2017届高三数学-概率-专题练习及答案解析

合集下载

【名师一号】2017届高考数学大一轮总复习 大题规范练6 概率与统计 理 北师大版

【名师一号】2017届高考数学大一轮总复习 大题规范练6 概率与统计 理 北师大版

高考大题规范练(六) 概率与统计1.(2015·河北唐山一模)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个。

(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个。

记乙所得红包的总钱数为X ,求X 的分布列和期望。

解 (1)设“甲恰得一个红包”为事件A ,则P (A )=C 12×13×23=49。

(2)X 的所有可能值为0,5,10,15,20。

P (X =0)=⎝ ⎛⎭⎪⎫232×23=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827, P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627,P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127。

X 的分布列:EX =0×827+5×827+10×27+15×27+20×27=3。

2.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖。

(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望。

解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}。

由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A-1A 2,C =B 1+B 2,因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12。

2017的线性代数与概率统计随堂练习题目答案详解

2017的线性代数与概率统计随堂练习题目答案详解

1.(单选题) 计算?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:A2.(单选题) 行列式?A.3;B.4;C.5;D.6.答题: A. B. C. D. (已提交)参考答案:B3.(单选题) 计算行列式. A.12;B.18;C.24;D.26.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 利用行列式定义计算n阶行列式:=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题) 计算行列式展开式中,的系数。

A.1, 4;B.1,-4;C.-1,4;D.-1,-4.答题: A. B. C. D. (已提交)参考答案:B问题解析:6.(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5.答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 计算行列式=?A.130 ;B.140;A. B. D.参考答案:D8.(单选题) 四阶行列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题) 行列式=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 已知,则?A.6m;B.-6m;C.12m;D.-12m.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|.答题: A. B. C. D. (已提交)参考答案:D问题解析:12.(单选题) 设矩阵,求=?A.-1;B.0;C.1;A. B. C. D.参考答案:B13.(单选题) 计算行列式=?A.-1500;B.0;C.-1800;D.-1200.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(单选题) 齐次线性方程组有非零解,则=?A.-1;B.0;C.1;D.2.答题: A. B. C. D. (已提交)参考答案:C问题解析:15.(单选题) 齐次线性方程组有非零解的条件是=?A.1或-3;A. C.参考答案:A16.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?A.无解;B.唯一解;C.一个零解和一个非零解;D.无穷多个解.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解.答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试数学(含答案)

2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<32}B.A∩B=⌀C.A∪B={x|x<32}D.A∪B=R2.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π45.已知F是双曲线C:x2-y 23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )7.设x,y满足约束条件{x+3y≤3,x-y≥1,y≥0,则z=x+y的最大值为( )A.0B.1C.2D.38.函数y=sin2x1-cosx的部分图象大致为( )9.已知函数f(x)=ln x+ln(2-x),则( )A. f(x)在(0,2)单调递增B. f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+211.△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=√2,则C=( )A.π12B.π6C.π4D.π312.设A,B是椭圆C:x 23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,√3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,√3]∪[4,+∞)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m= .14.曲线y=x2+1x在点(1,2)处的切线方程为.15.已知α∈(0,π2),tan α=2,则cos(α-π4)= .16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;,求该四棱锥的侧面积.(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为8319.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得x =116∑i=116x i =9.97,s=√116∑i=116(x i -x )2=√116(∑i=116x i 2-16x 2)≈0.212,√∑i=116(i -8.5)2≈18.439,∑i=116(x i -x )(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x -3s,x +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x -3s,x +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(x i ,y i )(i=1,2,…,n)的相关系数r=∑i=1n(x i -x )(y i -y )√∑i=1n (x i -x )√∑i=1n(y i -y ).√0.008≈0.09.20.(12分)设A,B 为曲线C:y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM⊥BM,求直线AB 的方程.21.(12分)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθ,y =sinθ(θ为参数),直线l 的参数方程为{x =a +4t ,y =1-t(t 为参数). (1)若a=-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a.23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.A 本题考查集合的运算.由3-2x>0得x<32,则B={x |x <32},所以A∩B={x |x <32},故选A.2.B 本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.3.C 本题考查复数的运算和纯虚数的定义. A.i(1+i)2=i×2i=-2; B.i 2(1-i)=-(1-i)=-1+i; C.(1+i)2=2i;D.i(1+i)=-1+i,故选C. 4.B 本题考查几何概型.设正方形的边长为2,则正方形的内切圆的半径为1,其中黑色部分和白色部分关于正方形的中心对称,则黑色部分的面积为π2,所以在正方形内随机取一点,此点取自黑色部分的概率P=π22×2=π8,故选B.5.D 本题考查双曲线的几何性质. 易知F(2,0),不妨取P 点在x 轴上方,如图.∵PF⊥x 轴,∴P(2,3),|PF|=3,又A(1,3), ∴|AP|=1,AP⊥PF, ∴S △APF =12×3×1=32.故选D.6.A 本题考查线面平行的判定.B 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;C 选项中,AB ∥MQ,且AB ⊄平面MNQ,MQ ⊂平面MNQ,则AB ∥平面MNQ;D 选项中,AB ∥NQ,且AB ⊄平面MNQ,NQ ⊂平面MNQ,则AB ∥平面MNQ.故选A.7.D 本题考查简单的线性规划问题. 作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.8.C 本题考查函数图象的识辨.易知y=sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f(1)=sin21-cos1=√3,故排除A 选项; f(π)=sin2π1-cos π=0,故排除D 选项,故选C.9.C 本题考查函数的图象与性质.函数f(x)=ln x+ln(2-x)=ln[x(2-x)],其中0<x<2,则函数f(x)由f(t)=ln t,t(x)=x(2-x)复合而成,由复合函数的单调性可知,x ∈(0,1)时, f(x)单调递增,x ∈(1,2)时, f(x)单调递减,则A 、B 选项错误;t(x)的图象关于直线x=1对称,即t(x)=t(2-x),则f(x)=f(2-x),即f(x)的图象关于直线x=1对称,故C 选项正确,D 选项错误.故选C. 10.D 本题考查程序框图问题.本题求解的是满足3n-2n>1 000的最小偶数n,判断循环结构为当型循环结构,即满足条件要执行循环体,不满足条件应输出结果,所以判断语句应为A≤1 000,另外,所求为满足不等式的偶数解,因此中语句应为n=n+2,故选D.11.B 本题考查正弦定理和两角和的正弦公式.在△ABC 中,sin B=sin(A+C),则sin B+sin A(sin C-cos C) =sin(A+C)+sin A(sin C-cos C)=0,即sin Acos C+cos Asin C+sin Asin C-sin Acos C=0,∴cos Asin C+sin Asin C=0,∵sin C≠0,∴cos A+sin A=0,即tan A=-1,即A=34π. 由a sinA =c sinC 得√22=√2sinC ,∴sin C=12,又0<C<π4,∴C=π6,故选B.12.A 本题考查圆锥曲线的几何性质.当0<m<3时,椭圆C 的长轴在x 轴上,如图(1),A(-√3,0),B(√3,0),M(0,1).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|MO|≤1,即0<m≤1; 当m>3时,椭圆C 的长轴在y 轴上,如图(2),A(0,√m ),B(0,-√m ),M(√3,0)图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB≥120°,则|OA|≥3,即√m ≥3,即m≥9.综上,m ∈(0,1]∪[9,+∞),故选A.二、填空题 13.答案 7解析 本题考查向量数量积的坐标运算. ∵a=(-1,2),b=(m,1),∴a+b=(m -1,3),又(a+b)⊥a, ∴(a+b)·a=-(m-1)+6=0,解得m=7. 14.答案 x-y+1=0解析 本题考查导数的几何意义.∵y=x 2+1x,∴y'=2x -1x2,∴y'|x=1=2-1=1,∴所求切线方程为y-2=x-1,即x-y+1=0.15.答案3√1010解析 因为α∈(0,π2),且tan α=sinαcosα=2,所以sin α=2cos α,又sin 2α+cos 2α=1,所以sin α=2√55,cos α=√55,则cos (α-π4)=cos αcos π4+sin αsin π4=√55×√22+2√55×√22=3√1010.16.答案 36π解析 由题意作出图形,如图.设球O 的半径为R,由题意知SB⊥BC,SA⊥AC,又SB=BC,SA=AC,则SB=BC=SA=AC=√2R.连接OA,OB,则OA⊥SC,OB⊥SC,因为平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,所以OA⊥平面SCB,所以OA⊥OB,则AB=√2R,所以△ABC 是边长为√2R 的等边三角形,设△ABC 的中心为O 1,连接OO 1,CO 1. 则OO 1⊥平面ABC,CO 1=23×√32×√2R=√63R,则OO 1=√R 2-(√63R)2=√33R,则V S-ABC =2V O-ABC =2×13×√34(√2R)2×√33R=13R 3=9, 所以R=3.所以球O 的表面积S=4πR 2=36π.三、解答题17.解析 本题考查等差、等比数列. (1)设{a n }的公比为q,由题设可得{a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q=-2,a 1=-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n·2n+13.由于S n+2+S n+1=-43+(-1)n·2n+3-2n+23=2[-23+(-1)n·2n+13]=2S n ,故S n+1,S n ,S n+2成等差数列.18.解析 本题考查立体几何中面面垂直的证明和几何体侧面积的计算. (1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD. 又AB ⊂平面PAB, 所以平面PAB⊥平面PAD.(2)在平面PAD 内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD, 故AB⊥PE,可得PE⊥平面ABCD. 设AB=x,则由已知可得AD=√2x,PE=√22x. 故四棱锥P-ABCD 的体积V P-ABCD =13AB·AD·PE=13x 3.由题设得13x 3=83,故x=2.从而PA=PD=2,AD=BC=2√2,PB=PC=2√2.可得四棱锥P-ABCD 的侧面积为12PA·PD+12PA·AB+12PD·DC+12BC 2sin 60°=6+2√3.19.解析 本题考查统计问题中的相关系数及样本数据的均值与方差. (1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为r=∑i=116(x i -x )(i -8.5)√∑i=1(x i -x )2√∑i=1(i -8.5)2=0.212×√16×18.439≈-0.18.由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于x =9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(x -3s,x +3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02, 这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除第13个数据,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为√0.008≈0.09.20.解析 本题考查直线与抛物线的位置关系. (1)设A(x 1,y 1),B(x 2,y 2),则x 1≠x 2,y 1=x 124,y 2=x 224,x 1+x 2=4, 于是直线AB 的斜率k=y 1-y2x 1-x 2=x 1+x 24=1.(2)由y=x 24,得y'=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=x 24得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2√m+1.从而|AB|=√2|x1-x2|=4√2(m+1).由题设知|AB|=2|MN|,即4√2(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.21.解析本题考查了利用导数研究函数的单调性、最值.(1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.③若a<0,则由f '(x)=0得x=ln(-a2).当x∈(-∞,ln(-a2))时,f '(x)<0;当x∈(ln(-a2),+∞)时, f '(x)>0.故f(x)在(-∞,ln(-a2))单调递减,在(ln(-a2),+∞)单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a 2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln (-a 2)时, f(x)取得最小值,最小值为f (ln (-a2))=a 2[34-ln (-a2)].从而当且仅当a 2[34-ln (-a2)]≥0, 即a≥-2e 34时, f(x)≥0. 综上,a 的取值范围是[-2e 34,1].22.解析 本题考查极坐标与参数方程的应用. (1)曲线C 的普通方程为x 29+y 2=1.当a=-1时,直线l 的普通方程为x+4y-3=0. 由{x +4y -3=0,x 29+y 2=1解得{x =3,y =0或{x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x+4y-a-4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d=√17.当a≥-4时,d 的最大值为√17,由题设得√17=√17,所以a=8;当a<-4时,d 的最大值为√17,由题设得17=√17,所以a=-16.综上,a=8或a=-16.23.解析 本题考查含绝对值不等式的求解问题.(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x≤-1+√17.2所以f(x)≥g(x)的解集为}.{x|-1≤x≤-1+√172(2)当x∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a≤1.所以a的取值范围为[-1,1].。

课程代码为04183的概率论与数理统计-试题及答案(2017年4月、10月)

课程代码为04183的概率论与数理统计-试题及答案(2017年4月、10月)

课程代码为04183的概率论与数理统计试题及答案(2017年4月、10月)《概率论与数理统计》2017年4月真题答案及解析一、单项选择题1.【正确答案】 D【答案解析】称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称A与B 的并,记作A∪B或A+B。

本题知识点:随机事件,2.【正确答案】 B【答案解析】由于P{x1<X<x2}=P{x≤x2}-P{x≤x1},所以,P{0.2<x<0.3}=P{x≤0.3}-P{x ≤0.2}=F(0.3)-F(0.2)=0.32-0.22=0.09-0.04=0.05。

本题知识点:分布函数,3.【正确答案】 D【答案解析】积分区域的面积为0.5×0.5=0.25,0.25c=1,得到c=4.本题知识点:二维连续型随机变量的概率,4.【正确答案】【答案解析】本题知识点:二维连续型随机变量的概率,5.【正确答案】【答案解析】本题知识点:期望的性质,6.【正确答案】 D【答案解析】 D(X-1)=D(X)=4。

本题知识点:方差的性质,7.【正确答案】 C【答案解析】 Cov(X,Y)=E(XY)-E(X)E(Y)=-0.3-E(Y)=-0.5,得到E(Y)=0.2。

本题知识点:协方差,8.【正确答案】 A【答案解析】,若对作如下修正:则s2是总体方差的无偏估计。

本题知识点:点估计的评价标准——无偏性,9.【正确答案】 B【答案解析】本题知识点:点估计的评价标准——无偏性, 10.【正确答案】【答案解析】本题知识点:回归方程,。

2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。

高考数学复习+概率统计大题-(理)

高考数学复习+概率统计大题-(理)

专题十二概率统计大题(一)命题特点和预测:分析近8年的全国新课标1理数试卷,发现8年8考,每年1题.以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,位置为18题或19题,难度为中档题.2019年仍将以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,难度仍为中档题.(二)历年试题比较:年份题目2018年【2018新课标1,理20】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?2017年【2017新课标1,理19】(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2 (,)Nμσ.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求(1)P X≥及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得,,其中ix 为抽取的第i 个零件的尺寸,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则,,.2016年 【2016高考新课标理数1】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(I )求X 的分布列; (II )若要求,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?2015年 【2015高考新课标1,理19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xy w821()ii x x =-∑46.656.36.8289.81.61469108.8表中i i w x = ,w =1881ii w=∑(Ⅰ)根据散点图判断,y=a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:,=v u αβ-2014年 【2014课标Ⅰ,理18】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I)求这500件产品质量指标值的样本平均值x和样本方差2s(同一组的数据用该组区间的中点值作代表);(II)由直方图可以认为,这种产品的质量指标Z服从正态分布()2,Nμσ,其中μ近似为样本平均数x,2σ近似为样本方差2s.(i)利用该正态分布,求;(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间的产品件数.利用(i)的结果,求EX.附:若则,。

(江苏版)备战高考数学模拟试卷分项 专题11 概率统计-人教版高三全册数学试题

(江苏版)备战高考数学模拟试卷分项 专题11 概率统计-人教版高三全册数学试题

第十一章 概率统计 1. 【南师附中2017届高三模拟二】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为__________.【答案】112【解析】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,有98362n ⨯==种情形,其中一个是另一个的三倍的事件有()()()1,3,2,6,3,9,共3种情形,所以由古典概型的计算公式可得其概率是313612P ==,应填答案112。

2. 【南师附中2017届高三模拟二】射击运动员打靶,射5发,环数分别为9,10,8,10,8,则该数据的方差为__________.【答案】45【解析】因为910810895x ++++==,所以[]2140111155s =++++=,应填答案45。

3. 【南师附中2017届高三模拟一】从2,3,4中任取两个数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于1的概率是__________.【答案】124.【南师附中2017届高三模拟一】随机抽取年龄在[)[)[]10,20,20,30,......50,60年龄段的市民进行问卷调查,由此得到的样本的频数分布直方图如图所示,采用分层抽样的方法从不小于40岁的人中按年龄阶段随机抽取8人,则[]50,60年龄段应抽取人数为__________.【答案】2【解析】由题设提供的直方图可以看出年龄在[]40,60内的人数为()0.0150.005100.02(n n n +⨯=是样本容量),则0.028400n n =⇒=,故年龄在[]50,60内的人数为0.005100.052n n ⨯==,应填答案2。

5. 【某某中学2018届高三10月月考】记函数定义域为,在区间上随机取一个数,则的概率是_______. 【答案】点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动X 围.当考察对象为点,点的活动X 围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.6. 【某某中学2018届高三上学期开学考试】某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示,则估计该校高三学生中数学成绩在之间的人数为__________.【答案】660【解析】由样本频率分布直方图,知:该校高三学生中数学成绩在之间的频率为:,∴估计该校高三学生中数学成绩在之间的人数为:.故答案为660.7. 【海安县2018届高三上学期第一次学业质量测试】已知一个边长为2的正方形及其外接圆.现随机地向圆内丢一粒豆子,则豆子落入正方形内的概率为_________.【答案】8.【海安县2018届高三上学期第一次学业质量测试】某校高一年级共有800名学生,根据他们参加某项体育测试的成绩只做了如图所示的频率分布直方图,则成绩不低于80分的学生人数为_________.【答案】240【解析】由题设中提供的频率分布直方图可以看出:不低于80分的学生人数为()0.020.0110800240m=+⨯⨯=,应填答案240。

2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例

2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例
5
x乙 =
s 乙= 1 28 302 29 302 30 302 31 302 32 302 = 2 . 所以 x甲 < x乙 ,s 甲>s 乙,故选 B.
︱高中总复习︱二轮·文数
(2)(2016· 北京卷,文17)某市居民用水拟实行阶梯水价,每人月用水量中不超 过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收 费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得 到如下频率分布直方图: ①如果w为整数,那么根据此次调查,为使80%以上居 民在该月的用水价格为4元/立方米,w至少定为多少? (2)解:①由用水量的频率分布直方图知, 该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],
4.(2015· 全国Ⅱ卷,文18)某公司为了解用户对其产品的满意度,从A,B两地 区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用
户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频数分布表
满意度评 分分组 频数 [50,60) 2 [60,70) 8 [70,80) 14 [80,90) 10 [90,100] 6
x
46.6
y 563
w 6.8
x x
8 i 1 i
2
w w
8 i 1 i
2
x x y y
8 i 1 i i
w w y y
8 i 1 i i
289.8
1.6
1469
108.8
1 8 表中 wi= xi , w = wi . 8 i 1

2017年高考江苏数学试题及答案(word解析版)

2017年高考江苏数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年江苏,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =,则实数a 的值为_______.【答案】1【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =,∴1a =或231a +=,解得1a =.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.(2)【2017年江苏,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴()221310z =-+=.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年江苏,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为6061000100=,则应从丙 种型号的产品中抽取630018100⨯=件.【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.(4)【2017年江苏,4,5分】如图是一个算法流程图:若输入x 的值为116,则输出y 的值是_______.【答案】2-【解析】初始值116x =,不满足1x ≥,所以41216222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.(5)【2017年江苏,5,5分】若1tan 46πα⎛⎫-= ⎪⎝⎭.则tan α=_______.【答案】75【解析】tan tantan 114tan 4tan 161tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年江苏,6,5分】如如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12VV 的值是________.【答案】32【解析】设球的半径为R ,则球的体积为:343R π,圆柱的体积为:2322R R R ππ⋅=.则313223423V R R V ππ==.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.(7)【2017年江苏,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D 的概率是________.【答案】59【解析】由260x x +-≥得260x x --≤,得23x -≤≤,则2[]3D =-,,则在区间[45]-,上随机取一个数x ,则x ∈D 的概率()()325549P --==--. 【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D ,以及利用几何概型的概率公式是解决本题的关键.(8)【2017年江苏,8,5分】在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是_______. 【答案】23【解析】双曲线2213x y -=的右准线:32x =,双曲线渐近线方程为:33y x =,所以33,22P ⎛⎫ ⎪ ⎪⎝⎭,33,22Q ⎛⎫- ⎪ ⎪⎝⎭, ()12,0F -.()22,0F .则四边形12F PF Q 的面积是:143232⨯⨯=.【点评】本题考查双曲线的简单性质的应用,考查计算能力.(9)【2017年江苏,9,5分】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a =________. 【答案】32【解析】设等比数列{}n a 的公比为1q ≠,∵374S =,6634S =,∴()311714a q q -=-,()6116314a q q -=-, 解得114a =,2q =.则7812324a =⨯=.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题. (10)【2017年江苏,10,5分】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是________. 【答案】30【解析】由题意可得:一年的总运费与总存储费用之和=6009006442240x x x x⨯+≥⨯⨯⋅=(万元). 当且仅当30x =时取等号.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.(11)【2017年江苏,11,5分】已知函数()312x x f x x x e e=-+-,其中e 是自然数对数的底数,若()()2120f a f a -+≤,则实数a 的取值范围是________.【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】函数()312x xf x x x e e =-+-的导数为:()21132220x xxx f x x e e e e '=-++≥-+⋅=,可得()f x 在R 上 递增;又()()()331220x x x x f x f x x x e e x x e e--+=-++-+-+-=,可得()f x 为奇函数,则()()2120f a f a -+≤,即有()()()2211f a f a f a ≤--=-,即有221a a ≤-,解得112a -≤≤.【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.(12)【2017年江苏,12,5分】如图,在同一个平面内,向量OA ,OB ,OC ,的模分别为1,1,2,OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45︒。

概率论与数理统计(二)2017年10月真题及答案解析-第1套试卷

概率论与数理统计(二)2017年10月真题及答案解析-第1套试卷

概率论与数理统计(二)2017年10月真题及答案解析单项选择题:本大题共10小题,每小题2分,共20分。

1. 设随机事件A. 0.1B. 0.2C. 0.3D. 0.5答案:A解析:选A.2. 盒中有7个球,编号为1至7号,随机取2个,取出球的最小号码是3的概率为()A. 2/21B. 3/21C. 4/21D. 5/21答案:C解析:本题为古典概型,所求概率为,选C。

3. 设随机变量()A. 0B. 0.25C. 0.5D. 1答案:A解析:因为是连续型随机变量,所以4. 设随机变量X的分布律为且X与Y 相互独立,则()A. 0.0375B. 0.3C. 0.5D. 0.7答案:A解析:因为X 与Y 相互独立,所以5. 设随机变量X服从参数为5的指数分布,则()A. A.-15B. B.-13C. C.D. D.答案:D解析:X 服从参数为5的指数分布,,选D6. 设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+1)=()A. 13B. 14C. 40D. 41答案:C解析:,选C。

7. 设X1,X2,…,X50相互独立,且令为标准正态分布函数,则由中心极限定理知Y的分布函数近似等于()A. A.B. B.C. C.D. D.答案:C解析:由中心极限定理,8. 设总体为来自X的样本,则下列结论正确的是()A. A.B. B.C. C.D. D.答案:B解析:因为为来自总体的简单随机样本,所以9. 设总体X的概率密度为为来自x的样本,为样本均值,则未知参数θ的无偏估计为()A. A.B. B.C. C.D. D.答案:D解析:由题可知,X服从参数为的指数分布,则,故为θ 的无偏估计,选D10. 设x1,x2,…,xn为来自正态总体N(μ,32)的样本,为样本均值.对于检验假设,则采用的检验统计量应为()A. A.B. B.C. C.D. D.答案:B解析:对检验,方差已知,所以检验统计量为,选B填空题:本大题共15小题,每小题2分,共30分。

2017年全国各地高考数学真题试卷(含答案和解析)

2017年全国各地高考数学真题试卷(含答案和解析)
-#0-)#
!!!!! !"!已知双曲线 %+#$$ 02-$$ '!+&#2&#的 右 顶 点 为 "以 " 为
圆心2为半径作圆"圆 " 与双曲线% 的 一 条 渐 近 线 交 于 3 1 两点!若.3"1'&#9则 % 的离心率为!!!!! !&!如图圆形 纸 片 的 圆 心 为 4半 径 为"4:该 纸 片上的等边三角形 "$% 的中心为4!&0 . 为圆4 上 的 点/&$%/0%"/."$ 分 别是以$%%""$ 为底 边 的 等 腰 三 角 形!沿 虚线剪开后分别以 $%%""$ 为 折 痕 折 起


(


! (
(#则
(('
'$&若复数( 满足($(#则(('
'(&若 复 数(!#($ 满 足(!($(#则(!'($'
'- &若 复 数((#则((! 其 中 的 真 命 题 为 $! ! %
)%'!#'(! !
*%'! #'-
+%'$#'(! !
,%'$ #'-
-!记 )* 为 等 差 数 列 !+*"的 前 * 项 和 !若 +- /+" '$-#)& '-.#则
出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!已知集合 "'!#"##!"#$'!#"(# #!"#则$!!%

福建省各地2017届高三最新考试数学文试题分类汇编:统计与概率

福建省各地2017届高三最新考试数学文试题分类汇编:统计与概率

福建省各地2017届高三最新考试数学文试题分类汇编统计与概率2017.03一、选择、填空题1、(福州市2017届高三3月质量检测)在检测一批相同规格共500kg 航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为 (A )2.8kg(B )8.9kg(C )10kg(D )28kg2、(泉州市2017届高三3月质量检测)某厂在生产某产品的过程中,采集并记录了产量x (吨)与生产能耗y (吨)的下列对应数据:根据上表数据,用最小二乘法求得回归直线方程ˆˆ 1.5ybx =+.那么,据此回归模型,可预测当产量为5吨时生产能耗为( )A .4.625吨B .4.9375吨C .5吨D . 5.25吨3、(晋江市季延中学等四校2017届高三第二次联考)有红色球18个,白色球9个,黑色球18个,小球质地均相同,现采用分层抽样的方法,从这三种球中抽取5个放入不透明的布袋中,再从布袋中随机抽取两球,则两球中至少有一个红球的概率是( )A .207B .107 C .52 D .31 4、(宁德市2017届高三第一次(3月)质量检查)从某学校随机抽取的5名女大学生的身高x 厘米)和体重y (公斤)数据如下表:根据上表可得回归直线方程为$$0.92y x a=+,则$a =( ) A .96.8- B .96.8 C .104.4- D . 104.45. (宁德市2017届高三第一次(3月)质量检查)若在区间[]0,e 内随机取一个数x ,则代表数x 的点到区间两端点距离均大于e3的概率为( ) A .14 B .12 C. 13 D .156、(南平市2017届高三3月适应性检测)7、(龙岩市2017年高中毕业班教学质量检查)二、解答题1、(福州市2017届高三3月质量检测)在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表:运动员比赛场次总分1 2 3 4 5 6 7 8 9 10 11A 3 2 2 2 4 2 6 21B 1 3 5 1 10 4 4 28C 9 8 6 1 1 1 2 28D 7 8 4 4 3 1 8 35E 3 12 5 8 2 7 5 42F 4 11 6 9 3 6 8 47G 10 12 12 8 12 10 7 71H 12 12 6 12 7 12 12 73(Ⅱ)从前7场平均分低于6.5分的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;(Ⅲ)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.2、(莆田市2017届高三3月教学质量检查)为了响应我市“创建宜居港城,建设美丽莆田”,某环保部门开展以“关爱木兰溪,保护母亲河”为主题的环保宣传活动,经木兰溪流经河段分成10段,并组织青年干部职工对每一段的南、北两岸进行环保综合测评,得到分值数据如下表:(1)记评分在80以上(包括80)为优良,从中任取一段,求在同一段中两岸环保评分均为优良的概率;(2)根据表中的数据完成下面茎叶图:(3)分别估计两岸分值的中位数,并计算它们的平均数,试从计算结果分析两岸环保情况,哪边保护更好?3、(泉州市2017届高三3月质量检测)某校为了解校园安全教育系列活动的成效,对全校3000名学生进行一次安全意识测试,根据测试成绩评定“优秀”、“良好”、“及格”、“不及格”四个等级,现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示. 等级 不及格 及格良好优秀得分 [)70,90 [)90,110 [)110,130 []130,150频数6a24 b(1)求,,a b c 的值;(2)试估计该校安全意识测试评定为“优秀”的学生人数;(3)已知已采用分层抽样的方法,从评定等级为“优秀”和“良好”的学生中任选6人进行强化培训;现再从这6人中任选2人参加市级校园安全知识竞赛,求选取的2人中有1人为“优秀”的概率;4、(福州市第八中学2017届高三第六次质量检查)某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x(单位:万元)1 2 3 4 5销售收益y(单位:万元)2 3 2 7计算y关于的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为xb y a xn xy x n yx b ni ini ii ∧∧==∧-=--=∑∑,1221.5、(福州外国语学校2017届高三适应性考试(九))某校N 名教职工开展“快乐步行,幸福人生”有奖评比活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,得到的频率分布直方图如图所示.下表是年龄的频数分布表: 区间 [)25 30,[)30 35, [)35 40, [)40 45,人数25 ab(1)求正整数 a b N ,,的值及N 名教职工年龄的中位数;(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加滨湖新区走进“红五月”宣传交流活动,求恰有1人在第3组的概率.6、(宁德市2017届高三第一次(3月)质量检查)交警随机抽取了途经某服务站的40辆小型轿车在经过某区间路段的车速(单位:km /h ),现将其分成六组为[)[)[)[)[)[]60,65,65,70,70,75,75,80,80,85,85,90后得到如图所示的频率分布直方图.(1)某小型轿车途经该路段,其速度在70km /h 以上的概率是多少?(2)若对车速在[)[)60,65,65,70两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在[)60,65内的概率.7、(南平市2017届高三3月适应性检测)8、(龙岩市2017年高中毕业班教学质量检查)参考答案一、选择、填空题1、B2、C3、B4、A5、C6、D7、B二、解答题1、2、3、解:(1)由频率分布直方图可知,得分在[)70,90的频率为0.005200.1⨯=, 再由[)70,90内的频数6,可知抽取的学生答卷数为60人, 则62460a b +++=,得30a b +=;又由频率分布直方图可知,得分在[]130,150的频率为0.2,即0.260b=, 解得12,18b a ==. 进而求得180.0156020c ==⨯.(2)由频率分布直方图可知,得分在[]130,150的频率为0.2,由频率估计概率,可估计从全校答卷中任取一份,抽到“优秀”的概率为0.2, 设该校测试评定为“优秀”的学生人数为n ,则0.23000n=,解得600n =, 所以该校测试评定为“优秀”的学生人数约为600. (3)“良好”与“优秀”的人数比例为24:12=2:1, 故选取的6人中“良好”有4人,“优秀”有2人,“良好”抽取4人,记为,,,a b c d ,“优秀”抽取2 人,记为,A B , 则从这6人中任取2人,所有基本事件如下:,,,,,,,,,,,,,,AB Aa Ab Ac Ad Ba Bb Bc Bd ab ac ad bc bd cd 共15个,事件A :“所抽取的2人中有人为‘优秀’”含有8个基本事件, 所以所求概率()815P A =. 4、(Ⅰ) 设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知(0.080.10.140.120.040.02)0.51m m +++++⋅==,故2m =;………………4分(Ⅱ) 由(Ⅰ)知各小组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12],其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04, 故可估计平均值为10.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=;8分 (Ⅲ) 空白栏中填5. 由题意可知,1234535x ++++==,232573.85y ++++==,51122332455769i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得26953 3.812 1.2555310b-⨯⨯===-⨯$,$ 3.8 1.230.2a =-⨯=, 即回归直线的方程为$1.20.2y x =+. ……………………………………………12分 5、解:(1)由题中的频率分布直方图可知,25a =,且0.08251000.02b =⨯=,总人数252500.025N ==⨯,中位数是38.75.(2)因为第1,2,3组共有2525100150++=(人),利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为: 第1组的人数为2561150⨯=(人),第2组的人数为2561150⨯=(人),第3组的人数为10064150⨯=(人),所以第1,2,3组分别抽取1人、1人、4人.由可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1234 C C C C ,,,,则从6人中抽取2人的所有可能结果为:()()()()()1234 A B A C A C A C A C ,,,,,,,,,,()1 B C ,,()2 B C ,,()3 B C ,,()()()()()()41213142324 B C C C C C C C C C C C ,,,,,,,,,,,,()34 C C ,,共15种.其中恰有1人年龄在第3组的所有结果为:()()()()()()()()12341234 A C A C A C A C B C B C B C B C ,,,,,,,,,,,,,,,,共8种.所以恰有1人年龄在第3组的概率为815. 6、解:(1) 速度在 70km /h 以上的概率约为()50.0400.0600.0500.0200.85⨯+++=. (2)40辆小型轿车车速在 [)60,65范围内有2辆,在[)65,70范围内有4辆.用,A B 表示[)60,65范围内2辆小型轿车,用,,,a b c d 表示车速在[)65,70范围内有4辆小型轿车,则所有基本事件为,,,,,,,,AB Aa Ab Ac Ad Ba Bb Bc Bd ,,,,,,ab ac ad bc bd cd ,至少有一辆小型轿车车速在范围[)60,65内事件有,,,,,,,,AB Aa Ab Ac Ad Ba Bb Bc Bd ,所以所求概率93155p ==. 7、解:(Ⅰ)总人数:28002.0528=⨯=N ,,28=a第3组的频率是:4.0)02.006.002.002.0(51=+++⨯- 所以1124.0280=⨯=b ……………3分(II )因为年龄低于40岁的员工在第1,2,3组,共有1681122828=++(人), 利用分层抽样在168人中抽取42人,每组抽取的人数分别为: 第1组抽取的人数为71684228=⨯(人),第2组抽取的人数为71684228=⨯(人), 第3组抽取的人数为2816842112=⨯(人), 所以第1,2,3组分别抽7人、7人、28人。

2017线性代数与概率统计随堂练习答案

2017线性代数与概率统计随堂练习答案

1、(单选题) 计算?A.;B.;C.;D.、答题: A、B、C、D、(已提交)参考答案:A2、(单选题) 行列式?A.3;B.4;C.5;D.6、答题: A、B、C、D、(已提交)参考答案:B3、(单选题) 计算行列式、A.12;B.18;C.24;D.26、答题: A、B、C、D、(已提交)参考答案:B问题解析:4、(单选题) 利用行列式定义计算n阶行列式:=?A.;B.;C.;D.、答题: A、B、C、D、(已提交)参考答案:C问题解析:5、(单选题) 计算行列式展开式中,的系数。

A.1, 4;B.1,-4;C.-1,4;D.-1,-4、答题: A、B、C、D、(已提交)参考答案:B问题解析:6、(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5、答题: A、B、C、D、(已提交)参考答案:B问题解析:7、(单选题) 计算行列式=?A.130 ;B.140;C.150;D.160、答题: A、B、C、D、(已提交)参考答案:D问题解析:8、(单选题) 四阶行列式的值等于多少?A.;B.;C.;D.、答题: A、B、C、D、(已提交)参考答案:D问题解析:9、(单选题) 行列式=?A.;B.;C.;D.、答题: A、B、C、D、(已提交)参考答案:B问题解析:10、(单选题) 已知,则?A.6m;B.-6m;C.12m;D.-12m、答题: A、B、C、D、(已提交)参考答案:A问题解析:11、(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|、答题: A、B、C、D、(已提交)参考答案:D问题解析:12、(单选题) 设矩阵,求=?A.-1;B.0;C.1;D.2、答题: A、B、C、D、(已提交)参考答案:B问题解析:13、(单选题) 计算行列式=?A.-1500;B.0;C.-1800;D.-1200、答题: A、B、C、D、(已提交)参考答案:C问题解析:14、(单选题) 齐次线性方程组有非零解,则=?A.-1;B.0;C.1;D.2、答题: A、B、C、D、(已提交)参考答案:C问题解析:15、(单选题) 齐次线性方程组有非零解的条件就是=?A.1或-3;B.1或3;C.-1或3;D.-1或-3、答题: A、B、C、D、(已提交)参考答案:A问题解析:16、(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论就是哪个?A.无解;B.唯一解;C.一个零解与一个非零解;D.无穷多个解、答题: A、B、C、D、(已提交)参考答案:B问题解析:17、(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论就是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解、答题: A、B、C、D、(已提交)参考答案:A问题解析:18、(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

17数学二真题答案解析

17数学二真题答案解析

17数学二真题答案解析17年数学二真题答案解析在高考中,数学是让很多学生头疼的科目之一。

它涉及到的知识点繁多,要求考生有良好的逻辑思维和解题能力。

今天我们来解析2017年高考数学二题的真正答案。

首先,我们来看看第一题。

这道题是一道概率题,考察了考生对概率的理解和计算能力。

根据题目的要求,我们可以得出答案是0.5。

这是因为在两枚硬币同时抛掷的情况下,每个硬币的正反面都有两种可能性,所以一共有4种可能的组合。

而其中,两个硬币都是正面的概率只有1种情况,所以答案是0.5。

接下来,我们看一下第二题。

这是一道函数题,要求求出函数f(x)的极值。

根据题目给出的函数表达式,我们可以将其求导,然后令导数等于0,求得函数的临界点。

经过计算,我们可以得到临界点x=-1和x=1。

接着,我们将这两个临界点代入原函数,得到对应的函数值f(-1)=0和f(1)=2。

比较这四个值,我们可以得出函数f(x)的极大值是2,极小值是0。

第三题是一道图形题,要求求出两个图形的相交面积。

根据题目给出的图形,我们可以将其分解为两个圆和一个矩形。

然后,我们根据几何公式计算出这两个图形的面积分别为π和4。

接着,我们计算出两个图形相交部分的面积,得到的答案是π/4。

这是因为两个圆的半径相等,所以相交部分是一个四分之一的圆。

第四题是一道方程题,要求求出方程的根。

根据题目给出的方程,我们可以将其进行因式分解,得到(x-1)(x-2)(x-3)=0。

然后,我们解出方程的根分别是x=1,x=2和x=3。

最后,我们看一下第五题。

这是一道平面几何题,要求求出两个线段的夹角。

根据题目给出的线段,我们可以通过向量的内积公式计算出两个向量的内积和模长。

然后,我们利用内积的定义求出它们夹角的余弦值。

最后,我们可以求出夹角的度数是30°。

通过以上对17年数学二真题的解析,我们可以发现,数学是一门需要理解和运用的学科。

虽然在解答问题时需要运用一定的方法和公式,但是掌握好基本概念和思维方式也是至关重要的。

四川省高三数学理一轮复习专题突破训练:统计与概率(含答案解析)

四川省高三数学理一轮复习专题突破训练:统计与概率(含答案解析)

四川省 2017 届高三数学理一轮复习专题打破训练统计与概率一、选择、填空题1、( 2016 年四川省高考)同时投掷两枚质地均匀的硬币,当起码有一枚硬币正面向上时,就说此次试验成功,则在 2 次试验中成功次数X 的均值是.2、(成都市 2016 届高三第二次诊疗)某校高三(1) 班在一次单元测试中,每位同学的考试分数都在区间[100,128] 内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112), [112,116), [116,120), [120,124),[124 , 128] .绘制出频次散布直方图以下图,已知分数低于112 分的有 18 人,则分数不低于120分的人数为(A)10(B)12(C)20(D)403、(成都市都江堰2016 届高三 11 月调研)设会合A{1,2} ,B {1,2,3} ,分别从会合A和B 中随机取一个数 a 和b,确立平面上的一个点P(a, b) ,记“点 P(a, b) 落在直线x y n 上”为事件C n (2 n 5,n N ) ,若事件 C n的概率最大,则最大值为;4 、(成都市都江堰2016 届高三11 月调研)已知随机变量X 听从正态散布N (3,1) ,且P(2 X 4) 0.6826 ,则 P( X 4)()A . 0.1588B. 0.1587C. 0.1586D. 0.15855、(绵阳中学 2017 届高三上学期入学考试)把一枚硬币连续抛两次,记“第一次出现正面”为事件 A ,“第二次出现正面”为事件 B ,则P B | A()1111 A.B.C.D.24686、(内江市 2016 届高三第四次( 3 月)模拟)以下图的茎叶图表示甲、乙两人在5 次综合测评中的成绩,此中一个数字被污损,则甲的均匀成绩超出乙的均匀成绩的概率为(C )27 4A .B .C .5105D .9107、(成都市双流中学 2016 届高三 5 月月考) 某单位为了认识用电量 y 度与气温 x C 之间的关系,随机统计了某4 天的用电量与当日气温,并制作了比较表气温( C )1813 10 1用电量(度)24343864由表中数据得回归直线方程? ? ? 2bx ?中 b,展望当气温为4 C 时,用电量的度数y a是 .8、(成都市双流中学 2017 届高三 9 月月考)在 6 道题中有 4 道理科题和 2 道文科题,假如不放回的挨次抽取2 道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率 .9、(资阳市资阳中学 2017 届高三上学期入学考试)现有5 人参加抽奖活动,每人挨次从装有 5 张奖票(此中3 张为中奖票) 的箱子中不放回地随机抽取一张, 直到 3 张中奖票都被抽... 出时活动结束,则活动恰幸亏第 4 人抽完后结束的概率为( ).A .1B .1105C .3D .210510[ 1,1]上随机的取一个数k,则事件“直线y = kx与圆 ( x - 5) + y = 9订交”发、在 -22生的概率为二、解答题1、( 2016 年四川省高考)我国是世界上严重缺水的国家,某市政府为了鼓舞居民节俭用水,计划调整居民生活用水收费方案,拟确立一个合理的月用水量标准x (吨)、一位居民的月用水量不超出x 的部分按平价收费,高出x 的部分按议价收费.为了认识居民用水状况,通过抽样,获取了某年100 位居民每人的月均用水量(单位:吨),将数据依据[0,0.5),[0.5,1),,[4,4.5) 分红 9 组,制成了以下图的频次散布直方图.( I )求直方图中 a 的值;( II )设该市有30 万居民,预计全市居民中月均用水量不低于 3 吨的人数,并说明原因;( III )若该市政府希望使85%的居民每个月的用水量不超出标准x (吨),预计 x 的值,并说明原因 .2、( 2015 年四川省高考)某市A,B 两所中学的学生组队参加争辩赛, A 中学介绍 3 名男生,2 名女生, B 中学介绍了 3 名男生, 4 名女生,两校介绍的学生一同参加集训,因为集训后队员的水平相当,从参加集训的男生中随机抽取 3 人,女生中随机抽取 3 人构成代表队( 1)求 A 中学起码有 1 名学生当选代表队的概率.( 2)某场比赛前。

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。

2017年数学三真题答案解析

2017年数学三真题答案解析

所以Z的概率密度为
O<z <L
几(z)�r-- 2, 2<z<3,
(23)解
0'
其他.
CI) Z1 的分布函数为
厂王) -], F(z)�P{Z,,s;;z}�P{IX,-pl,s;;z}�
z�o.
o,
z < 0,
所以Z1 的概率密度为 f(z)�{f•';';,'
z歹o,
z<O.
=厂叮 z 厂 C II) EZ1
已AB与C相互独立,故应选C. (8) B
解 因为X, �NCµ ,1),
所以X,
— µ
�N(O,l),
�ex, 则
—µ尸~贮(n), 故A正确;
,-1
一` (n — 1)S 2
�(X,
,-1
因为 z =
�X气n — 1)'
C,
1
故C正确;
因为
X
�N(
µ
,—1 ), n
X—µ
所以
�N(O,l),
1

(z)dz =
ze 三 dz
芦a o
z a.
v冗
z z a
=

�1 n
EZ1, 令Z=亡让,得
6
的矩估计最为aA

dx
。 =
1 +=
1
4J (1+x2

1 1+2x 2)dx
。) 勹1 (arctanx
/

0

过 了arctan,/2x
+=
(17)解
2 —迈 = 16 兀
n (--;;) --;; 杻心: -杻心: n k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,b,则log a b为整数的概率
2

1131
在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同
2017届高三数学专题练习
概率
解析
【重点把关】
1.解析:由题知甲不输的概率为+=.故选A.
2.解析:设5件产品中合格品分别为A1,A2,A3,2件次品分别为B1,B2,则从5件产品中任取2件的所有基本事件为A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2,共10个,其中恰有一件次品的所有基本事件为A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,共6个.故所求的概率为P==0.6.3.解析:现有一枚质地均匀且表面分别标有1,2,3,4,5,6的正方体骰子,将这枚骰子先后抛掷两次,基本事件总数n=6×6=36,
这两次出现的点数之和大于点数之积包含的基本事件有:(1,1),
(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个,
所以抛掷两次出现的点数之和大于点数之积的概率为P=.
4.解析:试验发生包含的事件数4×4=16,
满足条件的事件是连续两次抛掷这个玩具,则两次向下的面上的数字之积为偶数,
可以列举出事件(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),
(3,4),(4,1),(4,2),(4,3),(4,4)共有12种结果.
根据古典概型的概率公式得到概率是=,故选D.
5.解析:因为f(A)≥f(B)⇔a≤b,
所以P==,故选B.
6.解析:以线段AC为半径的圆面积小于π等价于半径AC小于1,所以其概率为.
故选B.
7.解析:任取两个不同数分别为a,b,
则数对(a,b)为(2,3);(2,8);(2,9);(3,8);(3,9);(8,9);(3,2);
(8,2);(9,2);(8,3);(9,3);(9,8)共12个.
其中满足log a b为整数的数对(a,b)为(2,8);(3,9).则log a b为整数的概率为=.
答案:
8.解析:正方形的面积S=0.5×0.5=0.25cm2,
若铜钱的直径为2cm,则半径是1cm,圆的面积S=π×12=πcm2,
则随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率P==.
答案:
9.【能力提升】
10.解析:依题意得,点C的坐标为(1,2),所以点D的坐标为(-2,2),所以矩形ABCD的面积S矩形ABCD=3×2=6,阴影部分的面积S阴影=×3×1=,根据几何概型的概率求解公式,得所求的概率P===,故选B.
11.解析:设方程x2+2px+3p-2=0的两个根分别为x1,x2,
由题意,得
结合0≤p≤5,
解得<p≤1或2≤p≤5,
所以所求概率为P==.
答案:。

相关文档
最新文档