一元一次方程 综合测试题练习

合集下载

2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共12小题,满分48分)1.方程kx=3的解为自然数,则整数k等于()A.0,1B.1,3C.﹣1,﹣3D.±1,±32.①x﹣2=;②0.3x=1;③=5x﹣1;④x2﹣4x=3;⑤x=6;⑥x+2y=0,其中一元一次方程的个数是()A.3B.4C.5D.63.下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=34.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=15.解决实际问题“某班原分成两个小组进行课外体育活动,第一小组26人,第二小组22人,根据学校活动器材的数量,要将第一小组的人数调整为第二小组的一半,应从第一小组调多少人到第二小组?”时,若设应从第一小组调x人到第二小组,依题意可得的方程为()A.2(26﹣x)=22+x B.2(22﹣x)=26+xC.2(26﹣x)=22D.2(22﹣x)=266.下列变形中:①由方程=2去分母,得x﹣12=10;②由方程6x﹣4=x+4移项、合并得5x=0;③由方程2﹣=两边同乘以6,得12﹣x+5=3x+3;④由方程x=两边同除以,得x=1;其中错误变形的有()个.A.0B.1C.2D.37.如果关于x的方程与的解相同,那么m的值是()A.1B.±1C.2D.±28.新兴商场出售一个A型和一个B型的吹风机,售价都是300元,同进价比,A型电吹风赚了20%,B型电吹风赔了20%,则新兴商场出售一个A型和一个B型电吹风后()A.盈利25元B.赔了25元C.不盈不亏D.盈利50元9.我们定义一种运算:=ad﹣bc例如,=2×5﹣3×4=﹣2,=3x﹣2,按照这种定义的运算,当=时,x=()A.﹣B.﹣C.D.10.已知等式3a=2b+5,则下列关于等式的变形不正确的是()A.3a﹣5=2b B.a=b+C.3ac=2bc+5D.3a+1=2b+6 11.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4B.5.7C.7.2D.7.512.已知关于x的方程ax=b(a,b为有理数),给出下列结论:①当a=b时,方程的解为x=1;②当|a|>b>0时,方程的解x满足:0<|x|<1,其中判断正确的是()A.①,②都对B.①,②都错C.①错,②对D.①对,②错二.填空题(共5小题,满分20分)13.已知方程(m﹣1)x|m|=0是关于x的一元一次方程,则m的值是.14.如果关于x的方程2x+1=3和方程2﹣=1的解相同,那么a的值为.15.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:x﹣3=2(x+1)﹣,怎么办呢?小明想了想,便翻看书后答案,此方程的解是x =﹣5,于是很快就补好了这个常数,他补出的这个常数是.16.方程|2x﹣3|=4的解为.17.如图是2022年5月份的日历,如图中那样,用一个圈竖着圈住3个数,如果被圈住的三个数的和为30,则这三个数最小一个所表示的日期为2022年5月日.三.解答题(共6小题,满分52分)18.检验下列各题括号内的值是否为相应方程的解(1)2x﹣3=5(x﹣3)(x=6,x=4)(2)4x+5=8x﹣3(x=3,x=2)19.解关于x的方程:(2a+1)x=2(x+1).20.若(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,求m2﹣2m+1994的值.21.已知(a2﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求代数式2008(a+x)(x﹣2a)+3a+5的值;(2)求关于y方程a|y|=x的解.22.已知x=3是方程的解,n满足关系式|2n+m|=1,求m+n的值.23.根据题意,列出关于x的方程(不必解方程):(1)如图是2021年2月份的日历:如果用如图所示的十字形框,框住日历上的五个数,这五个数的和为80,求这五个数中最小的那个数.解:设最小的那个数为x,根据题意可列出方程.(2)某农场有试验田1080m2,种植A、B、C三种农作物.已知三种农作物的种植面积比是2:3:4,求三种农作物的种植面积分别是多少.解:设A种农作物的种植面积是2xm2,根据题意可列出方程.(3)小明参加1000米比赛,他以4米/秒的速度跑了一段路程后,又以5米/秒的速度跑完了剩余的路程,一共用时4分钟.求小明以5米/秒的速度跑了多少米?解:设小明以5米/秒的速度跑了x米,根据题意可列出方程.参考答案一.选择题(共12小题,满分48分)1.解:系数化为1得,x=.∵关于x的方程kx=3的解为自然数,∴k的值可以为:1、3.故选:B.2.解:①x﹣2=,分母中含有未知数,不是一元一次方程;②0.3x=1,是一元一次方程;③=5x﹣1,是一元一次方程;④x2﹣4x=3,未知数的最高次数是2,不是一元一次方程;⑤x=6,是一元一次方程;⑥x+2y=0,方程中有2个未知数,不是一元一次方程;所以其中一元一次方程的个数是3.故选:A.3.解:A.2x﹣3含有未知数,但不是等式,所以不是方程,故不符合题意;B.2+4=6不含有未知数,且不是等式,所以不是方程,故不符合题意;C.x﹣2>1不是等式,所以不是方程,故不符合题意;D.2x﹣1=3符合方程的定义,故符合题意.故选:D.4.解:解是x=4的方程是3x﹣8=4,故选:C.5.解:设应从第一小组调x人到第二小组,依题意可得的方程为:2(26﹣x)=22+x.故选:A.6.解:①由方程=2去分母,得x﹣12=10,不符合题意;②由方程6x﹣4=x+4移项、合并得5x=8,符合题意;③由方程2﹣=两边同乘以6,得12﹣x+5=3x+9,符合题意;④由方程x=两边同除以,得x=;其中错误变形的有3个:②、③、④.故选:D.7.解:=,去分母得5x﹣1=14,移项、合并同类项得5x=15,系数化为1得x=3,把x=3代入得1=2|m|﹣3,∴2|m|=4,∴|m|=2,∴m=±2,故选:D.8.解:设一个A型吹风机的进价为x元,由题意得(1+20%)x=300,解得x=250;设一个B型吹风机的进价为y元,由题意得(1﹣20%)y=300,解得y=375,∴300×2﹣(250+375)=﹣25(元),故新兴商场出售一个A型和一个B型电吹风后赔了25元,故选:B.9.解:因为=ad﹣bc,所以=2(﹣1)﹣2x=x﹣2﹣2x=﹣x﹣2,=1(x﹣1)﹣(﹣4)×=x﹣1+2=x+1,所以﹣x﹣2=x+1,﹣x﹣x=1+2,﹣2x=3,x=﹣.故选:A.10.解:A.∵3a=2b+5,∴等式两边都减去5,得3a﹣5=2b,故本选项不符合题意;B.∵3a=2b+5,∴等式两边都除以3,得a=b+,故本选项不符合题意;C.∵3a=2b+5,∴等式两边都乘c,得3ac=2bc+5c,故本选项符合题意;D.∵3a=2b+5,∴等式两边都加1,得3a+1=2b+6,故本选项不符合题意故选:C.11.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.12.解:①当a=b=0时,方程的解不一定为x=1,故①判断错误;②当|a|>b>0时,解ax=b得到:x=,此时0<x=<1,所以0<|x|<1,故②判断正确.故选:C.二.填空题(共5小题,满分20分)13.解:∵方程(m﹣1)x|m|=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.14.解:方程2x+1=3,解得:x=1,把x=1代入第二个方程得:2﹣=1,去分母得:6﹣a+1=3,解得:a=4,故答案为:415.解:设被污染的常数为a,把x=﹣5代入x﹣3=2(x+1)﹣a,得﹣﹣3=2(﹣5+1)﹣a,解得a=﹣.故答案为:﹣.16.解:根据题意,2x﹣3=4,或2x﹣3=﹣4,解这两个方程得:x=,或x=﹣,故答案为:x=,或x=﹣.17.解:设最小一个所表示的日期为x,则另两个数为(x+7),(x+14),则x+(x+7)+(x+14)=30解得:x=3故填3.三.解答题(共6小题,满分52分)18.解:(1)把x=6代入,左边=12﹣3=9,右边=5×3=15,左边≠右边,x=6不是方程的解,把x=4代入,左边=8﹣3=5,右边=5×1=5,左边=右边,x=4是方程的解;(2)把x=3代入,左边=12+5=17,右边=24﹣3=21,左边≠右边,x=3不是方程的解;把x=2代入,左边=8+5=13,右边=16﹣3=13,左边=右边,x=2是方程的解.19.解:(2a+1)x=2(x+1),去括号,得2ax+x=2x+2,移项,得2ax+x﹣2x=2,合并同类项,得(2a﹣1)x=2,当2a﹣1≠0时,即x时,得x=;当2a﹣1=0,即x=时,方程无解.20.解:∵(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,∴m﹣4≠0且2|m|﹣7=1,解得:m=﹣4,∴原式=16+8+1994=2018.21.解:(1)根据题意得:,解得:a=1,则方程是:﹣2x+8=0,解得:x=4,原式=2008(1+4)(4﹣2)+3+5=20088.(2)当a=1,x=4时,|y|=4,∴y=±4.22.解:把x=3代入方程,得:3(2+)=2,解得:m=﹣.把m=﹣代入|2n+m|=1,得:|2n﹣|=1得:①2n﹣=1,②2n﹣=﹣1.解①得,n=,解②得,n=.∴(1)当m=﹣,n=时,m+n=﹣;(2)当m=﹣,n=时,m+n=﹣;综上所述,m+n的值为﹣或﹣.23.解:(1)设最小的那个数为x,根据题意可列出方程:x+x+6+x+7+x+8+x+14=80,故答案为:x+x+6+x+7+x+8+x+14=80;(2)设A种农作物的种植面积是2xm2,根据题意可列出方程2x+3x+4x=1080,故答案为:2x+3x+4x=1080;(3)设小明以5米/秒的速度跑了x米,根据题意可列出方程+=240,故答案为:+=240。

一元一次方程综合复习测试题及答案

一元一次方程综合复习测试题及答案

一元一次方程综合复习测试题一、选择题(每题3分,共24分)1 •下列方程是一元一方程的是()A. 22 = 5B.3x 1 4 = 2x c. y2 3y = 0 D. 9x 一y = 2x 22•已知等式3a =2b +5,则下列等式中,不一定成立的是()A.3 a - 5 = 2bB.3 a - 1 = 2 b + 4C.3 ac = 2 bc + 5D.9a = 6b + 153•小玉想找一个解为x =-6的方程,那么他可以选择下面哪一个方程()1 1 2A.2 x - 1 = x + 7B. x = x - 1C.2 (X + 5)=- 4 - XD. X = X - 22 3 34•下列变形正确的是()A• 4x-5 =3x 2变形得4x-3x - -2 53B• 3x=2 变形得x c • 3(x-1)=2(x 3)变形得3x-1 = 2x 62 1D• x -1 x 3变形得4x-6=3x 183 2、‘ x +3 x5.解方程1 ,去分母,得()6 2A• 1 - x - 3 = 3x; B • 6 - x - 3 = 3x; c • 6 - x ■ 3 = 3x; D• 1 - x ■ 3 = 3x.a — x6•如果方程2 x +1 = 3的解也是方程2- =0的解,那么a的值是()3A.7B.5C.3D.以上都不对7•某商店的老板销售一种商品,他要以不低于进价20%的价格才能岀售,但为了获取更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降低()A.80 元B.100 元C.120 元D.160 元&甲仓库存煤200吨,乙仓库存煤70吨,若甲仓库每天运出 15吨煤,乙仓库每天运进 25吨煤,几天后乙仓库存煤比甲仓库多1倍?设x天后乙仓库存煤比甲仓库存煤多1倍,则有()A.2 X 15x = 25 xB.70 + 25 x - 15X = 200 X 2C.2 ( 200- 15X )= 70+ 25 XD.200-15 X = 2 ( 70+ 25X )二、填空题:(每题3分,共24分)1 •若方程3x3d2n-1 = 0是关于x的一元一次方程,则n = _______________ ;3•已知x=2是方程ax-1=x,3的一个解,那么a = _______________________ •14•写出一个满足下列条件的一元一次方程:①未知数的系数是- ,②方程的解是3,则这样的方程可写2为__________________ .5•已知三个连续偶数的和是 24,则这三个数分别是________________________ .6• A、B、C三辆汽车所运货物的吨数比为 2 : 3 : 4,已知C汽车比A汽车多运货物4吨,则B汽车运货物_____________ 吨.7• 一个两位数,十位数字比个位数字大4,将十位数字与个位数字交换位置后得到的新数比原数小36,设个位数字为X,则可列方程为________________________ .&课堂上,老师说:“老师的六分之一时光是幸福的童年,从小学读到大学又花了我一半的时间,然后12 年如一日地站在讲台上至今,谁知道我现在的年龄”,小玉思考了一会儿告诉了老师正确的答案,你知道老师现在的年龄是 _____________ 岁.三、解答题:(共52分)1.解方程:x —2 X"2 x —1(1) 5 ( X + 8 )= 6 (2X — 7)+ 5; ( 2) —= 1 +6 3 2一、行程问题(一)追击和相遇问题1:甲、乙两站相距 480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。

(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年北师大版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分30分)1.下列方程是一元一次方程的是()A.=5x+2008B.3x2+1=3xC.2y2+y=3D.6x﹣3y=1002.下列方程变形正确的是()A.13x﹣15x+x=﹣3变形为x=﹣3B.9﹣3y=5y+5变形为﹣3y﹣5y=5+9C.﹣1=变形为3(3y﹣1)﹣12=2(5y﹣7)D.2(10﹣0.5y)=﹣(1.5y+2)变形为20﹣y=1.5y+23.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=14.若式子2(3x﹣5)与式子6﹣(1﹣x)的值相等,则这个值是()A.8B.3C.2D.5.下列运用等式的性质对等式进行的变形中,错误的是()A.若x=y,则x﹣5=y﹣5B.若a=b,则ac=bcC.若,则2a=2b D.若x=y,则6.已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个7.已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.28.已知单项式和是同类项,则代数式x﹣y的值是()A.﹣3B.0C.3D.69.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.10.有以下计算过程:①﹣3+5=﹣(5﹣3)=﹣2;②5×;③20﹣(﹣1)2=20+1=21;④x2﹣5x2=﹣4;⑤解2x+5=﹣2,移项得2x=﹣2﹣5;⑥解,去分母得x+2(3﹣x)=1.其中计算正确的有()A.2道B.3道C.4道D.5道二.填空题(共5小题,满分15分)11.当x=时,代数式4x的值比5+2x的值大4.12.若x=﹣1是方程2x+a=0的解,则a=.13.一元一次方程3x=2(x+1)的解是.14.在数学小组探究活动中,小月请同学想一个数,然后将这个数按以下步骤操作:小月就能说出同学最初想的那个数.如果小红想了一个数,并告诉小月操作后的结果是﹣1,那么小红所想的数是.15.如图:内、外两个四边形都是正方形,阴影部分的宽为3,且面积为51,则内部小正方形的面积是.三.解答题(共8小题,满分75分)16.解方程:(1)3x﹣9=6x﹣1;(2)﹣=1.17.解下列方程①7x+5=8﹣6x;②4x﹣3(20﹣x)=3;③;④.18.已知(2m﹣8)x2﹣(2﹣3m)x+4m=6是关于x的一元一次方程,求m的值.19.解方程(1)3(x﹣2)+1=x﹣(2x﹣1)(2)﹣=﹣x.20.当k取何值时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+)的解相同?21.一辆汽车已经行驶了12000km,计划每月在行驶800km,几个月后这辆汽车将行驶20800km?22.售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲顾客平均每天要消费多少个鸡蛋才不会浪费?23.如图,正方形的边长为1,请认真观察如图,第一次取出正方形的一半,第二次取出剩下圆形的一半…,以此类推,每一次都取出剩下图形的一半,共进行n次这样的操作进行的次数123…n剩下图形的面积…(1)请将表填完整;(2)请你利用这个几何图形求+++…+的值为(结果用含有n的代数式表示);(3)延伸与拓展,将一根小木棒从中间断开,取出一半:剩下的那一半再从中间断开,又取出一半…,依此类推,每次都取出一半,若进行n次后剩下的木棒长为1,则用含n 的代数式表示木棒的原长为.参考答案一.选择题(共10小题,满分30分)1.解:A、符合一元一次方程的定义;B、含有一个未知数,未知数的最高次数为2,故不是一元一次方程;C、含有一个未知数,未知数的最高次数为2,故不是一元一次方程;D、含有两个次数为1的未知数,故不是一元一次方程.故选:A.2.解:A、由13x﹣15x+x=﹣3变形为x=1.故本选项错误;B、由9﹣3y=5y+5变形为﹣3y﹣5y=5﹣9.故本选项错误;C、由﹣1=变形为3(3y﹣1)﹣12=2(5y﹣7).故本选项正确;D、由2(10﹣0.5y)=﹣(1.5y+2)变形为20﹣y=﹣1.5y﹣2.故本选项错误.故选:C.3.解:解是x=4的方程是3x﹣8=4,故选:C.4.解:根据题意得:2(3x﹣5)=6﹣(1﹣x),去括号得:6x﹣10=6﹣1+x,移项合并得:5x=15,解得:x=3,则2(3x﹣5)=8,故选:A.5.解:A、根据等式性质1,x=y两边同时减去5得x﹣5=y﹣5,原变形正确,故这个选项不符合题意;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,等式两边同时乘以2c应得2a=2b,原变形正确,故这个选项不符合题意;D、根据等式性质2,a可能为0,等式两边同时除以a,原变形错误,故这个选项符合题意.故选:D.6.解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.7.解:根据题意,得:6x﹣12+4+2x=0,移项,得:6x+2x=12﹣4,合并同类项,得:8x=8,系数化为1,得:x=1.故选:C.8.解:由题意可得,2x﹣1=5,3y=9,解得x=3,y=3,所以x﹣y=3﹣3=0,故选:B.9.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.10.解:①﹣3+5=2,﹣(5﹣3)=﹣2,故①不正确;②5×(﹣)=﹣,﹣(5×)=﹣,故②正确;③20﹣(﹣1)2=20﹣1=19,故③不正确;④x2﹣5x2=﹣4x2,故④不正确;⑤2x+5=﹣2,移项得2x=﹣2﹣5,故⑤正确;⑥,去分母得,x+2(3﹣x)=4,故⑥不正确;综上所述:②⑤正确,故选:A.二.填空题(共5小题,满分15分)11.解:由题意4x﹣(5+2x)=44x﹣5﹣2x=42x=9x=故答案为.12.解:把x=﹣1代入方程得:﹣2+a=0,解得:a=2.故答案为:2.13.解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=214.解:设小红所想的数是x,由题意得,(4x﹣8)×+4=﹣1,解得:x=﹣,故答案为:﹣.15.解:设内部小正方形的边长为x,根据题意得,(x+3)2﹣x2=51,(x+3+x)(x+3﹣x)=51,2x+3=17,2x=14,x=7,所以,内部小正方形的面积=72=49.故答案是:49.三.解答题(共8小题,满分75分)16.解:(1)3x﹣9=6x﹣1;移项,得3x﹣6x=﹣1+9,合并同类项,得:﹣3x=8,解得:x=﹣;(2)﹣=1,去分母,得5(3x﹣1)﹣2(4x+2)=10,去括号,得15x﹣5﹣8x﹣4=10移项,得15x﹣8x=10+5+4,合同类项,得7x=19,解得x=.17.解:(1)7x+6x=8﹣5,13x=3,x=;(2)4x﹣60+3x=3,7x=63,x=9;(3)6﹣2x=3(8﹣2x),6﹣2x=24﹣6x,4x=18,x=;(4)方程可变形为=+,6(8x+9)=15(x+5)+10(3x﹣2),48x+54=15x+75+30x﹣20,3x=1,x=.18.解:∵(2m﹣8)x2﹣(2﹣3m)x+4m=6是关于x的一元一次方程,∴2m﹣8=0,2﹣3m≠0,解得:m=4.19.解:(1)去括号得:3x﹣6+1=x﹣2x+1,移项合并得:4x=6,解得:x=1.5;(2)去分母得:2x+6﹣2+3x=4﹣8x,移项合并得:13x=0,解得:x=0.20.解:解2(2x﹣3)=1﹣2x,得x=,把x=代入8﹣k=2(x+),得8﹣k=2(+),解得k=4,当k=4时,关于x的方程2(2x﹣3)=1﹣2x和8﹣k=2(x+)的解相同.21.解:设x个月后将行使20800 km.12000+800x=20800,x=11.答:11个月后将行使20800 km.22.解:(1)顾客乙买两箱鸡蛋节省的钱2×(14﹣12)=4(元)顾客乙丢掉的20个坏鸡蛋浪费的钱12×=8(元)因为4元<8元,所以顾客乙买的两箱鸡蛋不合算.(2)设顾客甲买了x箱鸡蛋.由题意得:12x=2×14x﹣96.解这个方程得:x=6,6×30÷18=10(个)答:甲顾客平均每天要消费10个鸡蛋才不会浪费.23.解:(1)填表如下:进行的次数123…n剩下图形的面积…(2)由已知,原正方形分成各个小长方形的面积之和为+++…++,则由面积法可知+++…++=1,则+++…+=1﹣,故答案为:1﹣;(3)设木棒原长为x由题意列方程为x+x+x+…+x+1=x,由(2)+++…+=1﹣,原方程可化为(1﹣)x+1=x解得x=2n故答案为:2n。

2022-2023学年人教版七年级数学上册《第3章一元一次方程》单元综合测试题(附答案)

2022-2023学年人教版七年级数学上册《第3章一元一次方程》单元综合测试题(附答案)

2022-2023学年人教版七年级数学上册《第3章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分30分)1.下列是一元一次方程的是()A.x+2y=3B.3x﹣2C.x2+x=6D.2.若方程x+2a=﹣3的解为x=1,则a为()A.1B.﹣1C.2D.﹣23.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc4.下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+25.在某月的月历中圈出相邻的3个数,其和为43.这3个数的位置可能是()A.B.C.D.6.如果关于x的方程(a+1)x=a2+1无解,那么a的取值范围是()A.a=−1B.a>−1C.a≠−1D.任意实数7.有3250个橘子,平均分给一个幼儿园的小朋友,剩下10个,已知每一名小朋友分得的橘子数接近40个,则这个幼儿园有()名小朋友.A.36B.80C.85D.908.设■,●,▲分别表示三种不同的物体,现用天平称了两次,情况如图所示,则在■,●,▲中,质量最小的是()A.■B.●C.▲D.无法确定9.如图,在数轴上,点A,B分别表示﹣15,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t 秒,在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,则满足条件整数t的值()A.22B.33C.44D.5510.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②=;③=;④40m+10=43m+1.其中正确的是()A.①②B.②④C.①③D.③④二.填空题(共5小题,满分20分)11.如果x2a﹣1+9=0是一元一次方程,那么a=.12.把循环小数0.写成分数形式为:.13.已知关于x的方程的解是x=22,那么关于y的一元一次方程的解是y=.14.某初中学校七年级举行“数学知识应用能力竞技”活动,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为70分,则他答对了道题.15.对有理数a,b,规定运算“※”的意义是a※b=a×b+a+b,则方程x※5=﹣4x的解是.三.解答题(共8小题,满分70分)16.解下列方程(1)10x+7=14x﹣5;(2).17.小明同学在解方程=﹣2,去分母时,方程右边的﹣2没有乘3,因而求得方程的解为x=3.试求a的值,并正确地解出方程.18.某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.19.某厂接到一所中学的冬季校服定做任务,计划用A、B两台大型设备进行加工,如果单独用A型设备,需要45天做完;如果单独用B型设备,需要30天做完;为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)填空:A型设备的工作效率是,B型设备的工作效率是;(2)若两台设备同时加工10天后,B型设备出了故障,暂时不能工作,如果由A型设备单独完成剩下的任务,则还需要多少天?20.如图,小奥将一个正方形纸片剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形纸片剪去一个宽为5cm的长方形(记作B).(1)若A与B的面积相等,求这个正方形的边长;(2)若A的周长是B的周长的倍,求这个正方形的边长.21.如果两个方程的解相差k,k为正整数,则称解较大的方程为另一个方程的“k—后移方程”.例如:方程x﹣3=0是方程x﹣1=0的“2—后移方程”.(1)若方程2x+3=0是方程2x+5=0的“a—后移方程”,则a=;(2)若关于x的方程4x+m+n=0是关于x的方程4x+n=0的“2—后移方程”,求代数式m2+|m+1|的值;(3)当a≠0时,如果方程ax+b=1是方程ax+c﹣1=0的“3—后移方程”,求代数式6a+2b ﹣2(c+3)的值.22.某中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服20件,乙工厂每天能加工这种校服25件.且单独加工这批校服甲厂比乙厂要多用12天.在加工过程中,学校每天需付甲厂费用100元、每天需付乙厂费用125元.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度也提高20%,乙工厂单独完成剩余部分.且乙工厂的全部工作时间是甲工厂工作时间的2倍还多5天,求乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲厂按原生产速度单独完成;方案二:由乙厂原生产速度单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校每天为每个工程师提供10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.23.如图,数轴上A、B、C三点所对应的数分别是a、b、c.且a、b、c满足|a+24|+(b+10)2+(c﹣10)2=0.(1)则a=,b=,c=.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动.经过t秒后,点P到点A、B、C的距离和是多少(用含t的代数式表示)?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P,Q,T所对应的数分别是x P,x Q,x T,点Q出发的时间为t,当<t<时,求|x P﹣x T|+|x T﹣x Q|﹣|x Q﹣x P|的值.参考答案一.选择题(共10小题,满分30分)1.解:A.x+2y=3,含有两个未知数,不符合题意;B.3x﹣2,不是方程,不符合题意;C.x2+x=6,未知数的最高次数为2,不符合题意;D.,符合题意;故选:D.2.解:∵方程x+2a=﹣3的解为x=1,∴1+2a=﹣3,解得a=﹣2.故选:D.3.解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.4.解:∵方程=1,去分母得5(x﹣1)﹣2x=10,∴选项A符合题意;∵方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x+5,∴选项B不符合题意;∵方程t=,系数化为1得t=,∴选项C不符合题意;∵方程3x﹣2=2x+1,移项得3x﹣2x=1+2,∴选项D不符合题意.故选:A.5.解:设最小的数是x,假设A、B、C、D都可能,由A图得x+x+7+x+7+1=43,解得x=,不符合题意,所以3个数的位置不可能是A;由B图得x+x+1+x+1+7=43,解得x=,不符合题意,所以3个数的位置不可能是B;由C图得x+x+1+x+7=43,解得x=,不符合题意,所以3个数的位置不可能是C;由D图得x+x+7﹣1+x+7=43,解得x=10,符合题意,所以3个数的位置可能是D,故选:D.6.解:∵关于x的方程(a+1)x=a2+1无解,∴a+1=0,解得:a=﹣1.故选:A.7.解:设这个幼儿园有x名小朋友,则:40x+10=3250.解得x=81.因为每一名小朋友分得的橘子数接近40个,所以这个幼儿园有80名小朋友比较合理.故选:B.8.解:设■,●,▲的质量分别为a,b,c,∵由天平可知:①2a>a+c,②3b<2c,由①,得a>c,∴2a>2c,∴2a>2c>3b,∴a>c>b,∴质量最小的是“●”,故选:B.9.解:由题知,P点对应的数为:﹣15+3t,Q点对应的数为:9+t,(1)当O为PQ中点时,根据题意得15﹣3t=9+t,解得t=,(2)当P是OQ的中点时,根据题意得2(3t﹣15)=9+t,解得t=,(3)当Q是OP的中点时,根据题意得2(9+t)=3t﹣15,解得t=33,故选:B.10.解:由人数不变,可列出方程:40m+10=43m+1,∴等式④正确;由客车的辆数不变,可列出方程:=,∴等式③正确.∴正确的结论是③④.故选:D.二.填空题(共5小题,满分20分)11.解:∵x2a﹣1+9=0是一元一次方程,∴2a﹣1=1,解得:a=1.故答案为:1.12.解:设x=0.①,则有10x=6.②,②﹣①得:9x=6,解得:x=.故答案为:.13.解:∵,∴(y﹣23)+2﹣(y﹣23)=m,∴y﹣23=x,∵x=22,∴y﹣23=22,∴y=45,故答案为:45.14.解:设他答对了x道题,根据题意得5x﹣(20﹣x)=70,解得x=15,所以,他答对了15道题,故答案为:15.15.解:x※5=﹣4x,得5x+x+5=﹣4x,去分母,得5x+x+4x=﹣5,移项、合并同类项,得10x=﹣5,系数化为1,得x=﹣,故选:﹣.三.解答题(共8小题,满分70分)16.解:(1)移项得:10x﹣14x=﹣5﹣7,合并得:﹣4x=﹣12,系数化为1得:x=3;(2)去分母得:4(2x﹣1)﹣2(10x﹣1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x+2=6x+3﹣12,移项得:8x﹣20x﹣6x=3﹣12+4﹣2,合并得:﹣18x=﹣7,系数化为1得:x=.17.解:依题意,x=3是方程2x﹣1=x+a﹣2的解,∴2×3﹣1=3+a﹣2,∴a=4.∴原方程为,解方程,得2x﹣1=x+4﹣6,解得x=﹣1.故a=4,原方程的正确的解是x=﹣1.18.解:设该款奶茶线下销售价格为x元/杯,则线上销售价格为(1+20%)x元/杯,依题意得:6×(1+20%)x﹣28+4=6x,解得:x=20.答:该款奶茶线下销售价格为20元/杯.19.解:(1)∵如果单独用A型设备,需要45天做完;如果单独用B型设备,需要30天做完,∴A型设备的工作效率是这批冬季校服数量的,B型设备的工作效率是这批冬季校服数量的.故答案为:这批冬季校服数量的;这批冬季校服数量的.(2)设还需要x天完成,依题意得:+=1,解得:x=20.答:还需要20天完成.20.解:(1)设正方形的边长为xcm,由题意,得4x=5(x﹣4).解得x=20.答:这个正方形的边长为20cm;(2)设这个正方形的边长为ycm,由题意,得6(2y+8)=7×2[5+(y﹣4)].解得y=17.答:这个正方形的边长为17cm.21.解:(1)∵2x+3=0,∴,∵2x+5=0,∴,∵,∴方程2x+3=0是方程2x+5=0的“1—后移方程”,∴a=1,故答案为:1;(2)∵4x+m+n=0,∴,∵4x+n=0,∴,∵关于x的方程4x+m+n=0是关于x的方程4x+n=0的“2—后移方程”,∴,∴m=﹣8,∴m2+|m+1|=(﹣8)2+|﹣8+1|=64+7=71;(3)∵ax+b=1,∴,∵ax+c﹣1=0,∴,∵方程ax+b=1是方程ax+c﹣1=0的“3—后移方程”,∴,∴1﹣b﹣1+c=3a,∴3a+b﹣c=0,∴6a+2b﹣2(c+3)=6a+2b﹣2c﹣6=2(3a+b﹣c)﹣6=﹣6.22.解:(1)设这批校服共有x件,由题意得:﹣=12,解得:x=1200,答:这批校服共有1200件;(2)设甲工厂加工a天,则乙工厂共加工(2a+5)天,根据题意得:(20+25)a+25×(1+20%)(2a+5﹣a)=1200,解得a=14,∴2a+5=2×14+5=28+5=33,答:乙工厂共加工33天;(3)①方案一:由甲厂单独加工时,耗时为1200÷20=60天,需要费用为:60×(10+100)=6600(元);②方案二:由乙厂单独加工时,耗时为1200÷25=48天,需要费用为:48×(125+10)=6480(元);③方案三:由两加工厂共同加工时,耗时为33天,需要费用为:14×(100+10)+33×(10+125)=5995(元).∴按方案三方式完成既省钱又省时间.23.解:∵|a+24|+(b+10)2+(c﹣10)2=0,∴,解得:,故答案为:﹣24,﹣10,10;(2)①当点P在线段AB上时,14+(34﹣4t)=48﹣4t;②当点P在线段BC上时,34+(4t﹣14)=4t+20;③当点P在AC的延长线上时,4t+4t﹣14+4t﹣34=12t﹣48.∴P到A、B、C的距离和为48﹣4t或4t+20或12t﹣48;(3)当<t<时,位置如图,∴|x P﹣x T|+|x T﹣x Q|+|x Q﹣x P|=3t﹣14+34﹣4t+20﹣t=﹣2t+40.。

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分30分)1.下列方程中是一元一次方程的是()A.x+3=0B.x2﹣3x=2C.x+2y=7D.2.方程4﹣3y=5y的解为y=()A.B.﹣2C.2D.3.下列方程的解为x=﹣3的是()A.5(x﹣1)=﹣4x+8B.C.4x+12=0D.﹣3x﹣1=04.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果ac=bc,那么a=bC.如果a=b,那么ac=bc D.如果a2=3a,那么a=35.解方程,去分母正确的是()A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)6.某次篮球比赛计分规则为:胜一场积2分,负一场积1分,没有平场,八一队在篮球联赛共14场比赛中积23分,那么八一队胜了()场.A.6B.7C.8D.97.小明解方程﹣1=的步骤如下:解:方程两边同乘6,得3(x+1)﹣1=2(x﹣2)①去括号,得3x+3﹣1=2x﹣2②移项,得3x﹣2x=﹣2﹣3+1③合并同类项,得x=﹣4④以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④8.一只钢笔优惠后现价120元,比原定价便宜了20%,则原定价为()元.A.100B.135C.160D.1509.小南在解关于x的一元一次方程时,由于粗心大意在去分母时出现漏乘错误,把原方程化为4x﹣m=3,并解得为x=1,请根据以上已知条件求出原方程正确的解为()A.B.x=1C.D.10.如图,甲、乙两人沿着长为90m的正方形按A→B→C→D→A的路线行走,甲从点A 出发,以50m/分钟的速度行走,同时,乙从点B出发,以70m/分钟的速度行走,当乙第一次追上甲时,将在正方形ABCD的()A.AB边B.BC边C.CD边D.DA边二.填空题(共5小题,满分15分)11.若关于x的方程(m﹣1)x|m|+5=6是一元一次方程,则m的值为.12.当x=时,式子与的值相等.13.甲、乙两人分别驾车从A、B两地同时相向而行,甲的速度为100千米/时,乙的速度是甲的速度,若经过3小时两人相距60千米,则A、B两地相距千米.14.已知关于x的一元一次方程x+2﹣x=m的解是x=71,那么关于y的一元一次方程y+3﹣(y+1)=m的解是.15.对于有理数x、y定义了一种新运算“*”,规定:x*y=xy﹣x﹣y.例如:1*2=1×2﹣1﹣2=﹣1,2*(﹣3)=2×(﹣3)﹣2﹣(﹣3)=﹣5,若x*=1*2x,那么x=.三.解答题(共7小题,满分55分)16.解方程:(1)5x+3=3x﹣15;(2)0.5x﹣0.7=6.5﹣1.3x.17.解方程:(1);(2).18.《孙子算经》里有题,请你解答:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?题意为:有盗贼窃去库存的绸缎,不知究竟窃去多少.有人在草丛中听到这帮盗贼分赃的情况,如果每个盗贼分6匹,就多出6匹;如果每个盗贼分得7匹,就缺少7匹.盗贼有几人?失窃的绸缎有几匹?19.我市某工厂有A、B两个车间,B车间每天生产560个零件,B车间每天比A车间多生产.(1)求A、B两个车间每天共生产多少个零件?(2)若工厂每天把生产出来的全部零件,按照5:3的比配送给甲、乙两个商店进行销售,求配送给甲、乙每个商店的零件各是多少个?20.某品牌扫地机数据如表(开始工作时,已完成充电).剩余电量扫地速度(平方米/分钟)工作时间(分钟)≥55%一档6055%﹣5%二档≤5%回充30小铭记录了该品牌扫地机的工作情况,如表.工作时间(分钟)51628505257扫地面积(平方米)8.75284978.7580.584.875(1)设一档,二档扫地速度分别为a平方米/分钟,b平方米/分钟,求a,b的值.(2)设扫地速度为一档时的最长连续工作时间为t分钟,求t的值.(3)若扫地机工作100分钟,求它完成的扫地面积.21.已知a、b为有理数,且a≠0,若关于x的一元一次方程ax=b的解为x=a+b,则此方程为“合并式方程”.例如:,∵,∴此方程为“合并式方程”,请根据上述定义解答下列问题:(1)一元一次方程是否是“合并式方程”?并说明理由;(2)若关于x的一元一次方程5x=m+1是“合并式方程”,求m的值;(3)若关于x的一元一次方程4x=3a+2b是“合并式方程”,且它的解为x=b,求a、b 的值.22.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.如图,A、B两点在数轴上对应的数分别为﹣20、24,(1)直接写出:AB=;(2)若有M、N两个小球分别从A、B两处同时出发,两小球的运动速度分别为2个单位/秒、5个单位/秒,设运动时间为t秒钟.①若N小球从点B向右运动,则此时点N表示的数为,NA=;(请用含t的代数式表示)②若M、N两小球同时向左运动,MN=4,求t的值?③若M小球向右运动,N小球向左运动,同时D小球从原点出发,以6个单位/秒的速度向左运动,在M小球和D小球相遇前的运动过程中,是否存在数m,使得DM+mDN为定值?若存在,请求出m的值;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分)1.解:A.x+3=0,是一元一次方程,故本选项符合题意;B.x2﹣3x=2中最高次是2次,不是一元一次方程,故本选项不符合题意;C.x+2y=7中有两个未知数,不是一元一次方程,故本选项不符合题意;D.中不是整式,不是一元一次方程,故本选项不符合题意.故选:A.2.解:4﹣3y=5y,移项,得4=5y+3y,合并同类项,得4=8y,系数化为1,得y=.故选:D.3.解:把x=﹣3代入,选项A中的方程左边=5×(﹣4)=﹣20,右边=﹣4×(﹣3)+8=20,因此x=﹣3不是方程5(x﹣1)=﹣4x+8的解,所以选项A不符合题意;选项B中的方程左边=×(﹣3)+5=4,右边=5,因此x=﹣3不是方程x+5=5的解,所以选项B不符合题意;选项C中的方程左边=4×(﹣3)+12=0,右边=0,因此x=﹣3是方程4x+12=0的解,所以选项C符合题意;选项D中的方程左边=﹣3×(﹣3)﹣1=﹣8,右边=0,因此x=﹣3不是方程﹣3x﹣1=0的解,所以选项D不符合题意;故选:C.4.解:A.根据等式的性质,由a=b,则a+c=b+c,那么A错误,故A不符合题意.B.根据等式的性质,由ac=bc(c≠0),则a=b,那么B错误,故B不符合题意.C.根据等式的性质,由a=b,则ac=bc,那么C正确,故C符合题意.D.根据等式的性质,由a2=3a,则a=0或3,那么D错误,故D不符合题意.故选:C.5.解:,去分母得2(2x+1)=6﹣3(x﹣1).故选:C.6.解:设八一队胜了x场,根据题意得:2x+(14﹣x)=23,解得:x=9,答:八一队胜了9场;故选:D.7.解:方程两边同乘6应为:3(x+1)﹣6=2(x﹣2),∴出错的步骤为:①,故选:A.8.解:设原定价为x元,根据题意,得(1﹣20%)x=120.解得x=150.即原定价为150元.故选:D.9.解:把x=1代入得:4﹣m=3,解得:m=1,把m=1代入方程得:﹣1=,解得:x=.故选:A.10.解:设乙行走t分钟后第一次追上甲,根据题意得:甲的行走路程为50tm,乙的行走路程70tm,当乙第一次追上甲时,90×3+50t=70t,解得t=13.5,此时乙所在位置为:70×13.5=945(m),945÷(90×4)=2……225(m),∴当乙第一次追上甲时,在正方形的AD边处.故选:D.二.填空题(共5小题,满分15分)11.解:∵方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.12.解:由题意,得=,去分母,得2(x﹣1)=3(x﹣2),去括号,得2x﹣2=3x﹣6,移项,得2x﹣3x=2﹣6,合并同类项,得﹣x=﹣4,系数化为1,得x=4.故答案为:4.13.解:∵甲的速度为100千米/时,乙的速度是甲的速度,∴乙的速度为:100×=80(千米/时),设A、B两地相距x千米,由题意可得,3×(100+80)=x﹣60或3×(100+80)=x+60,解得,x=600或x=480,即、B两地相距600千米或480千米,故答案为:600千米或480.14.解:∵方程x+2﹣x=m的解是x=71,∴y+3﹣(y+1)=m的解是y=71﹣1=70,∴y=70,故答案为:70.15.解:x*=1*2x,x﹣x﹣=1•2x﹣1﹣2x,﹣x=﹣,x=1,故答案为:1.三.解答题(共7小题,满分55分)16.解:(1)移项得,5x﹣3x=﹣15﹣3,合并同类项得,2x=﹣18,两边都除以2得,x=﹣9;(2)移项得,0.5x+1.3x=6.5+0.7,合并同类项得,1.8x=7.2,两边都除以1.8得,x=4.17.解:(1),去分母,得7(x+5)=2(x﹣1),去括号,得7x+35=2x﹣2,移项,得7x﹣2x=﹣2﹣35,合并同类项,得5x=﹣37,系数化成1,得x=﹣;(2),去分母,得2(3y﹣1)﹣8=5y﹣7,去括号,得6y﹣2﹣8=5y﹣7,移项,得6y﹣5y=﹣7+2+8,合并同类项,得y=3.18.解:设盗贼有x人,则失窃的绸缎有(6x+6)匹,根据题意得:6x+6=7x﹣7,解得x=13,∴6x+6=6×13+8=84,答:盗贼有13人,失窃的绸缎有84匹.19.解:(1)设A车间每天生产x个零件,根据题意得:(1+)x=560,解得x=400,∴A车间每天生产400个零件,∵400+560=960(个),∴A、B两个车间每天共生产960个零件;(2)∵960×=600(个),960×=360(个),答:配送给甲商店的零件是600个,配送给乙商店的零件是360个.20.解:(1)∵8.75÷5=1.75(平方米/分钟),28÷16=1.75(平方米/分钟),49÷28=1.75(平方米/分钟),78.75÷50=1.575(平方米/分钟),∴一档和二档切换时间在第28分钟和第50分钟之间,∴a=1.75,(57﹣52)b=84.875﹣80.5,∴b=0.875.答:a的值为1.75,b的值为0.875.(2)依题意得:1.75t+0.875(50﹣t)=78.75,解得:t=40.答:t的值为40.(3)依题意可知:在前40分钟时,扫地机的速度为第一档;在40分钟到60分钟时,扫地机的速度为第二档;在60分钟到90分钟时,扫地机回充;在90分钟到100分钟时,扫地机的速度为第一档,∴1.75×(40+10)+0.875×(60﹣40)=1.75×50+0.875×20=105(平方米).答:它完成的扫地面积为105平方米.21.解:(1)一元一次方程的解为x=2,而+1=≠2,所以一元一次方程不是“合并式方程”;(2)由“合并式方程”的定义可得x==5+m+1,解得m=﹣,答:m=﹣;(3)∵关于x的一元一次方程4x=3a+2b是“合并式方程”,∴=4+3a+2b=b,解得,答:.22.解:(1)24﹣(﹣20)=44,故答案为:44;(2)①∵N小球从点B向右运动,运动速度为5个单位/秒,运动时间为t秒钟,∴此时点N表示的数为24+5t,∴NA=24+5t﹣(﹣20)=44+5t,故答案为:24+5t,44+5t;②∵M、N两小球同时向左运动,M小球从A处出发,运动速度为2个单位/秒,运动时间为t秒钟,N小球从B处出发,运动速度为5个单位/秒,运动时间为t秒钟,∴点M表示的数为﹣(20+2t),点N表示的数为24﹣5t,∴MN=|44﹣3t|,当44﹣3t=4时,解得t=,当44﹣3t=﹣4时,解得t=16,∴当MN=4时,t=或16;③∵D小球从原点出发,以6个单位/秒的速度向左运动,∴点D表示的数为﹣6t,当M和N小球相遇时,有2t+6t=20,解得t=,在M小球和D小球相遇前的运动过程中,有DM=﹣6t﹣(﹣20+2t)=20﹣8t,DN=24﹣5t﹣(﹣6t)=24+t,则DM+mDN=20﹣8t+m(24+t)=20+24m+(m﹣8)t,∵DM+mDN为定值,∴m﹣8=0,m=8,∴当m=8时,DM+mDN为定值.。

一元一次方程练习题

一元一次方程练习题

一元一次方程练习题一元一次方程是数学中的基础内容,对于初学者来说,通过大量的练习题来巩固知识是非常重要的。

接下来,让我们一起通过一些练习题来加深对一元一次方程的理解和掌握。

一、选择题1、方程 3x + 6 = 0 的解是()A x = 2B x =-2C x = 3D x =-32、下列方程中,是一元一次方程的是()A x²+ 2x 3 = 0B 2x 3y = 5C 3x 4 = 2xD 4x 3 = 03、将方程 2x 1 = 3x + 2 移项后可得()A 2x 3x = 2 + 1B 2x + 3x =-2 + 1C 2x 3x =-2 1D 2x +3x = 2 14、若关于 x 的方程 2x + a 4 = 0 的解是 x =-2,则 a 的值为()A 8B 0C 2D -85、一个数的 3 倍加上 6 等于这个数的 5 倍减去 8,设这个数为 x,则可列出方程()A 3x + 6 = 5x 8B 3x 6 = 5x + 8C 3x + 6 = 8 5xD 5x + 8 =3x 6二、填空题1、若 x = 3 是方程 2x k = 1 的解,则 k =______。

2、方程 4x =-2 的解是 x =______。

3、已知方程 3x + m = 0 的解是 x = 1,则 m =______。

4、若代数式 2x 3 与 x + 9 的值互为相反数,则 x =______。

5、一个长方形的周长为 20cm,若长为 xcm,宽比长少 2cm,则可列出方程______。

三、解答题1、解方程:5x 7 = 3x + 11解:移项,得 5x 3x = 11 + 7合并同类项,得 2x = 18系数化为 1,得 x = 92、解方程:2(x 3) + 3(2x 1) = 7解:去括号,得 2x 6 + 6x 3 = 7移项,得 2x + 6x = 7 + 6 + 3合并同类项,得 8x = 16系数化为 1,得 x = 23、某班学生分成两组参加植树活动,甲组有 17 人,乙组有 25 人。

一元一次方程练习题(完整版)

一元一次方程练习题(完整版)

一元一次方程练习题基本题型:一、选择题:1、下列各式中是一元一次方程的是( ) A. y x -=-54121 B. 835-=--C. 3+xD.146534+=-+x x x 2、方程x x 231=+-的解是( ) A. 31- B. 31 C. 1 D. -13、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( )A. 10B. 8C. 10-D. 8-4、下列根据等式的性质正确的是( )A. 由y x 3231=-,得y x 2=B. 由2223+=-x x ,得4=xC. 由x x 332=-,得3=xD. 由753=-x ,得573-=x5、解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x x C. 611024=+-+x x6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )A. 0.81a 元B. 1.21a 元C. 21.1a 元 D. 81.0a 元8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏B.赚8元C.亏8元D. 赚8元9、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =-10、方程212=-x 的解是( )(A );41-=x (B );4-=x (C );41=x (D ).4-=x11、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a(C );523+=bc ac (D ).3532+=b a12、方程042=-+a x 的解是2-=x ,则a 等于( )(A );8- (B );0 (C );2 (D ).813、解方程2631x x =+-,去分母,得( ) (A );331x x =-- (B );336x x =--(C );336x x =+- (D ).331x x =+-14、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x(B )方程()1523--=-x x ,去括号,得;1523--=-x x(C )方程2332=t ,未知数系数化为1,得;1=x(D )方程15.02.01=--x x 化成.63=x 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )(A );323x x -= (B )();3253x x -=(C )();3235x x -= (D ).326x x -=17、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是a 元,那么种植草皮至少需用( )(A )a 25元; (B )a 50元; (C )a 150元; (D )a 250元.18、赢行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在赢行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )(A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期;(C )先存一个1年期的,1年后将利息和自动转存两个1年期;(D )先存一个2年期的,2年后将利息和自动转存一个1年期.二. 填空题:1、4|2|=x ,则=x ________.2、已知0)3(|4|2=-++-y y x ,则=+y x 2__________.3、关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.4、现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数表示为__________________.5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.6、某数的3倍比它的一半大2,若设某数为y ,则列方程为____.7、当=x ___时,代数式24+x 与93-x 的值互为相反数.8、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ___.9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数,请用一个等式表示d c b a ,,,之间的关系______________.10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).13、都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元15、52辆车排成两队,每辆车长a 米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a =__________.三、解方程:1、4)1(2=-x2、11)121(21=--x 3、()()x x 2152831--=-- 4、23421=-++x x 5、1)23(2151=--x x 6、152+-=-x x 7、1835+=-x x 8、0262921=---x x 9、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值. 四、列方程解应用题:1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?较高要求:1、已知431)119991(441=++x ,那么代数式19991999481872+⋅+x x 的值。

人教版七年级数学上册 一元一次方程综合测试卷(word含答案)

人教版七年级数学上册 一元一次方程综合测试卷(word含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

2.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。

【答案】(1)解:根据约定的方法可得:m=x+2x=3x;n=2x+3;(2)解:x+2x+2x+3=m+n=y当y=-7时,5x+3=-7解得x=-2.∴n=2x+3=-4+3=-1【解析】【分析】(1)根据约定:上方相邻两数之和等于这两数下方箭头共同指向的数,分别列式即可;(2)根据约定可得m+n=y,代入上题的关系整理可得关于x的一元一次方程,解出x, 代入n的表达式求值即可.3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。

部编数学七年级上册专题3.1一元一次方程中的综合(压轴题专项讲练)(人教版)(解析版)含答案

部编数学七年级上册专题3.1一元一次方程中的综合(压轴题专项讲练)(人教版)(解析版)含答案

专题3.1 一元一次方程中的综合【典例1】定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x−1=3和x +1=0为“美好方程”.(1)请判断方程4x−(x +5)=1与方程−2y−y =3是否互为“美好方程”;(2)若关于x 的方程x2+m =0与方程3x−2=x +4是“美好方程”,求m 的值;(3)若关于x 方程12022x−1=0与12022x +1=3x +k 是“美好方程”,求关于y 的方程12022(y +2)+1=3y +k +6的解.解得:y=−2023.1.(2022·浙江·七年级单元测试)满足方程|x+23|+|x−43|=2的整数x有()个A.0个B.1个C.2个D.3个【思路点拨】【解题过程】2.(2022·河北·邢台市开元中学七年级阶段练习)方程x3+x15+x35…+x2021×2023=1的解是x=().A.20212023B.20232021C.20231011D.10112023【思路点拨】【解题过程】3.(2022·全国·七年级课时练习)若关于x的一元一次方程3x−5m2−x−m3=19的解,比关于x的一元一次方程﹣2(3x﹣4m)=1﹣5(x﹣m)的解大15,则m=( )A.2B.1C.0D.﹣1【思路点拨】【解题过程】4.(2022·全国·七年级课时练习)已知关于x的方程x−38−ax3=x2−1有负整数解,则所有满足条件的整数a的值之和为()A.−11B.−26C.−28D.−30【思路点拨】【解题过程】5.(2022·全国·七年级课时练习)若关于x的方程2kx m3=x−nk6+2,无论k为任何数时,它的解总是x=1,那么m+n=_______.【思路点拨】先将x=1代入原方程得,根据无论k为任何数时(4+n)k=13−2m恒成立,可得k的系数为0,由此即可求出答案.【解题过程】6.(2022·浙江·七年级专题练习)对于三个互不相等的有理数a,b,c,我们规定符号max{a,b,c}表示a,b,c三个数中较大的数,例如max{2,3,4}=4.按照这个规定则方程max{x,−x,0}=3x−2的解为_________.【思路点拨】分x<0时,x>0时和x=0时三种情况讨论,列出方程求解即可.【解题过程】+a=2020x的解为x=2020,那么关于y 7.(2022·河北保定·七年级期末)已知关于x的一元一次方程x2020=2020(1−y)+a的解为________.的一元一次方程1−y2020【思路点拨】【解题过程】8.(2022·全国·七年级课时练习)解关于x的一元一次方程x1×3+x3×5+⋯+x2019×2021=2020.【思路点拨】先裂项相消,再根据一元一次方程的解法求解.【解题过程】9.(2022·上海·七年级专题练习)解关于x的方程:(k+1)(k﹣1)x﹣2(k+1)(k+2)=0.【思路点拨】将k看作已知数,按一元一次方程的解法步骤求解即可.【解题过程】10.(2022·全国·七年级课时练习)解方程:|x-|3x+1||=4.【思路点拨】利用绝对值的性质,将方程转化为x﹣|3x+1|=4或x﹣|3x+1|=﹣4,再分情况讨论:当3x+1>0时可得到|3x+1|=3x+1;当3x+1<0时可得到|3x+1|=-3x-1,分别求出对应的方程的解即可.【解题过程】11.(2022·全国·七年级课时练习)如果方程 3x−42−7=2x 13−1 的解与方程 4x−(3a +1)=6x +2a−1 的解相同,求式子 a 2−a +1 的值.【思路点拨】先解关于x 的方程得出x =10,将其代入方程4x -(3a +1)=6x +2a -1求得a 的值,继而代入计算可得.【解题过程】12.(2022·江苏·七年级单元测试)嘉淇在解关于x 的一元一次方程3x−12+☐=3时,发现正整数☐被污染了;(1)嘉淇猜☐是2,请解一元一次方程3x−12+2=3;(2)若老师告诉嘉淇这个方程的解是正整数,则被污染的正整数是多少?【思路点拨】【解题过程】13.(2021·吉林松原·七年级期末)某同学在解关于y的方程3y−a4−5y−7a6=1去分母时、忘记将方程右边的1乘以12,从而求得方程的解为y=10.(1)求a的值;(2)求方程正确的解.【思路点拨】(1)按照该同学去分母的方法得到3(3y−a)−2(5y−7a)=1,把y=10代入方程,再去括号,移项,合并同类项,把系数化“1”,即可得到答案;(2)把a=1代入原方程,再按照解一元一次方程的步骤解方程即可.【解题过程】即原方程的解为y =−114.(2022·湖北省直辖县级单位·七年级期末)一题多解是培养发散思维的重要方法,方程“6(4x−3)+2(3−4x)=3(4x−3)+5”可以有多种不同的解法.(1)观察上述方程,假设y =4x−3,则原方程可变形为关于y 的方程:_________ ,通过先求y 的值,从而可得x =_____;(2)利用上述方法解方程:3(x−1)−13(x−1)=2(x−1)−12(x +1).【思路点拨】【解题过程】15.(2022·全国·七年级专题练习)解关于x 的方程x3+x5+x7=0,我们也可以这样来解:(13+15+17)x =0,因为13+15+17≠0.所以方程的解:x=0.请按这种方法解下列方程:(1)x−13+x−15+x−17+x−19=0;(2)x−232+x−194+x−156+x−118+x−710=10.【思路点拨】【解题过程】16.(2022·河南·南阳市第九中学校七年级阶段练习)仔细观察下面的解法,请回答为问题.解方程:3x−12=4x25−1解:15x﹣5=8x+4﹣1,15x﹣8x=4﹣1+5,7x=8,x=78.(1)上面的解法错误有 处.(2)若关于x的方程3x−12=4x25+a,按上面的解法和正确的解法得到的解分别为x1,x2,且x2−1x1为非零整数,求|a|的最小值.【思路点拨】(1)找出解方程中错误的地方即可;(2)利用错误的解法与正确的解法求出x1,x2,根据题意确定出a的值,即可得到结果.【解题过程】17.(2021·江苏·苏州市相城区阳澄湖中学七年级阶段练习)已知,对于任意的有理数a、b、c、d,我们规定了一种运算:|a bc d|=ad﹣bc,例如|1 02 −2|=1×(﹣2)﹣0×2=﹣2,那么当|2x+1 −4x−1 3|=19时,求x的值.【思路点拨】由新定义得3(2x+1)﹣(﹣4)(x﹣1)=19,解一元一次方程即可.【解题过程】解:∵|abcd|=ad﹣bc,|2x+1−4x−1 3|=19,∴3(2x+1)﹣(﹣4)(x﹣1)=19,∴6x+3+4x﹣4=19,∴10x=20,∴x=2.18.(2022·全国·七年级专题练习)航天创造美好生活,每年4月24日为中国航天日.学习了一元一次方程以后,小悦结合中国航天日给出一个新定义:若x0是关于x的一元一次方程的解,y0是关于y的方程的一个解,且x0,y0满足x0+y0=424,则关于y的方程是关于x的一元一次方程的“航天方程”.例如:一元一次方程4x=5x−400的解是x=400,方程|y|=24的解是y=24或y=−24,当y=24时,满足x0+y0=400+24=424,所以关于y的方程|y|=24是关于x的一元一次方程4x=5x−400的“航天方程”.(1)试判断关于y的方程|y−1|=20是否是关于x的一元一次方程x+403=2x的“航天方程”?并说明理由;(2)若关于y的方程|y−1|−3=13是关于x的一元一次方程x−2x−2a3=2a+1的“航天方程”,求a的值.【思路点拨】(1)根据新定义的概念进行分析计算;(2)分别求得两个方程的解,然后根据新定义概念分情况讨论求解.【解题过程】19.(2022·全国·七年级专题练习)已知关于x的一元一次方程ax+b=0(其中a≠0,a、b为常数),若这个方程的解恰好为x=a﹣b,则称这个方程为“恰解方程”,例如:方程2x+4=0的解为x=﹣2,恰好为x=2﹣4,则方程2x+4=0为“恰解方程”.(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为 ;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.【思路点拨】【解题过程】20.(2022·福建福州·七年级期末)定义:若关于x的方程ax+b=0(a≠0)的解与关于y的方程cy+d=0(c≠0)的解满足|x﹣y|=m(m为正数),则称方程ax+b=0(a≠0)与方程cy+d=0(c≠0)是“m差解方程”.(1)请通过计算判断关于x的方程2x=5x﹣12与关于y的方程3(y﹣1)﹣y=1是不是“2差解方程”;(2)若关于x的方程x﹣x−2m=n﹣1与关于y的方程2(y﹣2mn)﹣3(n﹣1)=m是“m差解方程”,求n的3值;(3)若关于x的方程sx+t=h(s≠0),与关于y的方程s(y﹣k+1)=h﹣t是“2m差解方程”,试用含m的式子表示k.【思路点拨】【解题过程】。

(完整版)一元一次方程综合练习题

(完整版)一元一次方程综合练习题

一元一次方程综合练习题一、填空题1.已知4x 2n-5+5=0是关于x 的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和3x-11的值互为相反数.4.已知x 与x 的3倍的和比x 的2倍少6,列出方程为________.5.在方程4x+3y=12中,用x 的代数式表示y ,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题9.方程2m+x=1和3x-1=2x+1有相同的解,则m 的值为( ).A. 0B. 1C. 21D. -210.方程│3x │=18的解的情况是( ).A. 有一个解是6B. 有两个解,是±6C. 无解D. 有无数个解11.若方程2ax-3=5x+b 无解,则a ,b 应满足( ).A.a ≠25 ,b ≠3B.a=25 ,b=-3C.a ≠25 ,b=-3D.a=25 ,b ≠-3 12.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( ).A. 10分B. 15分C. 20分D. 30分13.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).A. 增加10%B. 减少10%C. 不增也不减D. 减少1%14.在梯形面积公式S=21(a+b)h 中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米. A. 5 B. 4 C. 3 D. 115.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A. 从甲组调12人去乙组B. 从乙组调4人去甲组C. 从乙组调12人去甲组D. 从甲组调12人去乙组,或从乙组调4人去甲组16.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.A. 3B. 4C. 5D. 6三、解答题17.解方程:41(x-1)152-(3x+2)=30121-(x-1).18.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.19.某公园的门票价格规定如下表:某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)20.据了解,火车票价按“总里程数实际乘车里程数全程参考价⨯”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程数:例如:要确定从B 站至E 站火车票价,其票价为15004021130180)(-⨯=87.36≈87(元). (1)求A 站至F 站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车(要求写出解答过程).一元一次方程综合练习题答案:一、1. 3 2. -3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3. 3[点拨:解方程 x-1=-(3x-11),得x=3]4. x+3x=2x-65. y=434x6. 525 (点拨:设标价为x 元,则0.6x-300=300×5%,解得x=525元)7. 18,20,22[点拨:设中间数为x 元,另两数为x-2、x+2,则(x-2)+x+(x+2)=60,解得x=20] 8. 4 [点拨:设需x 天完成,则x(61+121)=1,解得x=4]二、9. C 10. B (点拨:用分类讨论法:当x ≥0时,3x=18,∴x=6;当x<0时,-3x=18,∴x=-6 故本题应选B) 11.D (点拨:由2ax-3=5x+b ,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a=25,b+3≠0,b ≠-3,故本题应选D.)12. C (点拨:当甲、乙两人第一次相遇时,甲比乙多跑了800•米,列方程得300t-260t=800,或260t+800=300t ,解得t=20) 13. D14. B (点拨:由公式S=21(a+b)h ,得b=5厘米) 15. D 16. C三、 17.解:去分母,得 15(x-1)-8(3x+2)=2-30(x-1) ∴21x=63 ∴x=318.解:设十位上的数字为x ,则个位上的数字为3x-2,百位上的数字为x+1,故 100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171 解得x=3 答:原三位数是437.19.解:(1)∵103>100 ∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数 ∴甲班多于50人,乙班有两种情形: ①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x)人,依题意,得 5x+4.5(103-x)=486 解得x=45,∴103-45=58(人) 即甲班有58人,乙班有45人. ②若乙班超过50人,设乙班x 人,则甲班有(103-x)人,根据题意,得 4.5x+4.5(103-x)=486 ∵此等式不成立,∴这种情况不存在. 故甲班为58人,乙班为45人.20.解:(1)由已知可得火车票每千米价格=0.12元A 站至F 站的实际里程数为1500-219=1281(千米)所以A 站至F 站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x 千米,根据题意,得 0.12x=66解得x=550,对照表格可知,D 站与G 站距离为550千米,所以王大妈是在D 站或G•站下车.。

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)

2022-2023学年浙教版七年级数学上册《第5章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=82.如果关于x的方程2x+k﹣4=0的解x=﹣3,那么k的值是()A.﹣10B.10C.2D.﹣23.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.a=b+D.=+4.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=25.若关于x的方程3x+5=m与x﹣2m=5有相同的解,则x的值是()A.3B.﹣3C.﹣4D.46.在解方程+x=时,在方程的两边同时乘以6,去分母正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+6x=3(3x+1)7.某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费,超过20吨则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费()A.20元B.24元C.30元D.36元8.超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一次方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.89.如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.9 m2B.25 m2C.16 m2D.4 m210.如图表示3×3的数表,数表每个位置所对应的数都是1,2或3.定义a*b为数表中第a行第b列的数,例如,数表第3行第1列所对应的数是2,所以3*1=2.若2*3=(2x+1)*2,则x的值为()A.0,2B.1,2C.1,0D.1,3二.填空题(共5小题,满分20分)11.﹣2x与3x﹣1互为相反数,则x=.12.已知5a+8b=3b+10,利用等式性质可求得a+b的值是.13.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:x﹣3=2(x+1)﹣,怎么办呢?小明想了想,便翻看书后答案,此方程的解是x =﹣5,于是很快就补好了这个常数,他补出的这个常数是.14.为有效保护日益减少的水资源,某市提倡居民节约用水,并对该市居民用水采取分段收费:每户每月若用水不超过20m3,每立方米收费3元;若用水超过20m3,超过部分每立方米收费5元.该市某居民家8月份交水费84元,则该居民家8月份的用水量为m3.15.如图,在数轴上点O是原点,点A、B、C表示的数分别是﹣12、8、14.若点P从点A 出发以2个单位/秒的速度向右运动,其中由点O运动到点B期间速度变为原来的2倍,之后立刻恢复原速,点Q从点C出发,以1个单位/秒的速度向左运动,若点P、Q同时出发,则经过秒后,P、Q两点到点B的距离相等.三.解答题(共8小题,满分60分)16.解下列方程:(1)2y+3=11﹣6y;(2)﹣=1.17.今年开学,由于疫情防控的需要,某学校统一购置口罩为全体教师配备了一定数量的口罩,若每位教师发3个口罩,则多56个口罩,若给每位教师发5个口罩,则少80个口罩,请问该校有多少名教师?18.【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=﹣3;当x+5<0时,原方程可化为:x+5=﹣2,解得x=﹣7.所以原方程的解是x=﹣3或x=﹣7.【我会解】解方程:|3x﹣2|﹣5=0.19.在数学实践课上,小丽解方程时,因为粗心,去分母时方程左边的1没有乘以10,从而求得的方程的解为x=4,试求a的值,并解出原方程正确的解.20.对于任意有理数a和b,我们规定:a*b=a2﹣2ab,如1*2=12﹣2×1×2=﹣3.(1)求6*7的值;(2)若(﹣3)*(2x)=21,求x的值.21.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2x﹣=x+1.(1)小明猜想“”部分是2.请你算一算x的值;(2)小明翻看了书后的答案,发现此方程的解与方程1﹣=的解相同,请你算一算被污染的常数应是多少?22.方程思想,解决问题【阅读理解】你知道如何将无限循环小数写成分数形式吗?下面的解答过程会告诉你方法.例题:利用一元一次方程将0.化成分数,设x=0.,那么10x=6.,而6.=6+,所以10x=6+x,化简得9x=6,解得x=.所以,0.=.【问题探究】(1)请仿照上述方法把0.化成分数为;(直接写出结果)(2)请类比上述方法,把循环小数0.化为分数,写出解题过程.23.乐乐同学在A,B两家超市发现他看中的学习机和书包的单价都相同,学习机和书包的单价之和为452元,且学习机的单价比书包单价的4倍少8元.(1)学习机和书包的单价分别是多少元?(2)该同学上街,恰好赶上该商品促销,超市A所有商品打八折销售,超市B全场购满100元返购物券30元销售,满200元返购物券60元,依此类推,(不足100元不返券,购物券全场通用),但他只带了390元钱,如果他只在一家超市购买他看中的这两样物品,你能说明他可以选择哪家购买更省钱吗?参考答案一.选择题(共10小题,满分40分)1.解:3π+4≠5中不含未知数,所以错误.故选:B.2.解:把x=﹣3代入方程2x+k﹣4=0,得:﹣6+k﹣4=0解得:k=10.故选:B.3.解:由等式3a=2b+5,可得:3a﹣5=2b,3a+1=2b+6,a=,当c=0时,无意义,不能成立,故选:D.4.解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.5.解:3x+5=m,∴m=3x+5①;又x﹣2m=5,∴m=②;令①=②,∴3x+5=,6x+10﹣x+5=0,∴x=﹣3,故选:B.6.解:在解方程+x=时,在方程的两边同时乘以6,去分母正确的是:2(x﹣1)+6x=3(3x+1).故选:B.7.解:设小明家六月用水x吨,由题意得:1.2×20+1.5×(x﹣20)=1.25x,解得:x=24,∴1.25x=30.故选:C.8.解:设该商品每件的进价为x元,依题意,得:125×0.8﹣x=15.故选:A.9.解:若设正方形的边长为am,则有2a+2(a+1)=10,解得a=2,故正方形的面积为4m2,即透光面积为4m2.故选:D.10.解:∵2*3=(2x+1)*2,∴(2x+1)*2=3,根据数表,可得:2x+1=3或2x+1=1,解得:x=1或x=0.故选:C.二.填空题(共5小题,满分20分)11.解:根据题意,﹣2x+3x﹣1=0,解之得x=1.故答案为:1.12.解:5a+8b=3b+10,5a+8b﹣3b=3b﹣3b+10,5a+5b=10,5(a+b)=10,a+b=2.给答案为:2.13.解:设被污染的常数为a,把x=﹣5代入x﹣3=2(x+1)﹣a,得﹣﹣3=2(﹣5+1)﹣a,解得a=﹣.故答案为:﹣.14.解:设该居民家8月份用水量为xm3,由题意可得:20×3+(x﹣20)×5=84.解得x=24.8.故答案是:24.8.15.解:设经过t秒后,P、Q两点到点B的距离相等,由题意,AO=12,OB=8,BC=14﹣8=6,点P到达O点的时间为12÷2=6秒,此时点C到达B点,故t>6,即Q在B的左边,①当P在点B的左边时,P表示的数为4(t﹣6)=4t﹣24,C表示的数为14﹣t,由PB=CB得:4t﹣24=14﹣t,解得:t=7.6;②当P在B的右边时,∵点P到达点B的时间为6+8÷4=8秒,∴点P表示的数为8+2(t﹣8)=2t﹣8,C表示的数为14﹣t,由PB=CB得:(2t﹣8)﹣8=8﹣(14﹣t),解得:t=10,综上,经过7.6或10秒后,P、Q两点到点B的距离相等,故答案为:7.6或10.三.解答题(共8小题,满分60分)16.解:(1)移项,可得:2y+6y=11﹣3,合并同类项,可得:8y=8,系数化为1,可得:y=1.(2)去分母,可得:5(x+1)﹣3(2x﹣1)=15,去括号,可得:5x+5﹣6x+3=15,移项,可得:5x﹣6x=15﹣5﹣3,合并同类项,可得:﹣x=7,系数化为1,可得:x=﹣7.17.解:设该校有x名教师,可列方程:3x+56=5x﹣80.解得x=68.答:该校有68名教师.18.解:当3x﹣2≥0时,原方程可化为:3x﹣2﹣5=0,解得x=;当3x﹣2<0时,原方程可化为:﹣3x+2﹣5=0,解得x=﹣1.所以原方程的解是x=或x=1.19.解:∵去分母时,只有方程左边的1没有乘以10,∴2(2x﹣1)+1=5(x+a),把x=4代入上式,解得a=﹣1.原方程可化为:,去分母,得2(2x﹣1)+10=5(x﹣1),去括号,得4x﹣2+10=5x﹣5,移项、合并同类项,得﹣x=﹣13,系数化为1,得x=13,故a=﹣1,x=13.20.解:(1)∵a*b=a2﹣2ab,∴6*7=62﹣2×6×7=36﹣84=﹣48;(2)∵(﹣3)*(2x)=21,∴(﹣3)2﹣2×(﹣3)×2x=21,∴9+12x=21,12x=12,x=1.21.解:(1)∵2x﹣2=x+1,∴2x﹣x=1+2,∴x=3,∴x=2;(2)∵1﹣=,∴10﹣2(2x+1)=x+3,∴10﹣4x﹣2=x+3,∴﹣4x﹣x=3﹣10+2,∴﹣5x=﹣5,∴x=1,设污染的常数为a,把x=1代入方程得:2﹣a=+1,解得:a=,答:污染的常数应是.22.解:(1)设x=0.①,则10x=7.②,②﹣①,得9x=7,解得:x=,即0.=,故答案为:;(2)设y=0.①,则100y=16.②,②﹣①,得99y=16,解得:y=,即0.=.23.解:(1)设书包的单价为x元,则学习机的单价为(4x﹣8)元,由题意可得:x+(4x﹣8)=452,解得x=92,∴4x﹣8=360,答:学习机的单价为360元,书包的单价为92元;(2)由题意可得,超市A需要付费:452×0.8=361.6(元),超市B需要付费:360+(92﹣×30)=360+(92﹣3×30)=360+(92﹣90)=360+2=362(元),∵361.6<362,∴选择超市A.。

人教版七年级数学上册第三章 一元一次方程 单元综合测试【含答案】

人教版七年级数学上册第三章 一元一次方程 单元综合测试【含答案】
图5
21.(本小题满分 6 分)试根据图 6 中的信息,解答下列问题: (1)购买 5 根跳绳需 元,购买 15 根跳绳需 元; (2)小红比小明多买了 2 根跳绳,付款时小红反而比小明少付 5 元,则小红买了多少根跳绳?
图6
22.(本小题满分 7 分)列方程解应用题: 亲近科学,感受科技魅力.学校组织七年级学生走进科技馆,来到科技馆大厅,同学们就被大厅 里会“跳舞”的“小球矩阵”吸引住了(如图 7(1)).白色小球全部由计算机精准控制,每一 只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等 各种动态造型.已知每个小球分别由独立的电机控制.图(2),图(3)分别是 9 个小球可构成的 两个造型,在每个造型中,相邻小球的高度差均为 a.为了使小球从造型一(如图(2))变到造型 二(如图(3)),控制电机使造型一中的②③④⑥⑦⑧号小球同时运动,②③④号小球向下运动, 运动速度均为 3 米/秒;⑥⑦⑧号小球向上运动,运动速度均为 2 米/秒,当每个小球到达造型 二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,则②号小球运动了 多少米?
方案二:乙工程队每天的工作量为 7×150+70=1120(m2),粉刷完成所用时间为 6720÷1120=6(天),所需支付人工费用为 6×4×90=2160(元). 因为 2100<2160, 所以若要使总人工费用最少,该中学应选择方案一.
(1)求每个办公室需要粉刷的墙面面积.
(2)已知学校每天需要支付给每名一级技工 100 元,每名二级技工 90 元.该中学有 40 个办公 室的墙面和 720 m2 的展览墙需要粉刷.现有甲、乙两支工程队供选择,甲工程队有 3 名一级 技工,乙工程队有 4 名二级技工.该中学有两个选择方案,方案一:全部由甲工程队粉刷;方案 二:全部由乙工程队粉刷.若要使总人工费用最少,该中学应如何选择?请通过计算说明.

7年级数学上册(人教版)精品训练及答案—第3章一元一次方程综合练习

7年级数学上册(人教版)精品训练及答案—第3章一元一次方程综合练习

《一元一次方程》综合练习一. 希望你能填得又快又准 1. 若x =2是方程2x -a =7的解,那么a =_______.2. |2y-x|+|x-2|=0,则x=________,y=__________ .3. 若9a x b 7 与 – 7a3x –4b 7是同类项,则x= .4.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是______.5.关于x 的方程2x -4=3m 和x +2=m 有相同的根,那么m =_________6. x 关于的方程是一元一次方程,那么()|m |m x m ++==+13027. 若m -n =1,那么4-2m +2n 的值为___________8. 某校教师假期外出考察4天,已知这四天的日期之和是42,那么这四天的日期分别是______________二. 相信自己,精心选一选,其中只有一个结论是正确的。

9. 下列方程中,一元一次方程是( )A. 2X=1B. 3X –5C. 3+7=10D. X 2+X=1 10.下列变形正确的是( )A. 4x – 5 = 3x+2变形得4x –3x = –2+5B. 32x – 1 = 21x+3变形得4x –6 = 3x+18C. 3(x –1) = 2(x+3) 变形得3x –1 = 2x+6D. 3x = 2变形得x =2311. 若x =2是方程k (2x -1)=kx +7的解,那么k 的值是( ) A. 1 B. -1 C. 7 D. -712. 某商店上月的营业额是m 万元,本月比上月增长15%,那么本月的营业额是( )A. (m +1)·15%万元B. 15%万元C. (1+15%)m 万元D. (1+15%)2m 万元13. 某班分两组去两处植树,第一组22人,第二组26人。

现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人则可列方程 ( )A.26222⨯=+xB.()x x -=+26222C.()x x -=+26222D.()x -=2622214. 小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的31,且两块地毯的面积和为20平方米,小明很快便得出了两块地毯的面积分别为(单位:平方米)( ) A. 340,320B. 30, 10C. 15, 5D.12,8 15. 下列变形中,正确的是()A 、若ac=bc ,那么a=b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,得 2x-1=3-3x; B.由 9B. x = A. 0.92a 元 B.1.12a 元C. 元D. 元一元一次方程综合练习题一、选择题:1.方程 1 - 2x = 5 - 3x + 1 的解是().32A.x =5B.x =6C.x =7D.x =82.下列解方程去分母正确的是()A.由 x 1 - x x - 2 3x - 2- 1 = - = -1 ,得 2(x-2)-3x-2=-43 2 2 4C.由 y + 1 y 3 y - 1 4x y + 4 = - - y ,得 3y+3=2y-3y+1-6y;D.由 - 1 =2 3 6 5 3,得 12x-1=5y+203.已知方程 2 - x -1 = 1 - x + 3 - x 与方程 4 - kx + 2 = 3k - 2 - 2 x 的解相同,则 k 的值为( )3 2 3 4A.0B.2C.1D.-14.若 m 使得代数式1 - (3m - 5)2取得最大值,则关于 x 的方程 5m - 4 = 3x + 20 的解是()A. x = 79 7 C. x = - 7 9 D. x = - 975.已知方程 2 x - 3 =m 3+ x 的解满足 x -1 = 0 ,则 m 的值是( )A. -6B. -12C. -6 或 -12D.任何数 6.已知当 a = 1 , b = -2 时,代数式 ab + bc + ca = 10 ,则 c 的值为( )A.12B. 6C. -6D. -12 7.设 P=2y-2,Q=2y+3,且 3P-Q=1,则 y 的值是( )A.0.4B. 2.5C.-0.4D.-2.5※8.某件商品连续两次 9 折销售,降价后每件商品售价为 a 元,则该商品每件原价为()aa 1.12 0.819.有一列数,按一定规律排列成 1,-2,4,-8,16,…,其中某两个相邻数的和是-256,求这两个数.设这两个相邻数的第一个数为 x ,根据题意,可以列出方程是().A.x +2x=-256B.x-2x=-256C.-x-2x=-256D.-x +2x=-25610.一条山路,某人从山下往山顶走 3 小时还有 1 千米才到山顶,若从山顶走到山下只用 150 分钟,已知下山速度是上山速度的 1.5 倍,求山下到山顶的路程.设上山速度为 x 千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)11.某商品以八折的优惠价出售一件少收入 15 元,那么购买这件商品的价格是()A .35 元B .60 元C .75 元D .150 元12.文化商场同时卖出两台电子琴,每台均卖 960 元,以成本计算。

其中一台盈利 20%,另一台亏本 20%,则这次出售中商场( ) A.不赔不赚 B.赚 160 元 C.赚 80 元 D.赔 80 元13.某人从甲地到乙地,水路比公路近 40 千米,但乘轮船比汽车要多用 3 小时, 已知轮船速度为 24 千米/时,汽车速度为 40 千米/时,则水路和公路的长分别为( )A.280 千米,240 千米B.240 千米,280 千米C.200 千米,240 千米D.160 千米,200 千米A.120x=(x+2)xB.=x+2C.120-120=3D.=3+)23.若关于x的方程(k-2)x3+kx-=0是一元一次方程,则k=_____,方程的解为_______.24.当x=_______时,代数式1-x14.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,于是每人可少摊3元,设原来这组学生人数为x人,则有方程为()120120120x x x+2x+2x15.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25% D.15%16.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元16.某单位A,B,C三个部门的人数依次是84人、56人、60人,如果每个部门都按相同的比例裁减人员,使三个部门共留下150人,那么A部门留下的人数是().A.65人B.63人C.60人D.56人二、填空题:17.关于x的方程mx m+2+m-3=0是一个一元一次方程,则m=_______.18.方程5(y-1)-2(2y+3)=0的解是y=19.若2a2b5m-3与-3a1-n b3m+n是同类项,则m=,n=20.关于x的方程1x+2=-31(4x+m)的解是-11,则(m-(-1)2013=_______.6621.关于x的方程3x=9与x+4=k解相同,则代数式1-2kk2的值为_______.22.假定每个工人的工作效率相同,如果x个工人y天生产m支牙刷,那么y个工人做x支牙刷要_______天.k22x+1与1-的值相等.2325.解方程1-x=3,则x=_______.2326.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,则代数式(-2m)2013-(m-)2014的值为227.在日历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期分别为_______28.今年母女二人年龄之和是53,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x,则可将方程。

29.有一工程需在规定x天完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,则依题意列出的方程是。

2 x - 1 ⎡ 1 ⎢ x - 2 ( x - 1)⎥ =3 ( x - 1) 34 1 1 3(6) 0.8x + 0.9 = x + 5 + 0.3x - 0.2x - 4 x - 3(7) ⎨ ⎢ ⎛ x - 3⎫⎪ - 3⎥ - 3⎬ - 5 = 030.我校球类联赛期间买回排球和足球共 16 个,花去 900 元钱,已知排球每个 42 元,足球每个 80 元,则排球买了________个.31.若 a ,b 互为相反数,c,d 互为倒数,p 的绝对值为 2 则关于 x 的方程(a+b)x 2+cdx-p 2=0 的解是32.敌我两军相距 14 千米,敌军于 1 小时前以 4 千米/小时的速度逃跑,现我军以 7 千米/小时的速度追击______小时后可追上敌军.33.某地区人口数为 m ,原统计患碘缺乏症的人占 15%,最近发现又有 a 人患此症,那么现在这个地区患此症的百分比是34.翻开数学书,连续看了 3 页,这三页页码和为 453,则这 3 页的页码分别是第_______页.35.甲水池有 31 吨,乙水池有水 11 吨,甲池的水每小时流入乙池 2 吨,_______小时后,甲池的水与乙池的水一样多.※36.在 400 米的环形跑道上,男生每分钟跑 320 米,女生每分钟跑 280 米,男女生同时同地同向出发,t 分钟第 2 次相遇,则 t=三、综合题:37.解下列方程:(1) x - x - 1 = 2 - x + 2(2) x - 5x + 11 = 1 + 2 x - 425263(3) 2 ⎣ ⎦⎤ 2- 2.5 =(5) [ ( x- )-8]= x+1(4) 0.20.05 4 3 2 4 20.5 2 0.31 ⎧ 1 ⎡ 1 1 ⎤ ⎫2 ⎩ 2 ⎣ 2 ⎝ 2 ⎭ ⎦ ⎭(8) xx x x + + + + = 20131 ⨯2 2 ⨯3 3 ⨯4 2013 ⨯ 201438.已知y2+m=my-m.(1)当m=4时,求y的值;(2)当y=4时,求m的值.39.方程2-3(x+1)=0的解与关于x的方程k+x-3k-2=2x的解互为倒数,求k的值。

240.关于x的方程kx-k=2x-5的解为整数,求整数k.41.一份数学试卷有20道选择题,规定做对一题得5分,不做或做错倒扣1分,结果某学生得分为76分,问他做对了几道题?42.汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?43.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?44.A、B两地相距49千米,某人步行从A地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.※45.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,这时汽车离山谷多远?(声音的速度以340m/s计算)46.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?47.已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数、乙数和丙数的和是130.求这三个数。

48.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数。

49.甲、已两个团体共120人去某风景区旅游。

风景区规定超过80人的团体可购买团体票,已知每张团体票比个人票优惠20%,而甲、已两团体人数均不足80人,两团体决定合起来买50.某商场在元旦其间,开展商品促销活动,将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元?“※51.某企业生产一种产品,每件成本 400 元,销售价为 510 元,本季度销售了 m 件,于是进一步扩大 市场,该企业决定在降低销售价的同时见地成本,经过市场调研,预测下季度这种产品每件销售降低 4%, 销售量提高 10%,要使销售利润保持不变,该产品每件成本价应降低多少元?52.某中学拟组织九年级师生去南山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关 租车问题的对话:李老师: 平安客运公司有 60 座和 45 座两种型号的客车可供租用,60 座客车每辆每天的租金比 45 座的贵 200 元.”小芳:“我们学校八年级师生昨天在这个客运公司租了 4 辆 60 座和 2 辆 45 座的客车到韶山参观,一天的租金共计 5000 元.”小明:“我们九年级师生租用 5 辆 60 座和 1 辆 45 座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司 60 座和 45 座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?53.小明想在两种灯中选购一种,其中一种是 10 瓦的节能灯,售价 32 元;另一种是 40 瓦的白炽灯,售 价为 2 元。

相关文档
最新文档