20.1.2中位数和众数教案

合集下载

人教版八年级下册数学教案:20.1.2中位数和众数

人教版八年级下册数学教案:20.1.2中位数和众数

20.1.2中位数和众数教学目标1、认识中位数和众数,并会求一组数据的中位数和众数.2、理解中位数和众数的意义和作用.3、会用中位数和众数对一组数据进行分析和总结.重点难点重点:什么是中位数和众数.难点:会用中位数和众数对一组数据进行分析和总结.教学设计一、情景引入再看一下苏老板的故事:苏厂长是工厂的管理人员,员工由他的弟弟及其他2个亲戚组成.以及3长工组成.现在需要一个新工人,苏厂长正在与一个叫小王的青年人谈招聘问题.苏厂长说:“我们这里报酬不错,平均每个人的薪金是每天300元,但在学徒期间每天是80元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每天100元.每人平均工资怎么可能是一天300元呢?”苏厂长皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”苏厂长拿出一张表,说道:“这是我每天付出的薪金.我得900我弟弟得590我的2个亲戚每人得250元,3长工每人得110元,你得80元.总共是每天2100元,付给7个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每天300元.可你还是骗了我.”小王生气地说.苏厂长拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”(1)苏老板说的平均工资欺骗了小王吗?(2)平均工资300能否反应工人平均工资?(3)若不能,你认为应该用什么工资反应比较合理呢?让学生感知不是所有的问题都可以用平均数来解决问题,从而引出今天探究的主要问题是中位数和众数.二、新知探究,合作交流1、众数的概念众数也常作为一组数据的代表,一组数据中出现次数最多的数据就是这组数据的众数,若两组次数一样,则众数有两个2、中位数的概念将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这个数据的中位数,如果数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数.引出简单数据并找出其众数和中位数,加深对概念的理解下面这组数据的众数是多少?中位数是多少并解释它的意义.5 267 6 3 3 4 3 7 6第一步:排序为:2 3 3 3 4 5 6 6 6 7 7第二步:找出最中间的数据为第7个是6;找出出现次数最多的是33、对中位数和众数的理解和应用三.例题讲解例4 在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136, 140, 129, 180, 124, 154,146, 145, 158, 175, 165, 148.(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142 min,他的成绩如何?同桌之间讨论,组内交流.题目中数据共有12个,故中位数是从小到大排列后,第6、第7两个数的平均数,再根据中位数的意义评价142 min的成绩.解:(1)先将样本数据按照由小到大的顺序排列:124 129 136 140 145 146148 154 158 165 175 180则这组数据的中位数是=147.所以样本数据的中位数是147.(2)由(1)中得到的样本数据的中位数,可以估计,在这次马拉松比赛中,约有一半选手的成绩慢于147 min,约有一半选手的成绩快于147 min,故成绩为142 min的选手比一半以上选手的成绩好.例5 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示.你能根据表中的数据为这家鞋店提供进货建议吗?尺码/cm 22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1同桌之间讨论,组内交流一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关心卖出的鞋的尺码组成的一组数据的众数.一段时间内卖出的30双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而可以估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.从而得出结论对与不同的问题有的要考虑平均数有的要考虑众数有的要考虑中位数.四、巩固练习练习p117和p118练习题五、课堂效果测评课堂小结这节课你对中位数和众数的概念的理解?中位数和众数在数据中代表数据的什么特性. 课堂测评1.某校在预防H1N1流感过程中,坚持每日检查体温,下表是该校八年级四班同学一天的体温数据统计表,则该班40名学生体温的中位数是( )体温/℃36.0 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 37.0人数0 2 0 5 7 5 6 3 8 3 1A. 36.8 ℃B. 36.5 ℃C. 36.6 ℃D. 36.4 ℃2.在下表这组测试体重的数据中,众数是( )体重/kg 33 36 39 42 45 48人数/人 4 5 12 10 4 3A.39B.48C.12D.33.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A.21,21B.21,21.5C.21,22D.22,224.在数据-1,0,4,5,8中插入一个数据x,使该组数据的中位数是3,则x= .5.在一次数学知识竞赛中,某班20名学生的成绩如下表所示:成绩/分50 60 70 80 90人数 2 3 6 7 2分别求这些学生成绩的众数、中位数和平均数.六、评价与反思本节课的教学设计遵循学生的认知心理,通过设计学生熟悉的问题情境,激发学生的学习兴趣及积极性,适时组织与引导学生自主探索、与同伴合作交流,认识中位数、众数的特点,能根据实际问题,选择适当的统计量,表示一组数据的不同特征,突破重难点,完成本节课的学习目标,让学生感受“现实的数学、有用的数学”学生对中位数和众数的定义的掌握和理解较易接受,但在求中位数时容易出错.。

人教版八年级下册20.1.2中位数和众数众数(教案)

人教版八年级下册20.1.2中位数和众数众数(教案)
人教版八年级下册20.1.2中位数和众数众数(教案)
一、教学内容
人教版八年级下册20.1.2中位数和众数:本节课我们将学习中位数和众数的概念及其应用。教学内容主要包括:
1.中位数的定义:一组数据从小到大(或从大到小)排列,位于中间位置的数,若数据个数为偶数,则中位数为中间两个数的平均值。
2.中位数的性质:中位数不受极端值的影响,更能反映一组数据的一般水平。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中位数和众数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中位数和众数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-中位数难点:如数据集{1, 2, 3, 4, 5, 6}的中位数是(3+4)/2=3.5,而非3或4,学生需要理解这种求中位数的方法。
-众数难点:如在数据集{1, 2, 2, 3, 3, 3, 4, 4}中,众数是3,但如果数据集是{1, 2, 3, 4},则没有众数。
-应用难点:如在分析某班级学生的身高数据时,学生需要判断使用中位数还是众数更能反映班级学生的身高特点。
5.课后,我会关注学生的作业完成情况,了解他们在课堂上是否真正掌握了知识点。同时,我也会根据学生的反馈,及时调整教学方法,以提高教学效果。
五、教学反思
在今天的教学中,我重点关注了中位数和众数的概念及其在实际问题中的应用。通过引导学生们从日常生活实例入手,我希望他们能够感受到数学知识就在身边,增强学习兴趣。在讲授过程中,我注意到以下几点:
1.学生对中位数和众数的概念理解较为顺利,但在具体计算和应用时还存在一定困难。这说明在今后的教学中,我需要进一步强化算理讲解和实例分析,帮助学生更好地掌握计算方法。

20.1.2中位数和众数教案

20.1.2中位数和众数教案
数据
平均数
中位数
众数
20,20,21,24,27,30,32
0,2,3,4,5,5,10
-2,0,3,3,3,8
―6,―4,―2,2,4,6
3.某公司有10名销售业务员,去年每人完成的销售额情况如下表
销售额(万元)
3
4
5
6
7
8
10
销售人数
1
3
2
1
1
1
1
问题:(1)求10名销售员销售额的平均数、中位数和众数(单位:万元)
二、教学重、难点
重点:认识中位数、众数这两种数据代表
难点:利用中位数、众数分析数据信息,做出决策。
三、教学准备
多媒体课件。
四、教学方法
合作、讲练结合。
五、教学过程
(一)复习引入
严格的讲,教材本节课没有引入的问题,而是在复习和延伸中位数定义的过程中拉开序幕的,教师可以一句话引入新课:前面已经和同学们研究过了平均数这个数据代表。它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
六、板书设计
20.1.2中位数和众数
复习回顾:
复习和延伸中位数的定义
新课教授:
数据分析中的中位数概念
众数概念
例题讲解:
例1
例2
巩固练习:Байду номын сангаас
课堂小结:
中位数和众数概念
布置作业:
七、对应练习
1、判断题:
(1)给定一组数据,那么描述这组数据的平均数一定只有一个.()
(2)给定一组数据,那么描述这组数据的中位数一定只有一个.()

人教版数学八年级下册20.1.2《中位数和众数》(第1课时)教案

人教版数学八年级下册20.1.2《中位数和众数》(第1课时)教案

人教版数学八年级下册20.1.2《中位数和众数》(第1课时)教案一. 教材分析《中位数和众数》是人教版数学八年级下册第20.1.2节的内容,本节课主要介绍中位数和众数的概念及其求法。

中位数是将一组数据从小到大排列后,位于中间位置的数,它可以反映一组数据的中心位置。

众数是一组数据中出现次数最多的数,它可以反映一组数据的集中趋势。

本节课的内容对于学生来说是一个新的知识点,但与他们的生活实际密切相关,有助于培养学生的数据分析能力。

二. 学情分析学生在学习本节课之前,已经掌握了平均数的概念及其求法,对数据的排序和筛选有一定的了解。

但他们对中位数和众数的概念及求法还比较陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对生活中的一些现象,如商品的销售排行榜等,已经有了一定的认识,这有助于他们在学习众数时更好地理解和应用。

三. 教学目标1.知识与技能:让学生了解中位数和众数的概念,学会求一组数据的中位数和众数。

2.过程与方法:让学生通过观察、分析、操作、交流等方法,体验中位数和众数的求法,培养学生的数据分析能力。

3.情感态度与价值观:让学生感受数学与生活的紧密联系,激发学生学习数学的兴趣。

四. 教学重难点1.重点:中位数和众数的概念及其求法。

2.难点:理解中位数和众数在实际生活中的应用,以及如何从一组数据中准确地找出中位数和众数。

五. 教学方法采用情境教学法、案例教学法和小组合作学习法。

通过生活实例引入中位数和众数的概念,让学生在实际情境中感受数学的意义;通过分析案例,让学生学会求一组数据的中位数和众数;通过小组合作学习,让学生在讨论和交流中加深对知识的理解。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:练习本、笔。

3.教学素材:生活实例、案例分析。

七. 教学过程1.导入(5分钟)通过展示一组学生的身高数据,让学生观察并回答以下问题:(1)这组数据中有没有重复的数?(2)这组数据的中间位置在哪里?引导学生发现身高数据中没有重复的数,中间位置只有一个数,从而引入中位数的概念。

人教版八年级下册20.1.2中位数和众数课程设计

人教版八年级下册20.1.2中位数和众数课程设计

人教版八年级下册20.1.2中位数和众数课程设计课程背景中位数和众数是八年级下册数学中比较重要的概念,学生通过初步学习后,可以掌握其概念和求解方法。

在课程教学中,我们应该注重培养学生的实际分析和解决问题的能力。

教学目标1.理解中位数和众数的概念2.掌握求解中位数和众数的方法3.发掘和探究中位数和众数在实际生活中的应用价值教学内容1.中位数的定义及求解方法2.众数的定义及求解方法3.中位数与众数在实际生活中的应用教学重点1.理解中位数和众数的概念2.掌握求解中位数和众数的方法3.发掘和探究中位数和众数在实际生活中的应用价值教学难点1.如何灵活有效地在实际问题中运用中位数和众数。

2.同时分析中位数和众数对数据分布的影响1.示范教学法2.讨论教学法3.课堂练习和调查分析教学过程第一步:导入新知识教师通过文字、图片等方式,简单介绍中位数和众数的概念,引导学生进行简单的思考和猜测。

第二步:概念解释教师对中位数和众数的概念进行详细解释,并分别讲解其求解方法。

第三步:实例解读通过大量实例,让学生深度理解中位数和众数的意义及其求解方法,并引导学生发掘其中的规律。

第四步:探究应用结合实际生活中的数据调查和讨论,引导学生感受中位数和众数的开发应用,提高他们对数学知识的实际应用能力。

第五步:总结归纳结合本节课的学习内容,教师通过问答、互动等形式,帮助学生总结归纳中位数和众数的概念表达以及求解方法,巩固学生所学知识。

通过期末考试、小测验、课堂表现等对学生进行量化评估。

同时在课堂上,教师可以通过运用答题卡、问题解答等方式进行随堂测验,促进各个环节知识点的检测和加强学生的学习兴趣。

反思通过本次课程的设计和教学,学生可以在学习过程中充分理解中位数和众数的概念,掌握其计算方法,加深对数学知识的理解和应用,提高学生的实际分析和解决问题的能力,促进学生的终身学习。

希望通过此次课程的设计和实施,能够帮助学生更好的应对学习和生活中的实际问题。

20.1.2 中位数和众数(第1课时 )(教案)八年级数学下册(人教版)

20.1.2 中位数和众数(第1课时 )(教案)八年级数学下册(人教版)

问题2 下表是某公司员工月收入的资料.(1)计算这个公司员工月收入的平均数; 6276111163111100011300034006500035500100001800045000≈++++++++⨯++⨯+⨯+++=x (元) (2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?不合适,因为平均数远远大于绝大多数人(22人)的实际月工资,绝大多数人“被平均”.“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?一半人月工资高于该数值,另一半人月工资低于该数值;中等水平的含义是中位数.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.例如,上述问题中将公司25名员工月收入数据由大到小排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.思考上述问题中公司员工月收入的平均数为什么比中位数高得多呢?如果一组数据中有极端数据,则中位数能比平均数更合理地反映该组数据的整体水平.想一想如果小张是该公司的一名普通员工,那么你认为他的月工资有可能是多少元?如果小李想到该公司应聘一名普通员工岗位,他最关注的是什么信息?一组数据中出现次数最多的数据称为这组数据的众数.如果一组数据中有两个数据的频数一样,都是最大,那么这两个数据都是这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好反映其集中趋势.问题2中公司员工收入的众数为3000,这说明公司中月收入3000元的员工人数最多.如果应聘公司的普通员工一职,这个众数能提供更为有用的信息.【课堂检测案】例4在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136140129180124154146145158175165148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142min,他的成绩如何?解:(1)先将样本数据按照由小到大的顺序排列:24,129,136,140,145,146,148,154,158,165,175,180.这组数据的中位数为处于中间的两个数146、148的平均数,即(146+148)÷2=147因此样本数据的中位数是147.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次马拉松比赛中,大约有一半选手的成绩快于147min,有一半选手的成绩慢于147min.这名选手的成绩是142min,快于中位数147min,可以推测他的成绩比一半以上选手的成绩好.根据例4中的样本数据,你还有其他方法评价(2)中这名选手在这次比赛中的表现吗?例5一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示.你能根据表中的数据为这家鞋店提供进货建议吗?解:由上表可以看出,在鞋的尺码组成的一组数据中,23.5是这组数据的众数,即23.5cm的鞋销售量最大.因此可以建议鞋店多进23.5cm的鞋.分析表中的数据,你还能为鞋店进货提出哪些建议?【课堂训练案】练习1.下面的条形图描述了某车间工人日加工零件数的情况.请找出这些工人日加工零件数的的中位数,并说明这个中位数的意义.分析:共36个数据,中间位置是第18个与第19个的平均数,这两个数据都是6,因而中位数是6.2.下面的扇形图描述了某种运动服的S号、M号、L号、XL号、XXL号在一家商场的销售情况.请你为这家商场提出进货建议.3.某校男子足球队的年龄分布如上面的条形图所示.请找出这些年龄的平均数、众数、中位数,并解释它们的意义.。

20.1.2中位数与众数教案

20.1.2中位数与众数教案

《20.1.2中位数和众数》教案
旧县中学雷雅
教学反思:本堂课开篇以小新的成绩问题引发学生认识上的冲突,激发学生的学习兴趣,便于教学工作的开展;当学生自己发现平均数在某些时候并不能很好地反映数据的总体水平之后再提出中位数,学生易于接受。

接着通过例题和练习题等一系列的问题再提出众数,课堂结构安排紧凑、合理;并且整个课堂以学生自主完成练习为主,加上小组讨论,充分体现了学生的自主性。

不足的是,教学时某些教学语言还不是特别精简,值得改进。

人教版八下数学20.1.2 课时1 中位数和众数教案+学案

人教版八下数学20.1.2 课时1 中位数和众数教案+学案

人教版八年级下册数学第20章数据的分析20.1数据的集中趋势 20.1.2 中位数和众数课时1 中位数和众数教案【教学目标】知识与技能目标1.认识中位数和众数,并会求一组数据的众数和中位数;2.能够在具体的情境中选择合适的统计量表示数据;3.培养学生运用数学来解决实际问题的意识,养成“用数字来说话”的思想和习惯.过程与方法目标通过设置问题情境,经过探索、研究、解决问题,使学生经历中位数和众数产生的过程,感受统计在生活中的应用.情感、态度与价值观目标1.通过小组间的交流与合作,体验数学活动充满探索与创新的特点,从而培养学生的合作交流意识和探索精神;2.在解决实际问题的情境中,体会数学与实际生活的联系,增强统计意识,培养统计能力.【教学重点】理解中位数、众数的概念,会求一组数据的中位数和众数.【教学难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,利用中位数、众数分析数据信息并作出决策.【教学准备】教师准备:教学中出示的例题.学生准备:复习平均数、加权平均数的定义,并完成本节学案中的自主学习内容.【教学过程设计】一、情境导入运动会男子50m步枪三姿射击决赛.甲、乙两位运动员10次射击的成绩如但由于第10次射击,意外地未能击中靶子,最终乙以总分第一获得该项目的第一名.你认为用10次射击的平均数来表示甲射击成绩的实际水平合适吗?如果你认为不合适.那么应该怎样评价甲射击的实际水平?一组数据的“平均水平”除了用平均数反映以外,还可以用中位数、众数来反映.二、合作探究知识点一:中位数【类型一】直接求一组数据的中位数例1)分别为25,27,27,26,28,28,28.则这组数据的中位数是()A.28B.27C.26D.25解析:首先把数据按从小到大的顺序排列为25、26、27、27、28、28、28,则中位数是27.故选B.方法总结:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).【类型二】根据统计表求中位数例210名同学在一周内的读书时间,他们一周内的读书时间累计如下表,则这10名同学一周内累计的读书时间的中位数是()A.8B.7解析:∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为8+102=9.故选C.方法总结:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【类型三】在两种不同的统计图中求中位数例3计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94,96B.96,96C.94,96.4 D.96,96.4解析:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选D.方法总结:解题的关键是从统计图中获取正确的信息并求出各个小组的人数.然后求中位数和平均数.知识点二:众数【类型一】直接求一组数据的众数例4(单位:码)由小到大是20,21,21,22,22,22,22,23,23.这组数据的中位数和众数是()A.21和22 B.21和23C.22和22 D.22和23解析:数据按从小到大的顺序排列为20,21,21,22,22,22,22,23,23,所以中位数是22;数据22出现了4次,出现次数最多,所以众数是22.故选C.方法总结:一组数据中出现次数最多的数据叫做众数.【类型二】在条形统计图中求众数例5某校男子足球队的年龄分布如右图所示,则这些队员年龄的众数是()A.12B.13C.14D.15解析:观察条形统计图知年龄为14岁的人最多,有8人,故众数为14.故选C.方法总结:求一组数据的众数的方法:找出频数最多的那个数据.若几个数据频数都是最多且相同,此时众数就是这多个数据.【类型三】平均数、众数和中位数的综合考查例6别是()A.4,5B.5,5C.5,6D.5,8解析:∵3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,解得x=5.把这组数据从小到大排列为3,4,5,5,8,∴这组数据的中位数为5.∵5出现的次数最多,∴这组数据的众数是5.故选B.方法总结:解决本题的关键是掌握平均数、众数和中位数的求法.知识点三:平均数、众数和中位数的选择例7某公司33名职工的月工资(单位:元)如下:(2)假设副董事长的工资从8000元提升到20000元,董事长的工资从8500元提升到30000元,那么新的平均数、中位数、众数又各是多少(精确到个位)?(3)你认为哪个统计量更能反映这个公司职工的工资水平?请说明理由.解析:(1)(2)根据平均数、中位数、众数的概念计算;(3)由于副董事长、董事长的工资偏高,使月平均工资偏大,也就是说用平均数来反映这个公司职工的工资水平有很大的误差.应用公司职工月工资的中位数或众数来反映这个公司的工资水平.解:(1)公司职工月工资的平均数为133×(8500+8000+6500×2+6000+5500×5+5000×3+4500×20)≈5091;把33个数据按从小到大排列可得中位数为4500,众数为4500;(2)新的平均数为133×(30000+20000+6500×2+6000+5500×5+5000×3+4500×20)≈6106;把33个新的数据按从小到大排列可得中位数仍为4500,众数仍为4500;(3)由于副董事长、董事长的工资偏高,使月平均工资与绝大多数职工的月工资差距很大,也就是说用平均数来反映这个公司职工的工资水平有很大的误差.显然用公司职工月工资的中位数或众数更能反映这个公司的工资水平.方法总结:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.三、教学小结师生共同回顾所学主要内容:中位数众数概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如一组数据中出现次数最多的数据就是这组数据的众数果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数作用中位数也是用来描述数据的集中趋势的,它是一个位置代表值,如果知道一组数据的中位数,那么可以知道,小于或大于这个中位数的数据约各占一半众数也常作为一组数据的代表,用来描述数据的集中趋势,当一组数据有较多的重复数据时,众数往往是人们所关心的一个量区别中位数的优点是计算简单,只与其在数据中的位置有关,但不能充分利用所有的数据信息.众数只与其在数据中重复出现的次数有关,而且有时不是唯一的, 但不能充分利用所有的数据信息,而且当各个数据的重复次数大致相等时,众数往往没有特别的意义联系它们从不同角度描述了一组数据的集中趋势【板书设计】20.1数据的集中趋势20.1.2中位数和众数课时1中位数和众数1.中位数2.众数3.平均数、众数和中位数的应用4.例题讲解例1例2【课堂检测】1.1.某校在预防H1N1流感过程中,坚持每日检查体温,下表是该校八年级四班同学一天的体温数据统计表,则该班40名学生体温的中位数是() 体温/℃ 36.0 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 37.0人数0 2 0 5 7 5 6 3 8 3 1A. 36.8 ℃B. 36.5 ℃C. 36.6 ℃D. 36.4 ℃解析:题中已将40人的体温从小到大排列,找第20,21人的体温,均为36.6 ℃,故该班40名学生体温的中位数是36.6 ℃.故选C.2.在下表这组测试体重的数据中,众数是( )体重/kg 33 36 39 42 45 48人数/人 4 5 12 10 4 3A.39B.48C.12D.3解析:由表可以看出有4个33,5个36,12个39,10个42,4个45,3个48,其中39出现的次数最多,根据众数的意义,在一组数据中,出现次数最多的数就是这组数据的众数,所以39就是这组数据的众数.故选A.3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A.21,21B.21,21.5C.21,22D.22,22解析:从图中可以看出出现最多的数据是21,因此众数是21.气温为20 ℃,21 ℃,22 ℃,23 ℃和24 ℃分别有4天,10天,8天,6天和2天,按从小到大排序后处在最中间的两个数是22,因此中位数为22.故选C.4.在数据-1,0,4,5,8中插入一个数据x,使该组数据的中位数是3,则x=.解析:在数据-1,0,4,5,8中,插入一数据x,使得该组数据的中位数是3,则(4+x)÷2=3,解得x=2.故填2.5.在一次数学知识竞赛中,某班20名学生的成绩如下表所示:成绩/分50 60 70 80 90人数 2 3 6 7 2分别求这些学生成绩的众数、中位数和平均数.解:平均数是=72(分);由表可知80分对应的人数最多,因此这组数据的众数应该是80分;由于人数总和是20,为偶数,将数据从小到大排列后,第10个和第11个数据都是70,因此这组数据的中位数应该是70分.5.某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表:部门A B C D E F G人数 1 1 2 4 2 2 3年利润/(万元/人) 20 5 2.5 2.1 1.5 1.5 2(1)该公司每人所创年利润的平均数、中位数、众数各是多少?(2)你认为应该用哪个数据来描述该公司每人所创年利润的一般水平比较合适?解析:(1)把所有数据相加,注意每个数据的个数不一样,所得的和除以15,得到平均数,把所有的数据按照从小到大的顺序排列,有15个数字,最中间一个是中位数.(2)用来描述该公司每人所创年利润的一般水平一般是平均数和中位数,该公司A部门每人所创年利润与其他部门每人所创年利润差距很大,导致平均数与中位数偏差很大,应用中位数来描述较合理.解:(1)(20+5+2.5×2+2.1×4+1.5×4+2×3)÷15=50.4÷15=3.36(万元),故该公司每人所创年利润的平均数是3.36万元.把所有的数据按照从小到大的顺序排列,有15个数字,最中间一个是2.1,故该公司每人所创年利润的中位数为2.1万元.2.1万元和1.5万元在这组数据中出现的次数最多,所以该公司每人所创年利润的众数是2.1万元和1.5万元.(2)该公司A部门每人所创年利润与其他部门每人所创年利润差距很大,导致平均数与中位数偏差很大,应用中位数来描述该公司每人所创年利润一般水平比较合理.【教学反思】成功之处:本节课的教学设计遵循学生的认知心理,通过设计学生熟悉的问题情境,激发学生的学习兴趣及积极性,适时组织与引导学生自主探索、与同伴合作交流,认识中位数、众数的特点,能根据实际问题,选择适当的统计量,表示一组数据的不同特征,突破重难点,完成本节课的学习目标,让学生感受“现实的数学、有用的数学”.不足之处:学生对中位数和众数的定义的掌握和理解较易接受,但在求中位数时容易出错.再教设计:在教学中需强调:(1)先将一组数据排序;(2)当一组数据的个数是偶数时,则要求中间两个数的平均数作为这组数据的中位数.教学过程中精心设计几种不同情形,巩固学生对中位数的求法.人教版八年级下册数学第20章数据的分析20.1数据的集中趋势20.1.2中位数和众数课时1中位数和众数学案【学习目标】1.理解中位数、众数的概念,会求一组数据的中位数、众数;2.掌握中位数、众数的作用,会用中位数、众数分析实际问题.【学习重点】理解中位数、众数的概念,会求一组数据的中位数、众数.【学习难点】会用中位数、众数分析实际问题.【自主学习】一、知识链接x.1.n个数据a1,a2,a3,a4,…,a n的算术平均数=2.若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则______________叫做这n个数的加权平均数.x.3.n个数据:f1个a1,f2个a2,…,f n个a n,它的加权平均数为=二、新知预习1.下表是某公司员工月收入的资料.(1)计算这个公司员工月收入的平均数;(2)如果用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?(3)该公司员工的中等收入水平大概是多少元?你是怎样确定的?(4)“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?2.自主归纳:(1)将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称为这组数据的中位数;如果数据的个数是偶数,则称为这组数据的中位数.(2)一组数据中的数据称为这组数据的众数.三、自学自测1.判断:(1)一组数据中间的数称为中位数.()(2)一组数据中出现次数最多的数称为这组数据的众数.()(3)一组数据中的中位数和众数是唯一的一个数.()(4)一组数据的中位数一定是这组数据中的某个数.()2.求出下面各组数据的中位数和众数:(1)90,23,27,40,90,18,52,100;(2)21,15,32,32,46,32,58,64,98.四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:中位数问题1:确定一组数据的中位数时,要注意什么?问题2:中位数反映的是一组数据的何种特征,它有何意义?【典例探究】例1在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142min,他的成绩如何?总结归纳:1.中位数是一个位置代表值(中间数),它是唯一的.2.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.3.如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半,反映一组数据的中间水平.例2 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x 值及这组数据的中位数.分析:由题意可知最中间两位数是10,x,列方程求解即可.知识点2:众数问题3:如果小张是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?问题4:一组数据的众数一定是唯一的吗?请举例说明.例3 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议码?【跟踪练习】1.数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据图表,全班每位同学答对的题数的中位数是______.2.一组数据18,22,15,13,x ,7,它的中位数是16,则x 的值是_______.3.下面的扇形图描述了某种运动服的S 号、M 号、L 号、XL 号、XXL 号在一家商场的销售情况.请你为这家商场提出进货建议.三、归纳总结【学习检测】1.2015年某中学举行的春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.80 1.50 1.60 1.65 1.70 1.75人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是 ( )A.1.70 m,1.65 mB.1.70 m,1.70 mC.1.65 m,1.60 mD.3,4C(解析:按从小到大的顺序排列,1.50 m 的有2个,1.60 m 的有4个,1.65 m 的有3个,1.70 m 的有3个,1.75 m 的有2个,1.80 m 的有1个,故中位数是1.65 m;出现次中位数和众数中位数将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称 为这组数据的中位数;如果数据的个数是偶数,则称 为这组数据的中位数. 众数 一组数据中 的数据称为这组数据的众数.数最多的数据是1.60,故众数是1.60 m.故选C.)2.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>cB.c>b>aC.b>c>aD.c>a>bB(解析:∵生产的件数分别是15,17,14,10,15,17,17,16,14,12,总和为147,∴平均数a==14.7,样本数据17出现次数最多,为众数,即c=17;将数据从小到大排列为10,12,14,14,15,15,16,17,17,17,∴中位数b=15.∵17>15>14.7,∴c>b>a.故选B.)3.样本数据10,10,x,8的唯一众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.12C(解析:根据题意,得(10+10+x+8)÷4=10,解得x=12.将这组数据从小到大重新排列为8,10,10,12,最中间的两个数的平均数即为中位数,是10.故选C.)4.数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A.4.5、5 B.5、4.5C.5、4 D.5、55.要调查多数同学们喜欢看的电视节目,应关注的是哪个数据的代表()A.平均数B.中位数C.众数6.在演讲比赛中,你想知道自己在所有选手中处于什么水平,应该选择哪个数据的代表()A.平均数B.中位数C.众数7.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是,众数是.99(解析:从小到大排列此组数据为7,8,8,8,8,8,9,9,9,9,9,9,10,10,一共14个数据,第7个与第8个都是9,所以中位数是(9+9)÷2=9;数据9出现了6次,次数最多,所以众数为9.)8.对于数据:3,3,2,3,6,3,3,6,3,2.则在下列结论中:①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个A(解析:从小到大排列数据为2,2,3,3,3,3,3,3,6,6.数据3出现了6次,最多,众数为3;第5个、第6个数据均是3,中位数是3;平均数为(2+2+3+3+3+3+3+3+6+6)÷10=3.4.故选A.)9.数据92,96,98,100,120,x的众数是96,则这组数据的中位数是.97(解析:∵92,96,98,100,120,x的众数是96,∴x=96,将这组数据按从小到大的顺序排列为92,96,96,98,100,120,处于中间位置的是96,98,那么由中位数的定义可知这组数据的中位数是(96+98)÷2=97.故填97.)10.为了了解开展“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务01 1.52 2.53 3.54的时间(小时)人数226121343(1)填写表格中未完成的部分;(2)该班学生每周做家务的平均时间是 .(3)这组数据的中位数是 ,众数 .11.某校男子足球队的年龄分布如下面的条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.12.为了加强市区交通秩序管理,交警部门在十字路口安装了红绿灯实行交道管制.以下数据是某十字路口处,十个相同时间段(即绿灯亮一次的持续时间,红、绿灯交替各持续40秒)内南北方向机动车通过的数据(单位:辆):15,22,15,17,18,15,19,15,20,14.(1)该组数据的众数和中位数各是多少?(2)估计1小时内南北方向通过该路口的车有多少辆.解:(1)根据众数的概念,15出现了4次,出现的次数最多,则这组数据的众数是15.根据中位数的概念,首先将这组数据从小到大排列,即14,15,15,15,15,17,18,19,20,22,则中位数是15和17的平均数,即16.答:众数是15,中位数是16.(2)容易求得样本平均数是17,则估计1小时内南北方向通过该路口的车有(3600÷40÷2)×17=765(辆).答:1小时内南北方向通过该路口的车约有765辆.13.某公司销售部有营销人员15人,销售部为了制定某种商品的销售定额,统计了这15人某月的销售量如下(单位:件):1800,510,250,250,210,250,210,210,150,210,150,120,120,210,150.(1)这组数据的平均数、中位数和众数各是多少?(2)假设销售部负责人把每位营销人员的月销售量定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额,并说明理由.解:(1)平均数是=320(件).数据按从大到小的顺序排列,处于中间位置的是210,因而中位数是210件.210出现了5次,次数最多,所以众数是210件.(2)不合理.理由如下:15人中有13人的销售量达不到320件,320件虽是所给数据的平均数,它却不能很好地反映销售人员的一般水平,销售量定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.14.某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示:根据表格回答问题:(1)商店出售各种规格的空调中,众数是多少?(2)假如你是经理,现要在有限的资金下进货,将如何决定?解:(1)卖出空调的台数中:1匹的为28台,1.2匹的为50台,1.5匹的为22台,2匹的为12台,可得买1.2匹的人数最多,故众数为1.2匹.(2)通过观察可得1.2匹的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.【拓展探究】15.某公司的33名员工的月工资(以元为单位)如下:职位董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(1)求该公司员工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)在(2)中你认为应该使用平均数和中位数中哪一个来反映该公司员工的工资水平?解:(1)平均数为=1500+(4000+3500+2000×2+1500+1000×5+500×3+0×20)≈1500+591=2091(元), 中位数为1500元,众数为1500元.(2)平均数为=1500+(28500+18500+2000×2+1500+1000×5+500×3+0×20)≈1500+1788=328 8(元),中位数为1500元,众数是1500元.(3)在(2)中,应该使用中位数来反映该公司员工的工资水平,原因是公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.。

人教版八年级下册数学20.1.2中位数和众数教学设计

人教版八年级下册数学20.1.2中位数和众数教学设计
人教版八年级下册数学20.1.2中位数和众数教学设计
一、教学目标
(一)知识与技能
1.理解中位数和众数的定义,知道它们在统计学中的意义和作用。
-中位数:将一组数据按照大小顺序排列后,位于中间位置的数,若数据个数为偶数,则中位数为中间两个数的平均值。
-众数:一组数据中出现次数最多的数。
2.能够运用中位数和众数对一组数据进行简要描述,分析数据的集中趋势。
1.这组数据中哪个价格出现的次数最多?
2.如果将这些价格从小到大排序,中间位置的数是多少?
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.对中位数和众数的定义进行详细讲解,并通过实例进行解释。
2.演示如何找出一组数据的中位数和众数,强调注意事项,如数据排序、计算方法等。
3.结合实际案例,讲解中位数和众数在统计学中的重要作用,如描述数据的集中趋势、分析数据的分布特征等。
二、学情分析
八年级下册的学生已经在之前的数学学习中积累了一定的基础知识,掌握了基本的数学运算和数据分析能力。在此基础上,他们对本章节中位数和众数的概念学习具备了一定的接受能力。然而,由于统计学概念相对抽象,学生在理解上可能存在一定的困难。因此,在教学过程中,教师需要关注以下几点:
1.学生对中位数和众数概念的理解程度,部分学生可能容易混淆两者定义,需要通过具体实例和形象比喻帮助他们区分。
-感受数学在生活中的实际应用,培养对数学的兴趣和认识。
3.能够解决实际问题中与中位数和众数相关的计算与应用问题,例如:计算一组数据的中位数和众数,根据中位数和众数对数据集进行描述和分析。
(二)过程与方法
在教学过程中,学生将通过以下方法来达成目标:
1.采用观察、分析、讨论等方式,引导学生发现并理解中位数和众数的概念。

人教版数学八年级下册20.1.2第1课时《 中位数和众数》教学设计

人教版数学八年级下册20.1.2第1课时《 中位数和众数》教学设计

人教版数学八年级下册20.1.2第1课时《中位数和众数》教学设计一. 教材分析《中位数和众数》这一节的内容,主要出现在人教版数学八年级下册20.1.2的第1课时。

在此之前,学生已经学习了平均数、方差等统计量,对统计学有了初步的认识。

中位数和众数作为统计学中的两个重要概念,有助于学生更全面地了解数据的特点和分布情况。

本节内容既是对前面知识的有益补充,也为后续学习概率、统计图等知识打下基础。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于新的概念和知识能较快地接受和理解。

但是,对于一些生活中的实际问题,他们可能还缺乏一定的观察和分析能力。

因此,在教学过程中,需要注重培养学生的观察、分析和解决问题的能力。

三. 教学目标1.知识与技能:使学生了解中位数和众数的含义,学会求一组数据的中位数和众数,并理解它们在统计学中的意义。

2.过程与方法:通过实际问题,培养学生观察、分析和解决问题的能力。

3.情感态度与价值观:激发学生对数学和统计学的兴趣,培养他们的逻辑思维能力和抽象思维能力。

四. 教学重难点1.重点:中位数和众数的定义及其求法。

2.难点:理解中位数和众数在统计学中的意义和应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关案例和实际问题,用于引导学生思考和讨论。

2.准备课件,以直观展示中位数和众数的求法和意义。

七. 教学过程1.导入(5分钟)通过一个实际问题引出中位数和众数的概念,激发学生的兴趣。

例如:某班有50名学生,他们的身高如下(单位:cm):160, 162, 163, 164, …,170。

请问这组数据的中位数和众数是什么?2.呈现(10分钟)讲解中位数和众数的定义,并通过示例解释它们的求法。

中位数是将一组数据从小到大(或从大到小)排列,位于中间位置的数。

如果数据个数为奇数,则中位数是中间的那个数;如果数据个数为偶数,则中位数是中间两个数的平均值。

人教版八年级下册20.1.2中位数和众数说课稿

人教版八年级下册20.1.2中位数和众数说课稿
2.过程与方法目标:通过小组合作、讨论的方式,培养学生收集、整理、分析数据的能力,提高他们解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使他们认识到数学在生活中的重要性,增强他们运用数学解决实际问题的意识。
(三)教学重难点
1.教学重点:中位数和众数的定义及其求法,以及它们在实际生活中的应用。
2.小组讨论:教师给出讨论话题,学生分组进行讨论,鼓励他们发表自己的观点,培养他们的合作意识和沟通能力。
3.成果展示:各小组展示自己的研究成果,其他小组进行评价和补充,促进学生之间的交流和学习。
4.课堂练习:教师给出练习题,学生独立完成,教师及时进行点评和指导,帮助学生巩固知识。
四、教学过程设计
(一)导入新课
2.个别辅导:对计算能力不足的学生进行个别辅导,帮助他们提高计算能力。
课后,我将通过学生的课堂表现、作业完成情况和练习成绩来评估教学效果。根据评估结果,我将进行以下反思和改进措施:
1.针对学生的薄弱环节进行重点讲解,提高他们的理解能力。
2.调整教学方法和练习设计,使之更符合学生的学习需求。
3.鼓励学生积极参与课堂活动,提高他们的学习兴趣和动机。
2.同伴评价:鼓励学生互相评价,给出中位数和众数求解过程中的建议和意见。
3.教师评价:教师对学生的学习情况进行总结和评价,针对学生的不足提出改进建议,帮助他们进一步提高。
(五)作业布置
我的课后作业布置情况如下:
1.作业内容:布置一道求中位数和众数的课后作业,让学生独立完成,巩固所学知识。
2.作业目的:通过作业的完成,检验学生对中位数和众数的理解和掌握程度,培养他们的实践能力。
2.课后作业:布置相关的课后作业,如求一组给定数据的中位数和众数,让学生独立完成,巩固所学知识。

人教版数学八年级下册《20.1.2第1课时《 中位数和众数》教学设计

人教版数学八年级下册《20.1.2第1课时《 中位数和众数》教学设计

人教版数学八年级下册《20.1.2第1课时《中位数和众数》教学设计一. 教材分析人教版数学八年级下册第20.1.2节中位数和众数是初中数学中的重要内容,通过学习本节课,学生能够理解中位数和众数的概念,掌握求一组数据的中位数和众数的方法,并能应用中位数和众数解决实际问题。

本节课的内容是对一组数据进行排序和筛选,找出中间的数或出现次数最多的数,以此来反映数据的集中趋势。

二. 学情分析学生在学习本节课之前,已经学习了平均数、方差等统计量,对数据分析有一定的认识。

但是,学生可能对中位数和众数的实际意义和求法不够理解,需要通过实例和练习来加深对这两个概念的理解。

此外,学生可能对排序和筛选数据的方法不太熟悉,需要通过教师的引导和学生的动手操作来掌握。

三. 教学目标1.知识与技能目标:学生能够理解中位数和众数的概念,掌握求一组数据的中位数和众数的方法。

2.过程与方法目标:学生能够通过排序和筛选数据的方法,找出中间的数或出现次数最多的数。

3.情感态度与价值观目标:学生能够认识到中位数和众数在实际生活中的应用,增强对数学的兴趣和信心。

四. 教学重难点1.教学重点:学生能够理解中位数和众数的概念,掌握求一组数据的中位数和众数的方法。

2.教学难点:学生能够应用中位数和众数解决实际问题,对一组数据进行排序和筛选。

五. 教学方法1.情境教学法:通过实际生活中的例子,引发学生对中位数和众数的兴趣,提高学生的学习积极性。

2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习欲望。

3.动手操作法:学生通过动手操作,实践排序和筛选数据的方法,加深对中位数和众数概念的理解。

六. 教学准备1.教师准备:教师需要准备教学PPT,包括中位数和众数的定义、求法以及实际应用的例子。

2.学生准备:学生需要准备一本笔记本,用于记录知识点和练习。

七. 教学过程1.导入(5分钟)教师通过一个实际生活中的例子,如班级学生的身高数据,引导学生思考如何找出这组数据的中位数和众数,引发学生对中位数和众数的兴趣。

人教版数学八年级下册20.1.2《中位数和众数》教学设计

人教版数学八年级下册20.1.2《中位数和众数》教学设计

人教版数学八年级下册20.1.2《中位数和众数》教学设计一. 教材分析《中位数和众数》是人教版数学八年级下册第20.1.2节的内容。

本节课主要介绍中位数和众数的概念,以及它们的求法。

中位数是将一组数据从小到大排列后,位于中间位置的数,它能够反映数据的集中趋势;众数是一组数据中出现次数最多的数,它能够反映数据的最常出现的值。

本节课的内容在学生的数学学习过程中起着承前启后的作用,为后续学习平均数、方差等统计量奠定基础。

二. 学情分析学生在八年级上册已经学习了平均数,对数据的集中趋势有一定的了解。

但中位数和众数的概念对于他们来说还是新的,需要通过具体的数据分析来理解和掌握。

学生在学习过程中,需要具备一定的数据处理和分析能力,能够对一组数据进行排序,并从中找出中位数和众数。

同时,学生需要具备一定的合作交流能力,能够在小组讨论中提出自己的观点,并理解他人的想法。

三. 教学目标1.知识与技能目标:理解中位数和众数的概念,掌握求一组数据中位数和众数的方法。

2.过程与方法目标:通过小组合作,培养学生的数据处理和分析能力,提高学生的合作交流能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,让学生感受数学与生活的联系。

四. 教学重难点1.重点:中位数和众数的概念,求一组数据中位数和众数的方法。

2.难点:理解中位数和众数在实际生活中的应用,以及如何从一组数据中找出中位数和众数。

五. 教学方法采用问题驱动法、案例分析法、小组合作法、引导发现法等教学方法,引导学生主动探究,合作交流,发现和总结中位数和众数的概念及求法。

六. 教学准备1.教具:黑板、粉笔、多媒体设备。

2.学具:练习本、尺子、铅笔。

3.教学素材:一组具有代表性的数据。

七. 教学过程1.导入(5分钟)利用多媒体展示一组数据,引导学生观察数据,并提出问题:“你们能从这个数据中找到一些有用的信息吗?”让学生思考和讨论,从而引出中位数和众数的概念。

2.呈现(10分钟)通过具体案例,呈现中位数和众数的定义,以及求法。

20.1.2中位数和众数(优质)教案

20.1.2中位数和众数(优质)教案

中位数和众数第二课时教课目标1、进一步认识均匀数、众数、中位数都是数据的代表。

2、经过本节课的学习还应认识均匀数、中位数、众数在描绘数据时的差异。

3、能灵巧应用这三个数据代表解决实质问题。

要点、难点和打破难点的方法1、要点:认识均匀数、中位数、众数之间的差异。

2、难点:灵巧运用这三个数据代表解决问题。

许多的一种量。

此外要注意:均匀数计算要用到全部的数据,它能够充足利用全部的数据信息,但它受极端值的影响较大 .众数是当一组数据中某一数据重复出现许多时,人们常常关怀的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算极少也不受极端值的影响.均匀数的大小与一组数据中的每个数据均相关系,任何一个数据的改动都会相应惹起均匀数的改动 .中位数仅与数据的摆列地点相关,某些数据的挪动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据改动较大时,可用中位数描绘其趋向 .例习题的企图剖析教材 P146 例 6 的企图( 1)、这是在学习过数据的采集、整理、描绘与剖析以后波及到这四个环节的一个例题,从剖析和解答过程来看它交待了该如何完好的进行这几个过程,为该如何综合运用已学的统计知识解决实质问题作了一个标准典范。

教师在讲课过程中也应注意,对已学知识的稳固复习。

( 2)、从剖析和解答过程来看,此例题的一个主要企图是划分均匀数、众数和中位数这三个数据代表的异同。

(3)、由例题中( 2)问和( 3)问的不一样,致使结果的不一样,其目的是告诉学生应当依据题目详细要求来灵巧运用三个数据代表解决问题。

( 4)、本例题也客观的反应了数学知识对生活实践的指导有重要的意义,也表现了统计知识与生活实践是密切联系的。

讲堂引入本节课的讲堂引入能够经过复习均匀数、中位数和众数定义开始,为达成要点、打破难点作好铺垫,没有必需勉强的加入一个生活实例作为引入问题。

例习题的剖析例题 6 中第一问是在稳固均匀数定义、中位数定义和众数的定义。

20.1.2中位数和众数教学设计

20.1.2中位数和众数教学设计

20.1.2中位数和众数教学设计思想:本节从公司员工的待遇入手,有时只知道数据的平均数是不够的,因为平均数容易受到极端值的影响,引出中位数和众数的概念。

教学目标1.知识与技能:解释中位数的概念,会求一组数据的中位数;能结合具体情境体会平均数与中位数的区别,能初步选择恰当的数据代表对数据作出自己的评判。

2.过程与方法:通过实际背景,区分刻画“平均水平”的“中位数”和“平均数”,巩固学生对各种图表信息的识别与获取能力,同时形成对生活中所见到的统计图表进行数据处理和评判的主动意识。

3.情感态度与价值观:统计作为处理现实世界数据信息的一个重要数学分支,必然要求素材本身的真实性,养成求真务实的科学态度。

将知识的学习放在解决问题的情境中,作为数据处理过程的一部分,认识到数字与现实的联系。

通过同学间的交流与合作,培养大家的合作精神。

教学重点:中位数的概念及特点教学难点:中位数的求法,并能在具体情境中选择适当的数据代表对数据作为评判。

教学方法:探究法教学安排:2课时教学媒体:幻灯片课件第一课时教学过程(一)创设问题情境,引入新课某公司员工的月工资如下:经理说:“我公司员工收入很高,月平均工资为2000元。

”职员C说:“我工资是1200元,在公司算中等收入。

”请大家给应聘者帮帮忙,分析一下该公司员工收入到底是多少呢?发表自己的看法。

答:月平均工资2000元能代表公司所有员工工资的平均水平;而1200元恰好居于所有员工工资的“正中间”,也能代表员工工资的平均水平。

而“1200元”就是一个新的反映数据“平均水平”的数据的代表,我们给他起一个很形象的名字叫“中位数”。

这节课我们就来学习这个新的反映数据“平均水平”的数据的代表。

(二)讲授新课将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

中位数是一个位置代表值,利用中位数分析数据可以获得一些信息。

人教版数学八年级下册-20.1.2中位数和众数教案

人教版数学八年级下册-20.1.2中位数和众数教案

20.1.2中位数和众数(1)【课题】:20.1.2中位数和众数(1)【设计与执教者】:【教学时间】:40分钟【学情分析】:(适用于特色班)学生已经对平均数这个数据代表值有了一定的认识,对样本、体概念初步有了了解,在此基础上,根据本堂课的内容,让学生在对比中感受中位数的意义.【教学目标】:1、认识中位数,并会求出一组数据中的中位数。

2、理解中位数的意义和作用。

3、会利用中位数分析数据信息做出决策。

【教学重点】:认识并会求出一组数据中的中位数.【教学难点】:理解中位数的意义.【教学突破点】:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。

教学过程中注重双基,一定要使学生能够很好的掌握中位数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。

【教法、学法设计】:教法:讲授法,引导法学法:师生互动,自主合作、讲练相结合。

【课前准备】:课件【教学过程设计】:(人次)。

(2)落在第四小组。

4、图11是连续十周测试 甲、乙两名运动员体能训 练情况的折线统计图。

教 练组规定:体能测试成绩 70分以上(包括70分)为 合格。

⑴请根据图11中所提 供的信息填写右表:成绩较好;⑶依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效 果较好。

小结: 1、当数据的个数是奇数时,中位数时指处在最中间位置的数;当数据的个数是偶数时,中位数时指处在中间的两个数据的平均数2、中位数不容易受极端值的影响,确定了中位数之后,可以知道小于 中位数的数值和大于中位数的数值在这组数据中各占一半;3、中位数除了中间的值以外,不能反映其他数据的信息 10、8、9、9、8、10、7、9、9、8 的中位数是 20、18、又12,它的中位数是 21,则X 的值23、25、28、22出现的次数依次为 2、5、3、4次,并且没有其他的数据,则这组数据的中位数是4、有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决 赛,他只需知道这 19位同学的5、今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数 据如下表: 档次 A 档第二档第三档第四档第五档分值a (分)a>90 80< a <90 70< a <80 60Wa <70a <60人数7314712286 22平均数中位数体能测试成 绩合格次数甲65乙60⑵请从下面两个不同的角 度对运动员体能测试结果进行 判断: ①依据平均数与成绩合格的次 数比较甲和乙, _的体能测试②依据平均数与中位数比较甲和乙,的体能测试成绩较好。

人教版数学八年级下册20.1.2中位数和众数优秀教学案例

人教版数学八年级下册20.1.2中位数和众数优秀教学案例
(二)讲授新知
1.讲解中位数的定义:将一组数据从小到大排列后,位于中间位置的数称为这组数据的中位数。
2.通过示例,讲解如何求一组数据的中位数,并强调中位数的性质和作用。
3.引入众数的概念:一组数据中出现次数最多的数称为这组数据的众数。
4.讲解众数的求法,并通过示例让学生理解众数在实际生活中的应用。
(三)学生小组讨论
2.采用自主探究、合作交流的学习方式,引导学生发现中位数和众数的求法,培养学生的问题解决能力。
3.设计具有梯度的练习题,让学生在实践中巩固中位数和众数的概念,提高学生的数学技能。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生学习数学的积极性,使学生感受到数学的趣味性与魅力。
2.通过对实际问题的分析,让学生体会数学在生活中的重要性,提高学生的数学应用意识。
1.让学生分成小组,讨论以下问题:
a.中位数和众数在描述数据集中趋势方面有什么区别?
b.在实际生活中,中位数和众数有哪些应用场景?
c.怎样确定一组数据的中位数和众数?
2.各小组汇报讨论成果,教师点评并给予指导。
(四)总结归纳
1.教师引导学生总结本节课所学的中位数和众数的概念、求法及应用。
2.强调中位数和众数在数据分析中的重要性,以及它们在解决实际问题中的应用。
3.引导学生认识到,掌握中位数和众数的方法能够帮助我们更好地理解数据,做出合理的判断和决策。
(五)作业小结
1.布置作业:求一组数据的中位数和众数,并写出解题思路。
2.要求学生在作业中运用所学知识,解决实际问题,提高学生的应用能力。
3.教师对学生的作业进行批改,及时给予反馈,帮助学生巩固所学知识。
五、案例亮点
在实际教学中,我以学生的生活经验为切入点,设计了一系列具有实际背景的问题,让学生在解决问题的过程中,自然地接触到中位数和众数的概念,并理解它们的含义和作用。例如,我设计了一个关于班级学生身高的问题,让学生通过计算中位数和众数,来了解班级学生的身高分布情况。通过这样的设计,学生能够更加直观地理解中位数和众数在实际生活中的应用,提高他们的学习兴趣和积极性。

20.1.2中位数和众数教学设计

20.1.2中位数和众数教学设计

20.1.2中位数和众数教学目标:一,知识与技能1.掌握中位数的概念,会求一组数的中位数.2.结合具体情境,体会中位数和平均数的差别,能初步选择恰当的数据代表对数据做出自己的评判.二,过程与方法通过实际背景,区分刻画平均水平的“中位数”和“平均数”,让学生获取一定的评判能力.三,情感态度与价值观1.将知识的学习放在解决问题的情境中,作为数据处理过程的一部分,使学生体会数字与现实的练习.2.通过学生之间的交流与合作,培养大家的合作精神.二、重点、难点1、重点:中位数的意义.2、难点:中位数的求法,并能在具体的情境中选字恰当的数据代表对数据做出自己的评判.3、难点的突破方法:首先应交待清楚中位数意义和作用:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。

教学过程中注重双基,一定要使学生能够很好的掌握中位数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。

教具准备:多媒体课件教学过程:一,复习旧课平均数能反映数据的什么特征?二,创设问题情境,引入新课1、什么是中位数?2、求中位数的方法是什么?3、中位数反映数据的什么特征?活动一探究:某公司员工的月工资如下:问题1:请大家仔细观察表格中的数据,讨论该公司的月平均工资是多少?问题2:平均月工资能否客观地反映员工的实际收入?问题3:再仔细观察表中的数据,你们认为用哪个数据反映一般职员的实际收入比较合适?设计意图让学生在具体情境中体会平均数,中位数都作为数据的代表. 师生行为:学生讨论,交流各自发表不同的见解教师仔细听学生说法,最后总结:月平均工资2000元能代表公司所有员工工资的平均水平,但不能客观地反应实际收入;而1200元恰好居于所有员工工资的“正中间”比较可观的反应实际收入.而1200元就是一个新的反映数据“平均水平”的数据的代表.三,讲授新课由上面的例题我们知道,中位数也常用来作为一组数据的代表. 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数个,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数个,则中间两个数据的平均数就是这组数据的中位数.中位数是一个位置代表值。

完整word版,20.1.2中位数与众数 教学设计

完整word版,20.1.2中位数与众数 教学设计

20.1.2中位数与众数教学教案学习目标1. 知识与技能:掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判。

2. 过程与方法:通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一定的评判能力,进一步发展其数学应用能力。

3. 情感与态度:将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度。

教学重难点重点:中位数、众数的概念和求法.难点:利用中位数、众数分析数据信息作出决策.教具准备:多媒体课件、计算器一、教学过程课前预习1.在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,•82,77,81,79,83,则这组数据的众数,平均数为()2.已知一组数据:-2,-2,3,-2,x,-1,若这组数据的平均数是0.5,则这组数据的中位数是______.3.一个射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,那么,这个射手中靶的环数的平均数是_____二、教学过程第一环节:情景导入内容:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的。

下面请看一例:某次数学考试,张晓璇得了78分。

全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分。

张晓璇计算出全班的平均分为77.4分,所以张晓璇告诉妈妈说,自己这次数学成绩在班上处于“中上水平”。

张晓璇对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的。

原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(四)巩固练习
1、数据8、9、9、8、10、8、9、9、8、10、7、9、9、8的中位数是,众数是。
2、一组数据23、27、20、18、X、12,它的中位数是21,则X的值、X的众数是96,则其中位数和平均数分别是()
A.97、96 B.96、96.4 C.96、97 D.98、97
(3)问题2显然反映了学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
例2.(教材P145例5)
设计意图:
(1)通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。
探求中位数的方法是一项技能,是教学重点但不是教学难点。我主要是先让学生直观感知,体验求(奇数个)中位数的方法,然后在练习中安排偶数个,学生碰到问题,教师不急于解答,而是由觉得能解决的学生来解答。这样的教学,让学生学得开放,学得明白,教师教的轻松,又省时又高效。
九、知识链接
年龄中位数
一、概念
年龄中位数又称中位年龄。是将全体人口按年龄大小排列,位于中点的那个人的年龄。年龄在这个人以上的人数和以下的人数相等。
四、运用
年龄中位数比较容易理解,计算简便,在人口统计中用得也很广泛。这是因为只需要掌握较低各年龄组的人数即可计算,而且在不等距年龄分组和有开口年龄组的情况下,仍能照常计算。
年龄中位数可用于同一时期不同人口的对比分析,也可用于同一人口不同时期的对比分析。国际上通常用年龄中位数指标作为划分人口年龄构成类型的标准。①年龄中位数在20岁以下为年轻型人口;②年龄中位数在20~30岁之间为成年型人口;③年龄中位数在30岁以上为老年型人口。年龄中位数向上移动的轨迹,反映了人口总体逐渐老化的过程。在人口统计中,除常计算总人口的年龄中位数外,还常分别计算男、女性人口的年龄中位数以及其他各种年龄中位数。例如,结婚人口的年龄中位数,育龄妇女的年龄中位数,死亡人口的年龄中位数,等等。
六、板书设计
20.1.2中位数和众数
复习回顾:
复习和延伸中位数的定义
新课教授:
数据分析中的中位数概念
众数概念
例题讲解:
例1
例2
巩固练习:
课堂小结:
中位数和众数概念
布置作业:
七、对应练习
1、判断题:
(1)给定一组数据,那么描述这组数据的平均数一定只有一个.()
(2)给定一组数据,那么描述这组数据的中位数一定只有一个.()
0
0
1
3.(1)平均数5.6万元,中位数5万元,众数4万元(2)答案不唯一,只要有道理,都正确
八、教学反思
中位数是属于统计学的范畴,以前是放在中学教材中进行教学的。而今统计学的应用已渗透到社会生活的各个方面,统计观念已成为现代公民必须具备的基本素质,对数据的分析以及做出科学推断的能力是非常重要的。学生在三年级已经学过平均数,知道用它反映一组数据的总体情况,具有直观、简明的特点。但是当一组数据中有个别数据偏大或偏小时,平均数就不适合代表该组数据的一般水平,中位数便应运而生。它是对描述一组数据集中趋势的进一步完善,有利于提高学生的数据分析能力,从单一的平均数的评价到多元化的综合评价,更能体现数学的应用价值。
(3)给定一组数据,那么描述这组数据的众数一定只有一个.()
(4)给定一组数据,那么描述这组数据的平均数一定位于最大值与
最小值之间.()
(5)给定一组数据,那么描述这组数据的中位数一定位于最大值与
最小值的正中间.()
(6)给定一组数据,如果找不到众数,那么众数一定就是0.()
2、根据所给数据,求出平均数、中位数和众数,并填入下表.(精确到0.1)
年龄中位数指将全体人口按年龄大小的自然顺序排列时居于中间位置的人的年龄数值。也称中位年龄或中数年龄。年龄中位数是一种位置的平均数,它将总人口分成两半,一半在中位数以上,一半在中位数以下,反映了人口年龄的分布状况和集中趋势。
二、概述
当把一个人口中的所有成员按年龄由小到大排序时,位于中间的年龄即为年龄中位数。它把人口分为两个数目相等的部分,一部分在年龄中位数以下,另一部分在年龄中位数以上。年龄中位数的大小可以反映人口的年老或年轻的程度。计算年龄中位数同样既可根据年龄组人数,也可根据年龄组比重。
4、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4,并且没有其他的数据,则这组数据的众数和中位数分别是()
A.24、25 B.23、24 C.25、25 D.23、25
5、随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
温度(℃)
-8
-1
7
15
21
24
30
天数
3
二、教学重、难点
重点:认识中位数、众数这两种数据代表
难点:利用中位数、众数分析数据信息,做出决策。
三、教学准备
多媒体课件。
四、教学方法
合作、讲练结合。
五、教学过程
(一)复习引入
严格的讲,教材本节课没有引入的问题,而是在复习和延伸中位数定义的过程中拉开序幕的,教师可以一句话引入新课:前面已经和同学们研究过了平均数这个数据代表。它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
(二)新课教授
例1.(教材P143的例4)
设计意图:
(1)这个问题的研究对象是一个样本,主要是反映了统计学中常用到的一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数的求法,这里不再重述)
(2)例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)。
(3)例5也反映了众数是数据代表的一种。
(三)例题讲解
例1.某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件):
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
例2.某商店3、4月份出售某一品牌各种规格的空调,销售台数如下表所示:
1匹
1.2匹
1.5匹
2匹
3月
12台
20台
8台
4台
4月
16台
30台
14台
8台
根据表格回答问题:
(1)商店出售的各种规格的空调中,众数是多少?
(2)假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
解:(1)1.2匹
(2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进2匹空调。
(2)为了调动员工积极性,公司准备采取超额有奖措施,请问把标准定为多少万元时最合适?
答案
1、(1)∨(2)∨(3)×(4)∨(5)×(6)×
2、
数据
平均数
中位数
众数
20,20,21,24,27,30,32
24.9
24
20
0,2,3,4,5,5,10
4.1
4
5
-2,0,3,3,3,8
2.5
3
3
―6,―4,―2,2,4,6
(1)求这15个销售员该月销量的中位数和众数,
(2)假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
解:(1)中位数:210件众数:210件
(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的定额。
20.1.2中位数和众数
第一课时
一、教学目标
(一)知识与技能
认识中位数和众数,并会求出一组数据中的众数和中位数。
(二)过程与方法
理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
(三)情感、态度与价值观
会利用中位数、众数分析数据信息,做出决策。
三、计算公式
年龄中位数可按各年龄组的人数计算,其公式为
年龄中位数=中位数组的年龄下限值+{[(人口总数)/2-中位数组之前各组人数累计]÷中位数组的人口数}×组距
年龄中位数也可按各年龄组人数的比重计算,公式为
年龄中位数=中位数组的年龄下限值+[(0.5-中位数组之前各组人口比重累计)÷中位数所在组的人口比重]×组距
数据
平均数
中位数
众数
20,20,21,24,27,30,32
0,2,3,4,5,5,10
-2,0,3,3,3,8
―6,―4,―2,2,4,6
3.某公司有10名销售业务员,去年每人完成的销售额情况如下表
销售额(万元)
3
4
5
6
7
8
10
销售人数
1
3
2
1
1
1
1
问题:(1)求10名销售员销售额的平均数、中位数和众数(单位:万元)
5
5
7
6
2
2
请你根据上述数据回答问题:
(1)该组数据的中位数是多少?
(2)若当气温在18℃~25℃时为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
答案1. 92. 223.B4.C
5.(1)15(2)约97天
(五)全课小结
1.认识中位数和众数。
2.理解中位数和众数的意义和作用,并利用其分析数据信息做出决策。
相关文档
最新文档