高中数学椭圆公式大全
高考椭圆抛物线知识点归纳总结
高考椭圆抛物线知识点归纳总结椭圆和抛物线是高中数学中的重要知识点,也是高考数学考试中经常出现的题型。
在这篇文章中,我们将对椭圆和抛物线的相关概念和性质进行归纳总结,以帮助考生更好地理解和掌握这些知识点。
一、椭圆1. 定义与性质椭圆是指到两个固定点(焦点)的距离之和等于常数的点的轨迹。
在椭圆中,有以下性质:- 椭圆的长轴和短轴是相互垂直的。
- 椭圆的离心率小于1,离心率越小,椭圆越扁。
- 椭圆的离心率等于焦点之间的距离与长轴长度的比值。
2. 椭圆的方程椭圆的标准方程为((x-h)^2/a^2) + ((y-k)^2/b^2) = 1,其中(h, k)为椭圆的中心点坐标,a和b分别为椭圆的半长轴和半短轴长度。
3. 相关定理与公式- 椭圆的周长公式为C = 4aE(e),其中E(e)为椭圆的第一类椭圆积分,e为椭圆的离心率。
- 椭圆的面积公式为S = πab。
4. 椭圆的应用椭圆在现实生活中有许多应用,如天文学中的行星轨道、地理学中的纬度线等。
二、抛物线1. 定义与性质抛物线是指到一个定点(焦点)和一条定直线(准线)的距离相等的点的轨迹。
在抛物线中,有以下性质:- 抛物线的准线与对称轴平行。
- 抛物线的焦点位于对称轴上,到焦点的距离等于到准线的距离。
- 抛物线的顶点为对称轴与抛物线的交点。
2. 抛物线的方程抛物线的标准方程为y = ax^2 + bx + c,其中a不等于0,a决定了抛物线的开口方向。
3. 相关定理与公式- 抛物线的焦半径公式为r = 1/(4a),其中a为抛物线的系数。
- 抛物线的焦点坐标为(F, p),其中F = 1/(4a),p = c - b^2/(4a)。
4. 抛物线的应用抛物线在物理学和工程学中有广泛的应用,如抛物线的运动轨迹、天文学中的天体轨迹等。
总结:椭圆和抛物线是数学中的重要概念,它们有着各自的定义、性质、方程和应用。
在高考数学考试中,掌握这些知识点对于解题和得高分非常重要。
高中数学选修椭圆公式大全(精选课件)
高中数学选修椭圆公式大全椭 圆1.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P处的外角,则焦点在直线PT上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点。
...文档交流 仅供参考...3. 以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切。
5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b+=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=.7. 椭圆22221x y a b+= (a 〉b>0)的左右焦点分别为F 1,F 2,点P为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )。
9.设过椭圆焦点F作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的椭圆准线于M 、N两点,则MF⊥NF ....文档交流 仅供参考...10.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N,则M F⊥NF 。
...文档交流 仅供参考...11. A B是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB -=。
高中数学椭圆的公式有哪些
高中数学椭圆的公式有哪些高中数学椭圆的公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
高中数学常考知识及解题技巧1、函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学椭圆知识点汇总
高中数学椭圆知识点汇总椭圆的面积公式怎么算点与椭圆点M(x0,y0)椭圆x?/a?+y?/b?=1;点在圆内:x0?/a?+y0?/b?1;点在圆上:x0?/a?+y0?/b?=1;点在圆外:x0?/a?+y0?/b?1;跟圆与直线的位置关系一样的:相交、相离、相切。
直线与椭圆y=kx+m①x?/a+y?/b?=1②由①②可推出x?/a?+(kx+m)?/b?=1相切△=0相离△0无交点相交△0可利用弦长公式:设A(x1,y1)B(x2,y2)求中点坐标根据韦达定理x1+x2=-b/a,x1__x2=c/a带入直线方程可求出y+y/2=可求出中点坐标。
|AB|=d=√(1+k?)[(x1+x2)?-4x1__x2]=√(1+1/k?)[(y1+y2)?-4x1__x2]椭圆面积用定积分怎么算椭圆面积用定积分算为S=abπ。
解题思路:设椭圆x^2/a^2+y^2/b^2=1取第一象限内面积有 y^2=b^2-b^2/a^2__x^2即 y=√(b^2-b^2/a^2__x^2)=b/a__√(a^2-x^2)由于该式反导数为所求面积,观察到原式为圆方程公式__a/b,根据(af(x))=a__f(x),且x=a时圆面积为a^2π/4可得当x=a时,1/4S=b/a__1/4__a^2__π=abπ/4即S=abπ。
高考数学复习策略1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
高中数学选修2-3椭圆总结
那么这个点的轨迹叫做椭圆 其中定点叫做焦点, 定直线叫做准线,常数e就是离心率
1.已知椭圆 求m的值。
的一个焦点为(0,2)。
变 形
1.已知焦点求a b e的值等 2.已知焦距求椭圆方程(注意有两种解) 3.给出中心坐标、椭圆过某点,求椭圆方程 4.给出长轴短轴长,求椭圆上点的取值范围
1.2.已知点P在以坐标轴为对称轴的椭圆上,点P到两 焦点的距离分别为f、g,过P作焦点所在的州的垂线, 它恰好经过椭圆的一个焦点,求椭圆方程。
2.三角形ABC的底边BC=16,AC和AB两边上中线之和 为30,求此三角形重心G的轨迹和顶点A的轨迹。
变 形
1.给出椭圆方程,求与椭圆相关的某图形上一点的轨迹 2.给出椭圆上某点或者某些数据的关系,求椭圆方程 3.椭圆与直线、圆、椭圆、双曲线、抛物线等结合
1.定义:在平面内,到两定点距离之和等于定长(定
长大于两定点间的距离)的动点的轨迹
2.标准方程:x 2 a2
y2 b2
1,y 2
a2
x2 b2
1(
ab0
)
焦点2 a2
y2 b2
1( a b 0)
(1)范围:
a xa , b y b
是椭圆的顶点
A1 A2 是椭圆的长轴,B1B2是椭圆的短轴.长分别为
2a,2b a, b分别为椭圆的长半轴长和短半轴长.
(4)离心率: (椭圆焦距与长轴长之比)
e c a
推导
e 1 (b)2 a
e 0, c 0 椭圆变圆, e 1, c a, 椭圆变扁,
0 e 1
4.椭圆的第二定义:一动点到、Y轴对称.图象关于原点对称
高中数学椭圆知识点总结
高中数学椭圆知识点总结1. 椭圆的定义和性质椭圆是平面上一组点,在与两点(称为焦点)到所有点的距离之和等于给定常数(称为椭圆的焦距和)的前提下,轨迹所组成的图形。
椭圆有以下性质:•椭圆的焦点距离之和等于椭圆的长轴长度;•椭圆的焦点在椭圆的长轴上;•椭圆的离心率介于0和1之间。
2. 椭圆的标准方程椭圆的标准方程表示为:(x - h)2/a2 + (y - k)2/b2 = 1其中,(h, k)是椭圆的中心点坐标,a和b分别称为椭圆的半长轴和半短轴长度。
3. 椭圆的基本方程椭圆的基本方程表示为:x2/a2 + y2/b2 = 1这是一个以原点为中心的椭圆,半长轴长度为a,半短轴长度为b。
4. 椭圆的焦距和椭圆的焦距和表示为:c = √(a^2 - b^2)焦距和是指椭圆的焦点到椭圆中心的距离。
5. 椭圆的离心率椭圆的离心率表示为:e = c/a离心率是一个介于0和1之间的数,表示椭圆离开其最远点距离中心的程度。
6. 椭圆方程的标准化通过平移和旋转坐标轴,可以将任意的椭圆方程化为标准方程。
具体步骤如下:1.将椭圆的中心平移到原点,得到平移后的椭圆方程;2.将椭圆的长轴与x轴平行,得到旋转后的椭圆方程;3.对旋转后的椭圆方程进行标准化,得到标准方程。
7. 椭圆的焦点和准线椭圆的焦点位于椭圆的长轴上,离心率越大,焦点离开椭圆中心越远。
椭圆的准线是通过焦点并垂直于长轴的直线。
焦点和准线可以帮助我们更好地理解椭圆的形状。
8. 椭圆的图形特征椭圆的图形特征有以下几个方面:•如果a > b,则椭圆的长轴在x轴上;•如果a < b,则椭圆的长轴在y轴上;•如果a = b,则椭圆为圆形。
9. 椭圆的方程转化椭圆的方程可以通过一些运算进行转化。
一些常见的转化方式包括:•将椭圆的方程转化为标准方程;•将椭圆的方程进行配方,得到完全平方的形式。
10. 椭圆的应用椭圆在许多领域中有着广泛的应用,例如:•行星轨道的描述;•天文学中的天体运动;•电子学中的无线通信;•工程学中的抛物面镜等。
椭圆中数学竞赛常用公式
高中数学椭圆公式椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/^2+y^2/b^2=1 (b0)2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/^2=1 (b0)其中0,b0.、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当b时,焦点在x轴上,焦距为2*(^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=^2-c^2 ,准线方程是x=^2/c和x=-^2/c又及:假如中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m0,n0,mn).既标准方程的统一形式.椭圆的面积是b.椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=cos ,y=bsin标准形式的椭圆在x0,y0点的切线就是:xx0/^2+yy0/b^2=1椭圆的面积公式S=(圆周率)b(其中,b分别是椭圆的长半轴,短半轴的长).或S=(圆周率)B/4(其中,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式.椭圆周长(L)的精确计算要用到积分或无穷级数的求和.如L = [0,/2]4 * sqrt(1-(e*cost)^2)dt2((^2+b^2)/2) [椭圆近似周长],其中为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL椭圆的准线方程x=^2/C椭圆的离心率公式e=c/椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+^2/C)的距离,数值=b^2/c椭圆焦半径公式|PF1|=+ex0 |PF2|=-ex0椭圆过右焦点的半径r=-ex过左焦点的半径r=+ex椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点,B之间的距离,数值=2b^2/点与椭圆位置关系点M(x0,y0) 椭圆x^2/^2+y^2/b^2=1点在圆内:x0^2/^2+y0^2/b^21点在圆上:x0^2/^2+y0^2/b^2=1点在圆外:x0^2/^2+y0^2/b^21直线与椭圆位置关系y=kx+m ①x^2/^2+y^2/b^2=1 ②由①②可推出x^2/^2+(kx+m)^2/b^2=1相切△=0相离△0无交点相交△0 可利用弦长公式:(x1,y1) B(x2,y2)|B|=d = (1+k^2)|x1-x2| = (1+k^2)[(x1+x2)^2 -4x1x2] = (1+1/k^2)|y1-y2| = (1+1/k^2)[(y1+y2)^2 - 4y1y2]椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/高中数学学问:椭圆的几何性质1、范围:焦点在轴上,;焦点在轴上,2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
高中数学-公式-椭圆
椭圆Ⅰ 定义与推论1、定义1的的认知:设M 为椭圆上任意一点,F 1、F 2 分别为椭圆两焦点,A 1、A 2 分别为椭圆长轴端点, 则有(1)明朗的等量关系:a MF MF 221=+ (解决双焦点半径问题的首选公式)(2)隐蔽的不等关系:a MA MA 221≥+, c MF MF 221≤- 2、定义2的推论:根据椭圆第二定义,设),(00y x M 为椭圆12222=+by a x )0(>>b a 。
上任意一点,F 1、F 2分别为椭圆左、右焦点,则有:(d 1为点M 到左准线l 1的距离);(d 2为点M 到右准线l 2的距离)由此导出椭圆的焦点半径公式:,Ⅱ 标准方程与几何性质 1、椭圆的标准方程中心在原点,焦点在x 轴上的椭圆标准方程 ① 中心在原点,焦点在y 轴上的椭圆标准方程②(1)标准方程①、②中的a 、b 、c 具有相同的意义与相同的联系:(2)标准方程①、②统一形式:2、椭圆的几何性质(1)范围: (有界曲线)(2)对称性:关于x 轴、y 轴及原点对称(两轴一中心,椭圆的共性) (3)顶点与轴长:顶点 ,长轴2a ,短轴2b(由此赋予a 、b 名称与几何意义)(4)离心率: 刻画椭圆的扁平程度(5)准线:左焦点对应的左准线; 右焦点对应的右准线(6)椭圆共性:两准线垂直于长轴;两准线之间的距离为 ;中心到准线的距离为;焦点到相应准线的距离为.Ⅲ 挖掘与引申1、具特殊联系的椭圆的方程 (1)共焦距的椭圆的方程,且 (2)同离心率的椭圆的方程,且2、弦长公式:设斜率为k 的直线l 与椭圆交于不同两点 ,则 ;或 。
1、椭圆标准方程的两种形式是:12222=+b y a x 和12222=+bx a y )0(>>b a 。
2、椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是a ce =,通径的长是ab 22。
高中数学椭圆笔记
高中数学椭圆笔记
椭圆是平面上与两个定点F1和F2的距离之和等于常数2a的点的轨迹。
其中,F1和F2称为椭圆的焦点,a称为椭圆的半长轴。
椭圆的离心率e定义为焦点距离与半长轴的比值。
1. 椭圆的标准方程:
椭圆的标准方程为:(x-h)/a + (y-k)/b = 1
其中,(h,k)为椭圆的中心坐标。
a和b分别为椭圆的半长轴和半短轴。
2. 椭圆的离心率:
椭圆的离心率e的计算公式为:e = c/a
其中,c为焦点距离,a为椭圆的半长轴。
3. 椭圆的几何性质:
- 椭圆的长轴和短轴:长轴的长度为2a,短轴的长度为2b。
- 椭圆的焦距:焦距的长度为2ae。
- 椭圆的对称轴:垂直于长轴且通过中心点的直线称为椭圆的对称轴。
- 椭圆的顶点:椭圆与对称轴的交点称为椭圆的顶点。
4. 椭圆的方程转化:
- 将一般方程转化为标准方程:通过平移和旋转操作,将一般方程转化为标准方程。
- 将标准方程转化为一般方程:通过展开和整理,将标准方程转化为一般方程。
5. 椭圆的判定:
- 判断椭圆的标准方程:如果a>b,则为椭圆。
- 判断椭圆的离心率:如果0<e<1,则为椭圆;如果e=1,则为抛物线;如果e>1,则为双曲线。
以上是关于高中数学中椭圆的一些基本笔记,希望对你的学习有所帮助!。
高中数学公式大全
(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积.以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来.常数为体,公式为用.椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆.110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线l和⊙o相交d<r②直线l和⊙o相切d=r③直线l和⊙o相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>r+r ②两圆外切d=r+r③两圆相交r-r<d<r+r(r>r)④两圆内切d=r-r(r>r) ⑤两圆内含d<r-r(r>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:l=nπr/180145扇形面积公式:s扇形=nπr2/360=lr/2146内公切线长= d-(r-r) 外公切线长= d-(r+r)147等腰三角形的两个底脚相等148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合149如果一个三角形的两个角相等,那么这两个角所对的边也相等150三条边都相等的三角形叫做等边三角形。
高中椭圆的知识点总结
高中椭圆的知识点总结椭圆是数学中的一个重要概念,具有很多应用。
在高中数学中,椭圆也是一个必修的内容,考试中经常会涉及到相关的知识点。
在本文中,我们将对高中椭圆的知识点进行总结和归纳。
一、椭圆的定义椭圆是平面上到两个定点F1和F2距离之和等于定长2a的点P的轨迹。
这两个定点F1和F2被称作椭圆的焦点,定长2a被称为椭圆的长轴,长轴的中点O被称为椭圆的中心,距离中心最远的两点A和B被称为椭圆的顶点,椭圆的离心率为e=(F1F2)/2a。
二、椭圆的方程椭圆的标准方程为 (x^2/a^2)+(y^2/b^2)=1, 其中a>b>0,a为长轴长度,b为短轴长度。
当椭圆的中心不在坐标原点时,可通过平移变换将其移到原点,然后再求解方程。
三、椭圆的性质1. 椭圆的中心位于坐标原点或者与坐标轴的交点上。
2. 椭圆的长轴是平行于x或y轴的直线,短轴是垂直于长轴的直线。
3. 椭圆的离心率e=(F1F2)/2a, e<1。
4. 椭圆的焦点与顶点之间的距离F1A、F2B互相相等,且等于椭圆的长轴长度2a。
5. 椭圆上任意一点到两焦点的距离之和等于定长2a。
6. 椭圆的面积为πab。
7. 椭圆的周长无法用初等函数表示,通常用级数来表示。
四、椭圆的几何意义椭圆的几何意义可以简单地用两条绳子相互交错吊起一个重物来表现。
在两条绳子构成的平面上,可以画出一个椭圆形的轨迹,此时重物到两条绳子的距离之和为定值2a,而椭圆的顶点即为两条绳子的交点。
五、椭圆的应用椭圆具有很多应用,在物理、工程、天文学、生物学等领域中经常会涉及到。
1. 通讯卫星轨道:通讯卫星通常被放置在椭圆轨道上,使得其在地球上的可见度更广,信号传输距离更长。
2. 医学图像:医学图像中的组织轮廓通常是椭圆形的,因此椭圆形适用于医学图像处理。
3. 自动打标机:自动打标机通常采用椭圆形的摆线轮廓来控制字母和数字的运动轨迹。
4. 椭圆滤波器:椭圆滤波器是一种常用的数字信号处理技术,用于高通、低通、带通、带阻等滤波。
人教版高中数学选修选修 椭圆公式大全
椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若{ EMBED Equation.DSMT4 |000(,)P x y 在椭圆上,则过的椭圆的切线方程是.6. 若在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是.7. 椭圆 (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,则椭圆的焦点角形的面积为.8. 椭圆(a >b >0)的焦半径公式:,( , ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆的不平行于对称轴的弦,M 为AB 的中点,则,即。
12. 若在椭圆内,则被Po 所平分的中点弦的方程是.13. 若在椭圆内,则过Po 的弦中点的轨迹方程是.推 导1. 椭圆(a >b >o )的两个顶点为,,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是.2. 过椭圆 (a >0, b >0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且(常数).3. 若P 为椭圆(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, , ,则.4. 设椭圆(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记, ,,则有.5. 若椭圆(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则,当且仅当三点共线时,等号成立.7. 椭圆与直线有公共点的充要条件是.8. 已知椭圆(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.9. 过椭圆(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x轴于P,则.10.已知椭圆(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点, 则.11.设P点是椭圆(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1).(2) .12.设A、B是椭圆(a>b>0)的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) .13.已知椭圆(a>b>0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.14.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.。
高中数学双曲线公式总结大全
高中数学双曲线公式总结大全圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中ab0,c ²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中ab0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a0,b0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a0,b0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a ≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(ab0) x²/a²-y²/b²=1(a0,b0) y²=2px(p0)范围x∈[-a,a] x∈(-∞,-a]∪[a,+∞) x∈[0,+∞)y∈[-b,b] y∈R y∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0) (0,0)焦点(c,0),(-c,0) (c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/c x=±a²/c x=-p/2渐近线——————y=±(b/a)x —————离心率e=c/a,e∈(0,1) e=c/a,e∈(1,+∞) e=1焦半径∣PF₁∣=a+ex ∣PF₁∣=∣ex+a∣∣PF∣=x+p/2∣PF₂∣=a-ex ∣PF₂∣=∣ex-a∣焦准距p=b²/c p=b²/c p通径2b²/a 2b²/a 2p参数方程x=a·cosθx=a·secθx=2pt²y=b·sinθ,θ为参数y=b·tanθ,θ为参数y=2pt,t为参数过圆锥曲线上一点x0·x/a²+y0·y/b²=1 x0x/a²-y0·y/b²=1 y0·y=p(x+x0) (x0,y0)的切线方程斜率为k的切线方程y=kx±√(a²·k²+b²) y=kx±√(a²·k²-b²) y=kx+p/2k 寒窗苦读十余载,今朝考试展锋芒;思维冷静不慌乱,下笔如神才华展;心平气和信心足,过关斩将如流水;细心用心加耐心,努力备考,定会考入理想院校。
高中数学椭圆知识点
高中数学椭圆知识点高中数学椭圆知识点高中数学椭圆知识点1 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的外表积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l 弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4aclogx2 -1,那么x的取值范围为11,且x≠1 C.x>1 D.0A.中元素的个数为A.9 B.6C.4D.2x2+y23.xyy151515159.函数f(x)=ax+x+1有极值的充要条件是A.a≥04B.a>0C.a≤0D.ab D.a2>b2 > B.a-baab15.不等式①x2-4x+39 B.m=9 C.0x2y2kπ16.关于方程+=tanα(α是常数且α≠k∈Z),以下结论中不正确的选项是sinαcosα2A.可以表示双曲线B.可以表示椭圆C.可以表示圆D.可以表示直线2x2y2+=1的左顶点的间隔的最小值为17.抛物线y=-4x上有一点P,P到椭圆16152A.2B.2+3C.3D.2-3x2y2+=1,当m∈[-2,-1]时,该曲线的离心率e的.取值范围是18.二次曲线4mA.[,2第二卷(非选择题共12道填空题12道解答题)请将你认为正确的答案代号填在下表中1 2 3 4 5 6 7 8 9 10 11 12 1316 17 1814 15x≥ -1?2219.实数x,y满足约束条件?y≥0那么(x+2)+ y最小值为____________。
高中数学必背公式总结 高考数学必背重点公式大全_0
高中数学必背公式总结 2019高考数学必背重点公式大全高中数学必背公式总结 2019高考数学必背重点公式大全在高中数学的学习上有很多数学公式需要我们去记忆背诵,高中数学有哪些重点公式有哪些呢?下面为大家介绍一下!高中数学必考重点公式总结归纳椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)++sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)++cos[α+2π*(n-1)/n]=0 以及sin (α)+sin (α-2π/3)+sin (α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0半角公式sin(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)tan(A/2)=((1-cosA)/((1+cosA))tan(A/2)=-((1-cosA)/((1+cosA))cot(A/2)=((1+cosA)/((1-cosA))cot(A/2)=-((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB3+n =(n(n+1)/2)1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积S=c’*h正棱锥侧面积S=1/2c*h’ 正棱台侧面积 S=1/2(c+c’)h’圆台侧面积S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积V=S’L 注:其中,S’是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= [p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4。
高中数学椭圆总结(全)
椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学椭圆公式大全
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1(a>b>0)
2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1(a>b>0)
其中a>0,b>0.a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x 轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n).既标准方程的统一形式.
椭圆的面积是πab.椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ
标准形式的椭圆在x0,y0点的切线就是:xx0/a^2+yy0/b^2=1
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式.
椭圆周长(L)的精确计算要用到积分或无穷级数的求和.如
L=∫[0,π/2]4a*sqrt(1-
(e*cost)^2)dt≈2π√((a^2+b^2)/2)[椭圆近似周长],其中a为椭圆长半轴,e为离心率
椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则
e=PF/PL
椭圆的准线方程
x=±a^2/C
椭圆的离心率公式
e=c/a
椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线
x=+a^2/C)的距离,数值=b^2/c
椭圆焦半径公式|PF1|=a+ex0|PF2|=a-ex0
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex
椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a
点与椭圆位置关系点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1
点在圆内:x0^2/a^2+y0^2/b^2<1
点在圆上:x0^2/a^2+y0^2/b^2=1
点在圆外:x0^2/a^2+y0^2/b^2>1
直线与椭圆位置关系
y=kx+m①
x^2/a^2+y^2/b^2=1②
由①②可推出x^2/a^2+(kx+m)^2/b^2=1
相切△=0
相离△<0无交点
相交△>0可利用弦长公式:A(x1,y1)B(x2,y2)
|AB|=d=√(1+k^2)|x1-x2|=√(1+k^2)[(x1+x2)^2-
4x1x2]=√(1+1/k^2)|y1-y2|=√(1+1/k^2)[(y1+y2)^2-4y1y2]
椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a
1、范围:焦点在轴上,;焦点在轴上,
2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
3、顶点:(a,0)(-a,0)(0,b)(0,-b)
4、离心率:或e=√(1-b^2/a²)
5、离心率范围:0<e<1
6、离心率越大椭圆就越扁,越小则越接近于圆。
7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)
8、与(m为实数)为离心率相同的椭圆。
9、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。
10.椭圆的周长等于特定的正弦曲线在一个周期内的长度。