运算放大器稳定性实验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●Hello,and welcome to the TI Precision Lab supplement for op amp stability.
●This lab will walk through detailed calculations,SPICE simulations,and real-world
measurements that greatly help to reinforce the concepts established in the stability video series.
●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定
性环节。

●这个实验会包括计算,SPICE仿真和实际测试。

这些环节帮助大家对视频中
的概念加深理解。

●The detailed calculation portion of this lab can be done by hand,but calculation
tools such as MathCAD or Excel can help greatly.
●The simulation exercises can be performed in any SPICE simulator,since Texas
Instruments provides generic SPICE models of the op amps used in this lab.
However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation.
●Finally,the real-world measurements are made using a printed circuit board,or
PCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5½digit multimeter for convenient and accurate measurements.
This lab is optimized for use with the VirtualBench.
●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会
更好。

●仿真环节可以使用任何SPICE仿真器,因为在本实验中提供的是德州仪器提
供通用的运放的SPICE的模型。

用TINA-TI实施这些仿真是最方便的。

TINA 是免费的SPICE仿真器,可以从TI的网站上下载。

TINA仿真原理图会附在PPT中。

●最后,真实的测试会使用TI提供的印刷电路板。

如果你有标准的实验设备,
可以用示波器,波形发生器,波特仪和±15V电源来进行测试。

我们推荐使用国家仪器的虚拟仪器。

这套虚拟仪器是一套多功能集成设备,可以通过USB或者WIFI与电脑连接。

这台仪器提供电源,信号发生器,示波器和5位半的万用表,方便进行精确测试。

本实验因搭配使用虛擬儀器而優化電路量測。

●In experiment1,we’ll determine the phase margin,and therefore the stability,of
a buffer circuit which is being used to drive a large capacitive load.We’ll
determine the phase margin by observing the transient overshoot as well as the AC transfer characteristic.
●在实验1,我们会决定带大电容负载的缓冲电路的相位裕度和稳定性。

我们
也会通过观察瞬态的过冲和AC传输特性来确定稳定性。

●First,calculate the phase margin and percentage overshoot for the circuit shown
here,using the techniques and equations given in the stability e the plots given on the next slide.
●首先,使用稳定性章节中的公式和方法来计算这里所示电路的相位裕度和
过冲量。

图形会在下一页给出。

●This circuit uses the OPA277.In order to perform the calculations,you need to
know the percent overshoot versus load capacitance for that device,shown on the top left.Then,use the plot on the right to determine the phase margin from that percentage overshoot.
●Enter your answers in the table at the bottom of the slide.The solutions are
already provided to allow you to check your work.
●这个电路使用OPA277,为了计算过冲及相位裕度,你必须知道这颗元件过
冲程度和容性负载的关系,如左上图所示。

再使用右图来确定相位裕度和过冲的关系。

●你可以在ppt下面的表格中输入你的答案。

这个可以用来检验你的结果。

●The next step is to run a SPICE simulation analysis for the transient
overshoot.The necessary TINA-TI simulation schematic is embedded in this slide set–simply double-click the icon to open it.To run the analysis,click Analysis Transient,and run the analysis from100us to250us.The input is a20mVpk, 10kHz square wave.
●下一步是进行SPICE的暂态过冲仿真。

TINA的仿真电路图附在ppt中,双
击图标即可打开。

仿真步骤如下:点Analysis Transient。

仿真时间从100us 到250us。

输入信号为20mVpk,10kHz方波
●You should see a result similar to e the simulated percentage overshoot
of40%to calculate the phase margin,which comes out to31degrees.
●你可以通过仿真得到和上图相似的结果。

仿真得到的40%的过冲可以换算成
31度的相位裕度。

●Next,run a SPICE simulation analysis for the AC transfer characteristic.This will
allow us to see the op amp’s AC peaking,which is another indicator of phase margin.
●Use the same TINA-TI simulation schematic as before.To run the analysis,click
Analysis AC Analysis AC Transfer Characteristic.Run the analysis from10kHz to10MHz.
●接下来,进行AC传递函数的SPICE仿真分析。

这可以让我观察运放的AC
起翘(peaking),这是表征相位裕度的另一个指标。

●使用和之前一樣的TINA的原理图。

点击click Analysis AC Analysis
AC Transfer Characteristic进行仿真。

仿真频率从10kHz到10MHz
●You should see a result similar to this.The6.7dB of simulated AC peaking results
in a phase margin of approximately27degrees.
●你可以看到一个相似的仿真结果。

仿真得到的6.7dB AC起翘得到27度的相
位裕度。

●Make sure to disable the DC power supply before setting up the test PCB!In the
VirtualBench software,click the power button in the DC Power Supply area to turn off the power.Check the front panel of the VirtualBench unit to make sure the LEDs are OFF!Also ensure that the function generator is OFF.
●測試電路之前,請先確定直流電源是關閉的.在虛擬儀器軟體中,點擊電源按
鈕關閉電源,觀察前面板的發光二極體是關閉的已確定電源關閉.訊號產生器也必須是關閉的.
●To prepare the test board for the measurement,install the jumpers and devices
on circuit5as shown here.Install JMP17,JMP18,JMP19,JMP20,JMP48,and JMP50,as well as the OPA277in socket U7.
●为了准备测试用的测试板,按图所示安装电路5的跳针和器件。

装上Install
JMP17,JMP18,JMP19,JMP20,JMP48,和JMP50,并在U7上装上OPA277
●This slide shows the full schematic for Circuit5on the TI Precision Labs test
board.You will use this circuit to measure the stability of the OPA277.
●这一页展示的是德州仪器高精度实验室测试板上电路5的原理图。

你可以使
用这个电路来测试OPA277的稳定性。

●For the test board to function properly,it is important that you only install
jumpers and devices in circuit5.Do not install any jumpers or devices in any other circuits on the PCB!Remove any jumpers or devices from the unused circuits and store them in the storage area at the bottom of the test board.
●为了让测试板正常工作,你只需安装电路5的跳针和器件。

不要安装PCB
上其他电路里面的跳针和元件。

移除未使用的电路上的跳针和器件,并把(他們)放在板子底部的存放区。

●This slide gives the connection diagram between the TI Precision Labs test board
and the National Instruments VirtualBench.Connect the provided power cable to the DC power supply of the Virtual Bench and power connector J4on the test board.Connect Vin1on the test board to VirtualBench oscilloscope channel1, and Vin2on the test board to the VirtualBench FGEN.Connect Vout1on the test board to VirtualBench oscilloscope channel2.
●这页介绍的是测试板和仪器的连接关系。

用电源线连接仪器的直流电源和测
试板的J4连接器。

将测试板的Vin连接到仪器的示波器的通路1,并将Vin2连接到仪器的FGEN。

将测试板的输出Vout1连接到示波器的通路2.
●Next apply power to the National Instruments VirtualBench and connect it to
your computer with a USB cable.The hardware should be detected as a virtual CD drive,and you can run the VirtualBench software directly from the drive.
Once the software opens,configure the software as follows:
●Set the time scale to1us per division,with the acquisition mode set to“Auto.”
Enable channels1and2on the oscilloscope,and set them to1x,DC-coupled mode,10mV/div.Enable the function generator and setup the signal as follows:10kHz frequency,20mVpp,0V offset,50%duty cycle square wave.Set the +25V power supply to+15V,0.100A.Set the-25V power supply to-15V,0.100A.
Press the power button to turn on the power supply rails.Move the display window to the rising edge of the square wave.This allows you to observe the overshoot and ringing of the op amp output.
●接下来对仪器上电,并将USB线缆接到电脑上。

电脑会检测到一个虚拟DC
驱动盘,你可以直接运行VirtualBench的软件。

当软件运行起来后,如下配置软件。

设置时间分度为1us每隔,捕获方式为自动。

打开示波器通道1和2的使能,增益设为1,直流耦合,10mV/div。

使能波形发生器,设置如下:频率10kHz,幅度20mVpp,0V偏置,50%占空比的方波。

将+25V电源设为+15V输出,限流0.100A。

将-25V电源设为-15V输出,限流0.100A。

点击电源键打开电源。

将窗口移动到方波的上升沿区域,这样你可以观察运放输出的过冲和震铃。

●Use cursors to measure the amount of overshoot.The expected measurement
results are shown here.The measured overshoot of55%results in a phase margin of21degrees.Your results may vary slightly.
●使用游标来测量过冲的量。

应该得到的测试如图所示。

测到的过冲量应该是55%,对
应的相位裕度应该是21度。

你得到的结果可能会有略微差异。

●This lab requires additional Bode analyzer software.Install the software,then
run it by clicking Start All Programs Bode Analyzer Bode Analyzer.
●这个实验需要额外的波特分析软件。

安装这个软件,然后点击Start All
Programs Bode Analyzer Bode Analyzer来运行这个软件
●In the configuration panel,set the power supply to±15V,0.1A.Press the green
button to turn on the power.
●Set the FGEN amplitude to0.02V,and DC offset to0V.
●Set the start frequency to10kHz and the end frequency to10MHz.Set the
number of points to average to10,and the number of points per decade to30.
Press“Start”to run the Bode analyer.
●在配置面板上,设定电源为正负15V,限流0.1A。

点击绿色按钮打开电源。

将波形发生器幅度设为0.02V,直流偏置为0V。

将扫描的开始频率设定为10kHz,截止频率为10MHz。

设定平均点数为10,每十倍频的点数为30.点击Start开始波特图分析。

●You should see a result similar to this.Enable the cursor,then drag the cursor to
the maximum value to measure the AC peaking.In this measurement,AC peaking of8dB resulted in a phase margin of23degrees.Your results may vary slightly.
●你应该得到一个类似的结果。

使用光标,拖动光标到最大值处来测量AC起
翘。

在这个测试中,AC起翘为8dB,对于相位裕度为23度。

你的结果可能有略微差异。

●Now,compare the phase margin results from your hand calculations,transient
and AC response simulations,and transient and AC response measurements.
While there is some slight variation to the results,the phase margin values compare very well at approximately27degrees.
●现在比较下实际计算,暂态和AC响应仿真,瞬态和AC响应测试得到的相
位裕度。

这些结果虽然有轻微差别,但是都接近27度。

●In experiment2,we’ll use an isolation resistor to increase the phase margin of
the circuit from Experiment1and therefore improve its stability.
●在实验2中,我们使用隔离电阻来增加实验1中电路的相位裕度,从而实现
稳定。

●To determine the value of isolation resistor Riso,we must first know the
open-loop AC response of the circuit.Here we show the TINA-TI simulation schematic and AC response results,which you can verify using the embedded file.
●To measure the phase margin,find the frequency where the gain measures0dB.
Then,measure the phase at that same frequency,which in this example is20 degrees.
●为了确定Riso的阻值,我们首先必须知道电路的开环AC响应。

这里我们展
示了TINA-TI的原理图和仿真结果。

你可以使用所附文件进行验证。

为了测试相位裕度,找到过0dB的频率点,并测试该频率点的相位。

在这个例子里是20度。

●For best results,Riso should create a zero in the loop response20dB greater than
the frequency where the open-loop gain intersects with the closed-loop gain.
This circuit is a buffer with a closed-loop gain of0dB,so the zero should occur at 20dB.The open-loop gain is equal to20dB e this value and the load capacitance to calculate Riso,which is786ohms in this example.787ohms is the nearest standard value resistance.
●Riso应该在环路里带来一个零点,零点的位置要放在开环中增益比闭环增益
大20dB的频率处。

这个电路是一个缓冲器电路,闭环增益是0dB,所以零点要放在20dB处。

开环增益为20dB对应的频率是92kHz。

我们可以使用这个频点和负载电容的值来计算Riso。

在这个例子里面应该是786欧姆。

787欧姆电阻应该是最接近的标准电阻阻值。

●Let’s now simulate the transient overshoot with Riso included in the circuit.As
before,click Analysis Transient to run the simulation.Run the analysis from 100us to250us.The input is a20mVpk,10kHz square wave.
●我们开始对Riso补偿电路进行瞬态过冲仿真。

仿真步骤如下:点Analysis
Transient。

仿真时间从100us到250us。

输入信号为20mVpk,10kHz方波
●You should see results similar to this.With Riso added to the circuit,the
overshoot was reduced to only4.7%.This results in a phase margin of65 degrees,indicating a stable circuit.
●你可以看到结果如图。

加入了Riso后,过冲减小到4.7%,对应相位裕度为
65度,显示电路稳定。

●Let’s now re-run the overshoot measurement,this time with Riso.The jumper
setup is almost the same.The only change is to remove JMP18,which connects the isolation resistor of787ohms.
●我们再经行过冲测试,这次是带Riso补偿的,跳针的设置几乎不变。

唯一的
变化是去掉JMP18,原来是短路787欧姆的隔离电阻的。

●The test board setup remains the same as before.Install circuit5only,and store
any unused jumpers and devices in the storage area at the bottom of the test board.
●测试板还是和原来一样。

只安装电路5,将未使用的跳针和器件放置在电路
板下面的存储区。

●This slide gives the new connection diagram between the TI Precision Labs test
board and the National Instruments VirtualBench.Connect the provided power cable to the DC power supply of the Virtual Bench and power connector J4on the test board.
●Connect Vin2on the test board to the VirtualBench FGEN.Connect Vout1on the
test board to VirtualBench oscilloscope channel1to measure the load voltage, and connect Vout2on the test board to VirtualBench oscilloscope channel2to measure the unloaded op amp output voltage.
●这页介绍的是测试板和仪器的连接关系。

用电源线连接仪器的直流电源和测
试板的J4连接器。

将Vin2连接到仪器的FGEN。

将测试板的输出Vout1连接到示波器的通路1来测试负载电压,将测试板的Vout2连接到仪器的示波器的通路2来测试运放输出。

●The VirtualBench setup is almost the same as before.Only change the time scale
to5us/div.All other settings must remain the same.
●虚拟仪器的设计几乎和原来一致。

唯一的改变是将时间分度设为5us/div。


他设置必须和原来保持一致
●Use cursors to measure the amount of overshoot.You should see results similar
to this.With Riso,the measured unloaded output overshoot was reduced to
12.5%,resulting in a phase margin of approximately58degrees which indicates a
stable circuit.
●使用光标来测试过冲的量。

你应该看到与这相似的结果。

使用了Riso,测试得
到的不带载的过冲是12.5%,对应相位裕度为58度。

显示电路稳定。

●As an additional experiment,measure the transient response again with JMP48
installed and removed.This will connect and disconnect the1k load resistor from the circuit.
●作为一个额外的实验,装上和去掉JMP48来测试瞬态响应。

这其实是加上或
者去掉1k的负载电阻。

●As you can see,the load voltage changes dramatically if the circuit is loaded or
unloaded!In fact,when loaded,the circuit with Riso shows attenuation of approximately50%!This is simply due to the voltage divider effect of Riso and the load resistance.
●你可以看到,负载电压急剧变化当电路带载和不带载时。

事实上,当电路带
载,Riso会带来50%的衰减,这是由于Riso和负载电阻分压造成的。

●For the final experiment,we’ll analyze a circuit which uses Riso as well as a dual
feedback network to achieve stability as well as output voltage accuracy.
●在最後一個實驗,我們會分別使用Riso以及雙回饋電路補償方式分析電路穩
定度和輸出電壓準確度.
●To select the components of the dual feedback network,use the equations given
on this slide.For this example,Rf was chosen to be78.7k,and Cf was chosen to be150pF.
●用图中的公式来计算双反馈电路中器件的取值。

对于这个例子,Rf为78.7k,Cf
为150pF。

●Next,run a SPICE simulation analysis for the transient overshoot with dual
feedback.
●The necessary TINA-TI simulation schematic is embedded in this slide set–
simply double-click the icon to open it.To run the analysis,click Analysis
Transient,and run the analysis from0ms to2ms.The input is a1Vpk,1kHz square wave.
●下一步是对双反馈补偿电路进行SPICE的瞬态过冲仿真。

TINA的仿真电路图
附在ppt中,双击图标即可打开。

仿真步骤如下:点Analysis Transient。

仿真时间从1ms到2ms。

输入信号为1Vpk,1kHz方波
●You should see results similar to this.As you can observe,in this configuration
the loaded output voltage matches very well with the input.To achieve this,the unloaded output voltage Vopa must increase to compensate for the attenuation caused by Riso and the load resistance.
●你应该可以得到相似的结果。

如你观察到,在这种配置下,负载电压和输入
电压匹配的很好。

为了达到这点,这个运放的输出电压提升来补偿Riso和负载电阻的分压带来的衰减。

●Make sure to disable the DC power supply before setting up the test PCB!In the
VirtualBench software,click the power button in the DC Power Supply area to turn off the power.Check the front panel of the VirtualBench unit to make sure the LEDs are OFF!Also ensure the function generator is OFF.
●在设置测试板前,请确保关闭直流电源。

在虚拟仪器的软件中,点击电源区
域的电源键来关闭电源。

确保仪器前面板的LED都熄灭。

同时确保波形发生器也是关闭的。

●To prepare the test board for the measurement,install the jumpers and devices
on circuit6as shown here.Install JMP21,JMP22,JMP23,JMP49,and JMP51.
Install the OPA277in socket U8.
●为了准备测试的测试板,如图电路6的跳针和器件。

安装JMP21,JMP22,
JMP23,JMP49和JMP51。

在U8上安装OPA277.
●This slide shows the full schematic for Circuit6on the TI Precision Labs test
board.You will use this circuit to measure the transient behavior of the OPA277 in a dual-feedback configuration.
●这一页展示的是德州仪器高精度实验室测试板上电路6的原理图。

你可以使
用这个电路来对OPA277的双反馈电路进行瞬态响应测试。

●For the test board to function properly,it is important that you only install
jumpers and devices in circuit6!Do not install any jumpers or devices in any other circuits on the PCB!Remove any jumpers or devices from the unused circuits and store them in the storage area at the bottom of the test board.
●为了让测试板正常工作,你只需安装电路6的跳针和元件。

不要安装PCB
上其他电路里面的跳针和元件。

移除未使用的电路上的跳针和元件,并將(他們)归位在板子底部的存放区。

●The cable connections are the same as in Experiment2.Connect the provided
power cable to the DC power supply of the Virtual Bench and power connector J4on the test board.
●Connect Vin2on the test board to the VirtualBench FGEN.Connect Vout1on the
test board to VirtualBench oscilloscope channel1to measure the load voltage, and connect Vout2on the test board to VirtualBench oscilloscope channel2to measure the unloaded op amp output voltage.
●线缆的连接和实验2一样。

用电源线连接仪器的直流电源和测试板的J4连
接器。

将Vin2连接到仪器的FGEN。

将测试板的输出Vout1连接到示波器的通路1来测试负载电压,将测试板的Vout2连接到仪器的示波器的通路2来测试运放输出。

●The VirtualBench setup is almost the same as before.Only change the time scale
to100us/div.All other settings must remain the same.
●虚拟仪器的设置几乎和原来一致。

唯一的改变是将时间轴设为100us/div。

其他设置必须和原来保持一致。

●You should see results similar to this.As you can see,the load voltage remains accurate,
even with changing load,due to the compensation provided by the dual-feedback network.The unloaded op-amp output voltage must increase as the load resistance decreases to minimize the output voltage divider effect.
●你应该可以看到相似的结果。

如你所见,由于双反馈的补偿,即使改变电阻,负载
电压还是精确的。

运放的输出电压会随着负载电阻的变小而增大,已补偿分压效应。

●That concludes this lab–thank you for your time!
●以上就是本节实验。

感谢您的时间。

重要声明
德州仪器(TI)及其下属子公司有权根据JESD46最新标准,对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权根据JESD48最新标准中止提供任何产品和服务。

客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。

所有产品的销售都遵循在订单确认时所提供的TI销售条款与条件。

TI保证其所销售的组件的性能符合产品销售时TI半导体产品销售条件与条款的适用规范。

仅在TI保证的范围内,且TI认为有必要时才会使用测试或其它质量控制技术。

除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI对应用帮助或客户产品设计不承担任何义务。

客户应对其使用TI组件的产品和应用自行负责。

为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI组件或服务的组合设备、机器或流程相关的TI知识产权中授予的直接或隐含权限作出任何保证或解释。

TI所发布的与第三方产品或服务有关的信息,不能构成从TI获得使用这些产品或服务的许可、授权、或认可。

使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI的专利权或其它知识产权方面的许可。

对于TI的产品手册或数据表中TI信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。

TI对此类篡改过的文件不承担任何责任或义务。

复制第三方的信息可能需要服从额外的限制条件。

在转售TI组件或服务时,如果对该组件或服务参数的陈述与TI标明的参数相比存在差异或虚假成分,则会失去相关TI组件或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。

TI对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由TI提供,但他们将独力负责满足与其产品及在其应用中使用TI产品相关的所有法律、法规和安全相关要求。

客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。

客户将全额赔偿因在此类安全关键应用中使用任何TI组件而对TI及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对TI组件进行特别的促销。

TI的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。

尽管如此,此类组件仍然服从这些条款。

TI组件未获得用于FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些TI特别注明属于军用等级或“增强型塑料”的TI组件才是设计或专门用于军事/航空应用或环境的。

购买者认可并同意,对并非指定面向军事或航空航天用途的TI组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独力负责满足与此类使用相关的所有法律和法规要求。

TI已明确指定符合ISO/TS16949要求的产品,这些产品主要用于汽车。

在任何情况下,因使用非指定产品而无法达到ISO/TS16949要
求,TI不承担任何责任。

产品应用
数字音频/audio通信与电信/telecom
放大器和线性器件/amplifiers计算机及周边/computer
数据转换器/dataconverters消费电子/consumer-apps
DLP®产品能源/energy
DSP-数字信号处理器/dsp工业应用/industrial
时钟和计时器/clockandtimers医疗电子/medical
接口/interface安防应用/security
逻辑/logic汽车电子/automotive
电源管理/power视频和影像/video
微控制器(MCU)/microcontrollers
RFID系统/rfidsys
OMAP应用处理器/omap
无线连通性/wirelessconnectivity德州仪器在线技术支持社区
Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265
Copyright©2015,Texas Instruments Incorporated。

相关文档
最新文档