有导体和电介质存在时的静电场
电磁学02静电场中的导体与介质
A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:
第6章 静电场中导体和电介质 重点与知识点
理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
一、静电场中的导体
2、空腔导体(带电荷 、空腔导体 带电荷 带电荷Q)
1)、腔内无电荷,导体的净电荷只能分布在外表面。 腔内无电荷,导体的净电荷只能分布在外表面。 净电荷只能分布在外表面 Q
在静电平衡状态下,导体 在静电平衡状态下, 空腔内各点的场强等于零, 空腔内各点的场强等于零, 空腔的内表面上处处没有 空腔的内表面上处处没有 净电荷分布。 净电荷分布。
C2 U
Cn
2、电容器的并联
C = C1 + C2 + ⋅ ⋅ ⋅ + Cn
= ∑ Ci
i =1
nq1C1来自q2C2qn U
Cn
2012年3月23日星期五
理学院物理系 王 强
第六章 静电场中的导体和电介质
大学物理
第六章 重点与知识点
四、 电场的能量
(一)、静电场的能量
电场能量密度: 电场能量密度
We 1 2 1 we = = εE = ED V 2 2
ε
电容率, : 电容率,决定于电介质种类的常数
2)、电介质中的高斯定理 )
v r D ⋅ dS = ∑ Q0i ∫
S i (自由电荷)
2012年3月23日星期五
电介质中通过任 一闭合曲面的电位 一闭合曲面的电位 移通量等于该曲面 移通量等于该曲面 所包围的自由电荷 所包围的自由电荷 的代数和
第六章 静电场中的导体和电介质
一般电场所存储的能量: 一般电场所存储的能量
dWe = wedV
1 2 We = ∫ dWe = ∫ ε E dV V V 2
适用于所有电场) (适用于所有电场)
大学物理 导体和电介质中的静电场
x
(1 2)S q (3 4)S q
1
2
3
4
q S
q S
0
1 4 0
2 3
ⅠⅡ Ⅲ
2 q / S
3 q / S
----电荷分布在极板内侧面
2020/1/14
由场强叠加原理有:
E1
2 2 0
3 2 0
2 2 0
3 2 0
4 2 0
2 0
q1 q2
2 0 S
E3
1 2 0
2 2 0
3 2 0
4 20/1/14
导体和电介质中的静电场
例: 点电荷 q = 4.0 × 10-10C, 处在不带电导体球壳的 中心,壳的内、外半径 分别为: R1=2.0 × 10-2m , R2=3.0 × 10-2m.
0
+ +
+
+ -
-
-q
+
+ -
+
Q
+
+
q
-+
+q
-
--q-
S
+
++
qi 0
S内
结论
空腔内有电荷q时,空腔内表面感应出等值异号 电量-q,导体外表面的电量为导体原带电量Q与感应 电量q的代数和.
2020/1/14
导体和电介质中的静电场
3. 静电平衡导体表面附近的电场强度与导体表面电荷的关系
3. 导体的静电平衡条件 导体内电荷的宏观定向运动完全停止.
9-1静电场中的导体、空腔导体
q
9-1、2 导体、空腔导体中的静电场 - 、 导体、
导体和电介质中的静电场
作业
书 书 9-7 9-9
下次课内容
§9-4 电介质及其极化 §9-6 介质高斯定理 §9-3 电容器的电容
练习 9-2 练习 9-4
(2)
A
B
(3) 将B板接地 板接地
σ4 = 0
qB = −qA
A、B重新感应
qA
qB
9-1、2 导体、空腔导体中的静电场 - 、 导体、
导体和电介质中的静电场
在一个不带电的金属球旁边放一点电荷q, 例3 在一个不带电的金属球旁边放一点电荷 ,求: (1)感应电荷在球心处的场强; )感应电荷在球心处的场强; R (2)球的电势; )球的电势; r (3)若将球接地,球上的感应电荷 ′。 )若将球接地,球上的感应电荷q o
q'
q
9-1、2 导体、空腔导体中的静电场 - 、 导体、
导体和电介质中的静电场
有一接地的金属球, 用一弹簧吊起, 有一接地的金属球 , 用一弹簧吊起 , 金属球原来不 带电。若在它的下方放置一电量为q的点电荷 的点电荷, 带电。若在它的下方放置一电量为 的点电荷,则 (A) 只有当 只有当q>0时,金属球才下移。 时 金属球才下移。 (B) 只有当 只有当q<0时,金属球才下移。 时 金属球才下移。 (C) 无论 是正是负金属球都下移。 无论q是正是负金属球都下移 是正是负金属球都下移。 (D) 无论 是正是负金属球都不动。 无论q是正是负金属球都不动 是正是负金属球都不动。
1 E1 = (σ1 −σ2 −σ3 −σ4 ) = 0 2ε0
E2 = 1 (σ1 +σ2 +σ3 −σ4 ) = 0 2ε0
第十章静电场中的导体和电介质
第⼗章静电场中的导体和电介质第⼗章静电场中的导体和电介质在上⼀章中,我们讨论了真空中的静电场。
实际上,在静电场中总有导体或电介质存在,⽽且在静电的应⽤中也都要涉及导体和电介质的影响,因此,本章主要讨论静电场中的导体和电介质。
本章所讨论的问题,不仅在理论上有重⼤意义,使我们对静电场的认识更加深⼊,⽽且在应⽤上也有重⼤作⽤。
§10-1 静电场中的导体⼀、静电平衡条件1、导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很⼤(相差10多个数量级,⽽不同导体间电导率数量级最多就相差⼏个数量级)。
(2)微观上导体内部存在⼤量的⾃由电⼦,在外电场下会发⽣定向移动,产⽣宏观上的电流⽽电介质内部的电⼦处于束缚状态,在外场下不会发⽣定向移动(电介质被击穿除外)。
2、导体的静电平衡条件(1)导体内部任何⼀点处的电场强度为零;(2)导体表⾯处的电场强度的⽅向,都与导体表⾯垂直.导体处于静电平衡状态的必要条件:0=i E(当导体处于静电平衡状态时,导体内部不再有⾃由电⼦定向移动,导体内电荷宏观分布不再随时间变化,⾃然其内部电场(指外场与感应电荷产⽣的电场相叠加的总电场)必为0。
⼆、静电平衡时导体上的电荷分布1、导体内部没有净电荷,电荷(包括感应电荷和导体本⾝带的电荷)只分布在导体表⾯。
这个可以由⾼斯定理推得:ii sq E ds ε?=,S 是导体内“紧贴”表⾯的⾼斯⾯,所以0i q =。
2、导体是等势体,导体表⾯是等势⾯。
显然()()0b a b i a V V E dl -=?=?,a,b 为导体内或导体表⾯的任意两点,只需将积分路径取在导体内部即可。
3、导体表⾯以处附近空间的场强为:0E n δε=,δ为邻近场点的导体表⾯⾯元处的电荷密度,?n 为该⾯元的处法向。
简单的证明下:以导体表⾯⾯元为中截⾯作⼀穿过导体的⾼斯柱⾯,柱⾯的处底⾯过场点,下底⾯处于导体内部。
由⾼斯定理可得:12i s s dsE ds E ds δε?+?=,1s ,2s 分别为⾼斯柱⾯的上、下底⾯。
静电场中的导体与电介质
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
物理-静电场的能量
力需克服静电场力作的功dw;
再计算电量由0累积到Q的过程,外力的总功:
Q
dW 0 dW
如:前面例1(均匀带电球面的静电能)
Q
W
q
dq Q2
0 4 0 R
8 0R
++ +
+O
+Q
+ +
+R +
+++
三、连续分布电荷系统的静电能
思路(二):考察带电体上所电荷元间
的相互作用能 带电体上任到一个电荷元dq,设
4 0r
q1q2
4 0
dr r r2
q1q2
4 0r
一、电荷系统的自能与相互作用能
3、带电体系的总静电能
q2 q3 q1
qi
qn
某电荷系统A
每个带电体的自能 电荷系统的总能
所有带电体的相互作用能
一、电荷系统的自能与相互作用能
例3:求两个半径分别为 R1、R2,电量为 Q1、Q2,相 距为 d(d R1, R2 ) 的两个均匀带电球面的静电能。
Q1 + +
+ +
O1
+ + +
+ R1 +
+++
d( R1, R2 )
+ +
+
+ O2
+ Q2
+ +
+ R2 +
+++
自能:
W1
Q1 8 0R1
W2
Q2 8 0R2
;
相互作用能: W12
9.第十二章导体和电介质存在时的静电场2(电介质)
S
dq′ σ'= dS
则介质表面的束缚电荷面密度 则介质表面的束缚电荷面密度
问题: 问题:
面元的法 线方向是 电介质极化时产生的极化电荷的面密度, 即:电介质极化时产生的极化电荷的面密度, 如何规定 的? 等于电极化强度沿外法线的分量. 等于电极化强度沿外法线的分量
r r σ ′ = P cosθ=P ⋅ n
14
∑q
int
= ∑q0+ q′ ∑
r r P ⋅ dS
由前, 由前,高斯面包围的束缚电荷为 ∴∑q' =− ∫ S r r r r ∴ ∫ ε0 E ⋅ dS = ∑q0 − ∫ P ⋅ dS 于是
S S
r r r ∴ ∫ (ε0 E + P) ⋅ dS = ∑q0 S r r r 引入电位移矢量 电位移矢量(electric displacement) D = ε0 E + P 引入电位移矢量
电介质体内任一封闭面内的束缚电荷q′ 电介质体内任一封闭面内的束缚电荷 ′内为
r r ′= q内 − ∫ S P ⋅ dS
可以证明:对均匀电介质,若电介质体内无自由电荷, 可以证明:对均匀电介质,若电介质体内无自由电荷,则不管 电场是否均匀, 电场是否均匀,电介质体内都无束缚电荷 (我们只讨论均匀电 我们只讨论均匀电 介质,即以后只考虑下面所说的表面上的束缚电荷) 介质,即以后只考虑下面所说的表面上的束缚电荷 .
4
3.描述极化强弱的物理量— 3.描述极化强弱的物理量—极化强度 (electric polarization) 描述极化强弱的物理量 电偶极子排列的有序程度反映了介 质被极化的程度 排列愈有序说明极化愈烈
∆V
宏观上无限小微观 上无限大的体积元
第二章 静电场中的导体和电介质:电容器的电容
P e 0 E
§2.8 电容器的电容
一.孤立导体的电容
q C V
单位:F(法拉)
C是与导体的尺寸和形状以及周围的电介质有 关,与q,V无关的常数。
1F 10 F 10 PF
6 12
例1 .求半径为R的孤立导体球的电容。
q1:q2: · :qn = C1:C2: · :Cn · · · ·
q qi (V A VB ) C i ,
i 1 i 1
n
n
n q C Ci VA VB i 1
并联电容器的总电容等 于各电容器的电容之和 2. 串联
C Ci
i 1
n
A +
VA +q –q +q –q 。
q dA udq dq C
从开始极板上无电荷直到极板上电量为Q的过 程中,电源作的功为
2 q 1 Q 1Q dq 0 qdq C C 2 C
A dA 0
Q
Q CU
U为极板上电量为Q时两板间的电势差
1 Q2 1 1 2 A CU QU 2 C 2 2
E
0
( r R1 , r R2 )
λ er 2πεr
B A
( R1 r R2 )
2
VA VB
R E dl R Edr
1
λdr R1 2πεr
R2
R2 q R2 λ ln ln 2πε R1 2πεL R1
q 2πεL C V A VB ln( R2 / R1 )
②所求的C = q/VA–VB一定与q和VA–VB无关,仅 由电容器本身的性质决定。
大学物理第十章有导体和电介质时的静电场习题解答和分析
第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有AC AB U U =。
解:(1)设B 、C 板上的电荷分别为Bq 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ① 又因为: AC AB U U = 而: 2AC AC d U E =⋅AB AB U E d =⋅∴ 2AC AB E E =于是:02C Bσσεε =⋅两边乘以面积S 可得:2C BS S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-1题10-1解图d(2) 00222C C A AC C AC AC q d d dU U U U E S σεε =+==⋅=⋅=⋅ 7334122102102.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ; (2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
第章静电场中的导体和电介质PPT课件
q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。
第9章-静电场中的导体和电介质
E 加上外电场后 外 E外
把金属导体置于外电场 中,自由电子将产生宏 观定向运动,导体中电 荷按照外电场特性和导 体形状形成特定的分布
在外电场作用下,引起 导体中电荷重新分布而呈 现出的带电现象,称为
静电感应现象 Electrostatic Induction
问:这种静电感应的过程是否会一直进行下去?
辨析
0 一块无限大均匀带电导体薄板,电荷面密度为 0
问:在它附近一点的场强=?
解:由无限大带电均匀平面两侧的场强公式,得
二、导体处于静电平衡状态时的场强分布
导体外部近表面处场强 E
方向:与该处导体表面垂直
E
0
n
大小:与该处导体表面电荷面密度 成正比。 E(nˆ )
0
S
ES
S 0
ΔS
P
E
0
E内=0
讨论:导体表面附近的场强公式
E
0
指导体表面附近场点近旁的导体电荷面密度
一、静电感应 导体的静电平衡条件
无外电场时
无外电场时,导体中 自由电子在金属内作无 规则热运动,而没有宏 观定向运动,整个导体 呈现电中性
无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
E 外
+ + + + +
静电场(导体电介质能量)
r (1) E内 = 0 r (2) E ⊥表面 表
用电势来表述……导体是等势体 导体是等势体, 用电势来表述 导体是等势体 其表面是等势面。 其表面是等势面。
二.在静电平衡时导体上的电荷分布 1.导体内部净电荷处处为零,电荷只能分布在表面上。 导体内部净电荷处处为零,电荷只能分布在表面上。 导体内部净电荷处处为零
U r > R3
q A + qB = 4πε 0 r
如果用导线将A、 连接 连接, 思考 2: 如果用导线将 、B连接 它们的电荷如何分布? 它们的电荷如何分布?
B
A
R1 R2
R3
S
qB + qA
q3
球与B球内表面的电荷中和 答:A球与 球内表面的电荷中和 球与 球内表面的电荷中和, B球的外表面带电 qB + qA 。 球的外表面带电 思考3: 此时电荷分布的电场、电势? 思考 此时电荷分布的电场、电势?
S
得到
σ 2 = −σ 3
ε0
=0
板内任一点: 对 A 板内任一点:
σ1 σ 2 σ 3 σ 4 E= − − − =0 2ε 0 2ε 0 2ε 0 2ε 0
又已知
σ 1 + σ 2 = σ A = 3µ C / m
2
2
σ 3 + σ 4 = σ B = 7µ C / m
得到 σ 1 = 5µ C / m
σ R 4π R
4πε 0 R
2
σ r 4π r = 4πε 0 r
2
∴σR/σr=r/R
一导体球壳A带电 带电+ ,内外半径分别为R 例 一导体球壳 带电+Q,内外半径分别为 l和R2,另有一导 体球B带电 带电+ ,半径为r,同心地放在球壳A内 体球 带电+q,半径为 ,同心地放在球壳 内,两球面距地面 很远. 若球壳 通过导线同地面相接,然后再断开, 若球壳A通过导线同地面相接 很远.(1)若球壳 通过导线同地面相接,然后再断开,求A球壳 球壳 上的电荷分布和电势, 球的电势以及 球的电势以及P点 < 的电势; 上的电荷分布和电势,B球的电势以及 点(r<rP<R1)的电势; 的电势 (2)再使 球接地,求A、B上的电荷分布和电势。 再使B球接地, 、 上的电荷分布和电势。 再使 球接地 上的电荷分布和电势
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
第9章导体和电介质中的静电场(精)
第第九九章章导导体体和和电电介介质质中中的的静静电电场场引言:一、导体、电介质、半导体导体:导电性能很好的材料;例如:各种金属、电解质溶液。
电介质(绝缘体):导电性能很差的材料;例如:云母、胶木等。
半导体:导电性能介于导体和绝缘体之间的材料;二、本章内容简介三、本章重点和难点1. 重点(1)导体的静电平衡性质;(2)空腔导体及静电屏蔽;(3)电容、电容器;2. 难点导体静电平衡下电场强度矢量、电势和电荷分布的计算;第一节静电场中的导体一、静电感应静电平衡1. 静电感应(1)金属导体的电结构从微观角度来看,金属导体是由带正电的晶格点阵和自由电子构成,晶格不动,相当于骨架,而自由电子可自由运动,充满整个导体,是公有化的。
例如:金属铜中的自由电子密度为:nCu=8⨯1028(m-3)。
当没有外电场时,导体中的正负电荷等量均匀分布,宏观上呈电中性。
(2)静电感应当导体处于外电场E0中时,电子受力后作定向运动,引起导体中电荷的重新分布。
结果在导体一侧因电子的堆积而出现负电荷,在另一侧因相对缺少负电荷而出现正电荷。
这就是静电感应现象,出现的电荷叫感应电荷。
2. 静电平衡不管导体原来是否带电和有无外电场的作用,导体内部和表面都没有电荷的宏观定向运动的状态称为导体的静电平衡状态。
(a)自由电子定向运动(b)静电平衡状态3. 静电平衡条件(静电平衡态下导体的电性质)(1)导体内部任何一点处的电场强度为零;导体表面处电场强度的方向,都与导体表面垂直。
(2)在静电平衡时,导体内上的电势处处相等,导体是一个等势体。
E证明:假设导体表面电场强度有切向分量,即τ≠0,则自由电子将沿导体表面有宏观定向运动,导体未达到静电平衡状态,和命题条件矛盾。
dUdU =0,=0E内=0,Eτ=0dldτ因为,所以,即导体为等势体,导体表面为等势面。
二、静电平衡时导体上电荷的分布1. 实心导体(1)处于静电平衡态的实心导体,其内部各处净电荷为零,电荷只能分布于导体外表面。
第8章静电场中的导体和电介质知识点复习
d O'
导 体 板
+
直线
O
x
E2 2 0
由总电场
E E E 0 O 1 2 得 2 d
(3)
二、 静电场中的电介质 1. D 的高斯定理 2. 电容器的电容 3.孤立导体球的电容 4. 电容器的能量 5. 静电场的能量
D d S q 0 内
电容:
(6)
2
2 r L 0 C ln( R 2/R 1)
(5)
例4:两个同心金属球壳,内球壳半径为R1,外球壳半径 为R2,中间充满相对介电常数为 r 的均匀介质,构成一 个球形电容器。 (1) 求该电容器的电容; (2)设内外球壳 上分别带有电荷+Q和-Q,求电容器储存的能量。 解: (1)设内外球壳上分别带电Q和-Q, 则两球壳中间的场强大小为
Q 20r rL
R2
R1 dr
r
在电场中取体积元 d V ( 2 rL ) d r 则在 dV 中的电场能量为:
L
r
+Q
–QLeabharlann d W0r2
2 E d V
2 R 1 Q d r 2 W W d R 1 r 2 2 L 0 r
2 1 Q R 1 Q ln 2 22 rL R 2 C 0 1
由导体内部场 强为零得
3. 有导体存在时静电场的分析与计算
1
2
3
4
1 2 3 4 0 2 0 2 0 2 0 2 0
S
P
(1)
例1: 同心导体球面,半径分别为R1和R2,电量分别为 Q1和Q2。当把内球接地时,内球带电多少? 解:内球接地,其电势为零,设其电量为Q1
大学物理第九章导体和介质中的静电场
第九章导体与介质中的静电场Electrostatic field in conductor and dielectric §9-1,2静电场中的导体§9-3电容器的电容§9-6电介质中的高斯定理§9-8 静电场的能量§9-1,2静电场中的导体一、导体的静电平衡( electrostatic equilibrium )1.导体绝缘体半导体1)导体(conductor)导电能力极强的物体(存在大量可自由移动的电荷)2)绝缘体(电介质,dielectric)导电能力极弱或不能导电的物体3)半导体(semiconductor)导电能力介于上述两者之间的物体EE E E iii E e E q F 导体静电平衡条件:导体内任一点的电场强度都等于零Ei E E2. 导体的静电平衡条件导体的内部和表面都没有电荷作任何宏观定向运动的状态.导体的静电平衡状态:静电感应E* 推论(静电平衡状态)证:在导体上任取两点p , ql d E V V i qpq pqp V V 0i Epq导体静电平衡条件:2)导体表面任一点场强方向垂直于表面1)导体为等势体,导体表面为等势面否则其切向分量将引起导体表面自由电子的运动,与静电平衡相矛盾。
3.导体上电荷的分布1)当带电导体处于静电平衡状态时,导体内部处处没有净电荷存在, 电荷只能分布于导体的表面上.qdV iiV证明:在导体内任取体积元dV由高斯定理体积元d v 任取导体带电只能在表面!iiqS d E 01 ,0 i E dVn e En e E E S d e E S d E nS E 0S2).导体表面附近的场强方向与表面垂直,大小与该处电荷的面密度成正比.ne ES结论:孤立的带电导体,外表面各处的电荷面密度与该处曲率半径成反比,410R Q V RRrr R ,44,22rRr R rR q Q r R R rQq1)导体表面凸出而尖锐的地方(曲率较大)电荷面密度较大2)导体表面平坦的地方(曲率较小)电荷面密度较小3)导体表面凹进去的地方(曲率为负)电荷面密度更小rq V r 041rq R Q V V R r 004141l d E 导体内,0l d E 腔沿电场线l d E (违反环路定理)在静电平衡状态下,导体空腔内各点的场强等于零,空腔的内表面上处处没有电荷分布.ld E l d E l d E导体内腔沿电场线二、空腔导体(带电荷Q )1 腔内无电荷,导体的电荷只能分布在外表面。
大学物理课件第九章
R2
34
仿以上两种方法,同学们可自行计
算得如下结果
q
q qQ
Ur 2 40r2 40R2 40R3
静电场中的导体
U r3 40R3
(3)接地后
q
ε E1=4π
r2
0
E2 = 0
E3 = 0
静电场中的导体
U r4 40r4
R2 R1
q q R0
7 静电屏蔽
静电场中的导体
球体的电势
方法一:
U r1 E dl
r1
R1
E1
dr
R2
E2
dr
r1
R1
R3
E3
dr
E4
dr
R2
R3
R2 R1
q
4 0r22
dr
R3
4 0r42
dr
q q qQ
F
F
电偶极矩趋于外电场的方向
有极分子的无序排列
注意
介质表面出现极化电荷,介质内产生极化电场
1)极化作用将在电介质表面产生束缚电荷;
2)束缚电荷产生附加电场 E.
二、电极化强度
1. 电极化强度: 在电介质中任取一宏观小体积V :
无外场 介质不极化
p0
有外场 介质被极化 p 0
定义: P p
l
VP VQ
与导体是一等势体矛盾.
P+
(2) 腔内有带电体+q :
腔体内表面所带的电量和腔内带电体所带的电量等量异
有导体和电介质存在时的静电场
③ 由极板电量和两极板电势差计算电容
C
Q U
此时您正浏览在第37页,共72页。
1、平行板电容器的电容
设两板相对表面积为S,两板间距为d,两板间为真空。 ① 设两板相对表面分别带+Q和-Q的电荷,求场强
+ -
③ 计算电容
忽略边缘效应,认为两板间场强均匀。
QA
S
B
d
E
0
Q
0S
② 根据场强求电势差
U AB
导体空腔内若无带电体,则导 体空腔必有下列性质:
+面S
① 内表面上无净电荷,所有静电 荷均分布在外表面
+
+ 证明:作高斯面S仅包围内表面
+ + ++
F
S
E
dS
1
0
qint
静电平衡,导体内部 E=0
qint 0
此时您正浏览在第24页,共72页。
++
+
+
+ +
+
+
+
- +--q+2+
qint 0有两种情况:
(2)将B板接地,求电荷分布
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
此时您正浏览在第11页,共72页。
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
分析:可利用静电平衡条件(Eint =0, ES⊥表面)、电荷守恒和静 电场的基本规律(场强叠加原理、
高斯定律等)进行求解。
r R3
此时您正浏览在第18页,共72页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单独产生的场强为 E
0
E E0 E
0 (1) 0 o
Pn 0 ( r 1)E (2)
0 0
E0
E
得 E 0 0 r
E介 质
E0
r
该式普 遍适用 吗?
13
均匀各向同性电介质充满 两个等势面之间
E
E0
r
例3 导体球置于均匀各向同性介质中
如图示
r1 0
polar molecules non~ +-
+
p
-
ql
+
二.电介质分子对电场的影响 1.无电场时 热运动---紊乱 电中性
有极分子
无极分子
3
2. 有电场时 电介质分子的极化
有极分子介质
无极分子介质
取向极化
均匀 E
-
+
-
+
-
+
位移极化
均匀 E
-
+
-
+
-
+
结论:极化的总效果是介质边缘出现电荷分布
量纲
P
L2TI
5
三.极化强度与极化电荷的关系 在已极化的介质内任意作一闭合面S
基本认识:
1)S 把位于S 附近的电介质分子分为两部分
一部分在 S 内 一部分在 S 外
2)只有电偶极矩穿过S 的分子对
S内外的极化电荷才有贡献
S
6
1.小面元dS附近分子对面S内极化电荷的贡献
在dS附近薄层内认为介质均匀极化 薄层:以dS为底、长为l的圆柱 只有中心落在薄层内的分子才 对面S内电荷有贡献
所以, dq qnl dS cos
dS
S
外场
l
dS
P
PdScos
P dS
P nql
分子数密度为 n7
面内极化电荷的正负取决于 ;
将电荷的正负考虑进去,得小面
元dS附近分子对面内极化电荷的
贡献写成
V
dq
P
dS
-
PndS
面内
dS
l
dS
P
2.在S所围的体积内的极化电荷 q与 P的关系
q P dS
称呼:由于这些电荷仍束缚在每个分子中 所以
称之为束缚电荷或极化电荷
4
3.描述极化强弱的物理量--极化强度
电偶极子排列的有序程度
V
反映了介质被极化的程度
排列愈有序说明极化愈烈
pi
定义 P lim i
V 0 V
宏观上无限小 微观上无限大
的体积元 V
pi
每个分子的 电偶极矩
SI
单位 C m 2
电场能量密度的 普遍表达式:
we
1 2
D
E
(自证)
rS
d
提示:
均匀场
we
W V
W 1 QU 2
U Ed
例 求导体球的电场能
we
1 2
D
E
E
Q
4π 0 r
2
Q D 4πr2
We wedV
all of
spac field
e
R
Q2
32π2
0
r
4
4πr
2dr
We
Q2
8π 0 R
r
ED
e 无量纲的纯数 与 E 无关
2.各向异性线性电介质 anisotropy
e
与
E
、与晶轴的方位有关
张量描述
10
五.自由电荷与极化电荷共同产生场
E E0 E E0 自由电荷产生的场 E 束缚电荷产生的场
例1 介质细棒的一端放置一点电荷
Q0 q1
q2 P点的场强?
P
介质棒被极化,产生极化电荷q1' q2' 。
r
C C0
电容率
17
§6 电位移矢量 一.电位移矢量
定义 D 0 E P 无直接物理含义
量纲 D P 单位 C/m2
各向同性线性介质
P 0(r 1)E
D 0r E
介质方程
二. 有介质时的高斯定理
表达式: D dS q0i 自由电荷代数和
S
i
静电场中电位移矢量的通量等于闭合面内包 围的自由电荷的代数和
证:
E dS
i
qi
S
0
qi qoi
i
i
0
qi 面内束缚电荷之代数和
i
q0i 面内自由电荷之代数和
i
qi q0i
E dS i
i
S
0
0E dS PdS qoi
S
S
i
0
E
P
dS
q0i
S
i
D dS q0i
S
i
证毕
讨论
D dS q0i
S
i
1)有介质时静电场的性质方程
S
问题:
面元的法 线方向是
如何规定
的? 8
3.电介质表面(外)极化电荷面密度
内
dq Pds Pdsnˆ
l
Pnds 面外
dS
P
dS
dq dS
P
nˆ
Pn
P nˆ
nˆ 介质外法线方向
9
四.电介质的极化规律
1.各向同性线性电介质 isotropy linearity
P e0E e r 1 介质的电极化率
0 r2
1
Q
4π0 r2r 2
rˆ
P0
15
各向同性线性电介质均匀充满两个等势面间 思路
E0
E
E0
r
P
0 r
1E
P nˆ q
16
六.有介质时的电容器的电容 C C0 r
自由电荷
Q0 E0
U0
C0
Q0 U0
有介质时 E E0 U U0
r
r
C Q0 U
Q0 U0
r
C0 r
§5 电介质及其极化 一.电介质的微观图象 二.电介质分子对电场的影响 三.极化强度与极化电荷的关系 四.电介质的极化规律 五.自由电荷与极化电荷共同产生场 六.有介质时电容器的电容
1
思路: 电介质在电场中的电性质 寻找电介质存在时的电荷分布 利用叠加原理求场量
2
一.电介质的微观图象
有极分子 无极分子
第13章结束
极化电荷q1' q2'和自由电荷Q0共同产生场 11
例2 平行板电容器 ,自由电荷面密度为0
其间充满相对介电常数为r的均匀的各向
同性的线性电介质
求:板内的场强
0 0
r
解:均匀极化 表面出现束缚电荷
内部的场由自由电荷 0 在真空中叠加
和
束缚电荷
共同产生
12
0
单独产生的场强为
E0
0 0
2)在解场方面的应用
在具有某种对称性的情况下
可以首先由高斯定理解出
D
思路
D E P q
§7 静电场的能量密度
一.电容器的储能(静电能)
W 1 QU 2
或通过电容的 定义写成
W 1 Q2 2C
二.场能密度
单位体积内的电能定义为
we
dW dV
办法:从特例 (平行板电容器)导出,
然后推广给出一般形式
求:场的分布
R2 R1R0 r2
14
解:
r R0
导体内部
E1 0
R0 r R1
r1 内
E2
Q
4π 0 r1r 2
rˆ
R1r2r源自2内E3Q
4π0 r2r 2
rˆ
r R2
真空
E4
Q
4π 0r 2
rˆ
P0
r1 0
R2 R1R0 r2
P2
0 r1
1
Q
4π0 r1r 2
rˆ
P3