有机化学第九章
有机化学 第9章 醛、酮、醌
O CH3-C-CH3
酮式
OH CH3-C=CH2
烯醇式
碱和酸都可以促使烯醇化,原因如下: 碱促进烯醇化的理由:碱可以夺取α-H,而产生碳负离子
O B: + H-CH2-C-CH3
O 碳负离子 -CH2-C-CH3
3、氧化
醛和酮最主要的区别是对氧化剂的敏感性。因为醛中羰 基的碳上连有氢,所以醛很容易被氧化为相应的羧酸。而酮 则不易被氧化。因此用此性质可区别醛酮,常用弱的氧化剂 如托伦试剂(硝酸银的氨溶液),Ag+即可将醛氧化为羧酸, 本身被还原为金属银Ag。P:164页
OH-
RCHO + Ag+ 托伦试剂
Ag + RCOO- 银镜反应
由于生成复杂的氧化产物,酮氧化一般没有合成意义。 但环己酮氧化是工业上生产己二酸的方法。
O KCrO4 + H2SO4 HOOCCH2CH2CH2CH2COOH
环己酮
己二酸
4、烃基上的反应
(1)α-H的活性 与羰基相邻的碳(α-C)上的氢叫α-H,由于羰基中氧
原子的电负性较强,使得α-C上电子密度有所降低,从而 使α-H与分子中其它碳原子上的氢相比,酸性有所增强, 即具有一定的活性。
6、酮还有一种命名法:根据羰基所连的两个烃基而命名, 简单在前,复杂在后,最后加一酮字。如:
O C-CH3
苯乙酮 甲基苯基酮
O CH3-C-CH2CH3
丁酮 甲基乙基酮
物理性质
醛、酮分子间不能形成氢键,没有缔 合作用,但由于极性较强, 因此沸点比相 应(或分子量相近的)醇低,比相应的烷 烃和醚高。
有机化学 第九章 羧酸及其衍生物取代酸
RCOOH..第九章 羧酸及其衍生物和取代酸(一COOH )官能团的化合物,一元饱和脂肪羧酸的通式为C n H 2n O 2 。
羧基中的羟基被其它原子或基团取代的产物称为羧酸衍生物(如酰卤、酸酐、酯、酰胺等),羧酸烃基上的氢原子被其他原子或基团取代的产物称为取代酸(如卤代酸、羟基酸、羰基酸、氨基酸等)。
羧酸是许多有机化合物氧化的最终产物,常以盐和酯的形式广泛存在于自然界,许多羧酸在生物体的代谢过程中起着重要作用。
羧酸对于人们的日常生活非常重要,也是重要的化工原料和有机合成中间体。
§9-1 羧酸一、羧酸的结构、分类和命名 1、羧酸的结构在羧酸分子中,羧基碳原子是sp 2杂化的,其未参与杂化的p 轨道与一个氧原子的p 轨道形成C=O 中的π键,而羧基中羟基氧原子上的未共用电子对与羧基中的C=O 形成p -π共轭体系,从而使羟基氧原子上的电子向C=O 转移,结果使C=O 和C —O 的键长趋于平均化。
X 光衍射测定结果表明:甲酸分子中C=O 的键长(0.123 nm )比醛、酮分子中C=O 的键长(0.120nm )略长,而C —O 的键长(0.136nm )比醇分子中C —O 的键长(0.143nm )稍短。
RCOOH羧基上的p -π共轭示意图2、羧酸的分类和命名 2.1.羧酸的分类根据分子中烃基的结构,可把羧酸分为脂肪羧酸(饱和脂肪羧酸和不饱和脂肪羧酸)、脂环羧酸(饱和脂环羧酸和不饱和脂环羧酸)、芳香羧酸等;根据分子中羧基的数目,又可把羧酸分为一元羧酸、二元羧酸、多元羧酸等。
例如:或OOCOOcCOOHHOOC HOOC CH 2COOHCH 2COOHCH 2HOOC CH 3CH C H C OOHCOOH HOOC脂肪羧酸 一元羧酸 脂环羧酸 芳香羧酸二元羧酸多元羧酸2.2.羧酸的命名羧酸的命名方法有俗名和系统命名两种。
俗名是根据羧酸的最初来源的命名。
在下面的举例中,括号中的名称即为该羧酸的俗名。
大学有机化学第九章卤代烃
❖ 3、反应的进攻试剂(HO-)从离去基团的反面 进攻反应底物,产物的构型翻转(瓦尔登转化)
❖ 4、反应过程中是通过一个过渡态而转化为产 物,没有碳正离子中间体生成,不发生重排, 无重排产物。
2. 单分子亲核取代反应(SN1):
C2H5
4-乙基-6-氯-2-己烯
二. 卤代烃的物理性质
❖ 常温常压下:CH3Cl,C2H5Cl及CH3Br Gas ❖ 其它常见RX Liquid
❖ >C15
Solid
❖ RX:分子极性小,不溶于水,易溶于许多有机化
合物(做溶剂)。如:氯仿(CHCl3)
❖ 卤代烷:X数增加,可燃性降低。CCl4为灭火剂
CH3
CH3 C Cl + NaOH
CH3
CH3 C CH2 +NaCl + H2O
CH3
CH2 CH2 Cl ,
Cl
x 几乎不反应
❖ C、由于多数RX由相应的醇制备,因此用此
法制备醇在合成上意义不大。但少数醇可以 用此法。例如:
CH3 Cl2 hv
CH3CH=CH2
Cl2 hv
CH2Cl H2O/NaOH 加加
加热才沉淀
7、与炔钠的反应 (亲核试剂:RC≡C-)
RC≡CH NaNH2 RC≡CNa
液NH3
10 R’X
RC≡CR’
注意:NaNH2是强碱,不能使用叔(30)卤烷,否则 将主要得到烯烃。乙烯型卤代物,卤苯型化合物在
该条件下反应几乎不发生。
二、亲核取代反应历程及立体化学
δR δX + Nu 反应物 亲核试剂
按②:
有机化学-第九章
甲醇(球棒模型) CH3OH 甲醇(球棒模型)
乙醇(比例模型) C2H5OH 乙醇(比例模型)
9.1 醇的结构和分类
由于氧原子的强吸电子作用,使醇羟基上的氢有一定的酸 酸 性,而氧原子上的未共用电子对则有一定的碱性和亲核性 碱性和亲核性 。 受羟基的影响,醇的α-碳和该碳上的氢(α-H)容易发 生氧化或脱氢反应 氧化或脱氢反应,而β-碳上的氢则可参与分子内的脱 氧化或脱氢反应 分子内的脱 水反应。 水反应
醇一般有如下酸性强弱次序: CH3OH > 1o ROH > 2o ROH > 3o ROH
9.2 醇的化学性质
醇的酸性虽然很弱,但也足以使Grignard试剂发生分解。 Grignard试剂 Grignard试剂
9.2 醇的化学性质
醇羟基中的氢可被活泼的金属单质置换,放出氢气并生成 醇金属。
9.2 醇的化学性质
9.2 醇的化学性质
醇氧化与脱氢反应
一、醇的氧化
1.伯醇的氧化 1.伯醇的氧化 由于羟基的影响,醇的α-氢原子比较活泼,容易被氧 化。伯醇被氧化剂(如K2Cr2O7、KMnO4、浓HNO3等)氧化时, 先是生成醛,然后进一步被氧化,生成羧酸。
9.2 醇的化学性质
采用一种称为 PCC 的氧化剂,用于氧化伯醇制取醛是比 较好的氧化方法之一。PCC(pyridinium chlorochromate) PCC( chlorochromate) PCC 在盐酸溶液中的络合盐,又称Sarrett试 Sarrett试 是吡啶和 CrO3 在盐酸溶液中的络合盐 Sarrett 剂,是橙红色晶体,它溶于 CH2Cl2,在室温下便可将伯醇 氧化为醛。
9.3 酚的结构分类以及化学性质
酚羟基上的反应
《有机化学》第九章
第九章
水溶液直接提取法不利于那些碱性较弱不能直接溶解于水的生
物碱提取,因此可采用偏酸性的水溶液,使生物碱与酸作用生成盐
进行生. 物碱提取。具有碱性的生物碱在植物体中多以盐的形式存在, 而弱碱性或中性生物碱则以不稳定的盐或游离碱的形式存在,故常
用0.5%~2%的乙酸、盐酸等为溶剂。
29 第二节 生物碱
二 、 生物碱的提取方法
(二)醇类溶剂提取法
游离生物碱及其盐一般都能溶于甲醇和乙醇,因此用它 们作为生物碱的提取溶剂,应用较为普遍。甲醇的极性比乙 醇的极性大,对生物碱的溶解性比乙醇好,甲醇的沸点也比 乙醇低,但对视神经的毒性很大,所以除实验室有时将甲醇 作为生物碱提取溶剂外,多数用乙醇作为溶剂,有时也用稀 乙醇(60%~80%)作溶剂。通常采用醇提—酸水—碱化— 亲脂性溶剂萃取的方法反复进行。
N
-
N
CH3
33 第二节 生物碱
三 、 重要的生物碱
(三) 麻黄碱
第九章
麻黄碱俗称麻黄素,分子中有两个手性碳(用*标记),麻黄碱的分子结构式如下:
糠醛是重要的化工原料,可用 于制造酚醛树脂、农药、医药(如 呋喃妥因、呋喃唑酮)等。
O2N- O
O -CH=N-N-C = O
CH2-CH2
- -
-
呋喃唑酮(痢特灵)
19 第一节 杂环化合物的分类和命名
四、 重要的杂环化合物及其衍生物
(二) 吡咯衍生物——叶绿素、血红素和维生素B12
第九章
20 第一节 杂环化合物的分类和命名
1
第九章 杂环化合物、生物碱
【知识目标】 理解杂环化合物的分子结构、分类。 掌握五元单杂环、六元单杂环化合物的化学性质。 掌握杂环化合物的分类和命名方法。 了解几种重要的生物碱(麻黄素、烟碱、小檗碱、鸦片制剂)。 【技能目标】 掌握常见杂环化合物、生物碱的鉴别方法。
有机化学
+ I (CH3CH2)4N
碘化四乙铵
(CH3CH2)3N OH CH3
氢氧化甲基三乙铵
+
练习题
NHCH3
[ (CH3)2N(C 2H5)2] I
+
N-甲基苯胺
NH2
碘化二甲基二乙基铵
CH3CHCHCH2CH3 CH3
3-甲基-2-氨基戊烷
二.胺的物理性质(自学)
三.胺的化学性质 胺的分子结构
●●
4.与亚硝酸反应 脂肪族伯胺
R NH2 NaNO2 HCl
0-5℃醇、烯、卤代烃
N2
放出的氮气是定量的,可用于氨基的定量分析 。
芳香族伯胺
Ar NH2
0
NaNO2 HCl
。 5C
[Ar
N N]Cl
H2O
NaCl
芳香胺重氮盐 低温稳定,室温分解成酚和氮气
仲胺与亚硝酸反应
R2NH NaNO2 HCl R2N N O (黄色油状)
重氮化反应应用
可以制备一些不能用直接方法制备的化合物
NO2 浓HNO3 浓 H2SO4 N2+ClNaNO2 HCl
0 5。 C
NH2 Fe HCl
NH2 Br2 H2O Br Br Br
Br Br
Br
H3PO2
Br Br
Br
(2)偶联反应
重氮盐与芳香叔胺类或酚类化合物在弱碱性、中性或弱 酸性溶液中发生反应,生成偶氮化合物,称为偶联(偶合) 反应。
CH3 N CH2CH3
N
CH2CH3
Cl
N-甲基-N-乙基环戊胺 H2NCH2CH2 CH2 CH2 NH2 1,4-丁二胺(腐胺)
N-甲基-N-乙基-4-氯苯胺 CH3CH2NHCH2CH2CH3 乙、丙胺
有机化学
有机化学 第九章 醇、酚、醚
我们知道,仲醇与HBr反应是SN1机理:
有机化学
第九章 醇、酚、醚
CH3 C OH CH3
HCl
?
当羟基所在的碳原子上连有环烷基时,重排生成扩环产物。例如:
有机化学
第九章 醇、酚、醚
有机化学
第九章 醇、酚、醚
有机化学
第九章 醇、酚、醚
(二)弱碱性
氧盐
有机化学
第九章 醇、酚、醚
二、羟基的取代反应(C-O键断裂)
醇可以与多种卤化试剂作用,羟基被卤原子取代而中成卤 代烃。 (一)与氢卤酸的反应
R— OH + H— X
(1)反应机理
RX +
H2O
醇与氢卤酸反应涉及C—O键断裂。卤素(X–)取代羟基 ((OH),属于亲核取代(SN),不结构的醇采取不同的机理 (SN1或SN2)。
有机化学
第九章 醇、酚、醚
(三)频哪醇的脱水及频哪醇重排
通常将两个羟基都连在叔碳原子的歧α-二醇称频哪醇(pinaco1)。 在A12O3作用下频哪醇发生分子内脱除两分子水的反应生成共轭二 烯烃:
第三节
醇的化学性质
羟基是醇的官能团,醇的化学性质主要由羟基决 定,大部分反应都涉及O—H键断裂或C—O键断裂。
R CH2 — O — H
在化学习醇的化学性质时,要注意断键的部位,这 对了解它们的反应机理、活性及有关规律是很重要的。
有机化学
第九章 醇、酚、醚
一、酸性和碱性
(一)弱酸性 (羟基中氢的反应,O—H键断裂)
有机化学
高等教育有机化学 第九章
RCOOH
2CH3CH2OH + Cr2O7
橙红
+ Cr3+ 绿色 K2Cr2O7 CH3COOH
仲醇氧化生成酮
RCH 2OH OH
[O]
RCHO K2 Cr2 O7 - 稀H2 SO4
[O]
ROOH =O (85%)
——叔醇无α﹣氢原子,在碱性条件下不易被 氧化,在酸性(例:硝酸)条件下脱水生成烯 烃,然后氧化断链生成小分子化合物(无实用 价值)
CH3OH>RCH2OH>R2CHOH>R3COH
RCH2O-溶剂化作用大、稳定,因此RCH2OH中的
质子易于离解,酸性大;R3CO-溶剂化作用小, 不如RCH2O-稳定,因此R3COH中质子不易离解
醇金属
醇与金属钠反应发生氢氧键的断裂,放出氢
气,生成醇钠
ROH + M → ROM + H2↑ M = K、Na、Mg、Al
命名
酚的物理性质
纯净的苯酚是没有颜色的晶体,具有特殊气
味,熔点是 43℃。常温时,苯酚在水里溶解 度不大,当温度高于70℃时,能跟水以任意 比互溶。 苯酚易溶于乙醇、乙醚等有机溶剂。苯酚有 毒,它的浓溶液对皮肤有强烈的腐蚀性
一元酚的反应
1.弱酸性:
苯酚羟基上氢原子可有少量电离 而呈现弱酸性,其pKa=9.98。 a. 若苯环邻、对位有强吸电子基降低氧原 子电子云密度,酸性增强。 如:邻硝基酚pKa=7.23;2,4—二硝基苯的 pKa为4.0;2,4,6—三硝基苯酚pKa为 0.71,已属于有机强酸了。
CH3CH2OH + Na → CH3CH2ONa + H2↑ (CH3)3COH + K → (CH3)3COK + H2↑ CH3CH(OH)CH3 + Al → ((CH3)2CHO)3Al + H2↑
有机化学精品教学课件:第九章醚
• 醚的简介 • 醚的合成 • 醚的用途 • 醚的衍生物 • 醚的安全性
01
醚的简介
醚的定义
01
02
03
醚的定义
醚是一类由醇和酚的分子 间脱水形成的化合物,其 结构通式为R-O-R',其中 R和R'是烃基。
醚的形成
醚可以通过醇或酚分子间 脱水反应生成,反应过程 中需要酸催化。
03
醚的用途
作为溶剂
醚类化合物由于其低极性和良好的溶解能力,常被用作溶剂,如石油醚、乙醚等。
在化学实验中,醚类化合物常被用作反应溶剂,有助于提高反应速率和选择性。
醚类溶剂在涂料、油漆、油墨等工业领域也有广泛应用,能够提高产品的性能和稳 定性。
在医药中的应用
醚类化合物在药物合成中具有重 要作用,许多药物分子中都含有
醇分子内脱水
总结词
醇分子内脱水是制备醚的一种方法,通过醇分子内的脱水反应生成醚。
详细描述
醇分子内脱水是一种制备醚的方法,通过醇分子内的脱水反应生成醚。在酸性催化剂的作用下,醇分 子内脱水反应可以发生,生成相应的醚类化合物。该方法具有操作简便、条件温和的优点,适用于制 备结构简单的醚类化合物。
酚烷基化反应
硝基醚
硝基醚是指醚的烃基部分被硝 基取代的一类化合物。
硝基醚具有较高的稳定性,在 酸性或碱性条件下不易发生水 解反应。
硝基醚在有机合成中常作为中 间体,用于合成其他有机化合 物。
氨基醚
氨基醚是指醚的烃基部分被氨基 取代的一类化合物。
氨基醚具有较低的毒性和较好的 生物相容性,因此在药物设计和
生物医学工程中有广泛应用。
醚的命名
醚可以根据其组成醇或酚 的名称进行命名,例如甲 醚、乙醚等。
有机化学-第九章
有机化学 第九章 醇和酚
30
醇和酚的化学性质
1. 共性 (羟基官能团的作用)(9.6) 2. 醇的个性(9.7) 3. 酚的个性(9.8)
::
碱性
α
R
RCOH
H α H 的反应
酸性 羟基被取代
有机化学 第九章 醇和酚
O H
31
1. 共性
1) 弱酸性 2) 醚的生成 3) 酯的生成 4) 氧化反应 5) 酚类和烯醇化合物的显色反应
NH2
有机化学 第九章 醇和酚
17
3. 其他制备方法
(1) 卤代烷的水解 (9.3.3)
CH2Cl Na2CO3 , H2O
95℃
(2) 重氮盐的水解 (9.3.3)
CH2OH (74%)
原理见7.5, 7.12
NH2
NaNO2, H2SO4
NO2
0~5℃
N2+
H3+O,△
NO2
OH NO2
有机化学 第九章 醇和酚 原理见15.3
有机化学 第九章 醇和酚
32
1) 弱酸性 相对酸性:
表9.1 一些弱酸的pKa 值
酸
pKa
C6H5OH CH3OH
H2O CH3CH2OH (CH3)3COH
HC CH H2 NH3 CH3CH3
9.89
15.5 15.74 15.9 18.0 25 35 38 50
ArOH > ROH > RC CH > 有机化学 第九章 醇和酚
CH3
(4) 发酵法
乙醇的制备:
淀粉 淀粉酶 麦芽糖 麦芽糖酶 葡萄糖
酒化酶 酒精
有机化学 第九章 醇和酚
有机化学-第九章醛酮醌
3、低级醛酮的沸点比相对分子量相近的醇低。 (分子间无氢键)。
4、低级醛酮易溶于水,醛酮都能溶于水。丙酮能 溶解很多有机化合物,是很好的有机溶剂。
二、 醛酮的化学性质
1、 加成反应
• 烯烃的加成一般为亲电加成; • 醛酮的加成为亲核加成,易于HCN、NaHSO3、ROH、 RMgX等发生亲核加成反应。
(1)一般过酸 + 无机强酸(H2SO4) (2)强酸的过酸 :CF3COOOH (3)一般酸 + 一定浓度的过氧化氢(产生的过酸立即反应)。
反应机理
O
H+ +OH
R-C-R'
R-C-R'
OH
R-C-R'
+
-H+ O R"COO-H
OH R-C-R'
O-OCR" O
R
O
R' C
O O
H
O
C R"
R’重排 O-O键断裂 -R”COO- , -H+
(1)碳碳双键加成
2,3,5,6-四溴环己二酮
注意:两种方法的适用范围
• 克莱门森还原——适用对酸不敏感的化合物; 如:NH2-CH2-CH2-CO-CH3,就不能用此方法,
含有-NO2也被同时还原。 • 武尔夫-克日聂尔-黄鸣龙反应——适用对碱不敏感的
化合物; 如:含有羧基等就不行。
补充:
-CO,-NO2均 还原!
用HCl,可使 之变为酚!
• 由于醛基直接连在芳环上的芳醛都没有氢原子, 所以可以用坎尼扎罗反应来制备芳香族醇:
二、烃基的反应
1、α-氢原子的卤代反应
有机化学第九章(2024版)
NH3 (过 量) NH4B r
H2NC H2C O O H
= CH2 CHBrCOOH KOH / CH3OH CH2 CHCOOH
CH2 CHBrCOOH
CH2 =CHCOOH
26
甲酸
❖ 俗名蚁酸,其结构特殊,它的羧基与一氢原子相连, 表现出某些醛的性质,具有较强的还原性,能被托
伦试剂、斐林试剂氧化,也容易被一般的氧化剂氧 化生成二氧化碳和水:
F
OH
pKa
2.66
3.83
3)与碳原子相连的基团不饱和性↑,吸电子能力↑。 = C CH > CH CH2 > CH2CH3
= C H CC H2C O O H > C H2 C HC H2C O O H > C H3C H2C H2C O O H
pKa
2.85
4.35
4.82
(C H3)3N+C H2C O O H
CH2NH2
H
反-4-(氨甲基环己烷)甲酸
止血环酸
6
❖ 芳香羧酸的命名,把芳基作为取代基:
COOH
COOH
CH2COOH
苯甲酸 安息香酸
OH 邻羟基苯甲酸 水杨酸
COOH
α-萘乙酸 COOH
COOH 1,2-苯二甲酸
HO
OH
OH 33,,44,,5-5三-三 羟羟 基苯基甲甲酸酸
没食子酸
7
第一节 羧酸
COOH
2
命名
❖ 脂肪族一元羧酸的命名与醛类相似,即选择含羧基 的最长的碳链为主链,按主链的碳原子数称为某酸:
HCOOH 甲酸
CH3COOH
乙酸 醋酸
γ βα
4 3 21
H
有机化学第9章醇-酚-醚
C H 3 C H 2 C H 2 C H 2 O HC u - C r O 2 C H 3 C H 2 C H 2 C H O + H 2 O 3 5 0 ℃
OH
R'
❖ 羟基连在同一碳原子上的化合物
RCH2C O R'
OH H
H
R C O -H2O R C O
醛
H
OH H R C O -H2O
R'
RC O 酮 R'
OH H R C O -H2O
OH
R C O 羧酸 OH
9.1.2 醇的结构
醇的氧原子为sp3杂化。其中两个sp3杂化轨道分别含有一个电子,与碳 原子的sp3杂化轨道和氢原子的1s轨道重叠。另外二个sp3杂化轨道分别 含有一对未共用电子对,交叉构象为优势构象。
CH3CH2CH2OH 丙醇
(CH3)2CHOH 异丙醇
(CH3)3COH 叔丁醇
OH
OH
C
环已醇
三苯甲醇
系统命名法
即选择含有羟基的最长碳链作为主链,把支链看作取代基,从离 羟基最近的一端开始编号,按照主链所含的碳原子数目称为“某 醇”,羟基在1位的醇,可省去羟基的位次。
例如:
2-丁烯醇(巴豆醇) 3-苯基-2-丙烯醇(肉桂醇) 3 ,4-二甲基-2-戊醇
R O H + S O C l 2 R C l + S O 2 + H C l
反应实际上是先形成氯代亚硫酸酯,再与Cl-进行亲核取 代反应
RCH2OH+SOCl2 -HCl
O CH2O S Cl
《有机化学》第九章醇、酚、醚的结构与性质
第九章醇、酚、醚的结构与性质前言(1) 醇的结构与性质醇分子可以看成是水分子中氢原子被烃基取代的产物或烃分子中氢原子被羟基(﹣OH)取代的产物。
和水分子一样,醇分子中氧原子也是sp3杂化的,sp3杂化的氧原子分别与烃基和氢形成2个σ键,还有两对孤电子对,在两个sp3杂化轨道上,因此醇分子不是直线型,而是角型的,所以醇分子是极性分子。
由于醇中含有羟基,分子间可以形成氢键,因此低级醇的熔点和沸点比分子量相近的碳氢化合物的熔点和沸点高得多。
随着分子量的增加,羟基在醇分子中比例减小,羟基对醇的影响减小,从而使高级醇的物理性质与烷烃近似。
低分子量的醇可以与水形成氢键而互溶。
羟基是醇的官能团,醇的化学性质也是由羟基引起的,主要是羟基的活性;羟基被取代的反应;羟基的氧化反应以及β﹣H的活性等。
(2) 酚的结构与性质酚羟基与芳羟基直接相连,羟基氧原子是sp2杂化的,还有一对孤电子在未杂化的p轨道上,p电子云正好能与苯环的大π键电子云发生侧面重叠,形成p-π共轭效应,其结果p电子云向苯环转移,而羟基氧氢之间的电子云向氧原子转移,使氢容易以离子形式离去,具有部分双键的性质,难以被取代,当氧原子电子云向苯环转移,使苯环电子云密度升高,因此苯环上发生亲电取代反应速度加快。
(3) 醚的结构与性质醚可以看作是水的两个氢原子被烃基取代所得的化合物。
氧原子也是 sp 3 杂化的,因此醚不是直线型结构,而是角形结构,醚是极性分子。
与醇相比,醚分子间不能形成氢键,沸点比同组分醇的沸点低得多,如乙醚沸点是34.6℃ ,而丁醇的沸点为117.8℃ 。
但是醚比分子量相近的烷烃分子的沸点高。
醚分子中的氧可与水形成氢键,所以醚在水中有一定溶解度,乙醚在水中溶解度为 8g/100ml ,对于环状醚,由于成环缘故,氧原子外突,形成氢键的能力较强,因此四氢呋喃, 1,4 ﹣二氧六环与水能混溶。
醚是一类相当不活泼的化合物(环醚除外),醚链对于碱,氧化物,还原剂都是十分稳定。
有机化学--第九章 卤代烃
10
卤代环烷烃的命名,除以环烷烃为母体外,其它 与卤代烷相同。例如:
11
9.2.2卤代烯烃和卤代芳烃的系统命名法
卤代烯烃和卤代芳烃的系统命名法与卤代烷相似,
通常是以相应烃为母体,卤原子为取代基,然后按照
6
(2)烯丙型和苄基型卤代烃 苄基型卤代烃。例如:
卤原子与双键或苯环相隔
一个饱和碳原子的卤代烃,分别称为烯丙型卤代烃和
7
(3)隔离型卤代烃 卤原子与双键或苯环相隔两个或多个
饱和碳原子的卤代烃,统称隔离型卤代烃。例如:
8
9.2卤代烃的命名
对于简单卤代烃可用普通命名法命名,一般是以烃
为母体,卤原子作为取代基,由烃基的名称加上卤原子
卤代烷转变成腈后,分子中增加了一个碳原子,这是有机合成中增 长碳链的方法之一。此反应不仅可用于合成腈,而且可通过氰基转 变为其它官能团[如羧基(—COOH)、氨基甲酰基(—CONH2)等],而 用于合成其它化合物(如羧酸、酰胺等)。但由于氰化钠(钾)有剧毒,
因此应用受到很大限制。
32
(4)与氨作用
第九章 卤代烃
烃分子中的一个或几个氢原子被卤原子取代后的化合
物,称为卤代烃。卤原子(亦称卤基)(―F, ―Cl, ―Br,
―I)是其官能团。卤代烃中以氯代烃和溴代烃最重要。
1
9.1 .卤代烃的分类
卤代烃按烃基结构的不同,可分为饱和卤代烃、不饱
和卤代烃和卤代芳烃;卤代烃按分子中所含卤原子数目
的多少,又可分为一元、二元、三元等卤代烃,二元和 二元以上的卤代烃统称多元卤代烃。 饱和卤代烃
有机化学第九章羰基化合物
第三节 化学反应
(一)亲核加成反应 (二)α-活泼氢引起的反应 (三)氧化和还原反应 (四)其它反应
醛酮的结构与反应性
亲核加成
氢化还原
O
CC
H
-活泼H的反应 (1)烯醇化 (2) -卤代(卤仿反应) (3)醇醛缩合反应
H
醛的氧化
C=C–C=O
(1)碳碳双键的亲电加成 (2)碳氧双键的亲核加成 (3),-不饱和醛酮的共轭加成 (4)还原
C
R
O-
R'
Nu 随R基的体积增大和给电
C
子能力增加,中间体稳定
R
O- 性降低;
随Ar基增加,电子离
域,降低了基态的焓值, 增加了活化能。
O
O
R C H(R) > Ar C H(R)
试比较下列化合物发生亲核加 成反应的活性大小
O2N A
CHO CH3
CHO B
CHO C
常见的亲核试剂按照亲核的中心 原子不同可分为:
CH3CH2OH, H+
CH3CH
OCH2CH3 OCH2CH3 缩醛 acetal
分子内也能形成半缩醛、缩醛。
OH
HCl
HOCH2CH2CHCHO
HO OH O
半缩醛
CH3OH
HO OCH3 O
缩醛
与酮反应
半缩酮
CH3CH2 CH3CH2 C=O + CH3OH
H+
CH3CH2
OCH3
C
CH3CH2
(0 %) 三氯乙醛水合物
(安眠药)
有吸电子基团可以形成稳定水合物。 水合物在酸性介质中不稳定。
与ROH的加成
半缩醛(酮)、缩醛(酮)的生成
有机化学 第9章 醛和酮
R CH2OH
R' R CHOH R' R COH R"
伯醇 仲醇 叔醇
(5)与氨衍生物的加成缩合
氨及其衍生物是含氮的亲核试剂,可与羰基加成, 氨及其衍生物是含氮的亲核试剂,可与羰基加成, 再分子内失去一分子水形成碳氮双键 再分子内失去一分子水形成碳氮双键
+ δ
C
.. O + HN Y 2
δ
_
C NH2 Y _ O
CH3CH2CHCHO CH3
2-甲基丁醛
CH3CH CHCHO
2-丁烯醛(巴豆醛) 丁烯醛(巴豆醛)
CH2CH2CHO
3-苯基丙醛
注意醛基的写法: 注意醛基的写法:
右端:CHO 右端 左端: 左端:OHC
O 7 6 5 4 3 2 1 CH3CH2CHCH2C CH2CH3 CH3
O3 4 5 CH3 CCH2CH CH2
课堂练习: 课堂练习 1. 比较下列化合物和 比较下列化合物和HCN加成反应的速度 加成反应的速度
CH3CHO CH3CH2CHO CH3COCH3 CH3CH2COCH2CH3
2. 以丁酮为原料,合成 甲基 羟基丁酸 以丁酮为原料,合成2-甲基 甲基-2-羟基丁酸
O CH2CH2CCH3 HCN CH2CH2CCH3 CN OH H3O+ OH CH2CH2CCH3 COOH
α-羟基磺酸钠
适应于: 适应于: 脂肪族甲基酮和八个碳以下的环酮。 醛、脂肪族甲基酮和八个碳以下的环酮。
CH3CHO 89% CH3COCH3 56% CH3COCH2CH3 36% 35% O
CH3COCH(CH3)2 CH3COC(CH3)3 H5C2COC2H5 CH3COPh 12% 6% 2% 1%
有机化学第9章 醇、酚和醚
OCH3 + H2 O
硫酸和乙醇作用,也可以得到硫酸氢乙酯和硫酸二乙酯。硫酸二 甲酯和硫酸二乙酯是烷基化试剂,可以用在有机物分子中导入甲基和乙 基的试剂,但是它们的蒸气有剧毒,使用时要特别注意。
( 2) 多元醇与一元酸的反应
CH2OH CHOH + 3 HONO2 ( HNO3 ) CH OH
2
CH2ONO2 CHONO2 CH2ONO2
H H H
烃基的供电子作用使氧 氢键极性下降。 氢原子既不供电子,也不吸电 子,氧氢键极性不变。 孤对电子占据的 P 轨道与苯环间存 在 P-π共轭体系,氧上电子云向苯 环转移,使氧氢键极性增强。
取代酚的酸性:(pKa值)
OH OH OH
吸电子基 酸性增加 斥电子基 酸性下降
OH
OH
OC H 3
C H3
分子间脱水 (伯醇 亲核取代 SN2机理):
总结:醇的分子内脱水和分子间脱水是两种互相竞争的反应。 高温有利于发生分子内脱水生成烯烃,较低温度则有利于分子间脱 水生成醚。 伯醇能进行分子内脱水和分子间脱水;仲醇和叔醇在酸催化作 用下主要是进行分子内脱水,产物是烯烃 。
5) 多元醇的特性 (1) 与氢氧化铜的反应(邻二醇结构)
(CH3)2CHCH2CH2OH + HONO
(CH3)2CHCH2CH2ONO + H2O 亚硝酸异戊酯
亚硝酸异戊酯用作血管舒张药,可缓解心绞痛,但副作用大。
O CH3OH + HOSO3H ( H2SO4 )
O CH3OH + CH3O S O OH CH3O
CH3O
S O
OH
O S O
+ H2 O
OH
有机化学-第九章 醛 酮 醌
B CH3CHO + CH3CH2MgBr
分别由苯及甲苯合成2-苯基乙醇
CH
3
Cl 2 光照 Br Br
2
CH 2 Cl
Mg Et 2 O
CH 2 MgCl
1 ) HCHO 2) H +
CH 2 CH 2 OH
MgBr O Mg Et 2 O H
+
Fe
H 2O
N u· ·
-
δ+
δ-
加成
+
C
O
Nu
C
O
-
进一步反应
产物
氧亲核试剂——RO-,OH硫亲核试剂——SO3H-,RS氮亲核试剂——RNH2,HONH2,RNHNH2
碳亲核试剂——CN-,RMgX
(1) 加氢氰酸: 醛、脂肪族甲基酮、8个碳以下的环酮可以和HCN加成, 生成α-羟基腈。 α-羟基腈水解得α-羟基酸。
羟胺
OH
- H 2O R
[R
C R
NH
OH] R
C
N
OH
肟
R C R O + NH2 NH2
R C R N NH2
肼
腙
R C R O + NH2 N H C 6H 5
R C R N N H C 6H 5
苯肼
R C R O + NH2 NHCONH 2 R R
苯腙
C
N
NHCONH2
氨基脲
缩氨脲
这类反应一般在pH = 5的条件下进行。
醛酮互为同分异构体
(碳数相同的一元饱和醛酮有相同的通式CnH2nO) 醛有碳链异构、酮有碳链异构和官能团位置异构。
有机化学第九章醚
高纯度的三氯生:治疗牙龈炎、牙周炎及口腔溃疡等的疗效牙膏及漱口水
OH
Cl
O
Cl
Cl
Cl2
????????? (自来水)
CHCl3
Chloroform:口服最低致死剂量为140 mg/Kg。50 Kg体重的一 次要吃下7 g的氯仿(哥罗芳)才有可能致死
40
知识介绍:环氧树脂(Epoxy Resin)
三氯生
36
若干重要的醚
Cl
Cl
OCH2CO2H 2,4-D
Cl
Cl
OCH2CO2H 2,4,5-T
Cl
二恶因
Cl
O
Cl
Cl
O
Cl
2,3,7,8-tetrachlorodibenzodioxin also called TCDD
Herbicides: 越战期间作为脱 叶剂(defoliants)大量使用
8
2. 醚的物理性质
氢键受体
醚
R
OR
O
R
R
R1 O R2
no hydrogen bond
no donor
acceptor
➢ 无氢键给体,不能形成类似醇的分子间氢键
➢ 能够和水分子的氢原子形成分子间氢键作用
➢ 沸点比分子量接近的醇要低得多,而与分子量接近的 烷烃相似 (例: 甲醚b.p. −24.8 C; 乙醇 b.p. 78.5 C)
26
H3C O H
H
酸性条件 亲核试剂 进攻点
碳正离子中间 体稳定性决定
H
碱性条件 亲核试剂 进攻点
空间位阻大小 稳定性决定
27
⚫ 合成应用
例:
28
2. 冠醚、穴醚与相转移催化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通催化剂
使用特殊催化剂(经钝化处理)还原炔烃至顺式烯烃
H2 Pd / PbO, CaCO3 R C C R' R C H C H R'
(Lindlar催化剂)
H2 Ni2B
主要产物 顺式
(P-2催化剂)
碱金属还原(还原剂 Na or Li / 液氨体系) ——制备反式烯烃
Na or Li R C C R' NH3(液) H -78oC R C C R' H
第九章 炔烃和共轭双烯(1)
主要内容
炔烃的几种制备方法 炔烃的亲电加成(加成类型,加成取向),在合成中 的应用 炔烃的两种还原方法及在合成中的应用(顺、反烯烃 的制备)
末端炔烃的特殊性质及在合成中的应用
第一部分
一.炔烃的通式、结构和命名
炔烃
炔烃:含CC的碳氢化合物 单炔烃的通式:CnH2n-2
1根 s 键 (sp-sp) 2根 p 键 (p-p)
结构:直线型分子
R
C C
C C
R' H
R
C
C
R'
R
末端炔
相连的4个原子呈直线型
系统命名法
选含叁键的最长链为主链 使叁键的编号最小 按编号规则编号 同时有叁键和双键,并可以选择时,使双键的编号最小
1-戊炔 1-戊烯-4-炔 1-pentyne 1-penten-4-yne
CH3CH2
H
1 2 3 4 5 CH2 CHCH2C CH 1 H2C 9 2 3 4 5 CHCH2CH2CH 8 7 6 5
6 7 8 CHCH2C 4 3 2
9 CH 1
4, 8-壬二烯-1-炔 4, 8-nonadien-1-yne
二.炔烃的来源和制备
1. 乙炔
1800 - 2100 oC
还原机理
Na + NH3
Na+ + e- (NH3) H e- R C C R'
•基团相距较远 •电荷相距较远
NH2 R C C R' H C C R' H
R
C
C
R'
- NH2
反式
e- R C C R' H NH2 H - NH2 R
H
炔烃的还原反应在合成上的应用
——选择性地制备顺或反式烯烃
CH3
炔烃的还原(顺、反烯烃的制备)
炔烃的氧化 末端炔烃的特殊性质及在合成中的应用
作业:p384 习题 9-18
第九章 炔烃和共轭双烯(2)
主要内容
共振式的画法,共振式稳定性的判别,共振论在有机化学 中的应用
共轭双烯的稳定性,与亲电试剂的1, 4-加成及1, 2-加成。
热力学控制与动力学控制的反应 Diels-Alder反应,协同反应机理。反应的立体化学,内 型(endo)和外型(exo)类型化合物 Diels-Alder反应在有机合成中的应用
催化剂(Hg盐或Cu盐)存在时,叁键比双键易加成
H H2C CH C CH CuCl Cl H2C CH C Cl CH2
加HBr仍有过氧化效应
H Br
R C C H
H Br
H
Br
H R C Br
H C Br H
R
C
CH R'OOR'
R'OOR'
反Markovnikov方向
第二步加成取向分析:
R C H C Br H Br R C H Br C Br H or R H C Br
方法 b:
CH3 Na or Li H3C C C CH3 NH3(液), -78oC
+ CH3 (2) H2O, H
H3C
(1) RCO3H
H H CH3
OH OH
3. 炔烃的氧化
KMnO4 OH R C C R' O3 H2O O KMnO4 R C C H OH O3 R H2O O C OH + O HO C H H+ R C OH + CO2 R H+ O C OH + O HO C R'
羧酸
羧酸
羧酸
甲酸
4. 末端炔的特殊性质
叁键氢的弱酸性及炔基负离子 一些化合物的酸性比较
化合物 pKa 共轭碱 化合物 pKa 共轭碱
(CH3)3C-H CH3CH2-H
CH3-H H2N-H
71 62
60 36
(CH3)3CΘ CH3CH2Θ
CH3Θ H2NΘ
HCC-H (CH3)3CC-H
2. H2O
H2 Lindlar催化剂 HO Al2O3 (醇脱水试剂)
CH2
H3C CH3
例 3: H C
C
H
H3CH2C
CH2CH2OH
叶醇 反合成分析
H3CH2C CH2CH2OH
H3CH2C
CH2CH2OH
H3CH2C + O
C
CH
X
CH2CH3
+
C
CH
•叶醇的合成路线
NaNH2 H C C H HC C Na Br CH2CH3 CH3CH2 C CH
重要有机合成原料
CaC2 + CO H2O
CaO + C
Ca
2+
C
C
H
C
C
H + Ca(OH)2
O H3C C H R C C R'
乙醛
高级炔烃
2. 由卤代烃制备炔烃
R
由邻二卤代烃制备
(1) KOH X R C H X C H R' 2 NaNH2 (2) NaNH2 R
C H
C H
R'
C
C
R'
OH R"(H) R C C C R' R"(H)
H2O
亲核加成
a-炔基醇(炔丙型醇)
合成上应用举例
OH OH C C C CH3 CH3
例 1:
H
C
C
H
CH3
C CH3
反合成分析
OH CH
3
OH C C C CH3 CH3 CH3
O C CH3 + C C + CH3
O C CH3
C CH3
•合成路线
H 2C CH CH2 H2C CH CH2 H2 C CH CH2
经典式(价键式) 共振式
(苯的Keküle式) 单双键交替,不能解释
共振式1
共振式2
苯分子的真实结构
苯的真实结构
共振论的基本思想
当一个分子、离子或自由基的结构可用一个以上不同电子排
列的经典结构式(共振式)表达时,就存在着共振。这些共振式
均不是这一分子、离子或自由基的真实结构,其真实结构为所有 共振式的杂化体。
甲基乙烯基酮
炔烃的水合机理
H2O Hg R C CH
++
OH2 C
d+
R
CH
++
R
C
CH Hg
+
亲电加成
Hg
p络合物 (汞化物)
-H
+
OH R C CH Hg
H+ R
OH C
H CH Hg
+
+
OH R C CH2 H+ R
OH -H C CH2 H
+
O R C CH3
烯醇式
酮式 酸性条件下烯醇式与酮式的互变机理
提示: 共振式之间只是电 子排列不同 共振杂化体不是共 振式混合物
H2C CH
14
CH2
H2C
CH
14
CH2
共振杂化体也不是 互变平衡体系
2. 共振论对共振式的画法的一些规定
参与共振的原子应有p轨道 所有共振式的原子排列相同 所有共振式均符合Lewis结构式 所有共振式具有相等的未成对电子数
例:
H3 C C C CH3
H H CH3
OH OH
meso-2, 3-丁二醇
合成分析:
a CH3 H H CH3 CH3 OH OH b CH3 H3C + RCOOOH, H2O CH3 + OsO4 or KMnO4(稀、冷)
合成路线
方法 a:
H2 H3C C C CH3 Lindlar催化剂 or P-2催化剂 CH3 KMnO4(稀、冷) CH3 CH3 OsO4 or H H CH3 OH OH
红色沉淀 两者有爆炸性, 可用硝酸分解
5. 炔烃的聚合
CuCl CH NH4Cl H2C CH C CH
二聚
2 HC
(Ph3P)2Ni(CO)2
三聚
3 HC
CH 1.5 MPa, 60~70oC
四聚
Ni(CN)2
4 HC
CH 1.5~2.0 MPa, 505oC
本次课小结:
炔烃的制备 炔烃的亲电加成(加成取向,产物类型)
O NaNH2
1.
H3CH2C C C Na
2. H2O
CH3CH2
Cห้องสมุดไป่ตู้
C
CH2CH2OH
H2 Lindlar催化剂
CH3CH2 C H C
CH2CH2OH H
末端炔烃的特征反应
Ag(NH3)2+ / OH R R C C H Cu(NH3)2+ / OH R C C Cu C C Ag