九年级数学上册第4课时 黄金分割
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:34445768428937925654158542
学校:摩歆市五镇淮子学校*
教师:高至发*
班级:天鹅参班*
第4课时黄金分割
【知识与技能】
1.理解黄金分割的定义;会找一条线段的黄金分割点.
2.会判断一点是否是线段的黄金分割点.
【过程与方法】
通过找一条线段的黄金分割点,培养学生理解能力和动手能力.
【情感态度】
理解黄金分割点的现实意义,动手制作相关图形,感受黄金分割的美,体会教学的应用价值.
【教学重点】
找一条线段的黄金分割点.
【教学难点】
黄金分割比的应用.
一、情境导入,初步认识
现实生活中存在许多优美的图画和建筑,例如古埃及金字塔、古希腊巴台农神庙,这些建筑的边长之间的比都接近某一个数,你知道这个数是多少吗?
【教学说明】利用来源于生活中的美丽图象或建筑吸引学生的注意力,营造一个感受美、关注美、探究美的氛围,唤醒学生对美的感受.
二、思考探究,获取新知
动手量一量,五角星图案中,线段AC、BC的长度,然后计算AC
AB
与
BC
AC
,
它们的值相等吗?
【教学说明】学生亲自动手操作,得到黄金比并加深对黄金分割的理解.
【归纳结论】在线段AB上,点C把线段AB分成两条线段AC和BC,如
果AC
AB
=
BC
AC
,那么称线段AB被点C黄金分割, 点C叫做线段AB的黄金分割点,
AC与AB的比叫做黄金比.
三、运用新知,深化理解
1.已知C是线段AB的一个黄金分割点,则AC∶AB为(D)
2.把2米的线段进行黄金分割,则分成的较短的线段长为0.764 米.
3.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE>
CE,AE与BD相交于点F.那么BF∶FD的值为51 -
.
4.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.68米,身体躯干(脚底到肚脐的高度)为1.02米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位)
解:设她应选择高跟鞋的高度是xcm,
则102
168
x
x
+
+
=0.618,
解得:x≈4.8cm.故答案为:4.8cm.
5.已知线段AB,求作线段AB的黄金分割点C,使AC>BC.
解:作法如下:
(1)延长线段AB至F,使AB=BF,分别以A、F为圆心,以大于线段
AB的长为半径作弧,两弧相交于点G,连接BG,则BG⊥AB,在BG上取点D,
使BD=1
2 AB;
(2)连接AD,在AD上截取DE=DB;
(3)在AB上截取AC=AE.如图,点C就是线段AB的黄金分割点.
【教学说明】通过例题分析使学生进一步理解定理的应用和黄金分割的意义.使学生能更好地掌握本节知识.
6.在矩形ABCD中,AB>BC,如图.若BC∶AB=51
2
-
∶1,那么这个矩形
成为黄金矩形.在黄金矩形ABCD内作正方形EBCF,则矩形AEFD是黄金矩形吗?试说明理由.
解:矩形AEFD是黄金矩形.理由如下:
设AB=1,由BC∶AB=51
-
∶1可知BC=
51
-
,
所以BE=51
2
-
,AE=1-
51
2
-
=3-52,
所以AE∶EF=35
-
∶
51
-
=
51
-
∶1.
故矩形AEFD是黄金矩形.
四、师生互动,课堂小结
如何找一条线段的黄金分割点,这节课你有哪些收获?
1.布置作业:教材“习题4.8”中第1 题.
2.完成练习册中相应练习.
本节课知识点较多,具有一定的抽象性,所以有一部分学生掌握的不够好.在今后的教学中将努力改变,铺设阶梯,给大多数同学发言、参与的机会,活跃课堂气氛.