河南省中招考试数学试卷
2023年河南省中考数学试卷
2023年河南省中考数学试卷参考答案与试题解析一、选择题。
(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)(2023•河南)下列各数中最小的数是()A.﹣1B.0C.1D【考点】实数大小比较;算术平方根.【答案】A【分析】【解答】解:∵1<3<4,∴12,根据实数的大小可得:<<101所以﹣1最小.故选:A.【点评】本题主要考查了实数的大小的知识,难度不大,认真比较即可.2.(3分)(2023•河南)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同【考点】简单几何体的三视图.【答案】A【分析】根据三视图的定义求解即可.【解答】解:这个几何体的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点评】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.(3分)(2023•河南)2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×109【考点】科学记数法—表示较大的数.【答案】C【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:4.59亿=459000000=4.59×108.故选:C.【点评】本题主要考查了用科学记数法表示较大的数,掌握形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)(2023•河南)如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为()A.30°B.50°C.60°D.80°【考点】对顶角、邻补角.【答案】B【分析】由对顶角的性质得到∠AOD=∠1=80°,即可求出∠AOE的度数.【解答】解:∵∠AOD=∠1=80°,∴∠AOE=∠AOD﹣∠2=80°﹣30°=50°.【点评】本题考查对顶角,关键是掌握对顶角的性质:对顶角相等.5.(3分)(2023•河南)化简11aa a-+的结果是()A.0B.1C.a D.a﹣2【考点】分式的加减法.【答案】B【分析】根据分式的加法法则计算即可.【解答】解:原式11aa-+==1.故选:B.【点评】本题考查的是分式的加减法,熟知同分母的分式相加减,分母不变,把分子相加减是解题的关键.6.(3分)(2023•河南)如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【考点】圆周角定理;圆心角、弧、弦的关系.【答案】D【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB=2∠C,∠C=55°,∴∠AOB=110°,故选:D.【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.7.(3分)(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】根据一元二次方程根的判别式解答即可.【解答】解:∵Δ=m 2﹣4×1×(﹣8)=m 2+32>0,∴方程有两个不相等的实数根.故选:A .【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)中,当Δ>0时,方程有两个不相等的实数根是解题的关键.8.(3分)(2023•河南)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A .12B .13C .16D .19【考点】列表法与树状图法.【答案】B【分析】画树状图,共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,再由概率公式求解即可.【解答】解:把三部影片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中七、八年级选择的影片相同的结果有3种,∴这两个年级选择的影片相同的概率为3193,故选:B .【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2023•河南)二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A .第一象限B .第二象限C .第三象限D .第四象限【考点】二次函数的性质;一次函数的性质;二次函数的图象.【答案】D【分析】根据图象确定a ,b 的符号,即可得到答案.【解答】解:由函数图象可得,a <0,2ba->0,∴b >0,∴y =x +b 的图象过一,二,三象限,不过第四象限,故选:D .【点评】本题考查二次函数,一次函数的图象与系数的关系,解题的关键是掌握二次函数,一次函数的图象及性质.10.(3分)(2023•河南)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为PBx y PC=,,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A .6B .3C .D .【考点】动点问题的函数图象.【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B ,结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为可知AO =OB =,过点O 作OC ⊥AB ,解直角三角形可得AD =AO •cos30°,进而得出等边三角形ABC 的边长.【解答】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B ,\结合图象可知,当点P 在AO 上运动时,1PBPC=,∴PB =PC ,AO =,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC (SSS ),∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为,∴OB =,即AO =OB =,∴∠BAO =∠ABO =30°,过点O 作OC ⊥AB ,垂足为D ,∴AD =BD ,则AD =AO •cos30°=3,∴AB =AD +BD =6,即等边三角形ABC 的边长为6.故选:A .【点评】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.二、填空题。
2023河南中考数学卷子
2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( ) A. -lB. 0C. 1D.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( ) A. 74.5910⨯B. 845.910⨯C. 84.5910⨯D. 90.45910⨯4. 如图,直线A B ,C D 相交于点,若180∠=︒,230∠=︒,则A O E ∠的度数为( )A 30︒ B. 50︒C. 60︒D. 80︒5. 化简11a aa-+的结果是( )A. 0B. 1C. aD. 2a -6. 如图,点A ,B ,C 在O 上,若55C ∠=︒,则A O B ∠的度数为( ).A. 95︒B. 100︒C. 105︒D. 110︒7. 关于x 的一元二次方程280x m x +-=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根D. 没有实数根8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A12B.13C.16D.199. 二次函数2y a x b x =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图1,点P 从等边三角形A B C 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,P B y P C=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形A B C 的边长为( ).A. 6B. 3C.D. 二、填空题11 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.12. 方程组35,37x y x y +=⎧⎨+=⎩的解为______.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.14. 如图,P A 与O 相切于点A ,P O 交O 于点B ,点C 在P A 上,且C B C A =.若5O A =,12P A =,则C A长为______.15. 矩形A B C D 中,M 为对角线B D 的中点,点N 在边A D 上,且1A N A B ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,A D 的长为______.三、解答题.16. (1)计算:135---+;(2)化简:()()224x y x x y ---. 17. 蓬勃发展快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分): 甲:6 6 7 7 7 8 9 9 9 10 乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)? 18. 如图,A B C 中,点D 在边A C 上,且A D A B =.(1)请用无刻度的直尺和圆规作出A∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边B C交于点E,连接D E.求证:D E B E=.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数kyx=图象上的点)A和点B为顶点,分别作菱形A O C D和菱形O B E F,点D,E在x轴上,以点O为圆心,O A 长为半径作A C,连接B F.(1)求k的值;(2)求扇形A O C的半径及圆心角的度数;(320. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪A B C D为正方形,30c mA B=,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线A M交B C于点H.经测量,点A距地面1.8m,到树E G的距离11mA F=,20cmB H=.求树E G 的高度(结果精确到0.1m).21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网A B 与y 轴的水平距离3m O A =,2m C A =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()my 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y 轴,作A B C 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是A B C 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是A B C 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,A B C D Y 中,()090B A D αα∠=︒<<︒,P 为直线A B 下方一点,作点P 关于直线A B 的对称点1P ,再分别作点1P 关于直线A D 和直线C D 的对称点2P 和3P ,连接A P ,2A P ,请仅就图2的情形解决以下问题:①若2P A P β∠=,请判断β与α的数量关系,并说明理由; ②若A D m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=︒,A D=15P A B ∠=︒,连接23P P .当23P P 与A B C D Y 的边平行时,请直接写出A P 的长.2023年河南省普通高中招生考试试卷数学一、选择题【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】A二、填空题【11题答案】【答案】3n【12题答案】【答案】12 xy=⎧⎨=⎩【13题答案】【答案】280【14题答案】 【答案】103【15题答案】【答案】21+三、解答题【16题答案】 【答案】(1)15;24y【17题答案】【答案】(1)7.5;< (2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可) 【18题答案】【答案】(1)见解析 (2)见解析 【19题答案】【答案】(1(2)半径为2,圆心角为60︒(3)23π【20题答案】【答案】树E G 的高度为9.1m 【21题答案】【答案】(1)活动一更合算 (2)400元 (3)当300400a ≤<或600800a ≤<时,活动二更合算【22题答案】【答案】(1)()0,2.8P ,0.4a =-, (2)选择吊球,使球的落地点到C 点的距离更近 【23题答案】【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)。
2023年河南中考数学试卷含参考答案
2023年河南中考数学试卷含参考答案第一部分选择题1. 在下列各组数中,只有一个是偶数的是()。
A. 1,3,9B. 2,5,7C. 6,8,10D. 4,7,92. 已知正整数a和b满足:a÷b=7.r, 则下列运算正确的是()。
A. a÷7bB. 7a÷bC. a÷b×7D. b×(7÷a)3. 若a=2-√3,b=√3-1,则(a-b)(a^2+ab+b^2)的值是()。
A. 13B. 12C. 11D. 94. 在△ABC中,∠C=90°,AD是BC边上的高,AC=3,BC=4,则AD的长度为()。
A. 2B. 4/3C. 4/5D. 6/55. 设m∈[16, 18],若m²-10m的值为正数,则m的取值范围是()。
A. [16,17)B. [16,18)C. [17,18)D. [17,18]第二部分解答题6. 计算:150的整数倍最接近850的数是多少?- 解析:150的整数倍最接近850的数是第一个小于或等于850的多少的整数倍,计算得出:150 × 5 = 750。
所以答案是750。
7. 用边长为4的小正方形铺满边长为30的大正方形,则包括在大正方形内的小正方形个数是多少?- 解析:大正方形的边长是小正方形边长的7.5倍,所以包括在大正方形内的小正方形个数是7.5 × 7.5 = 56.25 个。
即答案是56个。
参考答案1. C2. B3. C4. D5. C6. 7507. 56。
2023年河南省中考数学试卷含答案
2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。
17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。
那么等腰三角形的底长为2x = 12。
18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。
第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。
然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。
最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。
20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。
设张三的年龄为x,李四的年龄为y。
那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。
所以10年后张三的年龄是30岁,李四的年龄是40岁。
第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。
证明过程略。
第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。
祝你考试顺利!。
2024年河南省中考数学试卷正式版含答案解析
绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
2023年河南省中考数学试卷(含答案)
2023年河南省中考数学试卷(含答案)第一卷一、选择题1. 一间长方形的房间,长7米,宽5米,高3米,墙面和地面需要刷漆,请问需要多少平方米的油漆?答案:94平方米2. 若$\frac{x-1}{3}+\frac{2x}{5}=x+3$,则$x=$?答案:$\frac{53}{7}$3. 如图,已知$\tan A=2$,$\tan B=3$,则$\sin(A-B)=$?答案:$\frac{\sqrt{3}}{5}$二、填空题1. $\sqrt{0.04}\times \sqrt{0.16}=$\_\_\_\_\_\_\_\_\_\_\_。
答案:$0.08$2. 当$x=-2$时,$f(x)=$\_\_\_\_\_\_\_\_\_\_。
答案:$-10$三、解答题1. 计算:$3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3}}}}$。
答案:$\frac{541}{180}$2. 已知$\triangle ABC$,$AB=3$,$BC=4$,$\angleABC=90^\circ$,点$D$在$AC$上,且$\angle ABD=60^\circ$,求$BD$的长度。
答案:$2$第二卷四、应用题某公司有$600$名员工,其中男性员工人数为女性员工人数的$3$倍,且有$280$名男性员工。
若该公司中$\frac{1}{6}$的男性员工和$\frac{1}{4}$的女性员工都会骑车上下班,共有多少人骑车上下班?答案:$170$五、解答题1. 证明:$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$,其中$a,b,c$均为正数。
答案:(略)2. 已知函数$f(x)=\frac{3x+2}{x-2}$。
(1)求$f(x)$的定义域;(2)若$f(x)+f\left(\frac{x}{2}\right)=3$,求$x$的值。
2023年河南省中考数学真题试卷(解析版)
2023年河南省中考数学真题试卷及答案一、选择题1. 下列各数中,最小的数是()A. -lB. 0C. 1D.【答案】A【解析】根据实数的大小比较法则,比较即可解答.解:∵,∴最小的数是-1.故选:A【点拨】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】直接利用已知几何体分别得出三视图进而分析得出答案.解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点拨】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A. B. C. D.【答案】C【解析】将一个数表示为的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可得出答案.解:4.59亿.故选:C.【点拨】本题主要考查了用科学记数法表示较大的数,掌握形式为,其中,确定与的值是解题的关键.4. 如图,直线,相交于点O,若,,则的度数为()A. B. C. D.【答案】B【解析】根据对顶角相等可得,再根据角和差关系可得答案.解:∵,∴,∵,∴,故选:B【点拨】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简的结果是()A. 0B. 1C. aD.【答案】B【解析】根据同母的分式加法法则进行计算即可.解:,故选:B.【点拨】本题考查同分母分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A,B,C在上,若,则的度数为()A. B. C. D.【答案】D【解析】直接根据圆周角定理即可得.解:∵,∴由圆周角定理得:,故选:D.【点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x的一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】对于,当,方程有两个不相等的实根,当,方程有两个相等的实根,,方程没有实根,根据原理作答即可.解:∵,∴,所以原方程有两个不相等的实数根,【点拨】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.【答案】B【解析】先画树状图,再根据概率公式计算即可.设三部影片依次为A.B.C ,根据题意,画树状图如下:故相同的概率为.故选B .【点拨】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数的图象如图所示,则一次函数的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】根据二次函数图象的开口方向、对称轴判断出、的正负情况,再由一次函数的性质解答.解:由图象开口向下可知,由对称轴,得.∴一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.【点拨】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P从等边三角形的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形的边长为()A. 6B. 3C.D.【答案】A【解析】如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,,易知,当点在上运动时,可知点到达点时的路程为,可知,过点作,解直角三角形可得,进而可求得等边三角形的边长.解:如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,∴,,又∵为等边三角形,∴,,∴,∴,∴,当点在上运动时,可知点到达点时的路程为,∴,即,∴,过点作,∴,则,∴,即:等边三角形的边长为6,故选:A.【点拨】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】【解析】根据总共配发的数量年级数量每个年级配发的套数,列代数式.解:由题意得:3个年级共需配发得套劳动工具总数:套,故答案为:.【点拨】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组的解为______.【答案】【解析】利用加减消元法求解即可.解:由得,,解得,把代入①中得,解得,故原方程组的解是,故答案为:.【点拨】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于的“无絮杨”品种苗约有______棵.【答案】280【解析】利用1000棵乘以样本中不低于的百分比即可求解.解:该基地高度不低于的“无絮杨”品种苗所占百分比为,则不低于的“无絮杨”品种苗约为:棵,故答案为:280.【点拨】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,与相切于点A,交于点B,点C在上,且.若,,则的长为______.【答案】【解析】连接,证明,设,则,再证明,列出比例式计算即可.如图,连接,∵与相切于点A,∴;∵,∴,∴,∴,∵,∴,∴,∵,,∴,设,则,∴,解得,故的长为,故答案为:.【点拨】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.【答案】2或【解析】分两种情况:当时和当时,分别进行讨论求解即可.解:当时,∵四边形矩形,∴,则,由平行线分线段成比例可得:,又∵M为对角线的中点,∴,∴,即:,∴,当时,∵M为对角线的中点,∴为的垂直平分线,∴,∵四边形矩形,∴,则,∴∴,综上,的长为2或,故答案为:2或.【点拨】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:;(2)化简:.【答案】(1);【解析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.(1)解:原式;(2)解:原式.【点拨】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.(1)由题意可得,,,∴,故答案为:7.5;;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点拨】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,中,点D在边上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边交于点E,连接.求证:.【答案】(1)见解析(2)见解析【解析】(1)利用角平分线的作图步骤作图即可;(2)证明,即可得到结论.(1)解:如图所示,即为所求,(2)证明:∵平分,∴,∵,,∴,∴.【点拨】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.(1)求k的值;(2)求扇形的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1)(2)半径为2,圆心角为(3)【解析】(1)将代入中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出的度数,最后结合菱形的性质求解;(3)先计算出,再计算出扇形的面积,根据菱形的性质及结合的几何意义可求出,从而问题即可解答.(1)解:将代入中,得,解得:;(2)解:过点作的垂线,垂足为,如下图:,,,半径为2;,∴,,由菱形的性质知:,,扇形的圆心角的度数:;(3)解:,,,如下图:由菱形知,,,,.【点拨】本题考查了反比例函数及的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).【答案】树的高度为【解析】由题意可知,,,易知,可得,进而求得,利用即可求解.解:由题意可知,,,则,∴,∵,,则,∴,∵,则,∴,∴,答:树的高度为.【点拨】本题考查解直角三角形的应用,得到是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算(2)400元(3)当或时,活动二更合算【解析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点拨】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1),,(2)选择吊球,使球的落地点到C点的距离更近【解析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.(1)解:一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.【点拨】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:①若,请判断与的数量关系,并说明理由;②若,求,两点间的距离.(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.【答案】(1),.(2)①,理由见解析;②(3)或【解析】(1)观察图形可得与关于点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接,由对称性可得,,进而可得,即可得出结论;②连接分别交于两点,过点作,交于点,由对称性可知:且,得出,证明四边形是矩形,则,在中,根据,即可求解;(3)分,,两种情况讨论,设,则,先求得,勾股定理求得,进而表示出,根据由(2)②可得,可得,进而建立方程,即可求解.(1)(1)∵关于轴对称的图形,与关于轴对称,∴与关于点中心对称,则可以看作是绕点顺时针旋转得到的,旋转角的度数为∵,∴,∵,关于直线对称,∴,即,可以看作是向右平移得到的,平移距离为个单位长度.故答案为:,.(2)①,理由如下,连接,由对称性可得,,∴,②连接分别交于两点,过点作,交于点,由对称性可知:且,∵四边形为平行四边形,∴∴三点共线,∴,∵,∴,∴四边形是矩形,∴,在中,,∵,∴,∴(3)解:设,则,依题意,,当时,如图所示,过点作于点,∴∵,,∴,∴,则,在中,,∴,则,∴在中,,则,,在中,,,∴由(2)②可得,∵∴∴,解得:;如图所示,若,则,∵,则,则,∵,,∵,∴,解得:,综上所述,的长为或.【点拨】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。
2024年河南中招数学试卷
1、在直角三角形中,如果一个锐角是30°,那么另一个锐角是:A. 45°B. 60°C. 75°D. 90°-30°(答案)B(注:此处理解为选择角度值,即60°)2、下列哪个数是无理数?A. 1/2B. √4C. 3.14D. π(答案)D3、若a > b,则下列不等式中正确的是:A. a - 1 < b - 1B. 2a < 2bC. -a < -bD. a/3 > b/2(答案)C4、一个多边形的内角和是外角和的5倍,这个多边形是:A. 五边形B. 六边形C. 七边形D. 八边形(答案)D5、下列哪个方程表示的是直线?A. y = x2B. y = 1/xC. y = 2x + 1D. y = |x|(答案)C6、已知等腰三角形的两边长分别为3和5,则它的周长为:A. 8B. 10C. 11D. 11或13(答案)D7、下列哪个图形是中心对称图形但不是轴对称图形?A. 正方形B. 等边三角形C. 平行四边形D. 圆形(答案)C8、若点A(x, y)关于x轴对称的点B的坐标为(3, -2),则点A的坐标是:A. (3, 2)B. (-3, -2)C. (-3, 2)D. (2, 3)(答案)A9、下列哪个选项是正确的因式分解?A. x2 - 4 = (x - 2)2B. x2 - 2x + 1 = (x - 1)2C. x2 + 2x - 1 = (x + 1)2D. x2 - 1 = (x - 1)(x + 2)(答案)B10、在坐标系中,直线y = kx + b经过点(2, 3)和点(-1, -1),则k和b的值分别为:A. k = 1, b = 2B. k = 2, b = -1C. k = -1, b = 4D. k = 4/3, b = -1/3(答案)D。
河南省2023年中考数学试卷((附参考答案))
河南省2023年中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中,最小的数是()A.-1B.0C.1D.2.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为(A.B.C.D.4.如图,直线AB,CD相交于点O,若,,则的度数为()A.30°B.50°C.60°D.80°5.化简的结果是()A.0B.1C.a D.a-26.如图,点A,B,C在上,若,则的度数为()A.95°B.100°C.105°D.110°7.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.B.C.D.9.二次函数的图象如图所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.二、填空题(每小题3分,共15分)11.某校计划给每个年级配发n套劳动工具,则3个年级共需配发套劳动工具.12.方程组的解为.13.某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm的“无絮杨”品种苗约有棵.14.如图,PA 与相切于点A ,PO 交于点B ,点C 在PA 上,且.若,,则CA 的长为.15.矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.三、解答题(本大题共8个小题,共75分)16.(1)计算:;(2)化简:.17.蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:66777899910乙:67788889910b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的;(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?18.如图,中,点D在边AC上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:.19.小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形AOCD和菱形OBEF,点D,E在x轴上,以点O为圆心,OA 长为半径作,连接BF.(1)求k的值;(2)求扇形AOC的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.20.综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EC的距离m,cm.求树EG 的高度(结果精确到0.1m).21.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.22.小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网AB与y轴的水平距离m,m,击球点P在y轴上.若选择扣球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足一次函数关系;若选择吊球,羽毛球的飞行高度y(m)与水平距离x(m)近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.23.李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现如图1,在平面直角坐标系中,过点的直线轴,作关于y轴对称的C图形,再分别作关于x轴和直线l对称的图形和,则可以看作是绕点O 顺时针旋转得到的,旋转角的度数为;可以看作是向右平移得到的,平移距离为个单位长度.(2)探究迁移如图2,中,,P为直线AB下方一点,作点P关于直线AB的对称点,再分别作点关于直线AD和直线CD的对称点和,连接AP,,请仅就图2的情形解决以下问题:①若,请判断β与α的数量关系,并说明理由;②若,求P,两点间的距离.(3)拓展应用在(2)的条件下,若,,,连接.当与的边平行时,请直接写出AP的长.1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】B6.【答案】D7.【答案】A8.【答案】B9.【答案】D10.【答案】A11.【答案】3n12.【答案】13.【答案】28014.【答案】15.【答案】2或16.【答案】(1)原式(2)17.【答案】(1)7.5;<(2)解:我认为小丽应该选择甲公司,因为甲公司的服务质量得分的方差小于乙公司,甲公司的服务质量比较稳定.(3)解:还应该收集两个公司的费用,投递范围信息.18.【答案】(1)如图:(2)证明:平分在和中19.【答案】(1)解:反比例函数图象经过点(2)解:如图,连接AC,交轴于点四边形AOCD是菱形是AC中点由得:在Rt中,是等边三角形综上,扇形AOC的半径为2,圆心角为.(3).20.【答案】由题意得:,解得答:树EG的高度约为21.【答案】(1)解:选择活动1时,需花费元选择活动2时,需花费元选择活动1更合算。
2023年河南省中考数学真题(解析版)
2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( )A. -lB. 0C. 1D. 【答案】A【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 74.5910´B. 845.910´C. 84.5910´D. 90.45910´【答案】C【解析】【分析】将一个数表示为10n a ´的形式,其中110a £<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==´.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ´,其中110a £<,确定a与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B. 50︒C. 60︒D. 80︒【答案】B【解析】【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简11a a a -+的结果是( )A 0 B. 1 C. a D. 2a -【答案】B【解析】的.【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a a a a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A ,B ,C 在O e 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒【答案】D【解析】【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x 的一元二次方程280x mx +-=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于20(0)ax bx c a ++=¹,当0D >, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m D =-´-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12 B. 13 C. 16 D. 19【答案】B【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C.D. 【答案】A【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ^,解直角三角形可得cos303AD AO =×︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC V 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ^,∴AD BD =,则cos303AD AO =×︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【解析】【分析】根据总共配发的数量=年级数量´每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组35,37x y x y +=ìí+=î的解为______.【答案】12x y =ìí=î【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=ìí+=î①②由3´-①②得,88x =,解得1x =,把1x =代入①中得315y ´+=,解得2y =,故原方程组的解是12x y =ìí=î,故答案为:12x y =ìí=î.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280´=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O e 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =ìï=íï=î,∴OAC OBC V V ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC V V ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【解析】分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD==,即:1ND AN ==,【∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135---+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲78m 72s 甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<.(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】【分析】(1)根据中位数和方差概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s éù=´´-+´-+´-+-=ëû甲()()()()()()()222222221478721072679725777 4.210s éù=´-+-+´-+´-+-+´-+-=ëû乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用角平分线的作图步骤作图即可;的(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x =图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60︒(3)23p -【解析】【分析】(1)将)A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V 【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)A Q ,1,AG OG \==,2OA \==,\半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==,30AOG \∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC \∠=︒,\扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD \=´=´=菱形221122663AOC S r p p p =´=´´=Q 扇形,如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q2FBO S \==V ,2233FBO AOCD AOC S S S S p p \=+-=+=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+»,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a £<或600800a £<时,活动二更合算【解析】【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a £<时,所需付款为()80a -元,当600900a £<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360´=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a £<时,所需付款为:()80a -元,当600900a £<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a £<时,800.8a a -<,解得300400a £<,即:当300400a £<时,活动二更合算,③当600900a £<时,1600.8a a -<,解得600800a £<,即:当600800a £<时,活动二更合算,综上:当300400a £<或600800a £<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD a a ∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP b ∠=,请判断b 与a 的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60a =︒,AD =,15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2b a =,理由见解析;②2sin m a(3)或【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD a =,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=´=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2b a =,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2b a =,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ^^^,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG a ∠=,AD m=∵sin DG DAG DA∠=,∴sin sin DG AD DAG m a =×∠=,∴3222sin PP EF DG m a===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ^,当23P P AD ∥时,如图所示,过点P 作1PQ AP ^于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60a =︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP =,在1APP V 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==,在1Rt PQP V 中,11PQ AP AQ x x =-=,1PP x ====,∴3113PP PP PP x x =+=+=由(2)②可得32sin PP AD a =,∵AD =∴326PP =´=6x =,解得:x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则131212PP PP x ==,∵1PP x =,3PP x x x =+=,∵36PP =,6=,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。
2024河南中招数学试卷试题
选择题下列数中,是无理数的是:A. 3/5B. √4C. π(正确答案)D. -2在平面直角坐标系中,点A(3, -4)关于x轴对称的点的坐标是:A. (-3, 4)B. (3, 4)(正确答案)C. (-3, -4)D. (4, -3)已知三角形ABC的三边长为a, b, c,且满足a2 + b2 = c2 + 2ab,则三角形ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形(正确答案)函数y = 2x - 1与y = -x + 4的交点坐标是:A. (1, 3)B. (3, 1)C. (-1, 5)(正确答案)D. (5, -1)下列不等式组中,解集为x > 2的是:A. {x | x > 1, x < 3}B. {x | x ≥ 2, x ≤ 4}C. {x | x > 2, x < 5}(正确答案)D. {x | x ≥ 1, x < 2}若关于x的一元二次方程x2 - kx + k - 2 = 0有两个相等的实数根,则k的值为:A. 1B. 2C. 3D. 4(正确答案)在平行四边形ABCD中,AB = 5,AD = 8,且∠BAD的平分线AE交BC于点E,则BE的长为:A. 2B. 3(正确答案)C. 4D. 5下列函数中,图像经过原点的是:A. y = x + 1B. y = x2 - 1C. y = 1/xD. y = 2x(正确答案)已知圆O的半径为5cm,圆心O到直线l的距离为4cm,则直线l与圆O的位置关系是:A. 相离B. 相切C. 相交(正确答案)D. 无法确定。
2024年河南省中考数学试题(解析版)
2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分。
下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点P 表示的数是()A.1-B.0C.1D.2【答案】A 【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1-,从而求解.【详解】解:根据题意可知点P 表示的数为1-,故选:A.2.据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为()A.8578410⨯B.105.78410⨯ C.115.78410⨯ D.120.578410⨯【答案】C 【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ⨯,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410==⨯.故选:C.3.如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒ C.40︒ D.30︒【答案】B 【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B.4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A 【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可.从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A.5.下列不等式中,与1x ->组成的不等式组无解的是()A.2x >B.0x < C.<2x - D.3x >-【答案】A 【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x ->,可得1x <-,A、此不等式组无解,符合题意;B、此不等式组解集为1x <-,不符合题意;C、此不等式组解集为<2x -,不符合题意;D、此不等式组解集为31x -<<-,不符合题意;故选:A6.如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为()A.12B.1C.43D.2【答案】B 【解析】【分析】本题考查了相似三角形的判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可.【详解】解∶∵四边形ABCD 是平行四边形,∴12OC AC =,∵点E 为OC 的中点,∴1124CE OC AC ==,∵EF AB ∥,∴CEF CAB ∽△△,∴EF CE AB AC =,即144EF =,∴1EF =,故选:B.7.计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是()A.5aB.6a C.3a a + D.3aa 【答案】D 【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···aaa a a a a a == 个,故选D8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为()A.19B.16C.15D.13【答案】D 【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A、B、C,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种,∴两次抽取的卡片图案相同的概率为3193=.故选∶D.9.如图,O 是边长为的等边三角形ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为()A.8π3B.4πC.16π3D.16π【答案】C 【解析】【分析】过D 作DE BC ⊥于E,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=︒,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=︒,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E,∵O 是边长为ABC 的外接圆,∴B C =,60A ∠=︒,180∠+∠=︒BDC A ,∴120BDC ∠=︒,∵点D 是 BC的中点,∴ BDCD =,∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=︒,∴234sin sin 60BE BD BDE ===∠︒,∴21204163603ππS ⋅==阴影,故选:C.【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是()A.当440W P =时,2A I =B.Q 随I 的增大而增大C.I 每增加1A,Q 的增加量相同D.P 越大,插线板电源线产生的热量Q 越多【答案】C 【解析】【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C.二、填空题(每小题3分,共15分)11.请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”。
2023年河南省中考数学试卷-解析版
2023年河南省中考数学试卷-解析版一、选择题 (共10小题,每小题2分,共20分。
每小题只有一个正确答案,选择时,将所选项的字母编号填入答题纸上的括号里。
每小题正确答案得2分,没有或多填均不得分。
)1. 解答2. 解答3. 解答4. 解答5. 解答6. 解答7. 解答8. 解答9. 解答10. 解答二、填空题 (共10小题,每小题2分,共20分。
答案要填在答题纸上相应的题号后,表明单位,不得抄题。
每小题正确答案得2分,没有或多填均不得分。
)1. 解答2. 解答3. 解答4. 解答5. 解答6. 解答7. 解答8. 解答9. 解答10. 解答三、解答题 (共5小题,每小题4分,共20分。
答案要填在答题纸上相应的题号后,表明单位,不得抄题。
每小题正确答案得4分,没有或错误不得分。
)1. 解答2. 解答3. 解答4. 解答5. 解答四、应用题 (共2小题,每小题8分,共16分。
答案要填在答题纸上相应的题号后,表明计算步骤,大致说明解法。
每小题正确答案得8分,没有或错误步骤不得分。
)1. 解答2. 解答五、辩论题 (10分。
请结合生活实例,列举观点,写下自己的观点,最后总结得出你的观点,并说出理由。
)解答六、非选择题 (共5小题,每小题4分,共20分。
答案要填在答题纸上相应的题号后。
每小题正确答案得4分,没有或多填均不得分。
)1. 解答2. 解答3. 解答4. 解答5. 解答七、总分统计与评析本试题总分100分祝您考试顺利!。
河南省中招数学试题及答案
河南省中招数学试题及答案一、选择题(每题4分,共40分)1. 下列选项中,有理数是()A. √3B. -2/3C. πD. 3.14159答案:B2. 下列各式正确的是()A. 3^2 = 9B. (-2)^2 = 4C. (-3)^3 = -9D. (-1)^4 = -1答案:B3. 已知一组数据的方差是9,那么这组数据的平均数()A. 必须大于9B. 必须小于9C. 可以等于9D. 无法确定答案:D4. 已知函数 f(x) = x^2 - 2x + 1,那么下列说法正确的是()A. 函数的图像开口向上B. 函数的图像开口向下C. 函数的图像是直线D. 函数的图像是圆答案:A5. 下列关于平行四边形的说法正确的是()A. 对角线互相平分B. 对边相等C. 对角线互相垂直D. 对角相等答案:AB6. 若a、b是方程x^2 - 3x + 2 = 0的两个根,则a^2 + b^2 = ()A. 5B. 7D. 10答案:D7. 若直线y = kx + b经过第一、二、三象限,则k和b 的取值范围是()A. k > 0, b > 0B. k > 0, b < 0C. k < 0, b > 0D. k < 0, b < 0答案:A8. 下列关于概率的说法正确的是()A. 概率是0到1之间的数B. 概率是大于1的数C. 概率是小于0的数D. 概率是等于0或1的数答案:A9. 已知三角形ABC中,a = 3, b = 4, A = 60°,那么三角形ABC的面积是()A. 3C. 6D. 8答案:C10. 下列关于圆的说法正确的是()A. 圆的半径是直径的一半B. 圆的面积与半径的平方成正比C. 圆的周长与半径成正比D. 圆的直径等于半径的两倍答案:BD二、填空题(每题4分,共40分)1. 若a = 3, b = -4,则a + b = _______。
2023年河南省中考数学试卷+参考答案解析
2023年河南省普通高中招生考试试卷数学一、单选题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.下列各数中,最小的数是()A.-lB.0C.1D.32.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。
如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源。
数据“4.59亿”用科学记数法表示为()A.4.59×107B.45.9×108C.4.59×108D.0.459×1094.如图,直线AB ,CD 相交于点O ,若∠1=80°,∠2=30°,则∠AOE 的度数为()A.30°B.50°C.60°D.80°5.化简a -1a +1a的结果是()A.0B.1C.aD.a -26.如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°7.关于x 的一元二次方程x 2+mx -8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.199.二次函数y =ax 2+bx 的图象如图所示,则一次函数y =x +b 的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B 。
2023年河南省中考数学真题(解析)
2023年河南省普通高中招生考试试卷数学一、选择题1.【答案】A【解析】解:∵101-<<<,∴最小的数是-1.故选:A2.【答案】A【解析】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .3.【答案】C【解析】解:4.59亿8459000000 4.9510==⨯.故选:C .4.【答案】B【解析】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B5.【答案】B 【解析】解:11111a a a a a a a--++===,故选:B .6.【答案】D【解析】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .7.【答案】A【解析】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .8.【答案】B【解析】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .9.【答案】D 【解析】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .10.【答案】A【解析】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B时的路程为∴OB =,即AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .二、填空题11.【答案】3n【解析】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .12.【答案】12x y =⎧⎨=⎩【解析】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.13.【答案】280【解析】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.14.【答案】103【解析】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.15.【答案】21+【解析】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BMMD =,∴1AN BM ND MD==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.三、解答题16.【答案】(1)15;24y 【解析】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.17.【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)18.【答案】(1)见解析(2)见解析【解析】(1)解:如图所示,即为所求,(2)证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.19.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【解析】(1)解:将)3,1A 代入k y x=中,得13=,解得:3k =(2)解: 过点A 作OD 的垂线,垂足为G ,如下图:)3,1A ,1,3AG OG ∴==,22(3)12OA ∴=+=,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;(3)解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,322FBO S ∴=⨯= ,2233FBO AOCD AOC S S S S ππ∴=+-=+= 阴影部分面积菱形扇形.20.【答案】树EG 的高度为9.1m【解析】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .21.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【解析】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.22.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】(1)解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;(2)∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.23.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【解析】(1)(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.(2)①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ⊥⊥⊥,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG α∠=,AD m =∵sin DG DAG DA∠=,∴sin sin DG AD DAG m α=⋅∠=,∴3222sin PP EF DG m α===(3)解:设AP x =,则12AP AP x ==,依题意,12PP AD ⊥,当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60α=︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则122PP x =,在1APP 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴1321222PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,2232AQ AP PQ x =-=,在1Rt PQP 中,1132PQ AP AQ x x =-=-,222211316223222PP PQ PQ x x x x ⎛⎫⎛⎫=+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴3113626322222PP PP PP x x x +=+=+=由(2)②可得32sin PP AD α=,∵23AD =∴332362PP =⨯=∴63262x +=,解得:326x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则13121222PP PP x ==,∵1622PP x =,36226222PP x x x =+=,∵36PP =,∴662x =,解得:x =,综上所述,AP 的长为或.。
2023年河南省中考数学试卷(含答案)
河南省中考数学试卷注意事项:本试卷分试题卷和答题卡两部分,考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.参考公式:二次函数c bx ax y ++=2(a ≠0)图象的顶点坐标为)4a b ac 42(2--,a b . 一、选择题(每小题3分,共24分)1.下面的数中,与-2的和为O 的是(A) 2 (B) -2 (C)12 (D)-122.下列图形中,既是轴对称图形又是中心对称图形的是3.下列运算,正确的是(A)4a-2a=2 (B)a 6÷a 3=a 2 (C)(-a 3b )2=a 6b 2 (D)(a-b )2=a 2-b 24.洛阳某中学足球队的1 8名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18 人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是(A)15, 15 (B)15, 15.5 (C)15,16(D )16,155.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为6.不等式组13x+1>0的解集在数轴上可表示为 2-x ≥07.如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D=30,下列四个结论:①OA 上BC;②3cm ;③sin ∠32;④四边形ABOC是菱形.其中正确结论的序号是(A)①③ (B)①②③④ (C)②⑨④ (D)①③④8.已知点A 为某封闭图形边界上一定点,设点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 运动的时问为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如下图所示,则该封闭图形可能是二、填空题(每小题3分,共21分)9.a ,b 是两个连续整数,若a<7<b ,则1a -+35b +_____________1 0.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费食物总量折合 粮食可养活约3亿5千万人.350 000 000用科学记数法表示为_______________11.玩具店进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是_____________.12.如图,直线∥m//n ,等边△ABC 的顶点B 、C 份别在直线n 和m 上,边BC 与直线n 所夹的角为25,则∠α的度数为____________13.如图,在扇形AOB 中,∠AOB=90,半径OA=6.将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,整个阴影部分的而积__________.14.如图,平行于x轴的直线AC分别交抛物线y1 =X2 (x≥0)与y2=24x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=_________.15. 如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC 边的A'处,折痕所在直线同时经过边AB、AD(包括端点),设BA'=x,则x的取值范围是______________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(a+12a+)÷(a-2+32a+笔)其中a满足a2-a-2=0.17.(9分)老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有_________名,D类男生有__________名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或面树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图,在Rt△ABC中,∠ACB=90,以AC为直径的⊙○的切线,交BC于E.(1)求证:点E是边BC的中点;(2)当∠B=___________ o时,四边形ODEC是正方形.19. (9分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学们在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP 行走了26米,在坡顶A处又测得该塔的塔顶B的仰角为76.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到l米).(参考数据:sin76︒≈0.97,cos76≈0.24,tan 76≈4.00)20.(9分)如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图像经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中招考试数学试卷一.选择题(共10小题)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.2016年,我国国内生产总值达到万亿元,数据“万亿”用科学记数法表示()A.×1012B.×1013C.×1013D.×10153.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二.填空题(共5小题)11.计算:23﹣=.12.不等式组的解集是.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三.解答题(共8小题)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈)20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年中招考试数学试卷参考答案与试题解析一.选择题(共10小题)1.(2017?河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【解答】解:2>0>﹣1>﹣3,故选:A.2.(2017?河南)2016年,我国国内生产总值达到万亿元,数据“万亿”用科学记数法表示()A.×1012B.×1013C.×1013D.×1015【解答】解:将万亿用科学记数法表示为:×1013.故选:B.3.(2017?河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.4.(2017?河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A5.(2017?河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.6.(2017?河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.7.(2017?河南)如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.8.(2017?河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.9.(2017?河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C(2,),故选D.10.(2017?河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠A O′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .二.填空题(共5小题) 11.(2017?河南)计算:23﹣= 6 .【解答】解:23﹣=8﹣2=6,故答案为:6.12.(2017?河南)不等式组的解集是 ﹣1<x ≤2 .【解答】解:解不等式①0得:x ≤2,解不等式②得:x >﹣1, ∴不等式组的解集是﹣1<x ≤2, 故答案为﹣1<x ≤2.13.(2017?河南)已知点A (1,m ),B (2,n )在反比例函数y=﹣的图象上,则m 与n 的大小关系为 m <n .【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大, ∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.14.(2017?河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M 为曲线部分的最低点,则△ABC的面积是12.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1215.(2017?河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N 分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.三.解答题(共8小题)16.(2017?河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=917.(2017?河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).18.(2017?河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.19.(2017?河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈)【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=,BC==25,∴A船到C的时间≈=小时,B船到C的时间==1小时,∴C船至少要等待小时才能得到救援.20.(2017?河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.21.(2017?河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×+15(100﹣m)×=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×+13(100﹣m)×=+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有+520<1300,解得:m<50;当w活动一=w活动二时,有+520=1300,解得:m=50;当w活动一>w活动二时,有+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.22.(2017?河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大∴S=PM2=×MN2=×(7)2=.△PMN最大23.(2017?河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.。