函数的概念教学设计(全国优质课)
《函数的概念》教学教案
《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
3.1.1函数概念(第1课时)教学设计.docx
3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。
函数的概念》说课稿 全国高中青年数学教师参赛优秀教案
函数的概念》说课稿全国高中青年数学教师参赛优秀教案各位专家、评委,我今天要讲的是数学人教版普通高中新课程标准实验教科书必修1函数第一课时的教学内容。
我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、教学媒体选择及教学评价设计六个方面来介绍我的教学设想。
一、背景分析1.研究任务分析函数是中学数学中的一个重要概念,它是非空数集到非空数集的一个对应关系。
函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础。
函数不仅对前面研究的集合作了巩固和发展,而且它是学好后继知识的基础和工具。
函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用。
函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步研究数学的重要基础。
因此,本节课的教学重点是“函数概念的形成”。
2.学情分析从学生知识层面看,学生在初中已经学过函数的相关知识,有一定的基础。
通过高一第一节“集合”的研究,学生对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证。
从学生能力层面看,通过以前的研究,学生已经具备了一定的分析、推理和概括能力,初步具备了研究函数概念的基本能力。
然而,在由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高。
因此,本节课的教学难点在于发展学生的抽象思维能力以及对函数概念本质的理解。
基于以上分析,我制定了本节课的教学目标。
二、教学目标设计目标:1.了解函数是非空数集到非空数集的一个对应关系,了解构成函数的三要素。
2.理解函数概念的本质,抽象的函数符号f(x)的意义,f(a)(a为常数)与f(x)的区别和联系,会求一些简单函数的定义域。
3.经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理,发展学生的抽象思维能力。
高中数学优质课《函数的概念》教学设计共4套
分析函数关系
学生分析实际问题中的函数关系, 如速度与时间的关系、成本与产量 的关系等,提高运用函数知识解决 实际问题的能力。
函数运算实践
学生进行函数运算实践,如函数的 四则运算、复合运算等,通过具体 操作加深对函数运算规则的理解。
展示评价:展示成果,互相学习
学生成果展示
学生展示自己的学习成果,如绘 制的函数图像、分析的实际问题 等,通过互相观摩和学习,拓宽
高中数学优质课《函数的概 念》教学设计共4套
目录
• 课程背景与目标 • 教学内容与方法 • 教学过程设计 • 学生活动设计 • 教学评价与反馈 • 教学资源与开发
01
课程背景与目标
高中数学课程标准要求
了解函数的有界性、单调性、周期 性和奇偶性等性质,理解复合函数 及分段函数的概念,了解反函数及 隐函数的概念。
分享生活中的函数实例
02
学生分享生活中与函数相关的实例,将抽象的数学概念与实际
生活相联系,提高学习兴趣。
探讨函数性质
03
学生探讨函数的性质,如单调性、奇偶性等,通过对比分析不
同函数的性质,加深对函数性质的理解。
动手实践:操作练习,巩固知识
绘制函数图像
学生动手绘制不同函数的图像, 通过观察图像的变化趋势和特征,
提问与回答 鼓励学生提出问题,并对学生的问题进行及时回 应和解答,通过学生的提问和回答情况来评价学 生的理解程度。
随堂测试 通过简短的随堂测试,了解学生对本节课内容的 掌握情况,及时发现学生的学习困难。
及时收集反馈信息,调整教学策略
01
02
03
学生反馈
在课后向学生收集对本节 课的反馈意见,包括教学 内容、教学方法、教学进 度等方面的意见和建议。
函数概念教案
函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
函数的概念优质说课稿市公开课一等奖课件名师大赛获奖课件
1.[引例1](P15)一枚炮弹发射后,通过26s落到地面击 中目的。炮弹的射高为845m,且炮弹距地面的高度h (单位:m)随时间t(单位:s)变化的规律是
h 130t 5t 2
提出下列问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范畴吗?分别用集合A和 集合B表达出来。 (4) 对于集合A中的任意一种时间t,按照对应关系
P24 A 1----4做作业本上 补充:已知函数
f (x)=4x+3,g(x)=x2,
求f[f(x)],f[g(x)],g[f(x)],g[g(x)].
定义域(domain):x的取值范畴A叫做函数的定义域; 与x值相对应的y值叫做函数值。
值域(range):函数值的集合 f (x) x A B 叫做函数的值域。
函数符号 y f (x)表示“y是x的函数”,
有时简记作函数 f (x)
问题:y=1(x∈R)是函数吗?
(二)已学函数的定义域和值域
练习、 下列各组中的两个函数与否为相似
的函数?
①
y1
(x
3)(x x3
5)
y2 x 5
②y 1
x 1 x 1 y2
(x 1)(x 1)
③f 1
(
x)
(
2x 5)2
f2 (x) 2x 5
三、小结:
1.函数的定义 2、函数的值: 3、函数的三要素判断同一函数: 4、有关求定义域:
四、作业
例3、 已知:f (x) =x2x+3 求:f(-1), f(a),
f(x+1), f( 1 ), f(f(x)), x
初中函数的概念优秀教案
教案:初中函数的概念教学目标:1. 了解函数的概念,理解函数是一种描述变量之间依赖关系的重要数学模型。
2. 掌握函数的定义域、值域的定义,并能求出一些简单函数的定义域和值域。
3. 能够用集合与对应的语言来描述函数,对事物间的联系进行数学化的思考。
教学重点:1. 函数的概念及定义域、值域的定义。
2. 用集合与对应的语言来描述函数。
教学难点:1. 函数概念的理解。
2. 函数定义域、值域的求解。
教学准备:1. 教材或教学PPT。
2. 相关实例和图片。
教学过程:一、导入(5分钟)1. 通过现实生活中的实例,如气温、海拔高度与时间的关系,让学生感受函数的概念。
2. 引导学生思考:这些实例中,变量之间的依赖关系是如何描述的?二、新课讲解(15分钟)1. 讲解函数的概念:函数是一种描述变量之间依赖关系的重要数学模型。
2. 讲解函数的定义域、值域的定义:定义域是函数所有可能的输入值的集合,值域是函数所有可能的输出值的集合。
3. 通过具体例子,讲解如何求解简单函数的定义域和值域。
三、课堂练习(15分钟)1. 让学生独立完成教材中的相关练习题。
2. 引导学生思考:如何用集合与对应的语言来描述函数?四、案例分析(10分钟)1. 分析现实生活中的实例,如销售问题、物体运动问题等,让学生理解函数在实际问题中的应用。
2. 引导学生思考:如何将实际问题转化为函数问题?五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念、定义域、值域等知识点。
2. 强调函数在实际问题中的应用价值。
六、课后作业(课后自主完成)1. 复习本节课所学的内容,巩固函数的概念、定义域、值域等知识点。
2. 完成教材中的相关练习题。
教学反思:本节课通过现实生活中的实例,引导学生理解函数的概念,掌握函数的定义域、值域的求解方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,通过案例分析,让学生了解函数在实际问题中的应用,提高学生的数学素养。
《函数的概念》教学教案
《函数的概念》教学教案一、教学目标1. 知识与技能:(1)理解函数的定义及其基本性质;(2)能够正确运用函数的概念解决实际问题。
2. 过程与方法:(1)通过实例分析,引导学生掌握函数的定义;(2)利用数形结合,让学生理解函数的性质。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)函数的定义及其基本性质;(2)函数图像的特点。
2. 教学难点:(1)函数概念的理解;(2)函数图像的解读。
三、教学方法1. 情境导入:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲授法:(1)讲解函数的定义及基本性质;(2)分析函数图像的特点,引导学生理解函数的概念。
3. 讨论法:(1)分组讨论函数实例,让学生深入理解函数的概念;(2)组织学生展示讨论成果,促进学生之间的交流。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
四、教学过程1. 导入新课:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲解函数的定义及基本性质:(1)讲解函数的定义,让学生理解函数的概念;(2)介绍函数的基本性质,如单调性、奇偶性等。
3. 分析函数图像的特点:(1)让学生观察函数图像,理解函数的性质;(2)引导学生学会解读函数图像,掌握函数图像的特点。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
5. 课堂小结:(2)强调函数在实际问题中的应用价值。
五、课后作业1. 复习本节课所学内容,整理函数的定义及基本性质;2. 运用函数概念,解决实际问题;3. 观察函数图像,分析函数的单调性、奇偶性等性质。
《函数的概念》教学设计(精品)
函数的概念(一)教学目标1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(二)教学重点与难点重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.(三)教学方法回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.(四)教学过程示例3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,五”计划以来,我国城镇居民的生活质量发生了显著.备选例题例1 函数y = f (x)表示( C )A.y等于f与x的乘积B.f (x)一定是解析式C.y是x的函数D.对于不同的x,y值也不同例2 下列四种说法中,不正确的是( B )A.函数值域中每一个数都有定义域中的一个数与之对应B.函数的定义域和值域一定是无限集合C.定义域和对应关系确定后,函数的值域也就确定了D.若函数的定义域只含有一个元素,则值域也只含有一个元素例3 已知f (x) = x2 + 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数.例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )【解析】取水深2H h ,注水量V ′>2V ,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V,C 、D 中V ′=2V ,故排除A 、C 、D.。
函数的概念教学设计
函数的概念教学设计【教学设计】一、教学目标:1.理解函数的概念;2.学会利用不同的表示法来描述函数;3.能够确定一个数是否是给定函数的定义域内的元素;4.能够根据函数的图象和方程求解函数的值;5.能够分析函数的增减性和奇偶性。
二、教学重点:1.函数的定义和表示法;2.函数的定义域和值域;3.函数的图象和方程;4.函数的增减性和奇偶性。
三、教学难点:1.函数的图象和方程的互相转换;2.函数的增减性的判定。
四、教学过程:1.引入(10分钟)教师先展示一个美丽的图象,例如一朵盛开的花朵,然后问学生,你们觉得这是一个函数吗?为什么?引导学生了解函数的概念。
2.讲解函数的定义和表示法(20分钟)a.函数的定义:函数是一种将一个或多个元素从集合X映射到集合Y 的关系,即每一个X中的元素都有且仅有一个Y中的元素与之对应。
b.函数的表示法:可以用图象、方程、表格和文字等形式来表示函数的定义和关系。
3.函数的定义域和值域(15分钟)a.函数的定义域:函数的定义域是指能够使函数有意义的X中的元素的集合。
b.函数的值域:函数的值域是指函数所有可能的Y中的元素的集合。
4.函数的图象和方程(30分钟)教师介绍函数的图象和方程的互相转换方法,并通过例题进行讲解,学生跟随教师一起操作。
5.函数的增减性和奇偶性(20分钟)a.函数的增减性:根据函数的图象,学生将会学习如何判别一个函数在其中一区间上是增函数还是减函数。
b.函数的奇偶性:根据函数的图象和方程,学生将会学习如何判别一个函数是奇函数还是偶函数。
6.拓展应用(15分钟)学生进行一些简单的拓展应用练习,如:根据给出的函数图象或方程,确定函数的定义域、值域、增减性和奇偶性等。
7.总结和展望(10分钟)教师对本节课的内容进行总结,并展望下节课的内容,鼓励学生多进行练习和思考。
五、教学资源和评价方式:1.教学资源:幻灯片、电脑、投影仪等;2.评价方式:课堂练习、小组讨论、个人答辩等。
《函数的概念》教学设计
《函数的概念》教学设计一、教学目标:1.理解函数的概念,能够区分函数和非函数关系;2.掌握函数的表示方法,包括用方程、图像、表格等形式表示函数;3.能够根据函数的定义和表示方法,对函数进行分析和运用;4.培养学生独立解决问题的能力,培养学生数学思维。
二、教学重点:1.函数的定义和性质;2.函数的表示方法;3.函数的应用。
三、教学难点:1.区分函数和非函数的关系;2.基本函数的性质和应用。
四、教学过程:1.导入(5分钟)教师简要介绍函数的概念,引导学生思考日常生活中的各种关系,例如温度和时间的关系、距离和时间的关系等,并让学生探讨这些关系是否符合函数的定义。
2.探究函数的定义(15分钟)通过实际例子引导学生了解函数的定义,即每个自变量对应唯一的因变量。
让学生在小组内互相讨论、设计实验验证函数的定义,并总结出符合函数定义的例子。
3.函数的表示方法(20分钟)教师介绍函数的表示方法,包括函数方程、图像和表格等形式。
通过示例讲解,引导学生学会用这些表示方法来描述函数的特点和性质。
让学生自行练习,将给定的函数用不同的表示方法表示出来。
4.函数的性质(20分钟)教师讲解函数的基本性质,包括定义域、值域、奇偶性、单调性等。
通过例题演练,帮助学生理解这些性质的含义和作用,并能灵活运用到具体问题中。
5.函数的应用(20分钟)教师介绍函数在实际生活中的应用,例如成本函数、收入函数、利润函数等。
通过实例分析,让学生了解函数在解决实际问题中的重要性,并培养学生应用函数分析问题的能力。
6.练习与讨论(15分钟)学生进行一些练习题,巩固所学知识,并在小组内讨论解答过程中遇到的问题。
教师进行点拨和解答,指导学生掌握函数的相关知识。
7.总结与展望(5分钟)教师对本节课的内容进行总结,强调函数的重要性和应用价值。
展望下节课的内容,引导学生继续深入学习函数的更多性质和应用。
五、教学反思:本节课通过引导学生探究函数的定义、性质和表示方法,让学生初步了解函数的基本概念。
高中数学《函数的概念》公开课优秀教学设计三
高中数学《函数的概念》公开课优秀教学设计三教学内容:本节课的教学内容选自高中数学教材必修一第二章第一节《函数的概念》。
具体内容包括:函数的定义、函数的表示方法、函数的性质等。
教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 能够运用函数的性质解决实际问题。
3. 培养学生的逻辑思维能力和创新能力。
教学难点与重点:重点:函数的定义,函数的表示方法,函数的性质。
难点:函数概念的理解,函数性质的应用。
教具与学具准备:教具:多媒体教学设备,黑板,粉笔。
学具:教材,笔记本,铅笔。
教学过程:一、情境引入(5分钟)教师通过展示一些生活中的实际问题,如温度随时间的变化,物体的高度随时间的变化等,引导学生思考这些问题的数学模型。
二、新课导入(10分钟)1. 教师引导学生思考如何用数学语言来描述这些实际问题中的关系。
2. 教师给出函数的定义,并解释函数的概念。
3. 教师讲解函数的表示方法,包括列表法、图象法、解析法等。
三、例题讲解(10分钟)教师通过讲解一些典型的例题,让学生理解函数的性质,并学会如何运用函数的性质解决实际问题。
四、随堂练习(5分钟)教师给出一些练习题,让学生现场解答,以巩固所学知识。
五、课堂小结(5分钟)六、板书设计(5分钟)教师根据教学内容设计板书,突出函数的定义、表示方法和性质。
作业设计:1. 请用列表法、图象法、解析法各表示一个函数。
答案:列表法:y = 2x图象法:过原点,斜率为2的直线解析法:y = f(x) = 2x2. 请解释下列函数的定义域和值域:y = √(x+1),y = |x|。
答案:y = √(x+1)的定义域为x≥1,值域为y≥0。
y = |x|的定义域为全体实数,值域为y≥0。
课后反思及拓展延伸:本节课通过生活中的实际问题引入函数的概念,让学生能够更好地理解函数的内涵。
在讲解函数的表示方法时,通过多种方法的展示,让学生能够全面地了解函数的表示方式。
在讲解函数的性质时,通过典型的例题让学生掌握如何运用函数的性质解决实际问题。
2017年全国数学优质课一等奖作品_函数的概念教学设计[王加平]
1.2.1 函数的概念 教学设计云南省玉溪第一中学 王加平一、教材分析:本节内容为《1.2.1函数的概念》 ,是人教A 版高中《数学》必修一《1.2函数及其表示》的第一课.函数是中学数学最重要的基本概念之一,在初中,学生已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制.如果只根据变量观点,那么有些函数就很难进行深入研究.例如:对这个函数,如果用变量观点来解释,会显得十分勉强,也说不出x 的物理意义是什么.但用集合、对应的观点来解释,就十分自然.函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础,它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法.二、学情分析:在学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,同时,虽然函数比较抽象,但是函数现象大量存在于学生的周围,教科书选用了运动、自然界、经济生活中的实际例子进行分析,从实例中抽象概括出用集合与对应的语言来定义函数概念,对学生的抽象、归纳能力要求比较高,能很好的锻炼学生的抽象思维能力以及加深对函数概念的理解.三、教学目标:(一)知识与技能理解函数的定义,能用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的三要素. (二)过程与方法通过三个实例共性的分析到函数概念的形成,再对三个实例进行拓展,让学生对函数概念进行辨析,体现从特殊到一般,再从一般到特殊的思想方法,渗透了归纳推理,实现了感性认识到理性认识的升华.(三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学生的抽象概括能力,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,感受数学的抽象性和简洁美.四、教学重点与难点:(一)教学重点⎩⎨⎧=.01)(是无理数时,当是有理数时,,当x x x f体会函数是描述变量之间的依赖关系的重要数学模型,并能用集合与对应的语言来刻画函数. (二)教学难点函数概念的理解及符号“)(x f y ”的含义.五、教学策略:首先,通过魔术表演,体现函数在实际生活中的运用,激发学生进一步学习函数的积极性;其次,在学生习惯用解析式表示函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的方式,结合函数的数与形两个方面给学生充分的认识,为学生用集合与对应的语言刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f 、函数关系中多对一的情况、值域是集合B 的子集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进行拓展让学生抛开物理运动背景,用集合与对应的语言来分析函数并强调函数关系中对应关系的方向.六、教学基本流程:七、教学情景设计:。
函数的概念--(全国优质课课件)
实数集R记作 (-∞,+∞),
“∞”不是一个 数,表示无限大的变化趋势,因此 作为端点, 不用方括号.
20
把下列不等式写成区间表示
1. -2<x<4,记作:(-_2_,_4_) ; 2.x >4,记作:__(_4_,_+_∞__)__; 3. 5≤x≤7,记作: [5,;7] 4. 2≤x<5,记作: [2,5); 5. 1<x≤3,记作: _(_1_,_3_]; 6. x≤-10,记作:_(_-_∞_,_-_1_0;]
7.x≥3,记作:__[3_,_+_∞_)_; 8.x<-6,记作:_(_-_∞_,_-_6_) ;
9. {x|x>6}∩{x|-5<x≤14}记作___(_6_,1__4;]
10. {x|-2≤x<6}∪{x|3<x≤8}记作___[-_2__,8. ]
21
22
23
24
(1)y
2
x
y 3 x3
(2)y x2
(4) y x2
x
2、 f (x) 2x 1, g(x) 2x 1 求(1)、f(1); f(f(1)); (2)、f(a); f(a1); (3)、f(g(1)); g(f(x));
19
(设a, b为实数,且a<b)
闭区间:满足a≤x≤b的实数x的集合,记作 [a,b] 开区间:满足a<x<b的实数x的集合,记作 (a , b同?
5
知识探究(三)
国际上常用恩格尔系数反映一个国家人民生活质量的高 低,恩格尔系数越低,生活质量越高.下表是“八五”计 划以来我国城镇居民恩格尔系数变化情况.
函数的概念教学设计(全国优质课)
函数的概念教学设计(全国优质课)
二、学情分析
学生在初中已经学习了基于运动学的函数定 义且具备一定运算能力,思维活跃、求知欲强、 自我表现欲望强。
3.理解符号 f ( x ) 的含义,能解释 y f (x)与 y f (a) 的区别与联系。
函数的概念教学设计(全国优质课)
三、教学目标设置
函数定义的形成。通过具体实例的引
重 点 导,借助初中函数定义,探寻集合间的对
应关系,总结函数定义。
难
1.理解函数符号,
点
2.函数概念的整体性认识,
3.理解值域和集合B的关系。
6.对比两种定义,升华提高。
函数的概念教学设计(全国优质课)
五、教学过程设计
环节一:回顾初中定义,提供基础。
1.个别回答
2.总结凝练
复习初中函数定义
总结“对应”和“依赖”特征
函数的概念教学设计(全国优质课)
五、教学过程设计
环节二:实例引导思考,认知冲突。
1.引例一 (代数式)
2.引例二 (图像)
3.引例三 (表格)
引出“集合”、 “对应”
引出 “f”
引出“f(x)”
函数的概念教学设计(全国优质课)
五、教学过程设计
环节三:归纳函数要点,凝练定义。
1.归纳要点
2.凝练定义
总结三个引例的共同
归纳要点,串联得出定义。
特点:集合、对应。
函数的概念教学设计(全国优质课)
五、教学过程设计
环节四:提供正反辨析,深化认知。
函数的概念教学设计全国优质课课件
03
应用
指数函数在经济学、物理学、化学等领域有着广泛的应用,如表示复利
计算、描述放射性物质的衰变等。
对数函数
定义
对数函数是以幂(真数)为自变量,指数为因变量,底数 为常量的函数,叫对数函数。
性质
对数函数的底数必须为正数且不等于1,其图像根据底数 的不同而有所区别,但都经过点(1,0)。
应用
对数函数在解决与指数函数相关的问题时非常有用,如计 算复利、求解指数方程等。
形成的解析表达式”。
函数的演变
讲述函数概念从解析式到对应关系 、再到集合论的演变过程,展示函 数概念的逐步完善和深化。
现代函数定义
介绍现代数学中函数的定义,即“ 函数是一种特殊的对应关系,它使 得每个输入值都对应一个唯一输出 值”。
函数在数学中的地位
函数与数学基础
阐述函数作为数学基础概念的重 要性,它是研究变量之间关系的
05 函数应用举例
在数学中的应用
解决数学问题
函数在数学中用于描述变量之间的关系,是解决 数学问题的重要工具。
绘制图像
通过函数表达式可以绘制出对应的图像,有助于 直观理解函数性质。
求解方程和不等式
函数方法可以用于求解方程和不等式,简化解题 过程。
在物理中的应用
描述物理现象
函数在物理中用于描述各种物理现象,如运动、力、电磁 等。
应用
幂函数在自然科学和社 会科学中有着广泛的应 用,如表示物体的运动 规律、描述经济增长模 型等。
指数函数
01
定义
指数函数是重要的基本初等函数之一,一般地,y=a^x函数(a为常数且
以a>0,a≠1)叫做指数函数。
02
性质
指数函数的底数a必须为正数且不等于1,当a>1时,函数为增函数;当
《函数的概念》教学设计
《函数的概念》教学设计教学设计:《函数的概念》教学目标:1.了解函数的定义和基本概念;2.掌握函数的表示方法和函数的性质;3.能够应用函数解决实际问题。
教学重点:1.函数的定义和基本概念;2.函数的表示方法和函数的性质。
教学难点:1.函数的概念的理解;2.函数的性质的应用。
教学过程:Step 1:导入新知(5分钟)1.教师向学生介绍函数的概念,并与学生一起讨论函数在生活中的应用;2.引导学生思考,如何描述从一个自变量到一个因变量的关系。
Step 2:函数的定义与表达(15分钟)1.教师向学生介绍函数的定义,即自变量和因变量之间的对应关系;2.引导学生思考函数的表示方法,如函数的符号表示和图像表示;3.教师通过示例,向学生演示函数的符号表示和图像表示的过程。
Step 3:函数的性质(15分钟)1.教师介绍函数的性质,如函数的定义域、值域和奇偶性等;2.以示例为基础,引导学生发现函数在不同定义域和值域上的特点;3.教师组织学生进行小组合作,让学生根据所学知识,共同解答一些函数性质相关的问题。
Step 4:函数的应用(20分钟)1.教师通过实际问题引导学生思考函数的应用;2.教师给出一些实际问题,要求学生运用函数的概念和性质解决;3.学生进行个人思考和小组合作,找出解决问题的方法,并给出解答。
Step 5:总结与扩展(10分钟)1.教师对本节课进行总结,强调重要知识点和难点;2.引导学生思考函数的发展历程,以及函数在实际生活中的应用;3.教师布置相应的作业,巩固学生对函数的理解和应用。
教学手段:1.教师讲解;2.学生合作学习;3.教学实例;4.教学辅助工具。
教学资源准备:1.教材《高中数学》相关章节;2.教学投影仪或白板;3.相关课件和教具。
教学评价方式:1.学生能够准确、简洁地描述函数的概念;2.学生能够运用所学知识解决实际问题;3.学生能够理解函数的性质与其在实际中的应用。
《函数的概念》教学设计
《函数的概念》教学设计教学设计-《函数的概念》一、教学目标:1.了解函数的概念及其在数学中的作用;2.能够正确地识别函数和非函数的关系集合;3.掌握函数的图像和函数的性质;4.能够用函数描述实际问题并解决相关问题。
二、教学重点与难点:1.函数的定义和图像;2.函数的性质和应用;3.非函数的概念。
三、教学内容与过程:1.引入函数的概念(10分钟)1.2提问:这个图形中的x和y之间是否存在确定的对应关系?能否将它表示为一个集合?1.3引导学生通过讨论,得出函数的概念:函数是一种特殊的集合间关系,它将一个集合的每个元素与另一个集合的唯一元素对应起来。
1.4出示函数的标准形式f(x)=x^2,推导出函数的定义。
2.函数的图像(10分钟)2.1出示函数f(x)=x^2的图像,并解释坐标系和曲线的意义;2.2让学生观察曲线的变化情况,总结并给出x的变化规律;2.3出示其他函数图像,引导学生分析其特点,如线性函数、指数函数等。
3.函数的性质(20分钟)3.2解释函数性质的重要性;3.3引导学生通过观察图像和计算,总结函数性质,如单调性、奇偶性等;3.4提醒学生注意特殊函数,如常数函数、恒等函数等。
4.函数的应用(30分钟)4.1出示一些实际问题,如车行驶问题、物品销售问题等;4.2引导学生通过列方程和绘制函数图像,解决相关问题;4.3让学生思考其他实际问题,并用函数解决。
5.非函数的概念(10分钟)5.2引导学生观察图像,总结非函数的特点;5.3提醒学生非函数的情况,如一个x对应多个y值、两个x对应同一个y值等。
6.小结与拓展(10分钟)6.1小结函数的概念、图像和性质;6.2提醒学生多观察和思考函数相关问题。
四、教学手段1.投影仪和幻灯片;2.黑板和彩色粉笔;3.相关练习题和实例;4.学生参与讨论。
五、课后作业1.完成课堂上的练习;2.独立思考并解决两个与函数相关的实际问题;3.预习下一节课内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“函”, 原意匣。
甘肃省白银市实验中学 王建武
实用精品课件PPT
1
函数的概念
★ 教学内容分析
★ 学生学情分析
★ 教学目标设置
★ 教学策略分析
★ 教学过程设计
★ 教后 反思
实用精品课件PPT
2
一、教学内容分析
本节教学涉及基于集合与对应的函数定义
(概念性知识)、函数三要素(事实性知识)、
实用精品课件PPT
6
四、教学策略分析
问题串启发——讨论探究
问题串 启发
自主 探究
讨论 展示
总结 提升
实用精品课件PPT
7
五、教学过程设计
1.回顾初中定义,提供基础。
2.实例引导思考,认知冲突。 3.归纳函数要点,凝练定义。
4.提供正反辨析,深化认知。
5.引出两类问题,总结程序。
6.对比两种定义,升华提高。
3.理解符号 f (x)的含义,能解释 y f (x)与 y f (a) 的区别与联系。
实用精品课件PPT
5
三、教学目标设置
函数定义的形成。通过具体实例的引
重 点 导,借助初中函数定义,探寻集合间的对
应关系,总结函数定义。
难
1.理解函数符号,
点
2.函数概念的整体性认识,
3.理解值域和集合B的关系。
实用精品课件PPT
引出“f(x)”
10
五、教学过程设计
环节三:归纳函数要点,凝练定义。
1.归纳要点
2.凝练定义
总结三个引例的共同 特点:集合、对应。
归纳要点,串联得出定义。
实用精品课件PPT
11
五、教学过程设计
环节四:提供正反辨析,深化认知。
1.正反实例辨析 2.交流讨论
3.深化认知
根据定义 判断
定义域求法(程序性知识)、函数相等的判断
(程序性知识)等内容。
教学内容庞杂且较难理解、知识联系多且比
较紧密、教学难度大,属于高中数学知识交汇点
和支撑高中数学知识框架的核心部分,是学生进
入高中后接触的第一个抽象概念。
实用精品课件PPT
3
二、学情分析
学生在初中已经学习了基于运动学的函数定 义且具备一定运算能力,思维活跃、求知欲强、 自我表现欲望强。
归纳、整合 认知碰撞
实用精品课件PPT
深化理解 总结定义要点
12
五、教学过程设计
环节五:引出两类问题,总结程序。
1.定义域求解
2.函数相等的判断
总结程序
总结程序
实用精品课件PPT
13
五、教学过程设计
环节六:对比两种定义,升华提高。
分析对比两种定义
实用精品课件PPT
14
六、教后反思
1.两次通过实例引发学生认知冲突,然后引导 优 思考,总结核心知识。 点
实用精品课件PPT
8
五、教学过程设计
环节一:回顾初中定义,提供基础。
1.个别回答
2.总结凝练
复习初中函数定义
总结“对应”和“依赖”特征
实用精品课件PPT
9
五、教学过程设计
环节二:实例引导思考,认知冲突。
1.引例一 (代数式)
2.引例二 (图像)
3.引例三 (表格)
引出“集合”、 “对应”
引出 “f”
学生的抽象思维能力、学习难点知识必要的 意志品质、小组探讨中与人合作的能力都显不足。
实用精品课件PPT
4
三、教学目标设置
1.理解函数的定义,能用集合与对应语 言刻画具体函数。通过实例分析,体会对应 关系在刻画函数概念中的作用。
2.理解函数三要素,会判断两个函数相 等,在具体实例中认识函数概念的整体性。
2.不同类型知识使用相应教学策略,符合学生 认知规律。
1.引例处理时间偏多,造成后续教学紧张。 不 足 2.生活实例涉及较少,比较抽象。
实用精品课件PPT
15
谢谢各位评委的指导!
实用精品课件PPT
16
Thank You
更多精品 敬请关注!