高考物理动量定理解题技巧及经典题型及练习题(含答案)
高考物理动量定理解题技巧及经典题型及练习题(含答案)
⾼考物理动量定理解题技巧及经典题型及练习题(含答案)⾼考物理动量定理解题技巧及经典题型及练习题(含答案)⼀、⾼考物理精讲专题动量定理1.图甲为光滑⾦属导轨制成的斜⾯,导轨的间距为1m l =,左侧斜⾯的倾⾓37θ=?,右侧斜⾯的中间⽤阻值为2R =Ω的电阻连接。
在左侧斜⾯区域存在垂直斜⾯向下的匀强磁场,磁感应强度⼤⼩为10.5T B =,右侧斜⾯轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜⾯的顶端e 、f 两点分别⽤等长的轻质柔软细导线连接导体棒ab ,另⼀导体棒cd 置于左侧斜⾯轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜⾯向下的拉⼒作⽤下开始向下运动(cd 棒始终在左侧斜⾯上运动),⽽ab 棒在⽔平拉⼒F 作⽤下始终处于静⽌状态,F 随时间变化的关系如图⼄所⽰,ab 棒静⽌时细导线与竖直⽅向的夹⾓37θ=?。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定⽀架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉⼒的冲量;(3)3 s 内电阻R 上产⽣的焦⽿热为2. 88 J ,则此过程中拉⼒对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】【详解】(1)设绳中总拉⼒为T ,对导体棒ab 分析,由平衡⽅程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图⼄可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产⽣的的热量为 2.88J Q =,则ab 棒产⽣的热量也为Q ,cd 棒上产⽣的热量为8Q ,则整个回路中产⽣的总热量为28. 8 J ,即3 s 内克服安培⼒做功为28. 8J ⽽重⼒做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所⽰,⾜够长的⽊板A 和物块C 置于同⼀光滑⽔平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B ⼀起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成⼀体,最终A 、B 、C 都静⽌,求:(i )C 与A 碰撞前的速度⼤⼩(ii )A 、C 碰撞过程中C 对A 到冲量的⼤⼩.【答案】(1)C 与A 碰撞前的速度⼤⼩是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的⼤⼩是32mv 0.【解析】【分析】【详解】试题分析:①设C 与A 碰前速度⼤⼩为1v ,以A 碰前速度⽅向为正⽅向,对A 、B 、C 从碰前⾄最终都静⽌程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =.②设C 与A 碰后共同速度⼤⼩为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =-解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量⼤⼩为032mv .⽅向为负.考点:动量守恒定律【名师点睛】本题考查了求⽊板、⽊块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应⽤动量守恒定律即可正确解题;解题时要注意正⽅向的选择.3.如图所⽰,光滑⽔平⾯上有⼀轻质弹簧,弹簧左端固定在墙壁上,滑块A 以v 0=12 m/s 的⽔平速度撞上静⽌的滑块B 并粘的速度⼤⼩v ;②在整个过程中,弹簧对A 、B 系统的冲量⼤⼩I 。
高考物理动量定理解题技巧及经典题型及练习题(含答案)含解析
高考物理动量定理解题技巧及经典题型及练习题( 含答案 ) 含分析一、高考物理精讲专题动量定理1.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和 m B= 3.0kg。
用轻弹簧拴接,放在圆滑的水平川面上,物块 B 右边与竖直墙壁相接触。
还有一物块 C 从 t= 0 时以必定速度向右运动,在 t =4s 时与物块 A 相碰,并立刻与 A 粘在一同不再分开,所示。
求:C的 v- t 图象如图乙(1) C 的质量 m C;(2) t = 8s 时弹簧拥有的弹性势能E p1, 4~12s 内墙壁对物块 B 的冲量大小 I;(3) B 走开墙后的运动过程中弹簧拥有的最大弹性势能E p2。
【答案】( 1) 2kg ;( 2)27J,36N·S;( 3)9J【分析】【详解】(1)由题图乙知, C 与 A 碰前速度为 v1= 9m/s ,碰后速度大小为 v2=3m/s ,C 与 A 碰撞过程动量守恒m C v1= (m A+ m C)v2解得 C 的质量 m C=2kg。
(2) t = 8s 时弹簧拥有的弹性势能E =(m + m )v22=27Jp11AC2取水平向左为正方向,依据动量定理,4~12s 内墙壁对物块 B 的冲量大小I=(m A+ m C)v3-(m A+ m C)(-v2) =36N·S(3)由题图可知,12s 时 B 走开墙壁,此时A、C 的速度大小 v3=3m/s ,以后 A、 B、 C 及弹簧构成的系统动量和机械能守恒,且当A、 C 与 B 的速度相等时,弹簧弹性势能最大(m A+ m C)v3= (m A+ m B+ m C)v41(m A+ m C) v32=1(m A+ m B+ m C) v42+ E p222解得 B 走开墙后的运动过程中弹簧拥有的最大弹性势能E p2= 9J。
2.如下图,长为L 的轻质细绳一端固定在地高度为 H。
现将细绳拉至与水平方向成30O 点,另一端系一质量为m ,由静止开释小球,经过时间的小球, O 点离t 小球抵达最低点,细绳恰巧被拉断,小球水平抛出。
高考物理动量定理解题技巧分析及练习题(含答案)及解析
高考物理动量定理解题技巧分析及练习题(含答案)及解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0.【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。
高中物理动量定理常见题型及答题技巧及练习题(含答案)含解析
高中物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。
已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。
求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)【解析】 【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。
求(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。
【答案】(1)20N ∙s ,方向竖直向下(2)202kg m/s ⋅, 与水平方向的夹角为45° 【解析】 【详解】(1)物体做平抛运动,则有:212h gt =解得:t =2s则物体从抛出到落到地面过程重力的冲量I=mgt =1×10×2=20N•s方向竖直向下。
(2)在竖直方向,根据动量定理得I=p y -0。
可得,物体落地时竖直方向的分动量p y =20kg•m/s物体落地时水平方向的分动量p x =mv 0=1×20=20kg•m/s故落地时物体的动量22202kg m/s x y p p p =+=⋅设落地时动量与水平方向的夹角为θ,则1y xp tan p θ==θ=45°3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,两个小球A 和B 质量分别是m A =2.0kg,m B =1.6kg,球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动,假设两球相距L ≤18m 时存在着恒定的斥力F ,L >18m 时无相互作用力.当两球相距最近时,它们间的距离为d =2m,此时球B 的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析
高考物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N2F +==故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
高中物理动量定理解题技巧和训练方法及练习题(含答案)
高中物理动量定理解题技巧和训练方法及练习题(含答案)一、高考物理精讲专题动量定理1.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。
求运动员和网接触的这段时间内,网对运动员的平均作用力F (g 取10 m /s 2)。
【答案】1500N ,方向竖直向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为1128m s v gh == (方向向下)运动员反弹到达高度h 2 ,离网时速度为22210m s v gh ==(方向向上)在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()()21 F mg t mv mv -=--解得=1500N F ,方向竖直向上。
2.滑冰是青少年喜爱的一项体育运动。
如图,两个穿滑冰鞋的男孩和女孩一起在滑冰场沿直线水平向右滑行,某时刻他们速度均为v 0=2m/s ,后面的男孩伸手向前推女孩一下,作用时间极短,推完后男孩恰好停下,女孩继续沿原方向向前滑行。
已知男孩、女孩质量均为m =50kg ,假设男孩在推女孩过程中消耗的体内能量全部转化为他们的机械能,求男孩推女孩过程中:(1)女孩受到的冲量大小; (2)男孩消耗了多少体内能量? 【答案】(1) 100N •s (2) 200J 【解析】 【详解】(1)男孩和女孩之间的作用力大小相等,作用时间相等, 故女孩受到的冲量等于男孩受到的冲量,对男孩,由动量定理得:I =△P =0-mv 0=-50×2=-100N•s , 所以女孩受到的冲量大小为100N•s ; (2)对女孩,由动量定理得100=mv 1-mv 0,故作用后女孩的速度1100502m/s 4m/s 50v +⨯== 根据能量守恒知,男孩消耗的能量为221011125016504200J 222E mv mv =-⋅=⨯⨯-⨯=;3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.质量为0.2kg 的小球竖直向下以6m/s 的速度落至水平地面,再以4m/s 的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s ,则小球受到地面的平均作用力大小?(取g=10m/s 2).【答案】(1)2kg•m/s ;方向竖直向上;(2)12N ;方向竖直向上; 【解析】 【分析】 【详解】(1)小球与地面碰撞前的动量为:p 1=m (-v 1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为p 2=mv 2=0.2×4 kg·m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为Δp =p 2-p 1=2 kg·m/s (2)由动量定理得(F -mg )Δt =Δp 所以F =p t ∆∆+mg =20.2N +0.2×10N=12N ,方向竖直向上.5.如图所示,质量的小车A 静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。
(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。
高中物理动量定理解题技巧分析及练习题(含答案)含解析
高中物理动量定理解题技巧分析及练习题(含答案)含解析一、高考物理精讲专题动量定理1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。
已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=︒。
其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。
(1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量;(3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】(1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得:sin θF T BIl =+cos θT mg =解得:tan θ 1.50.5F mg BIl I =+=+由图乙可知:1.50.2F t =+则有:0.4I t =cd 棒上的电流为:0.8cd I t =则cd 棒运动的速度随时间变化的关系:8v t =即cd 棒在导轨上做匀加速度直线运动。
(2)ab 棒上的电流为:0.4I t =则在2 s 内,平均电流为0.4 A ,通过的电荷量为0.8 C ,通过cd 棒的电荷量为1.6C 由动量定理得:sin θ0F t I mg t BlI mv +-=-解得: 1.6N s F I =g(3)3 s 内电阻R 上产生的的热量为 2.88J Q =,则ab 棒产生的热量也为Q ,cd 棒上产生的热量为8Q ,则整个回路中产生的总热量为28. 8 J ,即3 s 内克服安培力做功为28. 8J 而重力做功为:G sin 43.2J W mg θ==对导体棒cd ,由动能定理得:F W W'-克安2G 102W mv +=- 由运动学公式可知导体棒的速度为24 m/s 解得:43.2J F W '=2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.2019年 1月 3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一张近距离拍摄月球背面的图片。
高考物理动量定理解题技巧及题型及练习题含答案含解析.doc
高考物理动量定理解题技巧及经典题型及练习题( 含答案 ) 含解析一、高考物理精讲专题动量定理1.质量为 m 的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里.求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I.【答案】(1) mg(t1t2t 2 )(2) mgt1【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t +t )-Ft =0, 解得:方向竖直向上1 2 2⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,长为L 的轻质细绳一端固定在地高度为 H。
现将细绳拉至与水平方向成30 O 点,另一端系一质量为m ,由静止释放小球,经过时间的小球, O 点离t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
2 m2 gL ;(3)当L H【答案】( 1) F=2mg ;( 2)I F mgt 时小球抛的最远2【解析】【分析】【详解】(1)小球从释放到最低点的过程中,由动能定理得mgLsin 30 1 m v022小球在最低点时,由牛顿第二定律和向心力公式得2mv0F mgL解得:F=2mg(2)小球从释放到最低点的过程中,重力的冲量I G=mgt动量变化量p mv0由三角形定则得,绳对小球的冲量I F mgt 2m2gL(3)平抛的水平位移x v0t ,竖直位移H L 1 gt22解得x 2L( H L)当 L H时小球抛的最远23.如图所示,质量M=1.0kg 的木板静止在光滑水平面上,质量m=0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析.docx
高中物理动量定理解题技巧及经典题型及练习题( 含答案 ) 及解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。
某型“礼花”底座仅0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。
(忽略发射底座高度,不计空气阻力, g 取 10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1: 4,且炸裂时有大小为E=9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少?【答案】 (1)1550N; (2)900m【解析】【分析】【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F,设礼花弹上升时间为t,则:h 1gt 2 2解得t 6s对礼花弹从发射到抛到最高点,由动量定理Ft 0mg(t t0 )0其中t00.2s解得F 1550N(2)设在最高点爆炸后两块质量分别为m1、 m2,对应的水平速度大小分别为v1、 v2,则:在最高点爆炸,由动量守恒定律得m1v1m2 v2由能量守恒定律得E 1m1v121m2v22 22其中m11m24 m m1m2联立解得v1120m/sv230m/s 之后两物块做平抛运动,则竖直方向有h 1gt 2 2水平方向有s v1t v2t由以上各式联立解得s=900m2.质量为 m 的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里.求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I.mg(t1t 2 )【答案】 (1)(2) mgt1t2【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t 1+t2)-Ft2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.3.如图所示,足够长的木板端, A、 B、C 的质量分别为A 和物块m、2m 和C置于同一光滑水平轨道上,物块 B 置于 A 的左3m,已知 A、 B 一起以 v0的速度向右运动,滑块C向左运动,A、C 碰后连成一体,最终A、B、 C 都静止,求:(i) C 与 A 碰撞前的速度大小(i i )A、 C 碰撞过程中 C 对 A 到冲量的大小.【答案】( 1) C 与 A 碰撞前的速度大小是v0;(2) A、 C 碰撞过程中 C 对 A 的冲量的大小是3mv0.2【解析】【分析】【详解】试题分析:①设 C 与 A 碰前速度大小为v1,以A碰前速度方向为正方向,对A、 B、 C 从碰前至最终都静止程由动量守恒定律得:(m 2m) v0-3mv1 ?0解得: v1v0.②设 C 与 A 碰后共同速度大小为v2,对A、C在碰撞过程由动量守恒定律得:mv0-3mv1( m 3m)v2在 A、 C 碰撞过程中对 A 由动量定理得:I CA mv2- mv0解得: I CA 3mv0 2即A、 C 碰过程中 C 对 A 的冲量大小为3mv0.方向为负.2考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m=1.0kg、可视为质点的物体,以 v0=6.0m/s 的初速度沿斜面上滑。
高中物理动量定理解题技巧及经典题型及练习题(含答案)含解析
高中物理动量定理解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小.【答案】(1)C 与A 碰撞前的速度大小是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】【分析】【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负. 考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ;v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;4.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。
高考物理动量定理答题技巧及练习题(含答案)含解析
高考物理动量定理答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。
用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。
另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。
求:(1)C 的质量m C ;(2)t =8s 时弹簧具有的弹性势能E p1,4~12s 内墙壁对物块B 的冲量大小I ; (3)B 离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J ,36N·S ;(3)9J 【解析】 【详解】(1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒m C v 1=(m A +m C )v 2解得C 的质量m C =2kg 。
(2)t =8s 时弹簧具有的弹性势能E p1=12(m A +m C )v 22=27J 取水平向左为正方向,根据动量定理,4~12s 内墙壁对物块B 的冲量大小I =(m A +m C )v 3-(m A +m C )(-v 2)=36N·S(3)由题图可知,12s 时B 离开墙壁,此时A 、C 的速度大小v 3=3m/s ,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大(m A +m C )v 3=(m A +m B +m C )v 412(m A +m C )23v =12(m A +m B +m C )24v +E p2 解得B 离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J 。
2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。
高考物理动量定理常见题型及答题技巧及练习题(含答案).docx
高考物理动量定理常见题型及答题技巧及练习题( 含答案 )一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块 A 以 v0= 12 m/s 的水平速度撞上静止的滑块 B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为 m1= 0.5 kg、 m2= 1.5 kg。
求:①A 与 B 撞击结束时的速度大小v;②在整个过程中,弹簧对A、B 系统的冲量大小 I。
【答案】① 3m/s ;② 12N?s【解析】【详解】①A、B 碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=( m1 +m2) v代入数据解得v=3m/s②以向左为正方向,A、B 与弹簧作用过程由动量定理得I=( m1+m2)( - v) - (m1+m2) v代入数据解得I=- 12N?s负号表示冲量方向向右。
2.2019 年 1 月 3 日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一张近距离拍摄月球背面的图片。
此次任务实现了人类探测器首次在月球背面软着陆、首次在月球背面通过中继卫星与地球通讯,因而开启了人类探索月球的新篇章。
嫦娥四号探测器在靠近月球表面时先做圆周运动进行充分调整,最终到达离月球表面很近的着陆点。
为了尽可能减小着陆过程中月球对飞船的冲击力,探测器在距月面非常近的距离处进行多次调整减速,离月面高h 处开始悬停(相对月球速度为零),对障碍物和坡度进行识别,并自主避障。
然后关闭发动机,仅在月球重力作用下竖直下落,探测器与月面接触前瞬间相对月球表面的速度为v,接触月面时通过其上的“四条腿”缓冲,平稳地停在月面,缓冲时间为t,如图所示。
已知月球的半径R,探测器质量为m0,引力常量为G。
(1)求月球表面的重力加速度;(2)求月球的第一宇宙速度;(3)求月球对探测器的平均冲击力F 的大小。
v2v R m0 v【答案】( 1)g( 2)v( 3)F m0 g2h2h t【解析】【详解】(1)由自由落体规律可知:v 2 2 gh解得月球表面的重力加速度:v2g2h(2)做圆周运动向心力由月表重力提供,则有:mv 2mgR解得月球的第一宇宙速度:Rv v2h(3)由动量定理可得:(F m0 g)t 0 (m0v)解得月球对探测器的平均冲击力的大小:m0 vF m0 gt3.滑冰是青少年喜爱的一项体育运动。
高考物理动量定理常见题型及答题技巧及练习题(含答案)含解析
高考物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。
已知物体A的质量为m,物体B的质量为2m,求:(1)弹簧压缩到最短时物体B的速度大小;(2)弹簧压缩到最短时的弹性势能;(3)从A开始运动到弹簧压缩到最短的过程中,弹簧对A的冲量大小。
【答案】(1)(2)(3)【解析】【详解】(1)弹簧压缩到最短时,A和B共速,设速度大小为v,由动量守恒定律有① 得 ②(2)对A 、B 和弹簧组成的系统,由功能关系有③ 得 ④(3)对A 由动量定理得⑤ 得 ⑥3.如图甲所示,足够长光滑金属导轨MN 、PQ 处在同一斜面内,斜面与水平面间的夹角θ=30°,两导轨间距d =0.2 m ,导轨的N 、Q 之间连接一阻值R =0.9 Ω的定值电阻。
金属杆ab 的电阻r=0.1 Ω,质量m=20 g ,垂直导轨放置在导轨上。
高中物理高考物理动量定理解题技巧分析及练习题(含答案)
高中物理高考物理动量定理解题技巧分析及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得 I 0 = 1.6×104 N·s ② 由冲量定义有I 0 = F 0t 1 ③将已知数据代入③式得 F 0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v ,由动量守恒定律有 m 1v 1+ m 2v 2 = (m 1+ m 2)v ⑤对试验车,由动量定理有 -Ft 2 = m 1v -m 1v 1 ⑥ 将已知数据代入⑤⑥式得 F = 2.5×104 N ⑦可见F <F 0,故试验车的安全气囊不会爆开 ⑧3.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。
高考物理动量定理解题技巧(超强)及练习题(含答案)及解析
高考物理动量定理解题技巧(超强)及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
高中物理动量定理解题技巧(超强)及练习题(含答案)及解析
(3)木块在木板滑行的时间t
【答案】(1)v1= 6m/s (2)v2=2m/s (3)t=1s
【解析】
【详解】
(1)子弹打入木块过程,由动量守恒定律可得:
m0v0=(m0+m)v1
解得:
v1= 6m/s
(2)木块在木板上滑动过程,由动量守恒定律可得:
(m0+m)v1=(m0+m+M)v2
联立以上各式解得
代入数据得 =8.15m/s =1.85m/s
【名师点睛】
两杆同向运动,回路中的总电动势等于它们产生的感应电动势之差,即与它们速度之差有关,对甲杆由牛顿第二定律列式,对两杆分别运用动量定理列式,即可求解.
7.如图所示,木块A和四分之一光滑圆轨道B静置于光滑水平面上,A、B质量mA=mB=2.0kg。现让A以v0=4m/s的速度水平向右运动,之后与墙壁发生弹性碰撞(碰撞过程中无机械能损失),碰撞时间为t=0.2s。取重力加速度g=10m/s2.求:
解得:
v2=2m/s
(3)对子弹木块整体,由动量定理得:
﹣μ(m0+m)gt=(m0+m)(v2﹣v1)
解得:物块相对于木板滑行的时间
4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。求
(1)物体从抛出到落到地面过程重力的冲量;
(2)落地时物体的动量。
(1)小球与地面碰撞前后的动量变化?
(2)小球受到地面的平均作用力是多大?
【答案】(1)2kg•m/s,方向竖直向上;(2)12N.
【解析】
(1)取竖直向上为正方向,碰撞地面前小球的动量
碰撞地面后小球的动量
高考物理动量定理的技巧及练习题及练习题(含答案)含解析
高考物理动量定理的技巧及练习题及练习题(含答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt1-I=0,∴I=mgt 1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 cd 棒在导轨上做匀加速度直线运动。
(2) ab 棒上的电流为: I 0.4t
则在 2 s 内,平均电流为 0.4 A,通过的电荷量为 0.8 C,通过 cd 棒的电荷量为 1.6C 由动量定理得:
IF mgsinθt BlIt mv 0
解得: IF 1.6N s (3)3 s 内电阻 R 上产生的的热量为 Q 2.88J ,则 ab 棒产生的热量也为 Q , cd 棒上产生的 热量为 8Q ,则整个回路中产生的总热量为 28. 8 J,即 3 s 内克服安培力做功为 28. 8J
⑴乙运动员的速度大小;
⑵甲、乙运动员间平均作用力的大小。
【答案】(1)3m/s (2)F=420N 【解析】
【详解】
(1)甲乙运动员的动量守恒,由动量守恒定律公式
得:
m1v1 m2v2 m1v1' m2v2'
v2' 3m/s
(2)甲运动员的动量变化: 对甲运动员利用动量定理: 由①②式可得:
与竖直方向的夹角 37 。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支
架。
(1)请通过计算分析 cd 棒的运动情况; (2)若 t=0 时刻起,求 2s 内 cd 受到拉力的冲量; (3)3 s 内电阻 R 上产生的焦耳热为 2. 88 J,则此过程中拉力对 cd 棒做的功为多少?
【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s ;(3) 43.2J
【解析】 【详解】
(1)设绳中总拉力为T ,对导体棒 ab 分析,由平衡方程得: F Tsinθ BIl Tcosθ mg
解得:
F mgtanθ BIl 1.5 0.5I
由图乙可知:
F 1.5 0.2t
则有:
I 0.4t
cd 棒上的电流为:
Icd 0.8t
则 cd 棒运动的速度随时间变化的关系:
(2)对女孩,由动量定理得 100=mv1-mv0,
故作用后女孩的速度
v1
100
50 50
2
m/s
4m/s
根据能量守恒知,男孩消耗的能量为
E
1 2
mv12
2
1 2
mv02
1 2
50 16
50
4
200J
;
4.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下
的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在 动量定理中的平均力 F1 是指合力对时间的平均值,动能定理中的平均力 F2 是合力指对位移 的平均值. (1)质量为 1.0kg 的物块,受变力作用下由静止开始沿直线运动,在 2.0s 的时间内运动了 2.5m 的位移,速度达到了 2.0m/s.分别应用动量定理和动能定理求出平均力 F1 和 F2 的 值. (2)如图 1 所示,质量为 m 的物块,在外力作用下沿直线运动,速度由 v0 变化到 v 时,经
高考物理动量定理解题技巧及经典题型及练习题(含答案)
一、高考物理精讲专题动量定理
1.图甲为光滑金属导轨制成的斜面,导轨的间距为 l 1m ,左侧斜面的倾角 37 ,右
侧斜面的中间用阻值为 R 2的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁 场,磁感应强度大小为 B1 0.5T ,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁 场,磁感应强度为 B2 0.5T 。在斜面的顶端 e、f 两点分别用等长的轻质柔软细导线连接
(1)女孩受到的冲量大小; (2)男孩消耗了多少体内能量? 【答案】(1) 100N•s (2) 200J 【解析】
【详解】
(1)男孩和女孩之间的作用力大小相等,作用时间相等, 故女孩受到的冲量等于男孩受到的冲量,
对男孩,由动量定理得:I=△P=0-mv0=-50×2=-100N•s,
所以女孩受到的冲量大小为 100N•s;
【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。 【解析】 【详解】 (1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据 子弹和物块组成的系统动量守恒得:
m0v0=(m+m0)v1
解得:
v1=3m/s (2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守
(1)物块 A 与 B 碰后共同速度大小 v; (2)物块 A 对 B 的冲量大小 IB; (3)已知物块 A 与墙壁碰撞时间为 0.2s, 求墙壁对物块 A 平均作用力大小 F. 【答案】(1)2m/s(2)4N·s(3)100N 【解析】 【详解】
(1)以向左为正方向,根据动量守恒: mAv1 (mA mB )v 得: v 2m / s
而重力做功为:
WG mg sin 43.2J
对导体棒 cd ,由动能定理得:
WF WBiblioteka 克安 WG1 2mv2
0
由运动学公式可知导体棒的速度为 24 m/s
解得:WF 43.2J
2.如图所示,质量 M=1.0kg 的木板静止在光滑水平面上,质量 m=0.495kg 的物块(可视 为质点)放在的木板左端,物块与木板间的动摩擦因数 μ=0.4。质量 m0=0.005kg 的子弹以 速度 v0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够 长,g 取 10m/s2。求: (1)物块的最大速度 v1; (2)木板的最大速度 v2; (3)物块在木板上滑动的时间 t.
x t
v0 v 2
(3)由图 2 可求得物块由 x 0 运动至 x A过程中,外力所做的功为:
W 1 kA A 1 kA2
2
2
设物块的初速度为 v0
,由动能定理得:W
0
1 2
mv02
解得: v0 A
k m
设在 t 时间内物块所受平均力的大小为 F ,由动量定理得: Ft 0 mv0
则
根据上式可知:增大 S 可以通过减小 q、U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.
6.冬奥会短道速滑接力比赛中,在光滑的冰面上甲运动员静止,以 10m/s 运动的乙运动 员从后去推甲运动员,甲运动员以 6m/s 向前滑行,已知甲、乙运动员相互作用时间为 1s,甲运动员质量 m1=70kg、乙运动员质量 m2=60kg,求:
历的时间为 t,发生的位移为 x.分析说明物体的平均速度 v 与 v0、v 满足什么条件时,F1
和 F2 是相等的. (3)质量为 m 的物块,在如图 2 所示的合力作用下,以某一初速度沿 x 轴运动,当由位置
x=0 运动至 x=A 处时,速度恰好为 0,此过程中经历的时间为 t 2
所受合力对时间 t 的平均值.
(1)将该离子推进器固定在地面上进行试验.求氙离子经 A、B 之间的电场加速后,通过 栅电极 B 时的速度 v 的大小; (2)配有该离子推进器的飞船的总质量为 M,现需要对飞船运行方向作一次微调,即通 过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度 Δv,此过程中可认为氙 离子仍以第(1)中所求的速度通过栅电极 B.推进器工作时飞船的总质量可视为不变.求 推进器在此次工作过程中喷射的氙离子数目 N. (3)可以用离子推进器工作过程中产生的推力与 A、B 之间的电场对氙离子做功的功率的 比值 S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大 S,并对增大 S 的实 际意义说出你的看法.
m ,求此过程中物块 k
【答案】(1)F1=1.0N,F2=0.8N;(2)当 v
x t
v0 2
v
时,F1=F2;(3)
F
2kA
.
【解析】
【详解】
解:(1)物块在加速运动过程中,应用动量定理有: F1 t mvt
解得: F1
mvt t
1.0 2.0 N 1.0N 2.0
物块在加速运动过程中,应用动能定理有: F2
p m1v1' -m1v1 ① p Ft ② F=420N
7.如图所示,质量均为 2kg 的物块 A 和物块 B 静置于光滑水平血上,现让 A 以 v0=6m/s 的 速度向右运动,之后与墙壁碰撞,碰后以 v1=4m/s 的速度反向运动,接着与物块 B 相碰并 粘在一起。 g 取 10m/s2.求:
由题已知条件: t m 2k
解得: F 2kA
5.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
导体棒 ab,另一导体棒 cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和 cd 棒的
质量均为 m 0.2kg ,ab 棒的电阻为 r1 2 ,cd 棒的电阻为 r2 4 。已知 t=0 时刻起,
cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而 ab 棒在水 平拉力 F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线
(1)发射前,将开关 S 接 a,先对电容器进行充电. a.求电容器充电结束时所带的电荷量 Q; b.充电过程中电容器两极板间的电压 y 随电容器所带电荷量 q 发生变化.请在图 3 中画出 u-q 图像;并借助图像求出稳定后电容器储存的能量 E0; (2)电容器充电结束后,将开关 b,电容器通过导体棒放电,导体棒由静止开始运动,导 体棒离开轨道时发射结束.电容器所释放的能量不能完全转化为金属导体棒的动能,将导 体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率.若某次发射结束 时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射