勾股定理、 全等三角形基本图形

合集下载

三角形全等的判定ppt

三角形全等的判定ppt

边角边定理
两边对应相等,且夹角也相等的两 个三角形全等。
角边角定理
两角对应相等,且夹边也相等的两 个三角形全等。
角角边定理
两角对应相等,且另一组对应角也 相等的两个三角形全等。
运用全等解决实际问题
利用全等解决测量问题
通过测量三角形各边的长度和角度,可以计算出未知量,如 高度、角度等。
利用全等解决设计问题
角边角定理(ASA)
总结词
两角对应相等且夹边相等的两个三角形全等。
详细描述
角边角定理也是三角形全等的判定方法之一。它表明只要两个三角形的两个角对 应相等,并且这两个角所夹的边也相等,那么这两个三角形就全等。
角角边定理(AAS)
总结词
两角对应相等且一边相等的两个三角形全等。
详细描述
角角边定理是三角形全等的重要判定方法之一。它表明只要两个三角形的两 个角对应相等,并且其中一个角所对应的一条边也相等,那么这两个三角形 就全等。
随着科学技术的发展,全等三角形的判定方法将 会在更多的领域得到应用和发展。
THANKS
谢谢您的观看
结论
全文总结
01
本文介绍了三角形全等的概念和重要性,并详细阐述了三角形 全等的判定方法。
02
ቤተ መጻሕፍቲ ባይዱ
通过对比不同判定方法的优缺点,总结了不同情况下应选择的
判定方法。
重点强调了全等三角形的性质和应用,为解决实际问题提供了
03
基础和保障。
对未来学习的建议
建议学习者在学习本部分内容之前,先了解全 等图形的概念及作用,以便更好地理解全等三 角形的判定方法。
04
与三角形全等相关的定理和推论
重要的定理和推论
SAS定理

证明直角三角形全等

证明直角三角形全等

证明直角三角形全等
直角三角形是指其中一个角为90度的三角形。

全等是指两个三角形的所有对应边角相等。

那么如何证明两个直角三角形全等呢?下面我们来分析一下。

在证明直角三角形全等时,应该先确定两个三角形的哪些部分是相等的,也就是哪些部分可以作为证明的依据。

其次,根据勾股定理,两个直角三角形的两条直角边和斜边长度相等,则两个三角形的斜边也是相等的。

最后,我们还可以通过底角定理来证明两个直角三角形全等。

底角定理指出,对于两个直角三角形,如果它们的斜边相等,底边上的一个角相等,则它们全等。

基于上述三点,我们可以列出证明直角三角形全等的几种方法。

方法一:直角边-斜边-直角边
这是最基本的证明方法。

假设有两个直角三角形ABC和DEF,其中∠C=∠F=90°,且AC=DF,BC=EF,则:
1. 根据勾股定理,两个三角形的斜边AB和DE相等。

2. 通过正弦定理或余弦定理,证明∠A=∠D。

综上,两个三角形全等,即ABC≌DEF。

1. 根据勾股定理,证明BC=EF。

通过上述三种方法,我们可以证明直角三角形全等,而证明的前提是我们已经知道了两个三角形的部分相等的条件。

因此,我们在研究直角三角形全等的时候,应该首先确定两个三角形的哪些部分是相等的,以此来确定证明的方法。

用四个全等三角形证明勾股定理

用四个全等三角形证明勾股定理

用四个全等三角形证明勾股定理用四个全等三角形来证明勾股定理,听起来就像是在讲一个神奇的故事,是吧?想象一下,在一个简单的直角三角形里,两个短边分别是a和b,而斜边就是c。

这三个边就像是一对好朋友,永远在一起玩耍。

而我们要做的,就是把这个三角形复制成四个一模一样的三角形,把它们拼在一起,创造一个超级大图形。

咱们把这四个三角形整齐地摆成一个大正方形。

嘿,瞧瞧,这大正方形的边长可是a + b哦!想象一下,四个三角形就像是在舞台上表演,围绕着这个正方形转圈圈。

中间的空地,就成了一个小正方形,它的边长就是c。

看起来是不是很有意思?当你仔细一看,这四个三角形的面积可不是白摆的。

每个三角形的面积都是1/2 * a * b,所以四个三角形的总面积就是2ab。

然后我们再算一下整个大正方形的面积。

边长是a + b,所以面积就是(a + b)²。

这时候,如果你用手指头算一算,结果就出来了。

好啦,咱们继续深挖这个故事。

根据平方的展开式,(a + b)² = a² + 2ab + b²。

真是有趣啊!刚才咱们算出的面积2ab,真的是直接可以放进这个公式里。

这样一来,我们就能看出,整个大正方形的面积等于小正方形的面积加上四个三角形的面积,简直就是绝配。

我们来个小总结。

根据我们上面算出的面积关系,整个大正方形的面积可以写成c² + 2ab。

哦,明白了吧?这样一来,我们就可以说:大正方形的面积也等于小正方形的面积加上四个三角形的面积。

也就是说,c² = a² + b²,这就是经典的勾股定理呀!这时候,你可能会觉得,哇,数学居然可以这么有趣,真是让人眼前一亮。

勾股定理不再是枯燥的公式,而是变成了一场精彩的演出,四个三角形就在这里为我们展示了它们的魔力。

生活中,数学无处不在,就像四个三角形在我们心中翩翩起舞。

所以,谁说数学就一定要严肃?咱们可以用这些有趣的图形、形象的比喻,让它变得轻松有趣。

四个全等的直角三角形证明勾股定理

四个全等的直角三角形证明勾股定理

四个全等的直角三角形证明勾股定理
勾股定理
1、两边平行四边形
若两边平行四边形的对角线相等,则对角线端点构成两个直角三
角形,两个内角都是直角,这就是勾股定理的证据。

例如:在平行四
边形ABCD,若AD=BC,那么有AB²+BC²=AD²+CD²。

2、直角三角形
若有一个直角三角形,若两个直角的对边相等,则直角对边的平
方可以拆开为两个直角边的相加。

因此,它也是勾股定理的证明,例
如在直角三角形ABC中,若AB=AC,那么有AB²+BC²=AC²+BC²。

3、四边形、多边形
直角四边形和多边形也是勾股定理的证明。

若在四边形ABCD中,若AB=CD,那么有AB²+BC²=CD²+DC²;若在多边形ABCDEF中,若AB=DE,那么有AB²+BC²=DE²+EF²。

4、已知符合勾股定理的条件
若已知三条边长分别是a,b,c,则符合勾股定理的条件就是
c²=a²+b²,其用数学证明也是勾股定理的证明。

因此,如果有三条边,
那么可以根据勾股定理判断a²+b²是否等于c²。

几何原本勾股定理证明

几何原本勾股定理证明

几何原本勾股定理证明1. 基本图形构建- 分别以 AB、BC、AC 为边向外作正方形 ABDE、BCFG、ACHK。

2. 证明三角形全等- 连接 CD、BK。

- 因为∠ ACB=∠ ACH = 90^∘,所以∠ BCK=∠ ACH+∠ ACB = 180^∘,这表明 C、A、K 三点共线。

- 同理,C、B、D 三点共线。

- 在 AKB 和 ACB 中,AK = AC(正方形 ACHK 的边),AB = AB(公共边),∠ KAB=∠ KAC+∠ CAB=∠ BAC + 90^∘,∠ CAB + 90^∘=∠ CAE,而在正方形 ABDE 中∠ CAE=∠ DAB,∠ DAB=∠ ABC + 90^∘,所以∠ KAB=∠ ABC。

- 根据 SAS(边角边)判定定理, AKB≅ ACB。

- 同理可证 BCD≅ BCA。

3. 面积关系推导- 因为 AKB 和矩形 AKNL(N 在 AB 上,L 在 DE 上,且 AN⊥ KL)有相同的底 AK,并且在相同的平行线 AK 和 BL 之间,所以 S_{ AKB}=(1)/(2)S_{矩形AKNL}。

- 由于 AKB≅ ACB,所以 S_{ ACB}=(1)/(2)S_{矩形AKNL}。

- 同理,S_{ BCD}=(1)/(2)S_{矩形CDLM},又因为 BCD≅ BCA,所以S_{ BCA}=(1)/(2)S_{矩形CDLM}。

- 正方形 ACHK 的面积 S_{ACHK}=AC^2,正方形 BCFG 的面积S_{BCFG}=BC^2,正方形 ABDE 的面积 S_{ABDE}=AB^2。

- 而 S_{ABDE}=S_{矩形AKNL}+S_{矩形CDLM},即 AB^2=AC^2+BC^2,从而证明了勾股定理。

勾股定理

勾股定理

勾股定理勾股定理勾股定理在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。

古埃及人利用打结作RT三角形定理如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。

如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。

那么这个三角形是直角三角形。

(称勾股定理的逆定理)来源毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。

据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。

在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。

法国和比利时称为驴桥定理,埃及称为埃及三角形。

我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

有关勾股定理书籍《数学原理》人民教育出版社《探究勾股定理》同济大学出版社《优因培教数学》北京大学出版社《勾股模型》新世纪出版社《九章算术一书》《优因培揭秘勾股定理》江西教育出版社最早的勾股定理从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。

例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。

问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图:设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股形。

《周髀算经》简介青朱出入图《周髀算经》算经十书之一。

勾股定理知识点+对应类型

勾股定理知识点+对应类型

勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方ABCa b c弦股勾勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

2. 勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;例 在ABC ∆中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,已知:a=13, b=12, c=5. ABC ∆ 是什么三角形?4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)利用勾股定理,作出长为n 的线段类型四:利用勾股定理作长为的线段【变式】在数轴上表示的点。

作法:如图所示在数轴上找到A 点,使OA=3,作AC ⊥OA 且截取AC=1,以OC 为半径,以O 为圆心做弧,弧与数轴的交点B 即为。

勾股定理与全等三角形

勾股定理与全等三角形

第二章勾股定理与‎全等三角形‎
探索直角三‎角形三边的‎关系:
观察图中用‎阴影画出的‎3个正方形‎,我们可以知‎道两个小正‎方形P、Q的面积之‎和等于大正‎方形R的面‎积。

那AC+BC=AB说明,任意直角三‎角形中,两直角边的‎平方和等于‎斜边的平方‎。

那么,只要是直角‎三角形,都有两直角‎边的平方和‎等于斜边的‎平方吗?
概括:
数学上可以‎证明,对于任意的‎直角三角形‎都有两直角‎边的平方和‎等于斜边的‎平方,即勾股定理‎。

如果一个直‎角三角形两‎直角边分别‎为a、b,斜边为c则‎有:a+b=c
例:已知一个直‎角三角形的‎一个边长为‎3c m,斜边长为5‎c m,求另一直角‎边的长。


解:在RtAB‎C中如图所‎示B C=3cm AB=5cm
根据勾股定‎理的:AC+BC=AB
AC=√AC-BC=√25-9=4cm
答:另一直角边‎的长为4c‎m.
习题:
1.在RtAB‎C中AB=c BC=b AC=b∠B=90
⑴已知a=6 b=10 求c.⑵已知a=5 c=12,求b.
2直角三角‎形的斜边比‎一直角边长‎2c m,另一直角边‎长为6cm‎求它的斜边‎长?
3如图所示‎,为了求出湖‎两岸的两点‎A B之间的距‎离。

一个观测者‎在点C设桩‎,是三角形A‎B C恰好为‎直角三角形‎,通过测量,得到AC长‎160米,BC长12‎8米,问从点A穿‎过湖到点B‎有多远?
习题:。

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。

勾股定理的证明常用拼图的方法。

通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。

2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。

3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。

勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。

在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。

同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。

a^2+b^2=c^2$是勾股定理的基本公式。

如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。

勾股定理的实际应用有很多。

例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。

现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。

同时梯子的顶端B下降至B′。

那么BB′的长度是小于1m的(选项A)。

又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。

设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。

三角形勾股定理公式

三角形勾股定理公式

三角形勾股定理公式勾股定理,又称商高定理,西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean theorem 或Pythagoras's theorem )是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。

据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称百牛定理”在中国,相传于商代就由商高发现,记载在一本名为《周髀算经》的古书中。

而三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释。

法国和比利时称为驴桥定理,埃及称为埃及三角形。

公式在平面一个直角三角形上用直线a的平方+直线B的平方二斜线C的平方这就是勾股定理经典证明方法细讲方法一:作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D E、F在一条直线上.过C作AC 的延长线交DF于点P.••• D、E、F 在一条直线上,且Rt △ GEF 也Rt △ EBD,••• / EGF = / BED••• / EGF + / GEF = 90°,••• / BED + / GEF = 90°,••• / BEG =180 — 90° = 90 °又••• AB = BE = EG = GA = c ,••• ABEG是一个边长为c的正方形.••• / ABC + / CBE = 90°••• Rt △ ABC也Rt △ EBD,••• / ABC = / EBD.••• / EBD + / CBE = 90°即 / CBD=90又••• / BDE = 90°,/ BCP = 90BC = BD = a.••• BDPC是一个边长为a的正方形.同理,HPFG!—个边长为b的正方形.设多边形GHCB的面积为S,则J••• BDPC的面积也为S, HPFG勺面积也为S由此可推出:a A2+b A2=c A2方法二作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.分别以CF, AE为边长做正方形FCJI和AEIG••• EF=DF-DE=b-a EI=b ,••• FI=a ,G,I,J在同一直线上,-CJ=CF=a CB=CD=c/ CJB = / CFD = 90° ,••• Rt △ CJB 也Rt △ CFD ,同理,Rt △ ABG^ Rt △ ADE••• Rt △ CJB 也Rt △ CFD 也Rt △ ABG也Rt △ ADE•••/ ABG = / BCJ,v/ BCJ +/ CBJ= 90° ,•••/ ABG +Z CBJ= 90° ,v/ ABC= 90••• G,B,I,J在同一直线上,所以a A2+b A2=c A2勾股数的相关介绍①观察3, 4, 5;5, 12, 13;7, 24, 25;…发现这些勾股数都是奇数,且从 3 起就没有间断过。

八年级数学下册 全等三角形、勾股定理的运用教案 人教新课标版

八年级数学下册 全等三角形、勾股定理的运用教案 人教新课标版
两边和它们的夹角对应相等的两个三角形全等(可以写成“边角边”或“SAS”);
两角和它们的夹边对应相等的两个三角形全等(可以写成“角边角”或“ASA”)。
有斜边和一条直角边对应相等的两个直角三角形全等(可以写成“HL”)。
◆例题讲解
1、如图,公园有一条“ ”字形道路 ,其中 ∥ ,在 处各有一个小石凳,且 , 为 的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
2、如图,已知AB与CD相交于O,∠A=∠D,CO=BO,求证:△AOC≌△DOB.
3、如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,
求证:AD=CF.
4、如图,给出五个等量关系:① ② ③ ④ ⑤ .请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
4.阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.
证明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC……第一步
∴∠BAE=∠CAE……第二步
问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.
(4)如图,沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,∠DAM=30°,则AN=_________cm,∠NAM=_________..
第1(7)题图
(5)在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.
(8)如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.

勾股定理全等三角形典型例题

勾股定理全等三角形典型例题

勾股定理全等三角形典型例题哎呀,今天我们来聊聊一个老生常谈的话题——勾股定理。

说到勾股定理,很多人脑海中是不是就浮现出那幅经典的直角三角形图案?没错,就是那种底边和高边形成一个“L”型,斜边就像是那条梦想中的直线,正好把这两条边连起来。

是不是觉得一切都那么简单明了?这个小小的定理可谓是数学界的明星,真的是有一套哦。

勾股定理告诉我们,在一个直角三角形里,斜边的平方等于另外两边的平方之和。

简简单单几句话,却蕴含了无穷的奥秘。

大家想想,生活中有多少地方都能看到它的身影呢?比如说,你在测量一块地的时候,难免会用到它。

只要你把地的宽和高测出来,轻轻一算,斜边的长度就出来了!这简直就是“算得一手好账”的节奏啊。

有些同学可能会问,这个定理跟全等三角形有什么关系呢?嘿,这可是个大亮点!想象一下,两个三角形如果是全等的,咱们就可以说它们的边长、角度都是一模一样的。

用勾股定理来验证全等三角形,简直像是在做魔术!就像两个人手握相同的甜筒,吃起来的味道那叫一个美妙。

只要你知道其中一个三角形的边长,就能迅速推算出另一个三角形的边长,简直就是小聪明的表现。

那我们来看看几个典型例题。

比如说,有一个三角形,底边是3厘米,高边是4厘米,你觉得斜边是多少呢?没错,咱们先用勾股定理一算,斜边就等于√(3² + 4²) =√(9 + 16) = √25 = 5厘米。

听上去是不是特别简单?这就是勾股定理的魅力所在,瞬间让复杂的事情变得简单明了。

再来一个,想象一下,一个小孩在公园里跑,忽然停下来,看到前面有个直角三角形的石头。

他好奇地问,石头的底边和高边分别是6厘米和8厘米,那斜边又是多长呢?没问题,照样用勾股定理,一算就知道斜边是10厘米!这小孩肯定会惊呼:“哇,原来我可以用这个公式来解决问题,真是太神奇了!”生活中可不止有这些简单的例子。

勾股定理在建筑、设计、航海等各个领域都得到了广泛的应用。

想想那些高楼大厦,建筑师们可得用这个定理来确保结构的稳定性,避免“东倒西歪”的情况出现。

三角形全等的判定(HL)-图

三角形全等的判定(HL)-图

综合练习题
总结词
考察HL全等定理的综合应用
题目1
已知直角三角形ABC和直角三角形A'B'C'中,∠C=∠C'=90°,AC=A'C',且BC=B'C',若D、E分别是AB、BC的中点,D'、 E'分别是A'B'、B'C'的中点,求证:△ACD≌△A'C'D'、△ACE≌△A'C'E'。
题目2
已知直角三角形ABC和直角三角形A'B'C'中,∠C=∠C'=90°,AC=A'C',且BC=B'C',若F、G分别是AB、 AC上的两个动点,F'、G'分别是A'B'、A'C'上的两个动点,当FF'=G′G时,求证:△ACF≌△A′CF′、 △AGF≌△A′GF′。
与其他判定定理的关系
与SAS判定定理的关系
当两个三角形有一组非直角边和夹角分别相等时,可以使用SAS判定定理来判断 它们是否全等。
与SSS判定定理的关系
当两个三角形有三边分别相等时,可以使用SSS判定定理来判断它们是否全等。
三角形全等的证明方
03

边边边(SSS)判定法
总结词
如果两个三角形的三边分别相等,则 这两个三角形全等。
进阶练习题
总结词
考察HL全等定理的灵活应用
题目1
已知直角三角形ABC和直角三角形A'B'C'中,∠C=∠C'=90°, AC=A'C',且BC=B'C',若点D是AB的中点,点D'是A'B'的中点, 求证:△ACD≌△A'C'D'。

全等三角形性质与判定(二)-教师版

全等三角形性质与判定(二)-教师版

一、全等三角形的性质全等三角形对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,周长相等,面积相等.二、全等的性质和判定(1)全等三角形的判定方法:()tSSS SAS ASA AAS HL R、、、、△(2)全等三角形的图形变换形式:平移、对称、旋转(3)由全等可得到的相关定理:①角平分线定理②等腰、等边三角形性质和判定③垂直平分线定理共顶点等腰三角形旋转模型——“手拉手”模型证明全等的基本思想“SAS”等边三角形共顶点全等三角形性质与判定知识回顾知识讲解共顶点等腰直角三角形共顶点等腰三角形共顶点等腰三角形【例1】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.【解析】通过“SAS ”证明BCD ACE ≌△△,得到AE BD =.【例2】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形. 求证:(1)AN BM =;(2)DE AB ∥;(3)CF 平分AFB ∠.同步练习【解析】通过“SAS ”证明MCB ACN ≌△△,得到AN BM =.通过“SAS ”证明MCE ACD ≌△△,得到CE CD =,从而推出DCE △为等边三角形, ︒=∠=∠60NCB DEC DE AB ∥.【变式练习】如图,B ,C ,E 三点共线,且ABC ∆与DCE ∆是等边三角形,连结BD ,AE 分别交AC ,DC 于M ,N 点.求证:CM CN =.【解析】通过“SAS ”证明BCD ACE ≌△△,得到CBD CAE ∠=∠. 再通过“SAS ”证明CAN CBM ≌△△,得到CM CN =.【例3】 如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E 是BM 中点,求证:CDE ∆是等边三角形.【解析】通过“SAS ”证明MCB ACN ≌△△,得到CMB CAN MB AN ∠=∠=,.再通过“SAS ”证明CAD CME ≌△△,得到MCE ACD CE CD ∠=∠=,,从而推出︒=∠60DCE .【变式练习】(2008年全国初中数学联赛武汉CASIO 杯选拔赛)如图,ABD ∆和CED ∆均为等边三角形,AC BC =,AC BC ⊥.若2BE =,则CD = .【解析】通过“SAS ”证明BDE ADC ≌△△,得到1322-====CD AB BE AC ,,.【例4】 平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EF 与CD 平分.【解析】通过“SAS ”证明,得到ACB AFD △≌△,DF CB CE ==; 再通过“SAS ”证明,得到BCA BED △≌△,DE AC CF ==; 得到四边形ABCD 为平行四边形,对角线互相平分.【例5】 已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD ∆也是等边三角形.【解析】连接CH 交AD 于M通过“SAS ”证明FCH FDK △≌△,得到CH DK AD ==,60AMC ∠=︒,推出DAB HCB ∠=∠; 再通过“SAS ”证明,得到ABD CBH △≌△,HB HD BHC BDA =∠=∠,; 进一步推出HBD △也是等边三角形.【例6】 (2008年怀化市初中毕业学业考试试卷)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG =.【解析】通过“SAS ”证明CDG ADE ≌△△,得到DG AE =.【变式练习】以△ABC 的两边AB 、AC 为边向外作正方形ABDE 、ACFG ,求证:CE =BG ,且CE ⊥BG .【解析】通过“SAS ”证明ABG AEC ≌△△,得到ABG AEC BG CE ∠=∠=,, 再通过“8”字图导角得到BG CE ⊥.【例7】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.【解析】通过“ASA ”证明ADE ABF △≌△,得到DE BF =.【变式练习】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD 的面积是16,求DP 的长.【解析】过点D 作DE BC ⊥交BC 延长线于通过“AAS ”证明DPA DEC △≌△,得到DE DP =,从而推出四边形ABCD 是正方形 =164ABCD DPBE S S DP ==,【例8】 如图所示.正方形ABCD 中,在边CD 上任取一点Q ,连AQ ,过D 作DP ⊥AQ ,交AQ 于R ,交BC 于P ,正方形对角线交点为O ,连OP ,OQ .求证:OP ⊥OQ .QRPOD CBA【解析】通过“ASA ”证明ADQ DCP △≌△,得到DQ CP =,再通过“SAS ”证明,得到ODQ OCP △≌△,POC QOD ∠=∠从而推出OP OQ ⊥.【变式练习】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.【解析】通过“ASA ”证明AOE BOF △≌△,得到AE BF =,从而推出AE CF AB +=.【例9】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.【解析】连接OB通过“SAS ”证明BOE COF △≌△,得到BE CF =. BE BF BF CF BC a +=+==【变式练习】等腰直角三角形ABC ,90ABC =︒∠,AB a =,O 为AC 中点,45EOF =︒∠,试猜想,BE 、BF 、EF 三者的关系.【解析】过点O 作OD OE ⊥交BC 于D通过“SAS ”证明BOE COD △≌△,得到OE OD BE CD ==,. 再通过“SAS ”证明0E F DOF △≌△,得到EF DF =. 可以推出BE BF EF CD DF BF BC AB a ++=++===【例10】 已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.【解析】延长EB 至M ,使得BM DF =,通过“SAS ”证明ADF ABM △≌△,得到AM AF =. 再通过“SAS ”证明AME AFE △≌△,得到AB AH =.【例11】 (1997年安徽省竞赛题)如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =M EFHGD CBA【解析】(1)通过“SAS ”证明AFC ABH △≌△,得到CF BH =. (2)过F H 、分别作FN MD D HK MD K ⊥⊥于,于,再通过“AAS ”证明BDA ANF HKA ADC △≌△,△≌△,得到FN HK =. 再通过“8”字全等证明FNM HKM △≌△,从而得到MF MH =.【注】这道题有很多重要的结论,条件结论互换依然成立,2,ABC AFH BC AM S S ==△△【例12】 (1997年安徽省初中数学竞赛题)在等腰Rt ABC ∆的斜边AB 上取两点M 、N ,使45MCN ∠=︒,记AM m =,MN x =,BN n =,则以x 、m 、n 为边长的三角形的形状是( ).A .锐角三角形B .直角三角形C .钝角三角形D .随x 、m 、n 的变化而变化【解析】见下题 【答案】B【例13】 (通州区2009一模第25题)请阅读下列材料:已知:如图1在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 分别为线段BC 上两动点,若45DAE ∠=︒.探究线段BD 、DE 、EC 三条线段之间的数量关系. 小明的思路是:把AEC ∆绕点A 顺时针旋转90︒,得到ABE '∆,连结E D ', 使问题得到解决.请你参考小明的思路探究并解决下列问题:⑴ 猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; ⑵ 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.【解析】(1)过点A 作AD 的垂线AF ,使得AD AF =,连接EF CF 、通过“SAS ”证明ABD ACF △≌△,得到45B ACF BD CF ∠=∠==,. 再通过“SAS ”证明ADE AFE △≌△,得到DE EF =.在Rt ECF △中满足勾股定理,,得到222.CE CF EF +=,故222.CE BD DE += (2)同理可证222.CE BD DE +=【例14】 在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.⑴如图①,当点M ,N 在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=_________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN =x ,则Q =_________(用x ,L 表示.图③图②图①ABCD MNABCD MNN MD CBA【解析】(1)MN BM CN =+,Q 2=L 3(2)延长AC 至E ,使得CE BM =,连接DE通过“SAS ”证明DBM DCE △≌△,得到DE DM =.再通过“SAS ”证明MDN EDN △≌△,得到MN NE BM CN ==+ 2223Q MN AN AM ME AN AC BM NC L x =++=+++==+ (3)在AC 上截取CE BM =,连接DE通过“SAS ”证明DBM DCE △≌△,得到DE DM =.再通过“SAS ”证明MDN EDN △≌△,得到MN NE CN BM ==- 2223Q MN AN AM NE AN AC BM NC L x =++=+++==+【变式练习】(1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ; (2)如图在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?不用证明. (3)如图在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD , (1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.FED CBAF EDCBA【解析】(1)延长BC 至M ,使得DK BM =,连接AM 通过“SAS ”证明ADF ABM △≌△,得到AF AM =.再通过“SAS ”证明AME AFE △≌△,得到EF EM BE DF ==+ (2)同理可证 (3)同理可证【变式练习】如图所示,在四边形ABCD 中,AB =BC ,∠A =∠C =90°,∠B =135°,K 、N 分别是AB 、BC 上的点,若△BKN 的周长为AB 的2倍,求∠KDN 的度数.【解析】延长BC 至E ,使得CE AK =,连接DE 、BD 通过“HL ”证明ABD CBD △≌,得到AD CD =.通过“SAS ”证明ADK CDE △≌△,得到DK DE ADK CDE =∠=∠,.再通过“SSS ”证明KDN EDN △≌△,得到122.52NDK NDE KDN ADC ∠=∠∠=∠=,【例15】 (北京市初二数学竞赛试题) 如图所示,在五边形ABCDE 中,90B E ∠=∠=︒,AB CD AE ===1BC DE +=,求此五边形的面积.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 、AD 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△, 12212ABCDE ADE S S DF AE==∙∙=△同步课程˙全等三角形性质与判定 【变式练习】(江苏省数学竞赛试题)如图,已知五边形ABCDE 中,∠ABC =∠AED =90°,AB =CD =AE =BC +DE =2.求该五边形的面积.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 、AD 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△, 12242ABCDE ADE S S DF AE ==∙∙=△【变式练习】(希望杯全国数学邀请赛初二第二试试题) 在五边形ABCDE 中,已知AB AE =,BC DE CD +=,180ABC AED ∠+∠=,连接AD .求证:AD 平分CDE ∠.【解析】延长DE 至F ,使得BC EF =,连接AC 、AF 通过“SAS ”证明ABC AEF △≌△,得到AC AF =. 再通过“SSS ”证明ACD AFD △≌△,得到ADC ADF ∠=∠.【习题1】如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD +相等的理由.【解析】通过“SAS ”证明ABD ACE △≌△,得到BD CE AC CD ==+.【习题2】已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【解析】通过“ASA ”证明ADE CDF △≌△,得到DE DF =.【习题3】已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.课后练习【解析】通过“SAS ”证明ACN MCB △≌△,得到CAN CMB ∠=∠. 再通过“AAS ”证明CAG CMH △≌△,得到CG CH =.【习题4】如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数.QP DCBA【解析】延长AB 至M ,使得BM DQ =,连接CM 依题可知:PQ DP BP =+通过“ASA ”证明CDQ CBM △≌△,得到,CQ CM DCQ BCM =∠=∠. 再通过“ASA ”证明CQP CMP △≌△,得到45QCP MCP ∠=∠=【习题5】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.【解析】通过“ASA ”证明MBP MCP △≌△,得到BMP CMQ BM CM ∠=∠=,,从而推出 MPQ ∆是等腰直角三角形,点P 从B 出发向C 运动,MP 先变小在变大, 故MPQ ∆的面积先变小再变大.同步课程˙全等三角形性质与判定【习题6】如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.【解析】延长EB 至M ,使得BM DF =,通过“SAS ”证明ADF ABM △≌△,得到AFD M DAF BAM ∠=∠∠=∠,. 通过导角推出M EAM ∠=∠,从而推出AE ME =,故BE DF AE +=.【习题7】等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.【解析】依题可知,AE DF =,通过“SAS ”证明ABE DBF △≌△,得到ABE DBF BE BF ∠=∠=,. 从而推出BEF △为等边三角形.【习题8】(北京市数学竞赛试题,天津市数学竞赛试题) 如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.同步课程˙全等三角形性质与判定【解析】延长AC 至E ,使得BM CE =,通过“SAS ”证明DBM DCE △≌△,得到BDM CDE ∠=∠. DM DE =,再通过“SAS ”证明MDN EDN △≌△,得到MN EN MN BM CN ==+,.。

第18章 勾股定理-认识勾股定理拓展课件 2022--2023学年沪科版数学八年级下册

第18章 勾股定理-认识勾股定理拓展课件 2022--2023学年沪科版数学八年级下册
B.勾股定理逆定理:如果三角形的三边长a、b、c满足:a2+b2=c2,那么这个三角形是直角三角形
(2)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得
到一个直角三角形(在图2中,只需画出示意图.)
分析:
3²+4²=5²
5
∠C是直角
4
10
8
3 C
6
O
图1
图2
例2:古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉
(填A或B)
A.勾股定理:直角三角形两直角边的平方和等于斜边的平方
B.勾股定理逆定理:如果三角形的三边长a、b、c满足:a2+b2=c2,那么这个三角形是直角三角形
(2)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得
到一个直角三角形(在图2中,只需画出示意图.)
+−

=
2
++
即2ab=(a+b+c)(a+b-c)
化简得a2+b2=c2.
B
E
F
C
例3:如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形
A
ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x
(1)小明发明了求正方形边长的方法:
+−
2
D
因为AB=BD+AD,所以a-x+b-x=c,解得x=
I
(2)小亮也发现了另一种求正方形边长的方法:
利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他

中考数学点对点-全等三角形判定与性质定理(解析版)

中考数学点对点-全等三角形判定与性质定理(解析版)
【答案】见解析。
【解析】求出AC=DF,根据SSS推出△ABC≌△DEF.由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.
证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF
∴AC=DF
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS)
(2)由(1)可知,∠F=∠ACB
作OG⊥AM于G,OH⊥DM于H,如图所示,
则∠OGA=∠OHB=90°,
在△OGA和△OHB中,
∵ ,
∴△OGA≌△OHB(AAS),
∴OG=OH,
∴OM平分∠AMD,故④正确;
假设OM平分∠AOD,则∠DOM=∠AOM,
在△AMO与△DMO中,

∴△AMO≌△OMD(ASA),
∴AO=OD,
∵OC=OD,
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(4)角角边定理:两角和其中一个角的对边对应相等的两个三角形全等(简写成AAS).
D.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误。
【例题2】(2020•北京)如图,在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是(写出一个即可).
【答案】BD=CD.
【解析】由题意可得∠ABC=∠ACD,AB=AC,即添加一组边对应相等,可证△ABD与△ACD全等.

勾股定理和直角三角形全等的判定

勾股定理和直角三角形全等的判定

勾股定理和直角三角形全等的判定知识导引本讲主要是掌握勾股定理及勾股定理的逆定理,并能运用勾股定理解决简单的问题。

勾股定理是直角三角形的性质定理,直角三角形的三边分别为a 、b 、c ,其中c 为最大边,则有222c b a =+。

勾股定理是现阶段求线段长度的主要方法,如果图形缺乏执教条件,则可以通过作辅助垂线的方法构造出直角三角形,为勾股定理创造条件。

勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,而且可以判断三角形中哪一个角是直角,从而产生了证明两直线互相垂直的新方法,利用勾股定理的逆定理,通过计算来证明,这中间体现了一种代数方法解几何问题的思想,即数形结合思想。

勾股定理是我们研究和解决几何问题的重要理论依据之一,也是人们在生产实践和生活中广泛应用的基本原理,许多求线段长度、角的大小;线段与线段。

角与角,线段与角间的关系等问题,常常用勾股定理或其逆定理来解决,因此,勾股定理及其应用是中考中考查的重要内容。

典例分析例1:如图,已知△ABC 三条边AC =20cm ,BC =15cm ,AB =25cm ,CD⊥AB,则CD = 。

例2:如图,直角三角形纸片ABC ,∠C=90°,AC =6,BC =8,折叠△ABC 的一角,使点B 与点A 重合,展开的折痕DE ,求BD 的长。

例2—1:如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求CE 的长。

例3:如图,在△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,PA=3,PB=1,PC=2,求∠BPC的值。

例3—1:已知,在△ABC中,∠BAC=90°,AB=AC,点D是BC边上任意一点,则22AD22+,请说明理由。

BD=CD例4:《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”。

数学全等三角形教案:巧用勾股定理,发现全等三角形的潜在特性

数学全等三角形教案:巧用勾股定理,发现全等三角形的潜在特性

《数学全等三角形教案:巧用勾股定理,发现全等三角形的潜在特性》数学中的全等三角形是初中阶段中比较重要的内容之一。

对于全等三角形,许多同学在初学时会有很多疑问。

本文将会介绍如何在掌握勾股定理的基础上,发现全等三角形的潜在特性,从而提高求解全等三角形的效率。

一、勾股定理的掌握勾股定理是三角形中最基本的一个定理。

很多同学在学习勾股定理时往往只是单纯地记忆公式$a^2+b^2=c^2$,而没有深入了解其妙用。

其实,勾股定理是一个非常有用的工具,通过巧妙地运用,我们可以很轻松地找到一个三角形中的角度或边长。

例如,当我们已知三角形的两边长分别为3和4时,如何求出第三边长呢?显然,我们可以直接利用勾股定理。

$c^2=a^2+b^2$,代入已知数值可得$c^2=3^2+4^2=9+16=25$,$c=\sqrt{25}=5$。

我们便成功地求出了三角形的第三边长。

勾股定理还可以用于求解三角形内角的相关问题。

例如,当我们已知直角三角形的两个锐角分别为$30^\circ$和$60^\circ$时,如何求出第三个角的度数呢?通过勾股定理,我们可以得知该直角三角形的斜边等于3的倍数,我们可以假设斜边长为3x。

而在三角形中,直角边对直角的补角之和为$90^\circ$,该直角三角形的第三个角度数为$90^\circ-(30^\circ+60^\circ)=0^\circ$。

二、全等三角形的基本概念在介绍如何巧用勾股定理发现全等三角形的潜在特性之前,我们先来了解全等三角形的基本概念。

什么是全等三角形?简单来说,如果两个三角形的对应角度相等,对应边长相等,这两个三角形就是全等三角形。

例如下图所示,三角形ABC和三角形DEF是全等三角形。

因为$\angle A=\angle D$,$\angle B=\angle E$,$\angle C=\angle F$,而且$AB=DE$,$BC=EF$,$AC=DF$。

因为全等三角形的对应边长和对应角度都相等,我们可以在解题时直接运用这一特点,而不需要做很多无用功。

数学勾股定理及逆定理

数学勾股定理及逆定理

一、一周知识概述勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理只适用于直角三角形,对于一般非直角三角形就不存在这种关系.勾股定理的作用是:①已知直角三角形的两边求第三边;②在直角三角形中,已知其中的一边,求另两边的关系;③用于证明平方关系;④利用勾股定理,作出长为的线段.二、重点、难点、疑点突破1、勾股定理:勾股定理反映了直角三角形(三边分别为a,b,c,其中c为斜边)的三边关系,即c2=a2+b2.它的变形为c2-a2=b2或c2-b2=a2.运用它可以由直角三角形中的两条边长求第三边.例如:已知一个直角三角形两边长分别为3cm,4cm,求第三边长.因为该题设没有说明哪条边是直角三角形的斜边,所以要进行分类讨论.当两直角边分别为3cm,4cm时;当斜边为4cm,一直角边为3cm时2、直角三角形的几个性质(1)两锐角互余;(2)三边长满足勾股定理;(3)如果有一个锐角等于30°,那么所对的直角边(设此边长为a)等于斜边的一半,三边长的关系为a,,2a;(4)等腰直角三角形(直角边边长为a)三边长的关系为a,a,;(5)面积等于两直角边乘积的一半.3、用尺规画长为的线段教材中介绍了用尺规画长为的线段的作法,对画长为(k为自然数)的线段,我们通常可将k写成两个自然数的平方和或平方差来解决.例如用尺规画长为的线段.因为21=25-4=52-22,所以画Rt△ABC,使一条直角边AC=2,斜边AB=5,则另一条直角边BC=;同理,因为37=36+1=62+12,所以画Rt△ABC,使两直角边AC=1,BC=6,则斜边AB=.4、数形结合思想三、典型例题剖析1、运用勾股定理求值例1、如图,在△ABC中,CD⊥AB于D,若AB=5,CD=,∠BCD=30°,求AC的长.解:∵CD⊥AB于D,∠BCD=30°,∴BD=BC.设BD=x,则BC=2x.在Rt△BCD中,由勾股定理有BD2+CD2=BC2,即点拨:这里分别在两个直角三角形中运用了勾股定理,但含30°角的直角三角形的性质也给解题带来了很大的方便.例2、如图,在△ABC中,∠A=90°,P是AC的中点,PD⊥BC于D,BC=9,DC=3,求AB的长.解:连结PB,BD=BC-DC=6.在Rt△BDP和Rt△PDC中,PD2=BP2-BD2,PD2=PC2-DC2,∴BP2-BD2=PC2-DC2.∴BP2-PC2=36-9=27.∵AP=PC,∴BP2-AP2=AB2=27,∴AB=.点拨:连结BP,在PD为公共边的两个直角三角形中运用勾股定理,得到BP2-PC2=BD2-DC2=27,是解答本题的关键所在.例3、如图,在△ABC中,∠C=90°,AD、BE是中线,BE=,AD=5,求AB的长.解:设CE=x,CD=y,则AC=2x,BC=2y.在Rt△ACD和Rt△BCE中,由勾股定理得在Rt△ABC中,.点拨:运用勾股定理计算时,常设未知数,列方程或方程组来求解.2、构造直角三角形解题例4、如图,已知,∠A=60°,∠B=∠D=90°,AB=2,CD=1.求BC和AD的长.解:如图,延长BC,AD交于E.∵∠B=90°,∠A=60°,∴∠E=30°,∴AE=2AB=4.同理CE=2CD=2.在Rt△ABE中,BE2=AE2-AB2=16-4=12,∴BE=.在Rt△CDE中,DE2=CE2-CD2=4-1=3,∴DE=.∴BC=BE-CE=-2,AD=AE-DE=4-.点拨:灵活根据图形及条件,构造直角三角形(其实也就是补图),创造条件去利用勾股定理解题.例5、如图,在△ABC中,∠BAC=90°,AB=AC,点D、E在BC上,且∠DAE=45°,求证:CD2+BE2=DE2.解:如图,将△ABE绕点A逆时针旋转90°得△ACF,则∠ACF=∠B=45°,BE=CF,∠BAE=∠CAF.又∵∠ACB=45°,∴∠DCF=90°.∵∠EAD=45°,∴∠BAE+∠DAC=45°.∴∠DAF=∠CAF+∠DAC=45°.在△AED和△AFD中,∴△AED≌△AFD,∴ED=FD.又在Rt△CDF中,CD2+CF2=FD2,∴CD2+BE2=DE2.点拨:此题从待论证的结论可以联想到勾股定理,而三条线段不在同一个直角三角形中,故可运用旋转法将分散的线段集中在同一个三角形中.3、运用面积法解题例6、如图,△ABC中,∠B=90°,两直角边AB=7,BC=24.在三角形内有一点P到各边的距离相等,则这个距离是()A.1B.3C.6D.无法求出解:依勾股定理知AC=.设点P到各边的距离为r,连结PA、PB、PC.依三角形的面积关系,有S△ABP+S△BCP+S△ACP=S△ABC,即AB·r+BC·r+AC·r=AB·BC.得(7+24+25)r=7×24,解得r=3.故选B.点拨:涉及到垂线段的问题,常可联系到某一三角形的高,从而可应用面积法来解题.因为它是一种代数方法,因此显得十分直观、简捷.例7、如图,Rt△ABC的两直角边AB=4,AC=3,△ABC内有一点P,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,且.求PD、PE、PF的长.解:在Rt△ABC中,∵AB=4,AC=3,∴BC==5.设PF=x,PE=y,PD=z,则.①连结PA、PB、PC.∵S△PAB+S△PBC+S△PAC=S△ABC,∴AB·x+BC·z+AC·y=AB·AC,即4x+3y+5z=12.②①+②,得4x+3y+5z+=24,配方,得∴PD=PE=PF=1.点拨:本题显然不能直接运用勾股定理来计算PD、PE、PF的长,只能在连结PA、PB、PC后,将原三角形分成三个分别以AB、BC、CA为底,PF、PD、PE为高的三角形,由面积法列出关系式,再利用题设条件,即可求解.4、构造几何图形解答代数问题例8、设a、b、c、d都是正数,求证:.分析:题中出现线段的平方和,考虑构造直角三角形,利用勾股定理证明.证明:构造一个边长分别为(a+b)、(c+d)的矩形ABCD(如图).在Rt△ABE中,.在Rt△BCF中,.在Rt△DEF中,.在△BEF中,BE+EF>BF,即点拨:勾股定理将直角三角形的位置关系(两边垂直)转化为数量关系,这为我们运用代数方法研究几何问题提供了工具,反过来,对有些代数问题,特别是含有平方和或平方差的代数式,我们也可以通过构造直角三角形用勾股定理来解决,即用几何方法解决代数问题.勾股定理的逆定理一、一周知识概述1、勾股定理的逆定理是直角三角形判定的重要方法如果三角形的三边长为a,b,c,且满足a2+b2=c2,那么这个三角形是直角三角形.这就是勾股定理的逆定理.在叙述定理时,不能简单地将原命题(勾股定理)的条件和结论颠倒过来,写成“如果一个三角形的两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2,那么这个三角形是直角三角形”.要是这样叙述,则条件中所说“直角边,斜边”等名词已承认三角形是直角三角形,而结论又为直角三角形,这样条件与结论就会混乱.勾股定理的逆定理给出了判定一个三角形是直角三角形的方法.这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的.实际上利用计算证明几何问题在几何里也是很重要的.这里体现了数学中的重要思想——数形结合思想,打破了利用角与角之间的转化计算直角的方法,建立了通过求边与边关系判定直角的新方法.它将数形之间的联系体现得淋漓尽致,因此也有人称勾股定理的逆定理为“数形结合的第一定理”!2、逆命题和逆定理的概念把一个命题的题设和结论互换,就得到它的逆命题.一个真命题的逆命题不一定也是真命题.例如“全等三角形的对应角相等”是一个真命题,它的逆命题是“对应角相等的两个三角形是全等三角形”,显然这个命题不是真命题,即为假命题.一个定理的逆命题是真命题,那么这个逆命题就是这个定理的逆定理.例如:勾股定理和勾股定理的逆定理,就是互逆定理.前一个是直角三角形的性质定理,后一个是直角三角形的判定定理,我们要善于比较这两个定理间的联系和区别.我们前面学习的角平分线的性质与判定,线段垂直平分线的性质与判定等都是像这样的互逆定理,大家可以对照复习一下.对于那些不是以“如果……,那么……”形式给出的命题,在叙述它们的逆命题时,可以把这些命题变为“如果……,那么……”的形式.例如“等边对等角”可以改写为“如果一个三角形是等腰三角形,那么它的两个底角相等”.3、勾股数组能够成为直角三角形三条边长的三个正整数,称为勾股数组.不难验证(3,4,5),(5,12,13),(7,24,25),(9,40,41),(11,60,61),…均为基本勾股数组.显然,若(a,b,c)为基本勾股数组,则(ka,kb,kc)也为勾股数组,其中k为正整数.例如(6,8,10),(9,12,15),(10,24,26),…为勾股数组.若能掌握前几个基本勾股数组,会给解题带来方便和快捷.二、重难点知识归纳1、勾股定理的逆定理的应用.2、逆命题和逆定理的概念.3、勾股数组.三、典型例题剖析1、利用勾股定理的逆定理证直角例1、如图,在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17.求△ABC 的面积.解:∵BD2+AD2=36+64=100=102=AB2,∴△ABD是直角三角形,∠ADB=90°.在△ADC中,∴BC=BD+DC=6+15=21.点拨:已知三角形的三边长,常验证其中是否有两个数的平方和等于第三个数的平方,以便判断该三角形是否为直角三角形.例2、如图,四边形ABCD为正方形(四角为直角、四边相等的四边形),点E为AB中点,点F在AD边上,且求证:EF⊥CE.点拨:这里先运用勾股定理计算出△CEF各边的边长,然后运用勾股定理的逆定理来判断其为直角三角形,这是证明两条直线垂直的又一种方法.例3、如图,P为正三角形内一点,且PC=3,PB=4,PA=5.求∠BPC.解:将图中的△ACP绕顶点C按逆时针旋转60°,得△BP′C的位置.∵PC=P′C,∠PCP′=60°,∴△PP′C为正三角形.在△BP′P中,BP=4,PP′=PC=3,BP′=AP=5,∴△BP′P为Rt△.∴∠BPP′=90°,∠BPC=∠BPP′+∠P′PC=90°+60°=150°.点拨:由PC=3,PB=4,PA=5想到常见的勾股数组,但这三条线段不在同一个三角形中,但可以借助旋转将三条线段集中起来,由勾股定理的逆定理得到一个直角三角形.2、勾股数组例4、试判断:三边长分别为2n2+2n,2n+1,2n2+2n+1(n为正整数)的三角形是否是直角三角形?解:∵(2n2+2n+1)-(2n2+2n)=1>0,(2n2+2n+1)-(2n+1)=2n2>0,∴2n2+2n+1为三角形中最大边.又∵(2n2+2n+1)2=4n4+8n3+8n2+4n+1,(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1,∴(2n2+2n+1)2=(2n2+2n)2+(2n+1)2.由勾股定理的逆定理可知,此三角形为直角三角形.点拨:这里先作差比较确定最大边,其依据是:a-b>0,则a>b;a-b=0,则a=b;a-b<0,则a<b.实际上有时用这种方法还会有困难,对于不考虑过程仅需要答案的题,还可利用特殊值迅速解决.例5、(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=______,b=______,c=______;(2)猜想:以a,b,c为边长的三角形是否为直角三角形?并证明你的猜想.解:(1)n2-1;2n;n2+1.(2)以a,b,c为边的三角形是直角三角形.证明如下:∵a2+b2=(n2-1)2+4n2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2=c2,∴以a,b,c为边长的三角形是直角三角形.点拨:解决此类问题的思路一般是观察→猜想→证明.例6、(2002,湖北省)如图,在△ABC中,AB=5,AC=13,边BC上的中线AD=6,求BC的长.解:如图,延长AD至E,使DE=AD=6,连结CE.∵CD=BD,且∠ADB=∠EDC,∴△ABD≌△ECD.∴AB=CE=5.点评:根据题设的条件,由中线联想到中线倍长,将分散的条件集中起来,由数据关系可判定△ACE是直角三角形,再在Rt△CDE中求CD的长就不难了.例7、写出下列命题的逆命题,并判断真假.(1)如果a=0,那么ab=0;(2)如果x=4,那么x2=16;(3)面积相等的三角形是全等三角形;(4)如果三角形有一个内角是钝角,则其余两个角是锐角;(5)在一个三角形中,等角对等边.分析:先分清原命题的题设和结论,再把题设和结论互换位置,就得到原命题的逆命题.解答:(1)的逆命题是:如果ab=0,那么a=0.它是一个假命题.(2)的逆命题是:如果x2=16,那么x=4.它是一个假命题.(3)的逆命题是:全等三角形的面积相等.它是一个真命题.(4)的逆命题是:如果三角形有两个内角是锐角,那么另一个内角是钝角.它是一个假命题.(5)的逆命题是:在一个三角形中,等边对等角.它是一个真命题.方法总结:写一个命题的逆命题的关键是分清题设和结论,再交换题设与结论的位置,必要时要加一些适当的语句,切忌不能生搬硬套.例8、下列定理是否都有逆定理?若有,请写出来.(1)如果两个角都是直角,那么这两个角相等;(2)内错角相等,两直线平行;(3)等边三角形的三个角都等于60°.分析:先写出每个定理的逆命题,再判断其真假.方法总结:先写出逆命题,再判断真假,一般判断一个命题是真命题要经过证明,判断一个命题是假命题只需举一个反例即可。

勾股定理-讲义

勾股定理-讲义

勾股定理一、知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2. 直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.4.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.二、经典例题+基础练习1. 勾股定理.【例1】已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对.练1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或84练2.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2 2. 等腰直角三角形.【例2】已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2 B.2n﹣1 C.2n D.2n+1练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A. B. C. D.3.等边三角形的性质;勾股定理.【例3】以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()10厘米 B.2×()9厘米C.2×()10厘米 D.2×()9厘米练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.4.勾股定理的应用.【例4】工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm 练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米 D.米5.平面展开-最短路径问题.【例5】如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm 练6.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.三、课堂练习1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:33.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)四、能力提升1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225 D.161或2894.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.185.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.勾股定理的逆定理一、知识点梳理1.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.3.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.4.方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.5.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.6.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.二、经典例题+基础练习1.勾股定理的逆定理.【例1】下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5练1.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6练2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,42. 勾股定理的应用.【例2】如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米练3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m 3.平面展开-最短路径问题.【例3】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm练4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.4.勾股定理的应用:方向角.【例4】已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C 地的方向.练5.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).5.坐标与图形性质;勾股定理的逆定理.【例5】在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC 是直角三角形,则满足条件的点共有()A.1个 B.2个 C.4个 D.6个练6.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.三、课堂练习1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.四、能力提升1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=503.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、25 4.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米 B.40厘米 C.50厘米 D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A 点爬行到C点,那么,最近的路程长为()A.7 B. C. D.59.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm 10.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB 的距离为4,且△ABC是直角三角形,则满足条件的点C有个.11.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形.12.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.13.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.14.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)15.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)16.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.勾股定理中的折叠问题一、经典例题例1.如图,在矩形ABCD 中,AB =6,BC =8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理、全等三角形典型模型
全等三角形 手拉手模型
特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点
结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°
(3)OA平分∠BOC
变形:
例1.如图在直线的同一侧作两个等边三角形与,连结与,证明
(1)
(2)
(3) 与之间的夹角为
(4)
(5)
(6) 平分
(7)
变式精练1:如图两个等边三角形与,连结与,证明(1)
(2)
(3)与之间的夹角为
(4)与的交点设为,平分
变式精练2:如图两个等边三角形与,连结与,证明(1)
(2)
(3)与之间的夹角为
(4)与的交点设为,平分
例2:如图,两个正方形与,连结,二者相交于点问:(1)是否成立?
(2)是否与相等?
(3)与之间的夹角为多少度?
(4)是否平分?
例3:如图两个等腰直角三角形与,连结,二者相交于点问:(1)是否成立?
(2)是否与相等?
(3)与之间的夹角为多少度?
(4)是否平分?
例4:两个等腰三角形与,其中,,连结与,
问:(1)是否成立?
(2)是否与相等?
(3)与之间的夹角为多少度?
(4)是否平分?
倍长与中点有关的线段
倍长中线类
☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。

【例1】已知:中,是中线.求证:.
【练1】在△中,,则边上的中线的长的取值范围是什么?
【练2】如图所示,在的边上取两点、,使,连接、,求证:.
【例2】如图,已知在中,是边上的中线,是上一点,延长交于,,求证:.
【练1】如图,已知在中,是边上的中线,是上一点,且,延长交于,求证:
【练2】如图,在中,交于点,点是中点,交的延长线于点,交于点,若,求证:为的角平分线.
【练3】如图所示,已知中,平分,、分别在、上.,.
求证:∥
【例3】已知为的中线,,的平分线分别交于、交于.求证:.
【练1】在中,是斜边的中点,、分别在边、上,满足.若,,则线段的长度为_________.
【练2】在中,点为的中点,点、分别为、上的点,且.
(1)若,以线段、、为边能否构成一个三角形?若能,该三角
形是锐角三角形、直角三角形或钝角三角形?
(2)如果,求证.
【例4】如图所示,在中,,延长到,使,为的中点,连接、,求证.
【练1】已知中,,为的延长线,且,为的边上的中线.
求证:
★全等之截长补短:人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.
而“截长补短法”又是解决这一类问题的一种特殊方
1. 如图所示,中,,AD平分交BC于D。

求证:AB=AC+CD。

如图所示,在中,,的角平分线AD、CE相交于点O。

求证:
AE+CD=AC。

2. 如图所示,已知,P为BN上一点,且于D,AB+BC=2BD,求
证:。

3. 如图所示,在中,AB=AC,,,CE垂直于BD的延长线于E。


证:BD=2CE。

5如图所示,在中,,AD为的平分线,=30,于E点,求证:AC-
AB=2BE。

6.如图所示,已知//CD,的平分线恰好交于AD上一点E,求证:
BC=AB+CD。

7.如图,E是的平分线上一点,,,垂足为C、D。

求证:(1)OC=OD;(2)DF=CF。

相关文档
最新文档