圆的培优讲义

合集下载

初三九年级上册_圆的概念和性质辅导讲义(学生版)

初三九年级上册_圆的概念和性质辅导讲义(学生版)

初三九年级上册_圆的概念和性质辅导讲义知识图谱圆的相关概念知识精讲知识精讲一.圆的相关概念1.圆的概念(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径;(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,定点叫做圆心,定长叫做半径;(3)圆的表示方法:用符号 表示圆,定义中以O为圆心,OA为半径的圆记作“O”,读作“圆O”;(4)同圆、同心圆、等圆:①圆心相同且半径相等的圆叫同圆;②圆心相同,半径不相等的两个圆叫做同心圆;③能够重合的两个圆叫做等圆.2.弦与弧的相关概念:(1)弦:连结圆上任意两点的线段叫做弦;(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍;(3)弦心距:从圆心到弦的距离叫做弦心距;(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作 AB,读作弧AB;(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧;(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角与圆周角(1)圆心角:顶点在圆心的角叫做圆心角;①将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧;②圆心角的度数和它所对的弧的度数相等;(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.三点剖析一.考点:圆的相关概念二.重难点:1.圆的两种定义的理解;2.弦心距、优弧、圆周角等陌生概念的理解与记忆.三.易错点:1.圆是一条封闭曲线并不包含所围成图形内部部分;2.弓形只是由弧和弦所构成不包含半径;3.同圆、等圆、同心圆的联系与区别.圆的相关概念例题例题1、判断:(1)直径是弦,弦是直径()(2)半圆是圆弧()(3)长度相等的弧是等弧()(4)能够重合的弧是等弧()(5)圆弧分为优弧和劣弧()(6)优弧一定大于劣弧()(7)半径相等的圆是等圆()例题2、设想有一根铁丝套在地球的赤道上,刚好拉紧后,又放长了15米,并使得铁丝均匀地离开地面.则下面说法中比较合理的是()A.你只能塞过一张纸 B.你只能塞过一只书包C.你能钻过铁丝 D.你能直起身体走过铁丝随练随练1、下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随练2、过圆上一点可以做出圆的最长弦的条数是()A.1条 B.2条 C.3条D.无数条随练3、如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,74AOC ∠=︒,则E ∠=.垂径定理知识精讲一.垂径定理1.定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论1:(1)平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.补充说明:做题过程中,定理与推论1(1)可以直接使用,而推论1(2)、(3)需证明后再使用.三点剖析一.考点:垂径定理二.重难点:利用垂径定理求圆的半径、弦长和弦心距.三.易错点:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题垂径定理例题例题1、在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为()A.40cmB.60cmC.80cmD.100cm例题2、如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O 的直径,弦AB CD ⊥于E ,1CE =寸,10AB =寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸例题3、如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,并且4CD =,6EM =,求O 的半径.例题4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm例题5、⊙O 的半径为10,两平行弦AC ,BD 的长分别为12,16,则两弦间的距离是()A.2B.14C.6或8D.2或14随练随练1、如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA=30°,OC=3cm ,则弦AB 的长为()A.9cmB.3cmC.cmD.cm随练2、如图,ABC ∆内接于O ,D 为线段AB 的中点,延长OD 交O 于点E ,连接AE ,BE ,则下列五个结论AB DE AE BE OD DE AEO C ⊥==∠=∠①,②,③,④, 12AE AEB=⑤,正确结论的是随练3、如图,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰为半圆.当水面上涨1米时,桥孔中的水面宽度A B ''为()15米 B.215米 C.217米 D.不能计算随练4、如图,在梯形ABCD 中,AB DC ∥,AB BC ⊥,2cm AB =,4cm CD =.以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离是多少?弧,弦,圆心角之间的关系知一推二知识精讲一.圆心角、弧、弦之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弧也相等.若AOB A OB ''∠=∠,则 AB A B ''=,AB A B ''=,AM A M ''=.2.推论:同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.二.应用1.在解答圆的问题时,若遇弧相等常转化为它们所对的圆心角相等或弦相等来解答;2.有弦的中点时常作弦心距,利用垂径定理及圆心角、弧、弦、弦心距之间的关系来证题;另外,证明两弦相等也常作弦心距;3.在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角;4.有弧的中点或证弧的中点时,常有以下几种引辅助线的方法:(1)连过弧中点的半径;(2)连等弧对的弦;(3)作等弧所对的圆心角三点剖析一.考点:弧、弦、圆心角、弦心距的关系二.重难点:弧、弦、圆心角、弦心距的关系三.易错点:1.两条弧存在倍数关系,但所对应的弦并不是存在相同的倍数关系;2.判断题中,注意题中前提条件,必须是在等圆或同圆中.弧,弦,圆心角之间的关系知一推二例题例题1、下列说法中正确的是()①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.A.①③ B.②④ C.①④ D.②③例题2、如图,以ABC ∆的边BC 为直径的O 分别交AB AC 、于点D E 、,连结OD OE 、,若65A ∠=︒,则DOE ∠=.例题3、如图,AB 、CD 为⊙O 的直径, AC CE=,(1)试说明BD CE =;(2)若连结BE ,问BE 与CD 平行吗?请说明理由.随练随练1、如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定正确的是()A.CD ⊥ABB.∠OAD=2∠CBDC.∠AOD=2∠BCDD.弧AC=弧BC随练2、如图,A ,B ,C ,D 均为⊙O 上的点,且AB CD =,则下列说法不正确的是()A.AOB COD ∠=∠B.AOC BOD ∠=∠C.AC BD =D.OC CD=随练3、如图,⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC ,则∠ABC=___________.拓展拓展1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.45()cm B.9cm C.45 D.62cm拓展2、下列说法正确的有()①在同圆或等圆中能够完全重合的弧叫等弧;②在同一平面内,圆是到定点距离等于定长的点的集合;③度数相等的弧叫做等弧;④优弧大于劣弧;⑤直角三角形的外心是其斜边中点.A.①②③④⑤B.①②⑤C.①②③⑤D.②④⑤拓展3、如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,则OP的长度范围为____cm≤OP≤____cm.拓展4、如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与A、B重合),当PA=时,△PAD为等腰三角形.拓展5、在⊙O中,AB是⊙O的直径,AB=8cm,^^^AC CD BD==,M是AB上一动点,CM+DM的最小值是__________.拓展6、如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.拓展7、在⊙O 中,点C 是劣弧AB 的中点,则线段AB 和线段AC 的大小为()A.2AB AC =B.2AB AC >C.2AB AC< D.无法确定拓展8、如图,在⊙O 中,∠AOB 的度数为m ,C 是弧ACB 上一点,D 、E 是弧AB 上不同的两点(不与A 、B 两点重合),则D E ∠+∠的度数为()A.mB.1802m︒-C.902m ︒+D.2m 拓展9、如图,在半径为2的⊙O 中,弦AB=2,⊙O 上存在点C ,使得弦AC=22BOC=______________°.拓展10、如图9A 、B 是⊙O 上的两点,∠AOB =120°,C 是弧 AB 的中点,求证四边形OACB 是菱形.图9。

第01讲 圆(培优班)

第01讲    圆(培优班)

第01讲圆一、考点预热(一)考点、热点回顾有无数条对称轴的图形是:圆、圆环。

圆的面积=πr2,圆的周长=2πr,11、经验之谈:画已知半径的圆时我们要借助圆规,圆规的使用很简单,相信同学们都没问题。

如果已知的是直径,我们要把直径除以2换成半径,确定要圆心,然后才开始画圆。

(二)习题练习填空。

(8分)1、画圆时,固定的一点叫做(),从()到()任意一点的线段叫做半径,通过()并且两端都在圆上的线段叫做()。

2、用圆规画圆时,圆规两脚之间的距离是圆的()。

3、在同一个圆内,有()条直径,有()条半径;直径的长度都是半径长度的()倍。

4、圆不论大小,它的周长总是直径的()倍多一些,这个固定的倍数叫做(),通常用字母()表示。

5、围成圆的曲线的长叫做圆的()。

6、已知圆的直径d,周长C=();已知圆的半径r,周长C=()。

7、圆是()图形,它有()条对称轴。

8、填表:选择。

(8分)1、()决定圆的大小,()决定圆的位置。

A.直径B.圆心C.半径D.周长2、下面图形中()只有一条对称轴,()有无数条对称轴。

A.正方形B.等腰三角形C.圆D.长方形3、一个圆知道它的周长,要求面积,必须先要求出圆的()。

A.直径B.半径C.圆周率4、一个圆的半径扩大3倍,它的周长(),面积()。

A.扩大3倍B.扩大9倍C.缩小3倍D.缩小9倍5、一个圆的周长是6.28米,它的面积是()平方米。

A. 2B. 3.14C. 1判断。

(5分)1、圆周率的值是3.14。

2、圆的直径是半径的2倍。

3、直径是7厘米的圆比半径是4厘米的圆大。

4、在圆内,任意一条直径都是圆的对称轴。

()()()()()5、周长相等的两个圆,它们的面积也相等。

计算。

(28分)1、求下面各圆的周长。

(12分)①②③2、求下面各圆或圆环的面积。

(16分) ①②④动手操作。

(10分)1、2、画出以下图形的所有对称轴。

(5分)d=8m在右边画一个直径是6厘米的圆,并用字母标出它圆心、半径和直径。

第一讲__培优__圆的基本性质

第一讲__培优__圆的基本性质

第一讲 圆的基本性质一、知识点圆的有关概念:特别注意:长度相等的弧是等弧吗? 圆的基本性质有:1、圆心角、弧、弦、弦心距之间的关系定理 • 如果弦长为2r ,圆的半径为R,那么弦心距为d . R 2 r 2.2、垂径定理 ____________________________________ 及其推论.此定理及推论,在证题中很重要,其内容不容易记忆,可这样理解:如果一条直线具备下 列条件中的2条,就具备其他3条。

(1)经过圆心;(2)垂直于弦;(3)平分弦;(4) 平分弦所对的劣弧;(5)平分弦所对的优弧。

3. 圆周角定理及其推论。

其中以下列两个结论应用最为广泛:(1)直径所对的圆周角是直角;(2)同弧所对的圆 周角相等。

二、基础训练1. 下列结论正确的是()A .弦是直径 B.弧是半圆 C .半圆是弧 D.过圆心的线段是直径2、 .给出下列命题(I )垂直于弦的直线平分弦;(2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(3 )平分弦的直线必过圆心(4 )弦所对的两条弧的中点连线垂直平分弦。

其 中正确的命题有()3、下列命题中,真命题是()B.2C.3D.4AB 是O O 的直径,CD 是弦.若AB = 10cm, CD = 8cm 那么A , B 两CD 的距离之和为()A. 12cmB. 10cmC.8cmD.6cmB. 2个C. 3个D. 4个4、 A .相等的圆心角所对的弧相等C.度数相等的弧是等弧下列命题中,真命题的个数为①顶点在圆周上的角是圆周角; ③90°的圆周角所对的弦是直径; B.相等的弦所对的弧相等 D .在同心圆中,同一圆心角所对的两条弧的度数相等②圆周角的度数等于圆心角度数的一半; ④直径所对的角是直角;⑤圆周角相等,贝U 它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等. A. 1个 B. 2个 C. 3个 D. 4个5、直角二角形两直角边长分别为 .3和I ,那么它的外接圆的直径是(A.1 &如图, 点到直线7、 如图,在以0为圆心的两个同心圆中,大圆的弦AB 交小圆于C, D 两点,AB=10cm, CD=6cm,则AC 的长为()A. 0. 5cmB. 1cmC. 1.5cmD. 2cm8、 如图,点A,D,G,M 在半圆上,四边形 ABOC, DEOF,HMNO 匀为矩形,BC=a,EF=bNH=C, 则下列各式中正确的是()9、 如图,CD 为。

初中数学《圆》全章讲义有例题培训讲学

初中数学《圆》全章讲义有例题培训讲学

《圆》内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系;5、切线及切线长定理;6、弧长及扇形面积。

【知识要点1】圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

例1 已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC.例2 如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF 是平行四边形.点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;【知识要点3】直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;dr d=r r d 【知识要点4】圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;rRd图3rR dr Rd图4rRd图5rRd垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

六年级上册秋季奥数培优讲义——6-01-圆的周长和面积1-讲义-学生

六年级上册秋季奥数培优讲义——6-01-圆的周长和面积1-讲义-学生

第1讲 圆的周长和面积【学习目标】1、进一步学习圆的周长计算;2、进一步学习圆的面积计算。

【知识梳理】1、周长:围成圆的曲线的长度叫做圆的周长。

公式:C=πd 或 C=2πd2、面积:圆所占面积的大小叫圆的面积。

公式:S=πr²3、半圆的周长公式:C=πd ÷2+d 或 C=πr +2r圆周长的一半=πr4、半圆的面积:公式为:S=πr²÷2(半圆面积=圆的面积÷2)5、圆环的面积:S=πR ²-πr² 或 S=π(R ²-r²)(其中R =r +环的宽度)。

6、扇形弧长:扇形中的曲线部分线条的长度,用L 表示弧长,L=r 180n π。

扇形面积:扇形的面积S=3602r n π(n 是扇形圆心角的度数)。

【典例精析】【例1】如图,有三根直径都是2分米的圆柱形木材,想用一根绳子把它们捆成一捆,捆三圈最短需要分米长的绳子。

(打结处强长不计,工取3.14)【趁热打铁-1】如图,春节时,商店出售直径为10厘米的图柱形礼花。

每7个用彩带捆成一捆,每捆需要彩带________厘米。

(接头不计,π取3.14)【例2】将两个半径分别为3cm 、5cm 的半圆如图放置,求涂色部分的周长.【趁热打铁-2】右图中每个小圆的半径是1厘米,阴影部分的周长是_____厘米(π=3.14)。

【例3】如图是有4个41扇形和1个正方形构成,如果正方形的边长为2,求这个图的周长。

【趁热打铁-3】有一只狗被拴在一建筑物的墙角A 处,这个建筑物是底面边长为8m 的正方形,栓狗的绳子长20米,现在狗从P 点出发(如图),将绳子拉紧按顺时针方向跑,可跑多少米?【例4】如右图把圆分成若干,等份拼剪拼成一个近似的长方形,已知长方形的宽为5厘米,长是厘米。

【趁热打铁-4】如图,把半径为3dm的圆分成若干等分后,拼成一个近似的长方形,则这个长方形的长是 dm,宽是 dm,该长方形的周长是 dm,面积是 dm²,该圆的周长是 dm,面积是 dm²。

北师大版九年级下册数学《圆》培优说课教学复习课件

北师大版九年级下册数学《圆》培优说课教学复习课件

(2)以点A为圆心画圆,使B,C,D,E,F这5个点中至少有1个点在圆内,
且至少有2个点在圆外,并求⊙A的半径r的取值范围.
课堂练习
解:(1)如图所示.
∵矩形 ABCD 中,AB=3,AD=4,
∴AC=BD= AB 2+AD2= 32+42=5.
1
1
∵ AE·
BD= AB·
AD,
2
2
3×4 12
12
B. 2
C. 2 2
D. 2 3
巩固练习
2、如图所示,正五边形ABCDE内接于⊙O,则∠ADE的度
数是 ( C )
A.60°
B.45°
A
C. 36°
D. 30°
B
E
O
C
【解题反思】 圆周 角
圆心角
圆内接正多边形的中心角
·
D
巩固练习
3、有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积
则这个圆的半径是 7cm或3cm .
4.正方形ABCD的边长为2cm,以A为圆心,2cm为半径作⊙A,
则点B在⊙A 上 ;点C在⊙A 外 ;点D在⊙A 上 .
课堂练习
5.如图,已知OA,OB是⊙O的两条半径,C,D分别为OA,OB上的点,且
AC=BD.求证:AD=BC.
证明:∵OA,OB是⊙O的两条半径,
∴ OQ= + = cm>5 cm=r,
∴点Q 在⊙ O 外.
∵ RD=3 cm,OD=3 cm,且OD ⊥ l,
∴ OR= + =3 cm<5cm=r.
∴点R 在⊙O内.
课堂练习
1.下列说法中,正确的是( D )

初三上册数学直升班培优讲义学生版第11讲圆(一)(学生版)

初三上册数学直升班培优讲义学生版第11讲圆(一)(学生版)

模块一模块二模块三圆的基本概念垂径定理圆周角定理模块一圆的基本概念定义示例剖析圆:在一个平面内,线段OA绕它固定的一个端点0旋转一周,另一个端点A所形成的图形叫做圆.固定的端点0叫做圆心,线段0A叫做半径. 圆0•由圆的定义可知:\(1)圆上的各点到圆心的距离都等于半径长;在一个平面内,到圆心的距离等于半径长的点都在冋一个圆上•因此,圆(是在一个平面内,所有到一个定点的距离等于定长的点组成的n\圆心,—才、半径图形.(2 )要确定一个圆,需要两个基本条件,一个是圆心的位表示为“ O 0 ”置,另一个是半径的长短,其中,圆心确定圆的位置,半径长确定圆的大小.圆心相同且半径相等的圆叫做同圆;or\ /圆心相同,半径不相等的两个圆叫做同心圆;‘ \◎能够重合的两个圆叫做等圆. 等圆丄同心圆弦和弧:1 .连接圆上任意两点的线段叫做弦. 经过圆心的弦叫做直径,并且直径是冋一圆中最长的弦,直径等于半径的2倍. 优弧、弦2 .圆上任意两点间的部分叫做圆弧,简称弧. 7弦以A、B为端点的弧记作A B,读作弧AB . 2J^7B在同圆或等圆中,能够互相重合的弧叫做等弧. 劣弧3.圆的任意一条直径的两个端点把圆分成两条弧,每一条表示:劣弧A B弧都叫做半圆.优弧ACB或AmB4.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.圆心角和圆周角:1.顶点在圆心的角叫做圆心角.2 .顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周A 圆心角司角扇形和弓形1 .一条弧和经过这条弧两端的两条半径所围成的图形叫\厂扇形,设扇形的圆心角为,则扇形的面积和弧长:0)S r , l r . 扇形\丿)\ 360 180B弓B2 .由弦及其所对的弧组成的图形叫做弓形.模块二垂径定理1.圆的对称性圆是轴对称图形,也是中心对称图形,其对称轴是任意一条过原点的直线,对称中心是圆心.2 .垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.注意:垂径定理中的五个元素一一“过圆心”、“垂直弦”、“平分弦”、“平分优弧”、“平分劣弧”,构成知二推三•模块三圆周角定理定理示例定理:在同圆或等圆中,同弧或等弧所对的圆周角都相等,且都等于它所对的圆心角的一半.推论1 :半圆(或直径)所对的圆周角是直角,90的圆周角所对的弧(或弦)是半圆(或直径).推论2:圆内接四边形的对角互补.模块圆的基本概念如图,判断下列正误.(1)(2)(3)(4) 半径相等的两个圆是等圆过圆心的线段是直径半圆所对的弦是直径直径是圆中最大的弦ACB如图,A B90如图,四边形ABCt® 4是O O的内接四边形,则A BCD 180,由推论2,我们可以得到圆内接四边形的外角等于内对角,如图,即DCE A .(((())))(5) 半圆是弧( ) (6) 长度相等的弧是等弧 ( ) (7) 两个端点能够重合的弧是等弧( ) (8) 圆中任意一条弦所对的弧有两条,其中一条优弧,一条劣弧()(9) 圆的半径是 R ,则弦长的取值范围是大于0且不大于2R ( )(1) 如图2-1, AB 为O O 的直径,CD 是O O 的弦,AB 、CD 的延长线交于点 E ,若AB 2DE , E 18 , AOC _______________ . (2)如图2-2,两正方形彼此相邻且内接于半圆,若小正方形的面积为 16cm 2,则该半圆的半径为(1) ________________________________________________________________________________________ 如图 3-1, CD 为 O O 的直径,AB CD 于 E , DE 8cm , CE 2cm ,则 AB ____________________________ (2) ____________ 如图3-2,矩形ABCD 与圆心在 AB 上的O O 交于点G 、B 、F , GB 8cm , AG 1cm , DE 2cm , 则 EF ________ .(3) ______________ (安徽芜湖中考) 如图3-3,在O O 内有折线 OABC ,其中OA 8 , AB 12 , 则BC 的长为 ______________.模块二垂径定理IIB 60 , 图2-1 图3-1(1) _____________________________________________________________________________________ 如图4-1,过O O 内一点M 的最长弦长为12cm ,最短弦长为8cm ,则0M 长为 ___________________________________ .(2) 如图4-2,点P 是半径为5的O 0内一点,且0P 3,在过点P 的所有O 0的弦中,弦的长度为整数的条数有 _______________ .(1)直径为50cm 的O 0中,弦AB//弦CD ,又AB 40cm , CD 48cm ,则AB 和CD 两弦的距离 为 .例题4(2)(郴州中考) 已知在O 0中,半径r 5 , AB、CD是两条平行弦,且AB 8 , CD 6,则AC 的长为.如图,P为O O外一点,过点P引两条割线FAB和PCD,点M , N分别是A B , C D的中点,连接MN 交AB, CD 与E, F .(1)求证:△ PEF为等腰三角形;模块三圆周角定理根据上面的推理,可以发现 ___________________________________________________ .(2) 若点D 是优弧A B 上任意一点,试判断 ADB 与 ACB 的大小关系•根据上面的推理,可以发 现: _________________________________________ .(3) 如果点D 在劣弧A B 上,此时 ADB 和 ACB 的大小关系还一样吗?可以得到什么结论?(1) 一条弦分圆为1:5两部分,则这条弦所对圆周角的度数为例题8(2)如图8-1 , A 、B 、C 、D 是O O 上的点,直径CEB .AB 交CD 于点E ,已知 C 57 , D 45,则(3) 如图8-2, AB 为e O 的弦,△ ABC 的两边 EDC 70,贝U C ____________ .BC 、AC 分别交e O 于D 、E 两点, B 60 ,(4) ________ 如图8-3, △ ABC 内接于e O , AB 是直径, 长为 _____ .BC 4 , AC 3 , CD 平分 ACB ,则弦 BD 的(1)已知A B 为O O 圆周上任意两点,C 是优弧A B 上一点,请你判断 ACB 与 AOB 的大小关系.D图8-1 图8-2 图8-3例题9如图,△ ABC是O0的内接三角形,点C是优弧AB上一点(点C不与A, B重合),设OABC •猜想与之间的关系,并给予证明.模块一圆的基本概念CD是O O 的直径,EOD 87 , AE 交O O 于B ,且AB OC ,求 A 的度数.(1)如图2-1,点A 、D 、G 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a , EF b , NH c ,则下列选项中正确的是().A . abcB . a b cC . cabD . b c a(2)(河南中考)如图2-2,在半径为 5,圆心角等于45的扇形AOB 内部作一个正方形 CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB 上,则阴影部分的面积为(结果保留n ) ________________如图,11o 模块二垂径定理 G H OFC 图2-1 A D E 图2-212 (2)已知O 0的直径是10cm , O 0的两条平行弦 AB 6cm , CD 8cm ,则弦AB 与CD 间的距离 为 .(湖北中考)如图,AB 是O 0的直径,且 AB 10,弦MN 的长为8,若弦MN 的两端在圆上滑动 时,始终与AB 相交,记点A 、B 到MN 的距离分别为h 1 , b ,则|h 1 h 2|等于 _________________________________________.(1)如图3-1,是一条水平铺设的直径为中此时水最深为 _______________ 米. 2米的通水管道横截面,其水面宽为 1.6米,则这条管道(2)如图3-2 ,已知C 是弧AB 的中点,半径0C 与弦AB 相交于点D ,如果 那么CD . 0AB 60 , AB 3 , (3)(安徽中考)如图3-3, O 0过点B C .圆心O 在等腰直角△ ABC 的内部, BC 6,则O 0的半径为 ___________________ .BAC 90 , 0A 1 ,6cm ,最短的弦长为 4cm ,贝U 0M 的长等于 _____________最长的弦长为Fh 2 A Nh 1 E OB模块三圆周角定理,(四川成都中考)如图7-1, △ ABC内接于O0 , AB BC , ABC 120 , AD为O0的直径,6,那么BD __________ .(2)贝U A0DA. 70(四川南充中考)().如图7-2, AB 是O0 的直径,点C、D 在O 0 上, B0C 110 , AD//0C ,60 C. 50 D. 40 (3)(山东泰安中考)圆周角的度数为如图7-3, O0的半径为1, AB是O 0的一条弦,且AB , 3,则弦AB所对图7-1如图,已知AB是半圆0的直径,C为半圆周上一点, 与AC的数量关系并证明.M是A C的中点,MN AB于N,试判断MN(1)AD13。

圆的基本性质培优(九上)

圆的基本性质培优(九上)

圆的基本性质培优(一)圆的基本性质有:一.是与圆相关的基本概念与关系,如弦、弧、弦心距、圆心角、圆周角等;二.二是圆的对称性,圆既是一个轴对称图形,又是一中心对称图形.三.用圆的基本性质解题应注意:1.熟练运用垂径定理及推论进行计算和证明;2.了解弧的特性及中介作用;3.善于促成同圆或等圆中不同名称等量关系的转化.【例题求解】【例1】在半径为1的⊙O 中,弦AB 、AC 的长分别为3和2,则∠BAC 度数为 .注: 由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结合起来.圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.【例2】 如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为( )A .2B .25C .45 D .16175 思路点拨 所作最小圆圆心应在对称轴上,且最小圆应尽可能通过图形的某些顶点,通过设未知数求解.【例3】 如图,已知点A 、B 、C 、D 顺次在⊙O 上,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CM .思路点拨 用截长(截AM)或补短(延长DC)证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.【例4】 已知:在△ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD =4:3.(1)求证:AF =DF ;(2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.思路点拨 (1)证明∠ADE =∠DAE ;(2)作AN ⊥BE 于N ,cos ∠AED =AEEN ,设FE=4x ,FD =3x ,利用有关知识把相关线段用x 的代数式表示;(3)寻找相似三角形,运用比例线段求出x 的值.⌒ ⌒注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.习题练习1.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点D 的所有弦中,最小弦AB= . 2.如图,在三个等圆上各自有一条劣弧AB 、CD 、EF ,如果AB+CD=EF ,那么AB+CD 与EF 的大小关系是( )A .AB+CD =EFB .AB+CD >EFC . AB+CD<EFD .不能确定3. 如图,AB 是⊙O 的直径,CD 是弦,若AB=10cm ,CD =8cm ,那么A 、B 两点到直线CD 的距离之和为( )A .12cmB .10cmC . 8cmD .6cm4. 一种花边是由如图的弓形组成的,弧ACB 的半径为5,弦AB =8,则弓形的高CD 为( )A .2B .25 C .3 D .316 5.如图,把正三角形ABC 的外接圆对折,使点A 落在弧BC 的中点A ′上,若BC=5,则折痕在△ABC 内的部分DE 长为 .6.如图,已知AB 为⊙O 的弦,直径MN 与AB 相交于⊙O 内,MC ⊥AB 于C ,ND ⊥AB 于D ,若MN=20,AB=68,则MC —ND= .7.如图,已知⊙O 的半径为R ,C 、D 是直径AB 同侧圆周上的两点,AC的度数为96°,BD 的度数为36°,动点P 在AB 上,则CP+PD 的最小值为 .8.如图,已知⊙O 的两条半径OA 与OB 互相垂直,C 为AmB 上的一点,且AB 2+OB 2=BC 2,求∠OAC 的度数.⌒9.如图,已知圆内接△ABC 中,AB>AC ,D 为BAC 的中点,DE ⊥AB 于E ,求证:BD 2-AD 2=AB ×AC .10. 如图平面直角坐标系中,半径为5的⊙O 过点D 、H , 且DH ⊥x 轴,DH=8.(1)求点H 的坐标;(2)如图,点A 为⊙O 和x 轴负半轴的交点,P 为AH 上任意一点,连接PD 、PH , AM ⊥PH 交HP 的延长线于M ,求的值;11.如图,直径为13的⊙O ′,经过原点O ,并且与x 轴、y 轴分别交于A 、B 两点,线段OA 、OB(OA>OB)的长分别是方程0602=++kx x 的两根.(1)求线段OA 、OB 的长;(2)已知点C 在劣弧OA 上,连结BC 交OA 于D ,当OC 2=CD ×CB 时,求C 点坐标;(3)在⊙O ,上是否存在点P ,使S △POD =S △ABD ?若存在,求出P 点坐标;若不存在,请说明理由.⌒。

初三上册数学直升班培优讲义学生版第14讲圆(四)(学生版)

初三上册数学直升班培优讲义学生版第14讲圆(四)(学生版)

圆(四)模块一圆和圆的位置关系模块二圆幕定理第14讲圆(四)模块一圆和圆的位置关系圆和圆的位置关系: 圆和圆外离、圆和圆外切、圆和圆相交、圆和圆内切、圆和圆内含五种, 这五种关系由两圆圆心的距离与两圆半径之和或差的大小关系决定.设O0、O O 2的半径分别为r 、R (其中R r ),两圆圆心距为d ,则有:d R r 两圆外离;d R r 两圆外切;R r d R r 两圆相交; d R r 两圆内切;O w d R r 两圆内含说明:圆和圆的位置关系,既考虑了他们公共点的个数,又注意到位置的不同,若以两圆的公共点的个数来分,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点, 它包括外离与内 含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.模块二圆幕定理 1 •相交弦定理相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等. 如图,弦AB 和CD 交于O O 内一点P ,则PA PB PC PD • 2 .切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与 圆交点的两条线段长的比例中项.如图,PT 是O O 的切线,PAB 为O O 的割线,贝U PT 2PA PB .3 •割线定理割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交 点的两条线段长的积相等.如图,PAB 和PCD 为O O 的两条割线,则 PA PB PC PD .例题1(2)两圆的圆心距为 3,两圆的半径分别是方程 x 24x 3 0的两个根,则两圆的位置关系是( )•(3)若两个圆相切于 A 点,它们的直径分别为 10cm 、4cm ,则这两个圆的圆心距为 _______________模块圆和圆的位置关系(1)若两圆的直径分别是 A •外离2和6,两圆的圆心距是 4, B .外切则两圆的位置关系是C .相交)• D .内切A .相交B .外离C .内含D .外切第14讲圆(四)(4)已知OQ 与OQ 两圆内含, 002 3 , O O i 的半径为 5,那么002的半径r 的取值范围是如图,O0与002相交于A 、B 两点,0i 在002的圆周上, 线段0-jD 与BC 垂直.(1)如图3-1,已知O 0i 与002外切,外公切线 AB 与O O i 、002分别相切于 A 、B 两点,AB 与 0i 02的夹角 P 30,若0i 022,求两圆的半径及外公切线长.(2)如图3-2 , O 0i 与002外离,AB , CD 是内公切线交于 P 点,O iQ 是圆心距,若0iQ 10cm , 3cm ,求两条内公切线长及它们所夹锐角的度数.(1) ____________________________________________ 如图4-1,矩形内放置8个半径为1cm 的圆,其中相邻两个圆都相切,并且左上角和右下角的 两个圆和矩形的边相切,则该矩形的面积为 ___________________________________ . (2)如图4-2,PQ 、PQ 、0Q 分别是以。

著名机构初中数学培优讲义圆的概念.第01讲(A级).教师版

著名机构初中数学培优讲义圆的概念.第01讲(A级).教师版

内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1.揭示圆有关的基本属性; 2.能够利用垂径定理解决相关问题.从前,有一个圆,她每天不停地滚动。

有一天,她失掉了一小片,使自己不完整了,这对她来说是个天大的打击,她为了寻找那一小块碎片,用自己残缺的身子继续滚动,由于缺了一小片,她的滚动力比以前慢了好多,她开始憎恶自己的无能;然而她却慢慢发现,自己滚动的慢了,却正好可以领略沿路的风光:向花儿问好,与虫儿聊天,度过了一般美好的时光。

中考要求重难点课前预习圆的基本概念当然,她最终找到了自己的那一小块碎片。

当她又像一个完整的圆一样沿途滚动时,却因为太快,再也看不到那些花儿、虫儿。

尽管现在,她又完美了,可实际呢?有人认为,失去完美是世界最大的挫折。

由此,我想到维纳斯。

她失去双臂,这是一个巨大的挫折,可她,却被誉为“美神”、“完美之神”,或许在她丧失双臂,遭受挫折,失去所谓“完美”的同时,又得到了许多比所谓的“完美”更重要的完美。

由此,我想到贝多芬。

对于一位音乐巨匠,失去听力和死亡几乎可以划等号。

但贝多芬的《田园交响曲》《英雄交响曲》《命运交响曲》等这些耳熟能详曲目均是在失聪后创作的。

我想:如果贝多芬没有失聪,没有遭受挫折,他的交响是否还会如此的意味深远呢?其实相较之下,我更喜欢另一个有关圆的故事——一个圆,不小心掉了一小片,这一小片是她最美丽的部分。

她对于这个打击,自然是悲痛欲绝,穷其全部精力寻找。

她边找边努力让现在的自己具有那一小片的色泽。

她实现了。

尽管由于缺了一小片滚动的不快,却滚出了比原先更绚丽的色彩。

这个故事是我编的。

我给它起了个名字:挫折洗礼后的完美。

2024年新六年级数学暑假衔接讲义(北师大版)(培优卷)第一单元《圆》2024-2025学年北含答案

2024年新六年级数学暑假衔接讲义(北师大版)(培优卷)第一单元《圆》2024-2025学年北含答案

2024-2025学年北师大版数学六年级上册单元拔高检测卷第一单元《圆》试题满分:100分检测时间:90分钟难度系数:0.46(较难)一.反复比较选一选。

(将正确答案的序号填在括号里,每空2分,共10分)1.(2分)(2024六上·宝安期末)小圆的半径是6厘米,小圆半径比大圆半径少25,大圆和小圆的周长之比是()A.3:5 B.5:3 C.9:25 D.25:92.(2分)(2024六上·龙岗期末)下列四个图案中,哪个图案的阴影部分面积与其他三个不同()A.B.C.D.3.(2分)(2024六上·龙岗期末)将圆剪拼成一个长方形,这个长方形的长等于()A.r B.πr C.2πr D.πr24.(2分)(2024六上·黔江期末)小聪骑自行车到学校用10分钟,从小聪家到学校大约多少米?要解决这个问题,需要下面哪两个条件?()和()。

①小聪自行车的车轮外直径约60厘米;②小聪步行大约每分钟50米;③车轮平均每分钟转100圈;④小聪的自行车车身长1.5米。

A.①③B.③④C.①②D.②④5.(2分)(2023六上·德清期末)下图阴影部分的面积是30cm2,圆环的面积是() cm2。

A.251.2 B.188.4 C.2826 D.1256二.仔细推敲辨一辨。

(对的打“√”,错的打“×”,每空2分,共10分)5.(2分)(2024春•淅川县期6.(2分)(2024六上·慈溪期末)在一个长10cm,宽8cm的长方形中画一个最大的半圆,半圆周长是20.56cm。

()7.(2分)(2024六上·凉州期末)半径为2厘米的圆的周长和面积相等.()8.(2分)(2023六上·丘北月考)用一个底为5cm,高为4cm的平行四边形纸片,一定能剪出半径为2cm的圆。

()9.(2分)(2023六上·七星关月考)有大小不等的两个圆,大圆的周长是314厘米,小圆的周长是3.14厘米。

六年级下册数学培优讲义: 圆的周长和弧长(下)(解析版)全国通用

六年级下册数学培优讲义: 圆的周长和弧长(下)(解析版)全国通用

第07讲圆的周长和弧长(下)教学目标:1、进一步巩固复习圆的周长和弧长的基本概念和定义;2、进一步熟练掌握圆的周长和弧长的基本计算方法;3、进一步培养“圆的周长和弧长”基本图形技能,为变身工程师做准备。

教学重点:进一步巩固复习圆的周长和弧长的基本概念和定义。

教学难点:进一步熟练掌握圆的周长和弧长的基本计算方法。

教学过程:【复习与提升】层层高1、乐园中有个巨大的摩天轮,它的周长是320米,请问它的半径是多少米?(保留两位小数)参考答案:320÷3.14÷2≈50.96(米)答:它的半径是50.96米。

层层高2、一辆大卡车车轮的周长是2.5米,一辆小汽车车轮的周长是1.26米,请问大卡车车轮的直径是小汽车车轮直径的多少倍?(保留两位小数)参考答案:(2.5÷3.14)÷(1.26÷3.14)≈1.98答:大卡车车轮的直径是小汽车车轮直径的1.98倍。

层层高3、有一根长80厘米的细铁丝,在制作出5个相同大小的圆形铁丝环(不计接口损耗)后,还剩下17.2厘米长的铁丝。

请问制成的圆形铁丝环的直径是多少厘米?参考答案:( 80-17.2)÷5÷3.14=4(厘米)答:制成的圆形铁丝环的直径是4厘米。

层层高4、已知一条弧的长度是7.85分米,这条弧所对的圆心角是90°,请问这条弧所在圆的半径是多少分米?参考答案:7.85÷(90÷360)÷3.14÷2=5(分米)答:这条弧所在圆的半径是5分米。

层层高5、一个圆形钢丝环的半径是6厘米,用钳子从它上面截取一段长6.28厘米的弧形钢丝,请问这段弧形钢丝所对的圆心角是多少度?参考答案:6.28÷(3.14×6×2)×360=60(度)答:这段弧形钢丝所对的圆心角是60度。

【课堂总结】圆的周长和弧长:1、根据圆的周长进行圆的直径或半径的求解;2、根据弧长进行直径或半径以及圆心角的求解;【作业与预习】作业1、一辆汽车行驶了15.7千米后,它的一个车轮滚动了1万圈,请问它的车轮半径是多少米?参考答案:15700÷10000÷3.14÷2=0.25(米)答:它的车轮半径是0.25米。

圆培优讲义

圆培优讲义

《圆》培优讲义(一)一、圆的基本概念例:思考:车轮为什么是圆的?否则:试想,如果车轮是方的或者是椭圆的,坐车的人会有什么感觉?例:如图:AB、CB为⊙O的两条弦,试说出图中的所有弧。

OAB C例:判断对错1、长度相等的两条弧是等弧。

2、一条弦把圆分成两条弧,这两条弧不可能是等弧。

3、两个半圆是等弧。

4、半径相等的弧是等弧。

5、半径相等的两个半圆是等弧。

6、分别在两个等圆上的两条弧是等弧。

例:下列说法错误的是A、直径相等的两个圆是等圆。

B、圆中最大的弦是通过圆心的弦。

C、同圆中,优弧和劣弧的和等于一个整圆。

D、直径是圆中最长的弦。

例:AB为圆O的直径,点C在圆O上,OD//BC。

求证:OD是AC的垂直平分线OD例:圆O 的半径为5,弦AB//CD ,且AB=6,CD=8,求以两平行弦为底的梯形的面积。

对应练习:1. 设AB =3厘米,画图说明具有下列性质的点的集合是怎样的图形: (1)和点A 的距离等于2厘米的点的集合; (2)和点B 的距离等于2厘米的点的集合;(3)和点A 、B 的距离都等于2厘米的点的集合; (4)和点A 、B 的距离都小于2厘米的点的集合2. 在下面的矩形中,如果OA 、OB 、OC 、OD 的中点分别为E 、F 、G 、H 。

求证:E 、F 、G 、H4个点在同一个圆上。

二、圆的轴对称性例1. 如图,已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,求⊙O 的半径。

AOE变式1:如上图,若以O 为圆心再画一个圆交弦AB 于C ,D ,则AC 与BD 间可能存在什么关系?(1)(2)B A A BOC CD D OE变式2:如下图,若将AB 向下平移,当移到过圆心时,结论AC =BD 还成立吗?B变式4:如图,设AO =BO ,求证AC =BD 。

变式5:如图,设OC =OD ,求证AC =BD 。

结论: 得出解决这类题的关键在于利用垂径定理,由圆心O 引弦AB 的垂线。

圆培优讲义

圆培优讲义

《圆》培优讲义(一)一、圆的基本概念例:思考:车轮为什么是圆的?否则:试想,如果车轮是方的或者是椭圆的,坐车的人会有什么感觉?例:如图:AB、CB 为⊙O的两条弦,试说出图中的所有弧。

COBA例:判断对错1、长度相等的两条弧是等弧。

2、一条弦把圆分成两条弧,这两条弧不可能是等弧。

3、两个半圆是等弧。

4、半径相等的弧是等弧。

5、半径相等的两个半圆是等弧。

6、分别在两个等圆上的两条弧是等弧。

例:下列说法错误的是A、直径相等的两个圆是等圆。

B、圆中最大的弦是通过圆心的弦。

C、同圆中,优弧和劣弧的和等于一个整圆。

D、直径是圆中最长的弦。

例:AB 为圆O 的直径,点C 在圆O 上,OD//BC。

求证:OD 是AC 的垂直平分线ADOC B例:圆O 的半径为5,弦AB//CD,且AB=6,CD=8,求以两平行弦为底的梯形的面积。

对应练习:1. 设AB=3 厘米,画图说明具有下列性质的点的集合是怎样的图形:(1)和点 A 的距离等于2 厘米的点的集合;(2)和点 B 的距离等于2 厘米的点的集合;(3)和点 A、B 的距离都等于2 厘米的点的集合;(4)和点 A、B 的距离都小于2 厘米的点的集合B2. 在下面的矩形中,如果 OA、OB、OC、OD 的中点分别为E、F、G、H。

求证:E、F、G、H4 个点在同一个圆上。

二、圆的轴对称性例 1. 如图,已知在⊙O中,弦AB 的长为8 厘米,圆心O 到AB 的距离为3 厘米,求⊙O的半径。

EAO变式 1:如上图,若以 O 为圆心再画一个圆交弦 AB 于C,D,则AC 与BD 间可能存在什么关系?A C E D BO (1)A C D BO(2)变式 2:如下图,若将 AB 向下平移,当移到过圆心时,结论 AC=BD 还成立吗?变式 4:如图,设 AO =BO ,求证 AC =BD 。

变式 5:如图,设 OC =OD ,求证 AC =BD 。

结论: 得出解决这类题的关键在于利用垂径定理,由圆心 O 引弦 AB 的垂线。

九年级(上)培优讲义:第5讲 圆的基本性质

九年级(上)培优讲义:第5讲 圆的基本性质

第5讲:圆的基本性质一、建构新知1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.3.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角:(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.二、经典例题例1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC外接圆半径的长度为.例2.如图所示,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,求CD的长.变式:如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC , 垂足分别为M 、N ,如果MN =3,那么BC = .例3.如图,在⊙O 中,半径OC 垂直于弦AB ,垂足为点E .(1)若OC =5,AB =8,求tan ∠BAC ;(2)若∠DAC =∠BAC ,且点D 在⊙O 的外部,判断直线AD 与⊙O 的位置关系,并加以证明.例4. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .(1)证明:AF 平分∠BAC ; (2)证明:BF =FD .N MO C BA例5. 已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.例6.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.三、基础演练1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于().A.70°B.64°C.62°D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为().A.54m B.m C.m D.m3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于().A. (4π+8)cm2B. (4π+16)cm2C. (3π+8)cm2D. (3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是().A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为() A.12.5寸B.13寸C.25寸D.26寸6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有()A. 1条B. 2条C. 3条D. 4条7.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A .80°B .100°C .80°或100°D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50° 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是_____.10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A 的度数是____________.11.已知⊙O 1与⊙O 2的半径、分别是方程的两实根,若⊙O 1与⊙O 2的圆心距=5.则⊙O 1与⊙O 2的位置关系是______________ .12.已知圆的直径为13 cm ,圆心到直线的距离为6cm ,那么直线和这个圆的公共点的个数是______.13. 两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是______. 14. 已知正方形ABCD 外接圆的直径为,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为_______________,面积为_______________. 四、直击中考1.(2013年湖北)如,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( ) A .95 B . 245 C . 185 D . 522.(2013黑龙江)如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE =4,CD =6,则AE 的长为( )CADBA .4B .5C .6D .73.(2013江苏)如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是的中点,则下列结论不成立的是( ) A .OC ∥AE B .EC =BCC .∠DAE =∠ABED .AC ⊥OE4.(2013湖北)如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ) A .B . A F =BFC . O F =CFD . ∠DBC =90°5.(2013湖北)如图,M 是CD 的中点,EM ⊥CD ,若CD =4,EM =8,则所在圆的半径为 .6.(2013年广东)如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O ,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为____________.7.(2013四川)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足=31,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:①△ADF ∽△AED ;②FG =2;③tan ∠E =;④S △DEF =4.其中正确的是(写出所有正确结论的序号).8.(2013浙江)如图,AE 是半圆O 的直径,弦AB =BC =4,弦CD =DE =4,连结OB ,OD ,则图中两个阴影部分的面积和为 . 9. (2013江苏)在平面直角坐标系xOy 中,已知点A (6,0),点B (0,6),动点C 在以半径为3的⊙O 上,连接OC ,过O 点作OD ⊥OC ,OD 与⊙O 相交于点D (其中点C 、O 、D 按逆时针方向排列),连接AB .(1)当OC ∥AB 时,∠BOC 的度数为 ; (2)连接AC ,BC ,当点C 在⊙O 上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时:①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.10.(2013四川)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.五、挑战竞赛1.如图所示,△ABC的三边满足关系BC=12(AB+AC),O,I分别为△ABC的外心和内心,∠BAC的外角平分线交⊙O于点E,AI的延长线交⊙O于点D,DE交BC于点H.求证:(1)AI=BD;(2)OI=12 AE.第22题图②OPCBA六、每周一练1.在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作,如图所示.若AB =4,AC =2,S 1﹣S 2=,则S 3﹣S 4的值是( ) A .B .C .D .2.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形, AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC . 如图②, 若2524sin =∠BPC ,则PAB ∠tan 的值为 . 3. 如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P ,使△EFO ∽△EHG (E 、F 、O 与E 、H 、G 为对应点)?如果存在,试求(2)中x 和y 的值;如果不存在,请说明理由.。

学而思培优之圆(一)

学而思培优之圆(一)

◆ 圆的性质
O
1cm ③ ) ) )
④圆周上的点到圆心的距离都等于半径 圆内的点到圆心的距离都小于半径 圆外的点到圆心的距离都大于半径
加油站 ◆ 圆的周长
①如何测量圆的周长呢?
【例2】(★★) 在这个城市有座教堂,教堂的屋顶有一个大钟,钟的 秒针长约2米,请问秒针顶点1分钟走多少米? 1小时走多少米?(π取3.14)
神 奇 的
① 它居然是个 数! ②它还是个无限不循环小数! ②圆的周长公式:
π
C=πd=2πr
4
【例3】(★★) 记忆1π~25π(π取3.14) 1π= 6π= 11π= 16π= 21π= 2π= 7π= 12π= 17π= 22π= 3π= 8π= 13π= 18π= 23π= 4π= 9π= 14π= 19π= 24π= 5π= 10π= 15π= 20π= 25π=
1
A
◆ 圆的性质
①半径处处相等,每条半径都连接圆心与圆周。
◆ 认识圆
什么决定了圆?
圆心:确定位置 半径:通常用 半径 通常用 r来表示 直径:通常用 d来表示
O
圆有无数条半径。
B 确定圆的大小 d=2r
◆ 圆的性质 ◆ 圆的性质
③圆心是唯一的 ②直径 相等,每条直径都通过圆 ,连接圆周 的两点, ②直径处处相等,每条直径都通过圆心,连接圆周上的两点, 把圆分成相等的两部分。圆有无数条直径。 每条直径都是圆的对称轴,所以圆有无数条对称轴。 直 都
加油站 ◆ 认识圆

圆(一) ◆ 认识圆

生活中的圆: 生活中的圆
三角形
正方形
长方形
平行四边形
梯形
◆ 认识圆

怎么画圆?

六年级上册数学培优奥数讲义-第11讲圆的周长

六年级上册数学培优奥数讲义-第11讲圆的周长

第11讲圆的周长知识装备1、圆的周长公式:C=2πr或C=πd;半圆的周长=πr+2r或πd÷2+d。

2、在计算周长时,要找清楚哪些是需要求的部分,再灵活运用圆的周长公式进行计算。

初级挑战1求下面图形中阴影部分的周长。

(单位:厘米)(1)(2)思维点拨:(1)是一个半圆,它的周长除了半圆弧的长,还要加上()。

(2)是一个长方形和一个半圆组合而成的图形,它的周长由长方形的()条长、()条宽和1个半圆弧组成。

答案:(1)周长是:8+π×8÷2=20.56(厘米);(2)由图可知,长方形的宽就是半圆的半径,即12÷2=6(厘米),所以周长是:12+6×2+π×12÷2=42.84(厘米)。

求下面图形中阴影部分的周长。

(单位:厘米)(1) (2)答案:(1)π×6×2×43+6×2=40.26(厘米);(2)正方形内四叶草的周长可看成是由2个以正方形的边长为直径的圆的周长。

因此为:π×32×2=200.96(厘米)。

初级挑战2如下图所示,外面一个圆的周长与里面两个圆的周长之和相比,哪个长?请说明理由。

思维点拨: 假设里面两个较小的圆的直径分别为d 1和d 2,外面大圆的直径是d ,那么d =d 1+d 2。

外面大圆的周长用字母表示是( ),里面两个小圆的周长和=( )+( ),比较它们的大小即可。

答案:假设里面两个较小的圆的直径分别为d 1和d 2,外面大圆的直径是d ,那么d =d 1+d 2。

外面大圆的周长用字母表示是C =πd ,里面两个小圆的周长和是C=πd 1+πd 2=π(d 1+d 2)=πd ,所以外面一个圆的周长和里面两个圆的周长之和相等。

1、如下图,小明和小刚同时从A点以同样的速度出发,小明沿大圆周走到B点,小刚沿小圆周走到B点,他们谁先到达B点?为什么?答案:同时到达。

圆的培优讲义

圆的培优讲义

一、 圆的定义1、动态定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆①圆心:确定圆的位置——圆心相同的圆叫做同心圆 确定圆需要两个条件②半径:确定圆的大小——半径相等的圆叫做等圆 2、静态定义圆心为O ,半径为r 的圆是所有到定点O 的距离等于定长 r 的点的集合.(1)图上各点到定点(圆心O )的距离都等于定长(半径 r ).圆的特点(2)到定点的距离等于定长的点都在同一个圆上.考点1:证明一些点共圆题型1:直角三角形例1、如图,在中BD ⊥AC,CE ⊥AB,证明BCDE 在同一个圆上题型2:矩形、正方形例2证明对角线互相垂直的四边形的各边的中点在同一个圆上.考点2:利用半径相等构造等腰三角形求角度例3:如图,CE 是⊙O 的直径,AD 的延长线与CE 的延长线交于点B ,若BD=OD ,∠AOC=114º,求∠AOD 的度数。

2. 圆心、半径固定的端点O 叫做圆心.线段OA 叫做半径,一般用r 表示.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ” 3. 弦、直径连接圆上任意两点的线段叫做弦;经过圆心的弦叫做直径,直径是最长的弦. 考点3:求弦的最值例4、P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.例5、⊙O 所在平面上的一点P 到⊙O 上的点的最大距离是10,最小距离是2,求此圆的半径是多少?4. 圆弧(弧) 1、优弧 圆上任意两点间的部分叫做圆弧,简称弧。

弧的分类 2、半圆 3、劣弧 等弧:能够重合的弧叫做等弧,不是长度相等的弧例6、 判断下列说法的正误 (1)弦是直径 (2)半圆是弧;(3)过圆心的线段是直径; (4)过圆心的直线是直径 (5)半圆是最长的弧 (6)直径是最长的弦;(7)圆心相同,半径相等的两个圆是同心圆; (8)半径相等的两个圆是等圆变式训练:1.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( )A.2个B.3个C.4个D.5个2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

初三数学寒假培优提高班讲义——圆(2)

初三数学寒假培优提高班讲义——圆(2)

初三数学寒假培优提高班讲义(2)圆(2)一、选择题1.下列命题中,假命题是( )(A )如果一个点到圆心的距离大于这个圆的半径,那么这个点在圆外;(B )如果一个圆的圆心到一条直线的距离小于它的半径,那么这条直线与这个圆有两个交点; (C )边数相同的正多边形都是相似图形; (D )正多边形即是轴对称图形,又是中心对称图形.2.如果两圆的直径分别为6和14,圆心距为4,那么这两圆的位置关系是( ) (A) 内含; (B) 内切; (C) 相交; (D)外切.3.如果⊙1O 的半径是5,⊙2O 的半径是8,12O O ﹦4,那么⊙1O 与⊙2O 的位置关系是 ( ) (A )内含; (B )内切; (C )相交; (D )外离.4.在直角坐标平面内,点A 的坐标为(1,0),点B 的坐标为(a ,0),圆A 的半径为2. 下列说法中不正确...的是 ( ) (A )当a = -1时,点B 在圆A 上;(B )当a <1时,点B 在圆A 内;(C )当a <-1时,点B 在圆A 外; (D )当-1<a <3时,点B 在圆A 内.5.如果⊙1O 的半径是5,⊙2O 的半径为 8,124O O =,那么⊙1O 与⊙2O 的位置关系是( ) A .内含; B .内切; C .相交; D .外离.(青浦区)答案C6.下列图形中,既是轴对称图形又是中心对称图形是( )(A )正六边形; (B )正五边形; (C )等腰梯形; (D )等边三角形. 二、填空题1.半径为2的圆中,60°的圆心角所对的弦长为 .2.已知⊙1O 与⊙2O 相切,⊙1O 的半径比⊙2O 的半径的2倍还大1,又127O O =,那么⊙2O 的半径长为 .3.已知两圆的半径R 、r 分别为方程2560x x -+=的两根,两圆的圆心距为1,两圆的位置关系是 .4.已知两圆的圆心距为4,其中一个圆的半径长为3,那么当两圆内切时,另一圆的半径为 . 5.已知⊙1O 与⊙2O 相交于点A 、B 两点,如果⊙1O 、⊙2O 的半径分别为10cm 和17cm ,公共弦AB 的长为16cm ,那么这两个圆的圆心距12O O 的长为 厘米. 6.在直角坐标系中,⊙P 的圆心是P (a ,2)(a >0),半径为2;直线y=x 被⊙P 截得的弦长为23,则a 的值是 .7.如图4,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于 (结果保留π).FCDEA8.AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么线段OE 的长是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 圆的定义1、动态定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆①圆心:确定圆的位置——圆心相同的圆叫做同心圆 确定圆需要两个条件②半径:确定圆的大小——半径相等的圆叫做等圆 2、静态定义圆心为O ,半径为r 的圆是所有到定点O 的距离等于定长 r 的点的集合.(1)图上各点到定点(圆心O )的距离都等于定长(半径 r ).圆的特点(2)到定点的距离等于定长的点都在同一个圆上.考点1:证明一些点共圆题型1:直角三角形例1、如图,在中BD ⊥AC,CE ⊥AB,证明BCDE 在同一个圆上题型2:矩形、正方形例2证明对角线互相垂直的四边形的各边的中点在同一个圆上.考点2:利用半径相等构造等腰三角形求角度例3:如图,CE 是⊙O 的直径,AD 的延长线与CE 的延长线交于点B ,若BD=OD ,∠AOC=114º,求∠AOD 的度数。

2. 圆心、半径固定的端点O 叫做圆心.线段OA 叫做半径,一般用r 表示.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ” 3. 弦、直径连接圆上任意两点的线段叫做弦;经过圆心的弦叫做直径,直径是最长的弦. 考点3:求弦的最值例4、P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.例5、⊙O 所在平面上的一点P 到⊙O 上的点的最大距离是10,最小距离是2,求此圆的半径是多少?4. 圆弧(弧) 1、优弧 圆上任意两点间的部分叫做圆弧,简称弧。

弧的分类 2、半圆 3、劣弧 等弧:能够重合的弧叫做等弧,不是长度相等的弧例6、 判断下列说法的正误 (1)弦是直径 (2)半圆是弧;(3)过圆心的线段是直径; (4)过圆心的直线是直径 (5)半圆是最长的弧 (6)直径是最长的弦;(7)圆心相同,半径相等的两个圆是同心圆; (8)半径相等的两个圆是等圆变式训练:1.如图,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( )A.2个B.3个C.4个D.5个2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

3、⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?A1、思维导图:2、内容提要:圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。

垂径定理⎩⎨⎧平分弦所对的两条弧。

)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径推论:平行的两弦之间所夹的两弧相等。

相关概念:弦心距:圆心到弦的距离(垂线段OE )。

应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造Rt △OAE )。

3、 垂径定理常见的五种基本图形4、垂径定理的两种变形图基本题型 一、求半径例1.高速公路的隧道和桥梁最多.图1是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( )(A )5 (B )7 (C )375 (D )377练习1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求圆的半径.三个元素: 弧、弦和直径 两种关系:垂直 平分两类应用: 计算 证明CDA BO E DOBAC OBCA D D OB C A ED C O A B O BAC图1OC练习2、如图,在⊙O 中,AB 是弦,C 为的中点,若32=BC ,O 到AB 的距离为 1.求⊙O 的半径.练习3、如图,一个圆弧形桥拱,其跨度AB 为10米,拱高CD 为1米.求桥拱的半径.二、求弦长例2.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图2所示,则这个小孔的直径AB mm .练习2、在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是 cm.三、求弦心距例 3.如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.练习3.如图4,O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .BA8mm图2DCO AB图3COAB四、求拱高例4.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图5所示,已知AB =16m ,半径 OA =10m ,高度CD 为_____m .五、求角度例5.如图6,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60º,则∠B = .六、探究线段的最小值例6.如图7,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm .七、其他题型例7、如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.例8、在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.ABDCE OD CAO图5CODB图6C OABP图7OABP例10、如图所示,在Rt △ABC 中,∠C =90°,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。

例11、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.例12、已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证:FD EC =.例13、某机械传动装置在静止状态时,如图所示,连杆PB 与点B 运动所形成的圆O 交于点A ,测得PA =4cm ,AB =5cm ,⊙O 半径为4.5cm ,求点P 到圆心O 的距离。

例14.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.例15.已知:⊙O 的直径CD=4,弦AB ⊥CD ,AB=23,求ACD ∠的度数CABD EOABD EFC例16.如图,同心圆中,小圆的弦交AB 于C 、D ,证明AC=BD拓展:(1)若AB=4,CD=2,圆心O 到AB 的距离等于1,那么两个同心圆的半径之比为( ) A .3:2 B.5:2 C.5:2 D.5:4(2) 若AC •BC=12,求圆环的面积A ·O C DB例16圆 第三节 与圆有关的角一.圆心角、弧、弦、弦心距关系定理【考点速览】圆心角, 弧,弦,弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的孤相等,所对的弦相等,所对的弦的弦心距相等推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.(务必注意前提为:在同圆或等圆中)注:当两条弧相等时不用说明在同圆或等圆中。

定理考察.例1、下列说法中正确的是( )A 、相等的圆心角所对的弧相等B 、相等的弧所对的圆心角相等C 、相等的弦所对的弦心距相等D 、弦心距相等,则弦相等例2.如图所示,点O 是∠EPF 的平分线上一点,以O 为圆心的圆和角的两边分别交于A 、B 和C 、D ,求证:AB=CD .AB EFOPC12D例3.如图所示,在⊙O 中,CO ⊥AD ,2AD=AB .求证: AB=2CA例4、已知:如图,∠AOB=90°,C 、D 是弧AB 的三等分点,AB 分别交OC 、OD 于点E 、F 。

求证:AE=BF=CD 。

例5.在⊙O 中,AB 与CD 为两平行弦,AB >CD ,AB 、CD 所对圆心角分别为︒︒60,120,若⊙O 的半径为6,则AB 、CD 两弦相距( )A 、3B 、6C 、13+D 、333±例6.如图所示,在⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB .求证:EC=2EAABOD C ABOD E C二.圆周角定理考点1圆心角:顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。

Eg: 判别下列各图中的角是不是圆心角,并说明理由。

圆周角:顶点在圆周上,角两边和圆相交的角叫圆周角。

两个条件缺一不可.Eg: 判断下列图示中,各图形中的角是不是圆周角,并说明理由考点2定理:一条弧所对的圆周角等于它所对的圆心角的一半.Eg: 如下三图,请证明。

考点34. 推论:①同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等.90的圆周角所对的弦是直径.②半圆(或直径)所对的圆周角是直角,③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.考点45.圆内接四边形①圆内接四边形对角互补,外角等于内对角。

②圆内接梯形为等腰梯形,圆内接平行四边形为矩形。

③判断四点共圆的方法之一:四边形对角互补即可。

经典例题2、如图,AB 为⊙O 的直径,3BC AC =,则∠ABC = .2、如图,AB 为⊙O 的直径,C 为AB 的中点,D 为半圆AB 上一点,则∠ADC = .3、如图,AB 为⊙O 的直径,CD 过OA 的中点E 并垂直于OA ,则∠ABC = .三、构造特殊的等腰三角形例3、如图,⊙O 的半径为1,弦AB =2,弦AC =3,则∠BOC = .例4、如图1,ABC ∆内接于⊙O ,445==∠,AB C 则⊙O 的半径为( ). A .22 B .4C .32D .5变式训练1、如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50︒,则∠ADC = .2.如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。

四、一条弦所对的圆周角有两个例5、⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对的圆周角的度数是 。

变式训练1、在⊙O 中,圆心O 到弦AB 的距离等于弦AB 的一半,则选AB 所对圆周角的度数是 。

2、已知⊙O 的半径是6,弦AB 的长为0652=--x x 的一个根,则圆心O 到弦AB 的距离及AB 所对的圆心角的度数是 。

相关文档
最新文档