常用十个泰勒展开公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用bai泰勒展开公式如下:
1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+……
2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞ 4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+……(-∞ 5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1) 6、arccos x = π- ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……) (|x|<1) 7、arctan x = x - x^3/3 + x^5/5 -……(x≤1) 8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+……(-∞ 9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞ 10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - ……(|x|<1) 11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1) 扩展资料: 数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。 泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。 实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的 泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。 泰勒展开式的重要性体现在以下五个方面: 1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。 2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。 3、泰勒级数可以用来近似计算函数的值,并估计误差。 4、证明不等式。 5、求待定式的极限。