线性回归方程 精品课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的回归方程教学设计
一、课题引入
引言:我们知道,通过散点图可以判断两个变量之间是否具有“正相关”或“负相关”,但这只是一个定性的判断,更多的时候,我们需要的是定量的刻画.
问题1:下列两个散点图中,两个变量之间是否具有线性相关关系?理由呢?是正相关还是负相关?
设计意图:回顾上节课所学内容,使学生的思想、知识和心理能较快地进入本节课课堂学习的状态.
师生活动:学生回答,图1没有线性相关关系,图2有线性相关关系,因为图1中的所有点都落在某一直线的附近.通过问题,使学生回忆前2节课核心概念:线性相关关系、正相关、负相关等,为后续学习打基础.
二、本节课的新知识
问题2:通过上一节课的学习,我们认为以“偏差”最小的直线作为回归直线比较恰当,那你能用代数式来刻画“从整体上看,各点与此直线的偏差最小”吗?
设计意图:几何问题代数化,为下一步探究作好准备,经历“几何直观”转化为“代数表达”过程,为引出“最小二乘法”作准备.
师生活动:先展示上一节课的讨论结果:学生提出的如下四种可能性:图3(1)表示每一点到直线的垂直距离之和最短,图3(2)表示每一点到直线的“偏差”之和最短,图3(3)表示经过点最多的直线,图3(4)表示上下点的个数“大概”一样多的直线.通过上一节课的分析,我们认为选择偏差之和最短比较恰当,即图3(2).
设回归直线方程为,(x i,y i)表示第i个样本点,将样本数据记为,学生思考,教师启发学生比较下列几个用于评价的模型:
模型3:.
师生一起分析后,得出用模型3来制定标准评价一条直线是否为“最好”的直线较为方便.Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2=
问题3:通过对问题2的分析,我们知道了用Q=最小来表示偏差最小,那么在这个式子中,当样本点的坐标(x i,y i)确定时,a,b等于多少,Q能取到最小值呢?
设计意图:体会最小二乘法思想,不经历公式化简无法真正理解其意义,而直接从n个点的公式化简,教学要求、教学时间、学生能力都没达到这个高度.因而由具体到抽象,由特殊到一般,将是学生顺利完成这一认知过程的一般性原则.通过这个问题,让学生了解这个式子的结构,为后续的学习打下基础,同时渗透最小值的思想
师生活动:偏差最小从本质上来说是最小,为了处理方便,我们采用n个偏差的平方和Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2表示n个点与相应直线在整体上的接近程度:记Q=
(向学生说明的意义).通过化简,得到的其实是关于
a、b的二元二次函数求最值的问题,一定存在这样的a、b,使Q取到最小值.
(1)在此基础上,视为的二次函数时,可求出使Q为最小值时的的值的线性回归方程系数公式:
(2)教师指出,称为样本点的中心,可以证明回归直线一定过样本点的中心,所以可得上述方法求回归直线的方法,
是使得样本数据的点到它的距离的平方和最小,由于平方又叫二乘方,所以这种使距离平方最小的方法,叫做最小二乘法.
问题4:这个公式不要求记忆,但要会运用这个公式进行运算,那么,要求,的值,你会按怎样的顺序求呢?
设计意图:公式不要求推导,又不要求记忆,学生对这个公式缺少感性的认识,通过这个问题,使学生从感性的层次上对公式有所了解.
师生活动:由于这个公式比较复杂,因此在运用这个公式求,时,必须要有条理,先求什么,再求什么,比如,我们可以按照、n、、、
、顺序来求,再代入公式.我们一般可以列如下表格进行分布计算:
三、知识深化:
问题5:你能根据表一所提供的样本数据,求出线性回归方程吗?
表一:人体的脂肪百分比和年龄
设计意图:公式形式化程度高、表达复杂,通过分解计算,可加深对公式结构的理解.同时,通过例题,反映数据处理的繁杂性,体现计算器处理的优越性.
师生活动:步骤一,可让学生观察公式,充分讨论,通过计算:n、、、、五个数据带入回归方程公式得到线性回归方程,体会求线性回
归方程的原理与方法.
由此可以得到回归直线方程为:
步骤二,教师分析求线性回归方程的基本步骤,然后带领学生用卡西欧FX-991 ES计算器求出线性回归方程并画出回归直线,教师可协同学生,对计算器操作方式提供示范,师生共同完成.
问题6:利用计算器,根据以下表中的数据,请同学们独立解决求出表中两变量的回归方程:
设计意图:让学生独立体验运用计算器求回归直线方程,在重复求解回归直线的过程中,使学生掌握用计算器求回归直线的操作方法。
回归直线为:=0.6541x-4.5659
回归直线为:=0.4767x+4.9476
回归直线为:= 0.5765x - 0.4478
问题7:同样问题背景,为什么回归直线不止一条?回归方程求出后,变量间的相关关系是否就转变成确定关系?
设计意图:明确样本的选择影响回归直线方程,体现统计的随机思想.同时,明确其揭示的是相关关系而非函数的确定关系,而且最小二乘法只是某一标准下的一种数据处理方法,使学生更全面的理解回归直线这一核心概念.
案例:卖出热茶的杯数与当天气温的关系
下表是某小卖部6天卖出热茶的杯数与当天气温的对比表(用计算器直接求回归直线):
(1)求回归方程;(2)按照回归方程,计算温度为10度时销售杯数.为什么与表中不同?如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.
让学生完整经历求回归直线的过程.其中第2问,让学生体会到即使是相比下“最优”的所获得的回归直线,也存在着一定的误差,从中体会无论方法的优劣,统计学中随机性无法避免.而在预测值的计算中,体现了回归直线的应用价值.
通过对案例的分析,说明事件、样本数据、回归直线方程三者关系:
1.数据采样本身就具有随机性,同样23岁的人,脂肪含量可能9.5%,也有可能30%,这种误差我们称之为随机误差,随机误差是不可避免的.
2.回归分析是寻找相关关系中非确定关系中的某种确定性,虽然一个数据具有随机误差,但总体还是具有某种确定的关系.
3.在数据采样都符合统计要求的情况下,取三个回归直线方程中的任意一个都是合理的,不存在哪条最合适的问题,但一般情况下,选择数据多一些的比较合理.
四、小结:
问题8:请同学们回顾一下我们怎样求出回归直线方程?事件、样本数据与回归直线三者之间有怎样的关系?
师生活动:
1.求样本数据的线性回归方程的方法
(1)直接运用公式
(2)借助计算器或计算机(使用方法见学案)
2.样本数据与回归直线的关系