平行与垂直PPT课件
合集下载
平行与垂直ppt课件
宽屏展示
在宽屏显示器上,平行PPT能更好地利用屏幕宽度,提供更丰富的 信息内容。
多语言环境
在多语言环境下,平行PPT可以方便地调整不同语言的文本位置, 确保内容正确展示。
垂直PPT的应用场景
传统报告
01
在传统的报告中,内容通常从上到下展示,垂直PPT更符合这种
展示习惯。
文字较多的内容
02
当PPT内容以文字为主时,垂直PPT能更好地展示更多的文字信
垂直PPT课件
指将PPT的各个页面按照层级关 系进行排列,页面之间存在交叉 或重叠。
特点
平行PPT课件
页面之间的关联性较强,内容连贯, 易于理解和记忆。
垂直PPT课件
页面之间的关联性较弱,内容相对独 立,需要一定的思维跳跃和联想能力 。
区别
01
平行PPT课件注重内容的连贯性 和系统性,适合展示时间顺序或 逻辑顺序较强的内容,如流程图 、组织结构图等。
不同的演示者可能有不同的习惯和偏好,可以根据自己的习惯选择合适 的PPT类型。
06
PPT设计技巧与建议简洁明了
尽量减少文字和图片的数量, 突出重点,使观众更容易理解
内容。
统一风格
保持PPT的整体风格和设计元 素的一致性,增强PPT的整体
感。
清晰布局
合理安排内容的位置和排版, 使其符合观众的阅读习惯和视
设备兼容性
考虑演示设备的大小和方向,确保选择的PPT类型能在不 同设备上正确显示。
05
平行与垂直PPT的优缺点
平行PPT的优缺点
结构清晰
平行PPT通常采用横向布局,层次结构更加清晰,方便观众 理解。
信息量大
平行PPT可以容纳更多的信息,适合展示数据、图表等内容 。
在宽屏显示器上,平行PPT能更好地利用屏幕宽度,提供更丰富的 信息内容。
多语言环境
在多语言环境下,平行PPT可以方便地调整不同语言的文本位置, 确保内容正确展示。
垂直PPT的应用场景
传统报告
01
在传统的报告中,内容通常从上到下展示,垂直PPT更符合这种
展示习惯。
文字较多的内容
02
当PPT内容以文字为主时,垂直PPT能更好地展示更多的文字信
垂直PPT课件
指将PPT的各个页面按照层级关 系进行排列,页面之间存在交叉 或重叠。
特点
平行PPT课件
页面之间的关联性较强,内容连贯, 易于理解和记忆。
垂直PPT课件
页面之间的关联性较弱,内容相对独 立,需要一定的思维跳跃和联想能力 。
区别
01
平行PPT课件注重内容的连贯性 和系统性,适合展示时间顺序或 逻辑顺序较强的内容,如流程图 、组织结构图等。
不同的演示者可能有不同的习惯和偏好,可以根据自己的习惯选择合适 的PPT类型。
06
PPT设计技巧与建议简洁明了
尽量减少文字和图片的数量, 突出重点,使观众更容易理解
内容。
统一风格
保持PPT的整体风格和设计元 素的一致性,增强PPT的整体
感。
清晰布局
合理安排内容的位置和排版, 使其符合观众的阅读习惯和视
设备兼容性
考虑演示设备的大小和方向,确保选择的PPT类型能在不 同设备上正确显示。
05
平行与垂直PPT的优缺点
平行PPT的优缺点
结构清晰
平行PPT通常采用横向布局,层次结构更加清晰,方便观众 理解。
信息量大
平行PPT可以容纳更多的信息,适合展示数据、图表等内容 。
平行与垂直 PPT课件
直线 可以向两端无限延长
①
②
③
④
⑤
⑥
⑦
相交
①
③
⑥
不相交
②
④
⑤
⑦
②
④
⑦
⑤
相交
①
③
不相交
④
⑥ ⑦
②
⑤
永不相交
a
b
在同一平面内,不相交的两条直线叫平行 线,也可以说这两条直线互相平行。 其中一条直线是另一条的平行线。
a∥bBiblioteka 下面各图中哪些是平行线?哪 些不是?为什么?
×
×
×
×
×
前面
在同一平面
直线
2、两条直线相交,那么这两条直线互相垂直。( ×)
相交成直角
3、如图
B
直线B叫垂线。 (×)
A 直线B叫A的垂线。
前面
不在同一平面
相交
①
③
⑥
④
⑦
在同一平面内,如果两条 直线相交成直角,就说这 两条直线互相垂直。
其中一条直线叫做另一条 直线的垂线。
a⊥b
两条直线的交点叫做垂足。
b
a
O 垂足
课间10分钟……
小练习册第33、34 页的我会填和我会 找
下面的说法对吗?
1、在同一个平面内,不相交的两条线互相平行。(×)
①
②
③
④
⑤
⑥
⑦
相交
①
③
⑥
不相交
②
④
⑤
⑦
②
④
⑦
⑤
相交
①
③
不相交
④
⑥ ⑦
②
⑤
永不相交
a
b
在同一平面内,不相交的两条直线叫平行 线,也可以说这两条直线互相平行。 其中一条直线是另一条的平行线。
a∥bBiblioteka 下面各图中哪些是平行线?哪 些不是?为什么?
×
×
×
×
×
前面
在同一平面
直线
2、两条直线相交,那么这两条直线互相垂直。( ×)
相交成直角
3、如图
B
直线B叫垂线。 (×)
A 直线B叫A的垂线。
前面
不在同一平面
相交
①
③
⑥
④
⑦
在同一平面内,如果两条 直线相交成直角,就说这 两条直线互相垂直。
其中一条直线叫做另一条 直线的垂线。
a⊥b
两条直线的交点叫做垂足。
b
a
O 垂足
课间10分钟……
小练习册第33、34 页的我会填和我会 找
下面的说法对吗?
1、在同一个平面内,不相交的两条线互相平行。(×)
两条直线的平行与垂直ppt课件
C.垂直
D.重合
3.若直线l过点(-1,2)且与直线2x-3y+4=0垂直,则直线l的方程是( C ) A.2x-3y+5=0 B.2x-3y+8=0 C.3x+2y-1=0 D.3x+2y+7=0
根据今天所学,回答下列问题: 1.怎样根据直线方程的特征判断两条直线的平行或垂直关系呢? 2.判断两条直线是否平行的步骤是哪些? 3.判断两条直线是否垂直的方法有哪些?
1.直线l1与l2为两条不重合的直线,则下列命题正确的是( BCD ) A.若l1∥l2,则斜率k1=k2 B.若斜率k1=k2,则l1∥l2 C.若倾斜角α1=α2,则l1∥l2 D.若l1∥l2,则倾斜角α1=α2
2.已知直线l1的倾斜角为60°,直线l2经过点A(1, 3),B(-2,-2 3),则 直线l1,l2的位置关系是( A ) A.平行或重合 B.平行
解:(1)由题意知,直线
<m>l1</m>的斜率
<m>k1
=
5−1 −3−2
=
−
45</m>,
直线
<m>l2</m>的斜率
<m>k2
=
−7+3 8−3
=
−
45</m>,
所以直线 <m>l1</m>与直线 <m>l2</m>平行或重合,
又
<mk>BC
=
5− −3 −3−3
=
−
4 3
≠
−
45</m>,所以
所以 <m>l1//l2</m>.
数学四年级上册垂直与平行PPT课件
寻找我们身边的平行线与垂线:
你能找出我们生活中(比如教室)互 相平行与垂直的直线吗?先独立想一想, 然后告诉你的同桌。
想一想:这里的互相垂直是什么意思?
不同位置的垂线: a a
o
b
o
b
a
o
b
观察这三幅图,它们有什么相同点和不同点?
‘’
‘’
记作:a b 读作a垂直于b
根据下列各组直线的位置关系,给它们找到各自的家。
1
5
2、 5 平行的
2
3
6
7
3、 6
垂直的
4
8
1、 4、 7 、 8 、3、6
相交的
你能又快又准的找出运动场上 哪里有平行线与垂线吗?
两直线不相交的情况:
在同一个平面内不相交的两条直线叫做平行线, 也可以说这两条直线互相平行。 讨论:
怎样理解这里的“在同一平面内”、“不相交” 与“互相平行”的含义。
不同位置的平行线:
a a
b b
a b
“ ‘’ ‘’ 记作:a b 读作:a平行于b
两直线相交的情况:
b
a
垂线Байду номын сангаас
垂足
垂线
如果两条直线相交成直角,就说这两条直线互 相垂直。其中一条直线叫做另一条直线的垂线,这 两条直线的交点叫做垂足。
《平行与垂直》课件
物的高度、柱子和横梁等元素可以保持垂直,以实现视觉上的突出和力
量感。
02
城市规划
在城市规划中,垂直线用于划分不同的功能区域和空间层次。例如,商
业区、住宅区和公园等区域可以沿着垂直轴线进行布局,以实现空间的
有效利用和城市的可持续发展。
03
交通工程
在道路和桥梁设计中,垂直线用于支撑和连接不同的交通层面。这样可
如果一条直线与平面内的一条直 线垂直,那么这条直线与该平面
垂直。
斜线与平面
如果一条直线与平面内的两条相交 的直线都垂直,那么这条直线与该 平面垂直。
三垂线定理
如果平面内的一条直线与平面的一 条斜线在平面内的射影垂直,那么 这条直线与斜线垂直。
04
平行与垂直的应用
平行的应用
建筑学
在建筑设计中,平行线可以用来 构建对称、平衡和和谐的外观。 例如,窗户、门和墙面的线条可 以保持平行,以实现视觉上的统
填空题:若直线a与直线b平 行,且被直线c所截,则同位 角____,内错角____,同旁内
角____。
答案
判断题:错。应该是两条平行线被第三条直线所截,同位角相等。
选择题:B。
填空题:相等,相等,互补。
THANKS
感谢观看
一和美感。
交通工程
在道路和轨道设计中,平行线用 于规划车辆行驶的方向和路线。 这样可以确保交通流畅,减少事
故风险,并提高运输效率。
艺术与设计
在绘画、摄影和图形设计中,平 行线可以用来创造平衡、稳定和 动态的效果。艺术家可以利用平 行线来表达特定的主题和情感。
垂直的应用
01
建筑学
在建筑设计中,垂直线用于构建高大、雄伟和稳定的外观。例如,建筑
人教版四年级数学上册第五单元《平行与垂直》ppt课件
板书设计
平行与垂直
在同一个平面内不相交的两条直线叫做平行线, 也可以说这两条直线互相平行。 两条直线相交成直角,就说这两条直线互相垂直。
作业布置
教材练习十第1、2题
教教材材第第44页页做做一一做做第第22题题Βιβλιοθήκη 平行线的表示方法a b
a 与 b 互相平行
a
a
b
b
记作 a // b 读作 a 平行于 b
相交
认识垂线
垂足
两条直线相交成直角,就说这两条直线互相垂直。 其中一条直线叫做另一条直线的垂线 这两条直线的交点叫做垂足
垂线的表示方法
a
O
b
a
O b
a b
O
a 与 b 互相垂直
记作 a ⊥ b 读作 a 垂直于 b
课 堂 练 习 你能举出生活中一些有关互相平行的例子吗?
从图中找出两条 互相平行的线。
你能举出生活中一些有关互相垂直的例子吗?
从图中找出两条 互相垂直的线。
下面的各组直线,哪组互相平行?哪组互相垂直?
互相垂直
互相平行
判断下图哪组直线互相垂直,并标出垂足。
课堂总结
平行:在同一个平面内,不相交的两条直线叫做平行线。 垂直:两条直线相交成直角,就说这两条直线互相垂直。
人教版四年级数学上册第五单元
平行与垂直
新知导入
还记得直线吗?它有哪些特征呢?
直的 没有端点 不可度量
在纸上任意画两条直线, 会有哪几种情况?
新知讲解
没有相交 相交
分类
没有相交 再画长一些会怎样
认识平行线
在同一个平面内不相交的两条直线叫做平行 线,也可以说这两条直线互相平行。
直线平行与垂直课件PPT课件
直线平行与垂直课件ppt课件
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义
平行与垂直ppt课件
平行线和垂线的判定方法
利用平行线的性质和垂线的性质进行判定。例如,在同一平面内,如果两条直线都垂直于同一 条直线,那么这两条直线平行;或者如果一条直线与另外两条平行线中的一条垂直,那么它与 另外一条平行线也垂直。
02
平行四边形中平行与垂直
平行四边形中平行线性质
01 对边平行
平行四边形两组对边分别 平行。
03 对边相等
平行四边形的对边相等。
02 对角相等
平行四边形的对角相等。
04 邻角互补
平行四边形邻角互补。
平行四边形中垂直线性质
高与底垂直
从平行四边形一个顶点向对边作垂线,这条垂线 段就是高,高与底互相垂直。
高长度相等
任意一条高都将平行四边形分为两个面积相等的 三角形,因此,同底的高长度相等。
平行四边形对角线性质
平行于直径的弦是圆的另一条直径,且这两条直 径互相平分。
03 平行弦与圆心距
在同一圆内,两平行弦到圆心的距离相等。
圆中垂直弦性质
垂直弦性质
从圆心到弦的垂线平分该弦,并且平 分该弦所对的两条弧。
垂径定理
在圆内,垂直于弦的直径平分该弦, 并且平分该弦所对的两条弧。若过圆 内一点引两条互相垂直的弦,则它们 的中点连线段必过圆心。
在绘制工程图纸时,需要使用平 行线和垂直线来表示物体的轮廓 、尺寸和位置关系,以确保图纸 的准确性和可读性。
建筑设计
在建筑设计中,平行和垂直关系 对于确定建筑物的结构、立面和 平面布局至关重要,有助于实现 稳定、美观的建筑效果。
地理信息系统中平行和垂直线用于绘制等高线、道路、河流等地理 要素,以展示地形地貌、交通网络等空间信息。
对角线互相平分
平行四边形的对角线互相平分。
利用平行线的性质和垂线的性质进行判定。例如,在同一平面内,如果两条直线都垂直于同一 条直线,那么这两条直线平行;或者如果一条直线与另外两条平行线中的一条垂直,那么它与 另外一条平行线也垂直。
02
平行四边形中平行与垂直
平行四边形中平行线性质
01 对边平行
平行四边形两组对边分别 平行。
03 对边相等
平行四边形的对边相等。
02 对角相等
平行四边形的对角相等。
04 邻角互补
平行四边形邻角互补。
平行四边形中垂直线性质
高与底垂直
从平行四边形一个顶点向对边作垂线,这条垂线 段就是高,高与底互相垂直。
高长度相等
任意一条高都将平行四边形分为两个面积相等的 三角形,因此,同底的高长度相等。
平行四边形对角线性质
平行于直径的弦是圆的另一条直径,且这两条直 径互相平分。
03 平行弦与圆心距
在同一圆内,两平行弦到圆心的距离相等。
圆中垂直弦性质
垂直弦性质
从圆心到弦的垂线平分该弦,并且平 分该弦所对的两条弧。
垂径定理
在圆内,垂直于弦的直径平分该弦, 并且平分该弦所对的两条弧。若过圆 内一点引两条互相垂直的弦,则它们 的中点连线段必过圆心。
在绘制工程图纸时,需要使用平 行线和垂直线来表示物体的轮廓 、尺寸和位置关系,以确保图纸 的准确性和可读性。
建筑设计
在建筑设计中,平行和垂直关系 对于确定建筑物的结构、立面和 平面布局至关重要,有助于实现 稳定、美观的建筑效果。
地理信息系统中平行和垂直线用于绘制等高线、道路、河流等地理 要素,以展示地形地貌、交通网络等空间信息。
对角线互相平分
平行四边形的对角线互相平分。
人教版小学数学四年级上册5.1《 平行与垂直》课件(共46张PPT)
相交
①
②
③
④
⑤
⑥
⑦
⑧
相交
①
④
⑤
⑥
⑧
不相交
②
③
⑦
相交
①
④
⑤
⑥
⑧
不相交
②
③
⑦
相交
相交
两条直线的位置关系
相交
不相交
①
④
⑤
②
⑥
⑧
③
⑦
不相交
处处相等
不相交
两条直线之间的距离处处相等,永不相交。
平行线
在同一个平面内不相交的两条直线叫 做平行线,也可以说这两条直线互相平行。
前面
同一平面内
上面 右 面
a
c
Ob
O
d
e s
O
f
t
O
a
O
b
a⊥b
c O
d
c⊥d
e
O
f
e⊥f
s
t O
s⊥t
两条直线的位置关系
相交 互相垂直
不相交 互相平行
生活中的平行与垂直
生活中的平行与垂直
智慧树大闯关
1.下面各组直线,哪一组互相平行?哪一组互相垂直?
1.下面各组直线,哪一组互相平行?哪一组互相垂直? 互相平行 互相垂直
前面
不在同一平面内
前面
不在同一平面内
平行线 a
b 在同一个平面内,不相交的两条直线叫作 平行线,也可以说这两条直线互相平行。 a与b互相平行,记作a∥b,读作a平行于b。
d c
ef
s t
d c
c∥d
ef
s t
e∥f
两条直线平行和垂直的判定ppt课件
(3)由题意知,l1 的斜率不存在,且不是 y 轴,l2 的斜率也不存在,恰好是 y 轴,
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.
√
3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)
√
两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
所以 l1∥l2.
-1-1
3-4
(4)由题意知,k1=
=1,k2=
=1,所以 l1 与 l2 重合或平行,
-2-0
2-3
4-(-1)
因为 kFG =
=1,所以 E,F,G,H 四点共线.
3-(-2)
所以 l1 与 l2 重合.
√
3
0,-
1
2
C.l1 的倾斜角为 30°,l2 过点 P(3, 3),Q(4,2 3)
D.l1 过点 M(1,0),N(4,-5),l2 过点 P(-6,0),Q(-1,3)
√
两条直线垂直
3.已知A(5,-1),B(1,1),C(2,3)三点,试判
断△ABC的形状.
分析
结合图形可猜想AB⊥BC,△ABC为直角三角形.
l1//l2 ⇔ k1=k2.
注:若没有特别说明,
说“两条直线l1,l2”时,
显然,当α1=α2=90o时,直线l1与直线l2的斜率不存在,此时l1∥l2. 指两条不重合的直线.
两条直线平行
两条直线平行的判定
类型
斜率存在
斜率不存在
前提条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2 l1∥l2⇔两直线的斜率都不存在
图示
用斜率证Байду номын сангаас三点共线时,常常用到这个结论。
两条直线平行
例 1 根据下列给定的条件,判断直线 l1 与直线 l2 是否平行.
(1)l1 经过点 A(2,1),B(-3,5),l2 经过 C(3,-3),D(8,-7);
人教版四年级数学上册平行与垂直课件ppt
判断 下面图形中的两条直线垂直吗?
不垂 直
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
如果两条直线相交成直角,就说 这两条直线互相垂直,其中一条直线 叫做另一条直线的垂线,这两条直线 的交点叫做垂足.
判断 下面图形中的两条直线垂直吗?
在同一平面内,不相交的两 条直线叫做平行线。
也可以说这两条直线互相平行。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
在同一平面内,不相交的两条直 线叫做平行线。也可以说这两条直 线互相平行。
判断 下面图形中的两条直线是平行线吗?
不是
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
在同一平面内,不相交的两条直 线叫做平行线。
判断 下面图形中的两条直线是平行线吗?
是
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
摆一摆
2、把两根小棒都摆成和第三根 小棒垂直。看一看,这两根小棒有什 么关系?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
在同一平面内,不相交的两条直 线叫做平行线,也可以说这两条直 线互相平行。