数的性质与图像可得当k 等于8 时与的交点的所有根的和的最大此时根分别为:当时解析:5【解析】【分析】x 2x ,0 x 1,2x,0 x 1, 1将f (x) 1化简为f ( x) 1 2x,1 x 2, 同时设1f ( x 1),1 x 3, 4 211 2x,2 x 3,164x f (x) g(x) ,可得g (x)的函数解析式,可得当k等于8时与g(x) 的交点的所有根的和的最大,可得答案.【详解】2x ,0 x 1,解:由 f (x) 1 可得: f (x) f ( x 1),1 x 3,28x ,0 x 1,设4x f(x) g(x), g(x) 1 8x ,1 x 2,41x16 8 ,2 x 3,1 x 5当1 x 2时,8x2 8, x 2,43 当2 x 3时, 1 8x3 8,x 3 7 ,16 33 此时所有根的和的最大值为: x 1 x 2 x 3 5 , 故答案为: 5.【点睛】 本题主要考查分段函数的图像与性质,注意分段函数需分对分段区间进行讨论,属于中档 题.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于 直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象2x ,0 x 1, 1x2x ,1 x 2, 4 116 2x,2 x 3,当 k 等于 8时与 g(x) 的交点的所有根的和的最大,此时根分别为:当 0 x 1时, 8x1 8 , x 1 1,利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周解析:16【解析】【分析】f x 是以4 为周期的周期函数;的图象关于点2,0 成中心对称;故答案为:16 .【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.、解答题结合题意分析出函数y f x 是以4 为周期的周期函数,其图象关于直线x 1 对称,由y f x 与函数y详解】2 可得出函数y f x 的图象关于点2,0 对称,据此作出函数1在区间6,10 上的图象,利用对称性可得出方程x21在6,10 上所有根的和.x2函数 f x 满足f x 2 ,即f x f x 2 f x 4 ,则函数x f 2 x ,则函数y f x 的图象关于直线x 1 对称;由f 2 x ,有f 2 x f x 2 ,则函数1又函数y 的图象关于点2,0 成中心对称,则函数y f x 与函数y x24 对交点关于点2,0 对称,则方程f11在6,10 上所有根的和为4 4 16. x2在区22x21. (1) 2 a 4;(2) x x 0或 x ln3解析】 分析】1)根据复合函数单调性的性质 ,结合二次函数性质即可求得 a 的取值范围2)将 a 3 代入函数解析式 ,结合不等式可变形为关于 e x 的不等式 ,解不等式即可求解详解】1) f (x )在 ( ,1]上单调递减 ,根据复合函数单调性的性质可知 y x 2 ax 3需单调a1 2 a304.3代入函数解析式可得 f (x ) ln ( x 2 3x 3)则由 f (e x ) x ,代入可得 ln e 2 x 3e x 3 x同取对数可得 e 2x 3e x 3 e 即 (e x )2 4e x 3 0 , 所以 (e x 1) e x 3 0 即 e x 1或 e x 3x 0 或 x ln 3 ,所以原不等式的解集为 x x 0或 x ln 3 【点睛】本题考查了对数型复合函数单调性与二次函数单调性的综合应用 ,对数不等式与指数不等式 的解法 ,属于中档题 .22. (1) r n 2 0.06 50.5n 0.5 n N * (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可 . 【详解】解: ( 1)由题意得 r 0 2, r 1 1.94, 所以当 n 1时,r 1 r 0 r 0 r 1 50.5 p , 即1.94 2 (2 1.94) 50.5 p ,解得 p 0.5,所以 r n 2 0.06 50.5n 0.5(n N*) ,递减则解得 2(2)将 a0.5 n 0.5 (2)由题意可得,r n 2 0.06 50.5n 0.5 0.08 , 整理得,50.5n 0.5 1.92,即50.5n 0.5 32,0.06 两边同时取常用对数,得0.5n 0.5 lg32,lg5 5lg 2整理得n 2 1 ,1 lg 2将lg 2 0.3 代入,得2 5lg 2 1 30 1 5.3 ,1 lg2 7 又因为n N*,所以n 6. 综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 23.(1)乙模型更好,详见解析(2)4月增长量为8,7月增长量为64 ,10月增长量为512 ;越到后面当月增长量快速上升.【解析】【分析】(1)根据题意分别求两个模型的解析式,然后验证当x 5时的函数值,最接近32 的模型好;(2)第n 月的增长量是fn f n1,由增长量总结结论【详解】a bc3a1(1)对于甲模型有4a2b c5,解得:b19a3b c9c3y x2 x 3 当x 5 时,y 23 .pq r3p1对于乙模型有pq2r5,解得:q 2,3pq3r9r1y 2x 1当x 5时,y33.因此,乙模型更好;(2)x 4 时,当月增长量为2412318,x 7 时,当月增长量为27126164,x 10 时,当月增长量为2101291512,【点睛】本题考查函数模型,意在考查对实际问题题型的分析能力和计算能力,属于基础题型,本题的关键是读懂题意.24.(1)x x 2 ;(2)2,3故改良后所排放的废气中含有的污染物数量的函数模型为rn 2 0.06 50.5n 0.5nN从结果可以看出,越到后面当月增长量快速上升.(类似结论也给分)【解析】【分析】(1)由对数函数指数函数的性质求出集合 B ,然后由并集定义计算;(2)在(1)基础上求出A B ,根据子集的定义,列出m 的不等关系得结论.【详解】(1)由3x10,解得x 0 ,所以B x x0.故A B x x2.(2)由A B x0 x 4 .因为C A Bm 2 0,所以m 1 4.所以2 m 3,即m 的取值范围是2,3 .【点睛】本题考查对数型复合函数的定义域,考查集合的交并集运算,考查集合的包含关系.正确求出函数的定义域是本题的难点.25.(1)x 45,100 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析.【解析】【分析】(1)由题意知求出 f (x)>40 时x 的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【详解】(1)由题意知,当30 x 100 时,1800f x 2x 90 40 ,x即x2 65x 900 0 ,解得x 20或x 45,∴ x 45,100 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0 x 30 时,说明该地上班族 S 中有小于 32.5%的人自驾时,人均通勤时间是递减的; 有大于 32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为 32.5% 时,人均通勤时间最少. 【点睛】 本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力. 26. ( 1) 1, ;( 2) t 1 t 2 【解析】【分析】 (1)根据二次函数的单调性得到答案 .(2)计算得到 a 22 ,再计算 t 1 x 1 2 0, t 2 log 2x0, 得到答案 .【详解】( 1)函数 f x 22x 24x a 的对称轴为 x1,函数 f x 在区间 1,m 上不具有单调性,故 m1 , 即m1,(2) f 1 g 1 ,即 2 4 a log a 1 0,故a 2.当 x 0,1 时, t 112f x x 2 x 1 x2 120;t 2gx log 2 x 02故 t 1 t 2 【点睛】本题考查了根据函数的单调性求参数,比较函数值大小,意在考查学生对于函数性质的综 合应用 .gx30 x% 40 1 x % 4010当 30 x 100 时,gx 2x18090 x% 40 1 x% x 2 13 x 58 ;50 1040∴g10 x 2 13 x 50 1058当032.5 时, g x 单调递减;当 32.5 x 100 时, g x 单调递增;。