2015-2016年江苏省盐城中学初三上学期期末数学试卷及答案
江苏省盐城市九年级(上)期末数学试卷(含答案)

江苏省盐城市九年级(上)期末数学试卷(含答案)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .353.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数5.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .166.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .117.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .68.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .11.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+312.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,43) 13.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣214.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .34二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 17.若53x y x +=,则yx=______. 18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 21.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 22.抛物线21(5)33y x =--+的顶点坐标是_______. 23.方程290x 的解为________.24.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.30.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.三、解答题31.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)32.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.33.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 34.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.35.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交于点C (0,533). (1)求该函数的表达式;(2)设E 为对称轴上一点,连接AE 、CE ; ①当AE +CE 取得最小值时,点E 的坐标为 ;②点P 从点A 出发,先以1个单位长度/的速度沿线段AE 到达点E ,再以2个单位长度的速度沿对称轴到达顶点D .当点P 到达顶点D 所用时间最短时,求出点E 的坐标.四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3, ∴2222AB AC BC 345=+=+=, ∵CD ⊥AB, ∴∠ADC=∠C=90°, ∴∠A+∠ACD=∠A+∠B, ∴∠B=∠ACD=α, ∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.3.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.4.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差5.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.7.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425+=+=BC CD故选:B.本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.8.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx=得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.11.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.13.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.20.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.21.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 23.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x =±【解析】【分析】这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.24.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握. 25.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出AB AEAD AC=,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.30.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.三、解答题31.(1)x=﹣3或x=1;(2)x=1或x=4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.32.(1)见解析;(2)14 5【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.【详解】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴2222345AE AB BE=+=+=.∵△ABF∽△EAD,BF ABAD EA∴=,4752BF∴=.145BF∴=.【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.33.(1)10700y x=-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,。
盐城市盐都区2015届九年级上期末考试数学试题及答案

第 7 题图 第 8 题图 第 9 题图
盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到
指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶
数,则乙获胜.请你解决下列问题:
(1)用列表格或两人获胜的概率.
则 m、n 的大小关系为 m_ ▲_n.(填“<”,“=”或“>”)
18.已知 Rt△ABC 中,∠C=90°,B C=1,AC=4,如图把边长分别为 x1,x2,x3,…,xn 的 n
个正方形依次放入△ABC 中,则第 2015 个正方形的边长为_▲_.
8.如图 1,在平面内选一定点 O,引一条有方向的射线 Ox,再选定一个单位长度,那么平面上
任一点 M 的位置可由∠MOx 的度数 θ 与 OM 的长度 m 确定,有序数对(θ,m)称为 M 点
的“极坐标”,这样建立的坐标系称为“极坐标系”.在图 2 的极坐标系下,如果正六边形的边
▲ 】
A.x2-x+1 =0 B.x2+x+1=0 C.x2-x-1=0 D.(x-1) 2+1=0
6.将抛物线 y=-x2 向上平移 2 个单位后,得到的函数表达式是 【
x ﹣3 ﹣2 ﹣1 1 2 3 4 5 6
y ﹣14 ﹣7 ﹣2 2 m n ﹣7 ﹣14 ﹣23
7.如图,AB 是⊙O 的直径,C、D 是⊙O 上两点,CD⊥AB.若∠DAB=65°,则∠BOC=【
▲ 】
A. 25° B. 50° C. 130° D . 155°
竿与旗杆的距离 DB=12m,则旗杆 AB 的高为 ▲ _m.
15.请写出一个开口向上,与 y 轴交点的纵坐标为 2 的抛物线的函数表达式 ▲ .
(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。
-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。
江苏省盐城市景山中学2016届九年级数学上学期期末考试试题解读

江苏省盐城市景山中学2016届九年级数学上学期期末考试试题一、选择题:(每题3分,共计24分)1.已知四条线段满足bcda =,将它改写成为比例式,下面正确的是( ◆ ) A .d c b a = B .d b c a = C .b d c a = D .cb d a =2.在Rt △ABC 中,∠C =90°,如果把Rt △ABC 的各边的长都缩小为原来的41,则∠A 的正切值 ( ◆ ) A.缩小为原来的41 B.扩大为原来的4倍 C.缩小为原来的21D.不变3.一组数据2、5、4、3、5、4、5的中位数和众数分别是( ◆ )A .3.5,5B .4,4C .4,5D .4.5,44.在抛物线y =x 2-4x -4上的一个点是( ◆ ) A .(4,4) B .(-12,-74) C .(-2,-8) D .(3,-1) 5.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的 概率是( ◆ ) A.41 B. 21 C. 43D. 1 6.如图,一宽为2cm 的刻度尺在圆O 上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm),则该圆的半径为 ( ◆ ) A .5 cmB .413 cm C .1625 cm D .5 cm(第6题图) (第7题图) (第8题图)7.已知二次函数y =ax 2+bx +c 的图像如图所示,对称轴为直线x =1.有位学生写出了以下五个结论: (1)ac>0; (2)方程ax 2+bx +c =0的两根是x 1=-1,x 2=3; (3)2a -b =0;(4)当x>1时,y 随x 的增大而减小; 则以上结论中正确的有( ◆ ) A .1个 B .2个 C .3个 D .4个8.如图,在平面直角坐标系xOy 中,抛物线y =x 2+bx +c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB=3,则点M 到直线l 的距离为( ◆ ) A .52 B .94 C .2 D .74二、填空题:(每题3分,共计30分)9.-元二次方程x 2-x =0的解为_ ◆ .10.已知△ABC 与△DEF 相似且周长比为2∶5,则△ABC 与△DEF 的面积比为 ◆ .11.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S 2甲=36,S 2乙=158,则小麦长势比较整齐的试验田是 ◆ .12.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是 ◆ .13.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ◆ . 14.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是 ◆ .15. 已知a 是方程 2x 2+3x ﹣6=0的一个根,则代数式3a (2a+1)﹣(2a+1)(2a ﹣1)的值为 ◆ . 16.如图,⊙O 与正方形ABCD 的两边AB 、AD 相切,且DE 与⊙O 相切于E 点.若正方形ABCD 的周长为44,且DE =6,则sin ∠ODE =__ ◆ . 17.若A (1,413y -),B (2,45y -),C (1, 3y )为二次函数y= x 2+4x-5的图象上的三点,则y 1、y 2 、y 3的大小关系是__ ◆ ;18.△ABC 中,AD 是BC 边上的高,BD=3,CD=1,AD=2,P 、Q 、R 分别是BC 、AB 、AC 边上的动点,则△PQR 周长的最小值为 ◆ . 三、解答题:(共96分)19.(本题满分10分)(1)计算:tan 260°+4sin30°·cos45°(2)解方程:x 2-4x+3=020.(本题满分8分) 如图,已知O 是坐标原点,B 、C 两点的坐标分别为 (3,-1)、(2,1) .(1)以0点为位似中心在y 轴的左侧将△OBC 放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B 、C 两点的对应点B ′、C ′的坐标.21.(本题满分8分) A 、B 、C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如图和表: (1)请将图一和表一中的空缺部分补充完整; (2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票分别是A :105票;B :120票;C :75票.若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.22.(本题满分8分) 一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ; (2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.23.(本题满分10分) 如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)连接AE ,试证明:AB ·CD=AE ·AC .24. (本题满分10分) 某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参25.(本题满分10分) 如图,抛物线y=ax 2+bx+c 与x 轴交于A(-1,0),B (3,0)两点,与y 轴交于C (0,-3).(1)求抛物线的解析式;(2) D 是y 轴正半轴上的点,OD=3,在线段BD 上任取一点E (不与B,D 重合),经过A,B,E 三点的圆交直线BC 于点F ,①试说明EF 是圆的直径;②判断△AEF 的形状,并说明理由.26.(本题满分10分) 公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金51750万元进行相关生产设备的改进. 已知生产过程中,每件产品的成本为60元. 在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x (元)(120x >),年销售量为y (万件),第一年年获利(年获利=年销售额-生产成本)为z (万元).(1)求出y 与x 之间,z 与x 之间的函数关系式;(2)该公司能否在第一年收回投资.27.(本题满分12分) 如图,四边形ABCD 中,AD=CD ,∠DAB=∠ACB=90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E . (1)求证:AB ·AF=CB ·CD ;(2)已知AB=15cm ,BC=9cm ,P 是线段DE 上的动点.设DP=x cm ,梯形BCDP 的面积为ycm 2. ①求y 关于x 的函数关系式.②y 是否存在最大值?若有求出这个最大值,若不存在请说明理由.28.(本题满分12分) 如图,二次函数213y x bx 22=+-的图象与x 轴交于点A(﹣3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E .(1)b= ;点D 的坐标: ;(2) 线段AO 上是否存在点P (点P 不与A 、O 重合),使得OE 的长为1;(3)在x 轴负半轴上是否存在这样的点P ,使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.初三数学试卷答案二、填空题:(每题3分,共计30分) 9、0、1; 10、4:25; 11、甲; 12、49; 13、8∏ 14、12; 15、7; 16、56; 17、y 2<y 1< y 3; 18、 三、解答题:19、(1)分 )(2) 1、3( 5分 ) 20、略 21、(1)A 大学生的口试成绩为90分; (2)A 的得票为300×35%=105(张),B 的得票为300×40%=120(张),C 的得票为:300×25%=75(张);(3)分别通过加权平均数的计算方法计算A 的成绩,B 的成绩,C 的成绩,综合三人的得分,则B 应当选. 22、12 解:(1)略(2)P 小丽=21, 23、略24 25、(1)y= x 2-2x-3 (2)略26、解:由题意得:(1)y=101-x+36, z=101-x 2+42x-2160; (2)z=101-(x-210) 2+2250∴不能 27、(1)略.(2)y=3x+27 .当x=12.5时,y=64.5 28、(1)b=2,﹙﹣3,4﹚ (2)不存在 (3)245。
2015-2016年江苏省盐城市东台市初三上学期期末数学试卷及参考答案

2015-2016学年江苏省盐城市东台市初三上学期期末数学试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果,AC=6,那么AE的长为()A.3B.4C.9D.122.(3分)下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定3.(3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25B.36(1﹣2x)=25C.36(1﹣x)2=25D.36(1﹣x2)=254.(3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4B.2C.D.5.(3分)两个相似三角形的面积比为1:4,那么它们的周长比为()A.1:B.2:1C.1:4D.1:26.(3分)已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x的增大而增大,当x>﹣3时,y随x的增大而减小,当x=0时,y的值为()A.﹣1B.﹣9C.1D.97.(3分)如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A.20°B.30°C.35°D.70°8.(3分)小明为了研究关于x的方程x2﹣|x|﹣k=0的根的个数问题,先将该等式转化为x2=|x|+k,再分别画出函数y=x2的图象与函数y=|x|+k的图象(如图),当方程有且只有四个根时,k的取值范围是()A.k>0B.﹣<k<0C.0<k<D.﹣<k<二、填空题(本题共有10小题,每小题3分,共30分)9.(3分)已知=,则=.10.(3分)已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.11.(3分)已知关于x的一元二次方程有两个不相等的根,则k 的值为.12.(3分)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.13.(3分)过圆O内一点P的最长的弦,最短弦的长度分别是8cm,6cm,则OP=.14.(3分)在Rt△ABC中,∠C=90°,中线AD,CE相交于G,且CG=3,则AB=.15.(3分)若函数y=mx2﹣6x+2的图象与x轴只有一个公共点,则m=.16.(3分)已知(﹣3,m)、(1,m)是抛物线y=2x2+bx+3的两点,则b=.17.(3分)如图,菱形OCBA的顶点B,C在以点O为圆心的弧上,若∠FOC=∠AOE,OA=1,则扇形OEF的面积为.18.(3分)已知一次函数y=kx+b的图象过点(1,﹣1)且不经过第一象限,设m=k2﹣b,则m的取值范围是.三、解答题(本题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:﹣+20160+|﹣3|+4cos30°(2)解方程:x2+2x﹣8=0.20.(8分)某校为了更好的开展“学校特色体育教育”,从全校八年级各组随机抽取了60名学生,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a0.3良好正正正正正正30b合格正90.15不合格c d合计(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=,b=;c=;d=(2)请根据频数分布表,画出相应的频数分布直方图.21.(8分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF 与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.22.(8分)在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.23.(8分)如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.24.(9分)如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2.①求值;②求∠FAB的度数.25.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度.(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物MNQP是否需要挪走,并说明理由.参考数据:.26.(11分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):…﹣4﹣2024 4.5…温度x/℃…414949412519.75…植物每天高度增长量y/mm由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.27.(12分)△ABC中,AB=AC,取BC边的中点D,作DE⊥AC于点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,求证:AF⊥BE并求的值;(2)如图2,如果∠BAC=a,求证:AF⊥BE并用含a的式子表示.28.(12分)如图,二次函数y=ax2+bx﹣2的图象交x轴于A(1,0)、B(﹣2,0),交y轴于点C,连接直线AC.(1)求二次函数的解析式;(2)点P在二次函数的图象上,圆P与直线AC相切,切点为H.①若P在y轴的左侧,且△CHP∽△AOC,求点P的坐标;②若圆P的半径为4,求点P的坐标.2015-2016学年江苏省盐城市东台市初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,如果,AC=6,那么AE的长为()A.3B.4C.9D.12【解答】解:∵DE∥BC,∴=,又AC=6,∴AE=4,故选:B.2.(3分)下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定【解答】A、一个游戏中奖的概率是,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;C、这组数据的众数是1,中位数是1,故本选项正确;D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;故选:C.3.(3分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25B.36(1﹣2x)=25C.36(1﹣x)2=25D.36(1﹣x2)=25【解答】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=25.故选:C.4.(3分)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4B.2C.D.【解答】解:∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.5.(3分)两个相似三角形的面积比为1:4,那么它们的周长比为()A.1:B.2:1C.1:4D.1:2【解答】解:∵两个相似三角形的面积比为1:4,∴它们的相似比为1:2,∴它们的周长比为1:2.故选:D.6.(3分)已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x的增大而增大,当x>﹣3时,y随x的增大而减小,当x=0时,y的值为()A.﹣1B.﹣9C.1D.9【解答】解:由题意得:二次函数y=﹣(x+h)2的对称轴为x=﹣3,故h=﹣3,把h=﹣3代入二次函数y=﹣(x+h)2可得y=﹣(x﹣3)2,当x=0时,y=﹣9,故选:B.7.(3分)如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A.20°B.30°C.35°D.70°【解答】解:∵弦CD⊥直径AB,∴=,∴∠BAD=∠BOC=×70°=35°.故选:C.8.(3分)小明为了研究关于x的方程x2﹣|x|﹣k=0的根的个数问题,先将该等式转化为x2=|x|+k,再分别画出函数y=x2的图象与函数y=|x|+k的图象(如图),当方程有且只有四个根时,k的取值范围是()A.k>0B.﹣<k<0C.0<k<D.﹣<k<【解答】解:当x>0时,y=x+k,y=x2,则x2﹣x﹣k=0,b2﹣4ac=1+4k>0,解得:k>﹣,当x<0时,y=﹣x+k,y=x2,则x2+x﹣k=0,b2﹣4ac=1+4k>0,解得:k>﹣,如图所示一次函数一部分要与二次函数有两个交点,则k<0,故k的取值范围是:﹣<k<0.故选:B.二、填空题(本题共有10小题,每小题3分,共30分)9.(3分)已知=,则=﹣.【解答】解:∵=,∴==﹣.故答案为﹣.10.(3分)已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为4.【解答】解:设圆锥的母线长为R,则15π=2π×3×R÷2,解得R=5,∴圆锥的高==4.11.(3分)已知关于x的一元二次方程有两个不相等的根,则k 的值为k>﹣3.【解答】解:由题意知,△=12+4k>0,解得:k>﹣3.故答案为:k>﹣3.12.(3分)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.【解答】解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,则飞镖落在阴影区域的概率是.故答案为:.13.(3分)过圆O内一点P的最长的弦,最短弦的长度分别是8cm,6cm,则OP=cm.【解答】解:如图所示,直径AB⊥弦CD于点P,根据题意,得AB=8cm,CD=6cm,OC=AB=4cm,∵CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===(cm),故答案为:cm.14.(3分)在Rt△ABC中,∠C=90°,中线AD,CE相交于G,且CG=3,则AB=9.【解答】解:∵中线AD,CE相交于G,∴点G是△ABC的重心,∴GE=CG=1.5,∴CE=CG+GE=4.5,∵∠C=90°,CE是中线,∴AB=2CE=9.故答案为:9.15.(3分)若函数y=mx2﹣6x+2的图象与x轴只有一个公共点,则m=0或.【解答】解:分两种情况:①若y=mx2﹣6x+2为一次函数,则m=0;②若y=mx2﹣6x+2为二次函数,则(﹣6)2﹣4×2m=0,∴36﹣8m=0,解得m=,故答案为0或.16.(3分)已知(﹣3,m)、(1,m)是抛物线y=2x2+bx+3的两点,则b=4.【解答】解:∵(﹣3,m)、(1,m)是抛物线y=2x2+bx+3的两点,∴抛物线的对称轴为直线x=﹣1,而抛物线的对称轴为直线=﹣,∴﹣=﹣1,∴b=4.故答案为4.17.(3分)如图,菱形OCBA的顶点B,C在以点O为圆心的弧上,若∠FOC=∠AOE,OA=1,则扇形OEF的面积为.【解答】解:连接OB,∵四边形OABC为菱形,点B、C在以点O为圆心的上,若OA=1,∠FOC=∠AOE,∵OA=OB=AB,∴三角形ABO为正三角形,∴∠AOB=60°,∴∠EOF=120°,==.∴S扇形故答案为:.18.(3分)已知一次函数y=kx+b的图象过点(1,﹣1)且不经过第一象限,设m=k2﹣b,则m的取值范围是≤m≤1.【解答】解:∵一次函数y=kx+b的图象过点(1,﹣1)且不经过第一象限,∴﹣1=k+b,k<0,b≤0,∴b=﹣1﹣k,∴﹣1≤k<0∵m=k2﹣b,∴m=k2+k+=(k+)2+,∴k=﹣时,m有最小值为,∵k=﹣1时,m=1,∴≤m≤1.三、解答题(本题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:﹣+20160+|﹣3|+4cos30°(2)解方程:x2+2x﹣8=0.【解答】解:(1)﹣+20160+|﹣3|+4cos30°=﹣2+1+3+4×=4;(2)x2+2x﹣8=0(x﹣4)(x+2)=0,解得:x1=﹣2,x2=4.20.(8分)某校为了更好的开展“学校特色体育教育”,从全校八年级各组随机抽取了60名学生,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a0.3良好正正正正正正30b合格正90.15不合格c d合计(说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=18,b=0.5;c=3;d=0.05(2)请根据频数分布表,画出相应的频数分布直方图.【解答】解:(1)a=18,b==0.5,c=60﹣18﹣30﹣9=3,d==0.05.故答案是:18,0.5,3,0.05;(2)画出的直方图如图所示21.(8分)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF 与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.【解答】解:(1)∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE中,OE===2.∴⊙O的半径为2.(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=×π×22=π.∵∠EOF=2∠D=90°,OE=OF=2,∴S Rt△OEF=×OE×OF=2.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣2.22.(8分)在一个黑色的布口袋里装着白、红、黑三种颜色的小球,它们除了颜色之外没有其它区别,其中白球2只、红球1只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中摸出1只球,则摸出白球的概率是多少?(2)随机地从袋中摸出1只球,放回搅匀再摸出第二个球.请你用画树状图或列表的方法表示所有等可能的结果,并求两次都摸出白球的概率.【解答】解:(1)摸出白球的概率是;(2)列举所有等可能的结果,画树状图:∴两次都摸出白球的概率为P(两白)==.23.(8分)如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.【解答】解:(1)把A(2,0)、B(0,﹣6)代入y=﹣+bx+c,得:解得,∴这个二次函数的解析式为y=﹣+4x﹣6.(2)∵该抛物线对称轴为直线x=﹣=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,∴S=×AC×OB=×2×6=6.△ABC24.(9分)如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2.①求值;②求∠FAB的度数.【解答】(1)证明:如图,连结OD,∵AD平分∠BAC,∴∠DAF=∠DAO,∵OA=OD,∴∠OAD=∠ODA,∴∠DAF=∠ODA,∴AF∥OD,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线,(2)解:①连接BD,∵直径AB,∴∠ADB=90°,∵圆O与BE相切,∴∠ABE=90°,∵∠DAB+∠DBA=∠DBA+∠DBE=90°,∴∠DAB=∠DBE,∴∠DBE=∠FAD,∵∠BDE=∠AFD=90°,∴△BDE∽△AFD,∴==;②连接OC,交AD于G,由①,设BE=2x,则AD=3x,∵△BDE∽△ABE,∴,∴,解得:x1=2,x2=﹣(不合题意,舍去),∴AD=3x=6,BE=2x=4,AE=AD+DE=8,∴sin∠EAB=,∴∠EAB=30°,∴∠FAB=60°.25.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度.(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物MNQP是否需要挪走,并说明理由.参考数据:.【解答】解:(1)如图,在Rt△ABD中,AD=ABsin45°=4×=4.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8.即新传送带AC的长度约为8米;(2)结论:货物MNQP不用挪走.解:在Rt△ABD中,BD=ABcos45°=4×=4.在Rt△ACD中,CD=AD=4.∴CB=CD﹣BD=4﹣4≈2.8.∵PC=PB﹣CB≈5﹣2.8=2.2>2,∴货物MNQP不应挪走.26.(11分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度…﹣4﹣2024 4.5…x/℃…414949412519.75…植物每天高度增长量y/mm由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.【解答】解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=﹣2时,y=49,x=0时,y=49,x=2时,y=41,∴,解得,所以,y关于x的函数关系式为y=﹣x2﹣2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(﹣4,41),(﹣2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,∵a=﹣1<0,∴当x=﹣1时,y有最大值为50,即当温度为﹣1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,﹣x2﹣2x+49=25,整理得,x2+2x﹣24=0,解得x1=﹣6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在﹣6℃<x<4℃.27.(12分)△ABC中,AB=AC,取BC边的中点D,作DE⊥AC于点E,取DE的中点F,连接BE,AF交于点H.(1)如图1,如果∠BAC=90°,求证:AF⊥BE并求的值;(2)如图2,如果∠BAC=a,求证:AF⊥BE并用含a的式子表示.【解答】解:如图1,连接AD,∵AB=AC,点D是BC的中点,∴∠ABC=∠C,∠BAD=∠DAC=∠BAC,AD⊥BC,∵AD⊥BC,DE⊥AC,∴∠ADE+∠CDE=90°,∠C+∠CDE=90°,∴∠ADE=∠C.又∵∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴,即AD•CE=BD•DE.∵点D是BC的中点,点F是DE的中点,∴BD=BC,DE=2DF,∴AD•CE═BC•2DF=BC•DF,∴,又∵∠ADE=∠C,∴△AFD∽△BEC,∴,在Rt△ADB中,∵∠ABD=90°﹣∠BAD=90°﹣∠BAC,BD=BC,∴tan∠ABD=tan(90°﹣∠BAC)==,∴=tan(90°﹣∠BAC).∵△AFD∽△BEC,∴∠DAF=∠CBE.∵∠CBE+∠BOD=90°,∠AOH=∠BOD,∴∠DAF+∠AOH=∠CBE+∠BOD=90°,∴∠AHO=180°﹣90°=90°,即∠AHB=90°,(1)如图1,根据以上结论可得:∠AHB=90°,=tan(90°﹣×90°)=;∴AF⊥BE,=;(2)如图2,根据以上结论可得:∠AHB=90°,=tan(90°﹣α);∴AF⊥BE,=tan(90°﹣α).28.(12分)如图,二次函数y=ax2+bx﹣2的图象交x轴于A(1,0)、B(﹣2,0),交y轴于点C,连接直线AC.(1)求二次函数的解析式;(2)点P在二次函数的图象上,圆P与直线AC相切,切点为H.①若P在y轴的左侧,且△CHP∽△AOC,求点P的坐标;②若圆P的半径为4,求点P的坐标.【解答】解:(1)∵将x=1,y=0,x=﹣2,y=0代入y=ax2+bx﹣2得,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)解①∵圆P与直线AC相切,∴PH⊥AC.(i)如图1,当H在点C下方时,①∵△CHP∽△AOC,∴∠PCH=∠CAO.∴CP∥x轴.∴y P=﹣2.∴x2+x﹣2=﹣2.解得x1=0(舍去),x2=﹣1,∴P(﹣1,﹣2).(ii)如图1,当H′在点C上方时.∵∠P′CH′=∠CAO,∴QA=QC,设OQ=m,则QC=QA=m+1,在Rt△QOC中,由勾股定理,得m2+22=(m+1)2,解得,m=,即OQ=;设直线C P′的解析式为y=kx﹣2,把Q(﹣,0)的坐标代入,得k﹣2=0,解得k=﹣,∴y=﹣x﹣2,由﹣x﹣2=x2+x﹣2,解得x1=0(舍去),x2=,此时y=﹣×(﹣)﹣2=,∴P′(﹣,).∴点P的坐标为(﹣1,﹣2)或(﹣,)②在x轴上取一点D,如图(2),过点D作DE⊥AC于点E,使DE=4.在Rt△AOC中,AC===,∵∠COA=∠DEA=90°,∠OAC=∠EAD,∴△AED∽△AOC.∴,即=,解得AD=2,∴D(1﹣2,0)或D(1+2,0).过点D作DP∥AC,交抛物线于P,设直线AC的解析式为y=kx+b.将点A、C的坐标代入抛物线的解析式得到:.解得:.∴直线AC的解析式为y=2x﹣2.∴直线PD的解析式为y=2x+4﹣2或y=2x﹣4﹣2,当2x+4﹣2=x2+x﹣2时,即x2﹣x﹣4=0,解得x1=,x2=;当2x﹣4﹣2=x2+x﹣2时,即x2﹣x+4=0,方程无实数根.∴点P的坐标为(,﹣1)或(,﹣).。
2015-2016年九年级数学期末考试题及答案

)10(题第xy OABC2015-2016年九年级数学期末考试题及答案一、选择题1.下列是二次函数的是( ) A .2y ax bx c =++ B.21y x x=+ C.()227y x x =-+ D.()()121y x x =+-2.剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A .()246y x =--B .()242y x =--C .()222y x =--D .()213y x =--4.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( ) A .(2,10) B .(-2,0) C .(2,10)或(-2,0) D .(10,2)或(-2,0)5.某服装店进价为30元的内衣,以50元售出,平均每月能售出300件,经试销发现每件内衣每涨价10元,其月销售量就减少10件,为实现每月利润8700元,设定价为x 元,则可得方程( )A .300(30)8700x -=B .()508700x x -=C .()()30300508700x x ---=⎡⎤⎣⎦D .()()303008700x x --=6.如图,在Rt △ABC 中∠A CB=90°,AC=6,AB=10,CD 是斜边AB上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定7.如果关于x 的方程()222110k x k x -++=有实数根,则k 的取值范围是( ) A.14k ≥-且0k ≠ B.14k ≤- C. 14k ≥- D. 14k ->且0k ≠8.点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( )A .40°B .100°C .40°或140°D .40°或100°9.若函数()21212y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A . 0B .0或2C .2或﹣2D .0,2或﹣210.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC .则下列结论:①0abc >②2404b ac a->;③10ac b -+=;④c OA OB a ⋅=-.其中正确结论的个数是( )A .4 B .3 C .2 D .1二、填空题11.方程2870x x ++=的根为12.关于x 的一元二次方程()221340a x x a a -+++-=有一个实数根是0x =,则a 的值为 13.若点()12,24P a a ---关于原点对称的点在第一象限内,则a 的整数解有 个 14.已知点())()1234,,,2,A y By C y -都在二次函数()22y x k =--+的图象上,则123,,y y y 的大小关系是15.16.三、解答题(1)213602x x --+= (2)()()7333x x x -=-18.请在同一坐标系中画出二次函数①221xy =;②2)2(21-=x y 的图象。
盐城市东台市2015届九年级上期末考试数学试题及答案

初三数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)1—4题 5—8题二、填空题(本大题共10小题,每小题3分,共30分)9. 9; 10. ; 11. 5; 12. ; 13. ;14. ; 15.; 16. ; 17.;18. .三、解答题(本大题共有10小题,共96分。
解答时应写出文字说明、证明过程或演算步骤.)19. (8分)20. (8分)设每月产值下降的百分率为x(1分)100(1-x)2=81x 1=1.9(舍去),x2=0.1(7分)答:每月产值下降的百分率为10%(8分)21. (8分)(略)(条件写正确得分,证明过程正确得分)22.(3+3+2=8分)解:(1)级的学生百分比为;∴扇形统计图中级所在的扇形的圆心角度数是;(2)抽样总人数为人,级的学生数为人;(3)安全知识竞赛中级和级的学生数为人.23. (5+5=10分)(1)共有种不同取法,能满足要求的有种,(5分)(2)共有种不同取法,能满足要求的有种,;(5分)(注:树状图或表格各3分)24.(10分)解:∵为南北方向,为东西方向。
∴和分别为直角三角形,在中,,海里,∴海里,在中,海里,∴海里.答:测量船从处航行到处的路程为海里.25.(5+5=10分)解:(1)略(2)如图,作,为垂足.∵,,∴,.在中,,∴,在中,,∴.∵,∴,∴.26.(5+5=10分)(1)①当时,∵,,∴t=1②当时,∵,∴,解得.∴或时,与相似.(2)如答图,过作于点,交于点,则有,∵,,∴且,∴.∴.∴,解得:.27.(4+4+4=12分)解:(1)(2)=∴当元时,年获利最大值为万元。
(3)令,得,整理得,解得,由图像可知,要使年获利不低于万元,销售单价应在到之间,又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于万元,则销售单价应为元。
28.(1)(2)(3)存在.理由如下:令, 则,解得,所以点为.∵,∴,∵是公共边,∴点到的距离小于等于点到的距离即可,∴点到的距离小于等于,又∵点在轴下方,∴当点的纵坐标为时,,∴,∴当时,.。
2015-2016年江苏省盐城市亭湖区初三上学期期末数学试卷及答案

2015-2016学年江苏省盐城市亭湖区初三上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定3.(3分)若x=﹣1是关于x的方程x2+mx﹣1=0的一个根,则m的值是()A.0B.1C.2D.﹣24.(3分)如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于()A.50°B.60°C.65°D.70°5.(3分)下列事件中属于随机事件的是()A.抛出的篮球会落下B.从装有黑球,白球的袋里摸出红球C.367人中有2人是同月同日出生D.买1张彩票,中500万大奖6.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元7.(3分)已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm2 8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.2二、填空题(共10小题,每小题3分,满分30分)9.(3分)当x满足时,分式在实数范围内有意义.10.(3分)一元二次方程x2=3x的解是:.11.(3分)甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是s甲2=3,s乙2=2.5,则射击成绩较稳定的是.12.(3分)抛物线y=2(x﹣3)2+5的顶点坐标为.13.(3分)若关于x的方程x2﹣6x+m=0有两个相等的实数根,则实数m=.14.(3分)某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是.15.(3分)若a2﹣3a=﹣1,则代数式﹣a2+3a+5值为.16.(3分)如图,等腰△ABC中,AB=AC,∠BAC=50°,以AB为直径的圆O与边AC交于点D,则∠DBC的度数为度.17.(3分)如图,边长为4cm的正方形ABCD,以点B为圆心、BD为半径画弧与BC边的延长线交于点E,则图中阴影部分的面积为cm2.18.(3分)如图,将正六边形ABCDEF放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2016次翻转之后,点C的坐标是.三、解答题(共10小题,满分96分)19.(8分)(1)计算:1﹣2﹣(3﹣π)0+(2)解方程:x2﹣4x﹣5=0.20.(8分)若x2﹣2x﹣1=0,先化简,后求出(x﹣1)2+x(x﹣2)的值.21.(8分)如图,已知圆O中,AB=CD,连结AC、BD.求证:AC=BD.22.(8分)如图,学校打算用长为16cm的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB为宽);(1)写出长方形的面积y(m2)与宽x(m)之间的函数关系式.(2)当x为何值时,长方形的面积最大?最大面积为多少?23.(10分)为了解某市去年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:40分;B:39﹣37分;C:36﹣34分;D:33﹣28分;E:27﹣0分)统计如图:根据上面提供的信息,回答下列问题:(1)这次抽样调查中,抽取的学生人数为多少人?并将条形统计图补充完整;(2)这次抽样调查中,成绩的中位数应属哪一组?(3)如果把成绩在34分以上(含34分)定为优秀,估计该市去年9000名九年级学生中,体育成绩为优秀的学生人数有多少人?24.(10分)如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字1234出现的次数16201410(1)计算上述试验中“4朝下”的频率是;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是.”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.25.(10分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线顶点A的坐标是;(2)抛物线与x轴的交点的坐标是;(3)通过观察图象,写出x2﹣4x>0时x的取值范围.26.(10分)风驰汽车销售公司12月份销售某型号汽车,进价为30万元/辆,售价为32万元/辆,当月销售量为x辆(x≤30,且x为正整数),销售公司有两种进货方案供选择:方案一:当x不超过5时,进价不变;当x超过5时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆(比如,当x=8时,该型号汽车的进价为29.7万元/辆);方案二:进价始终不变,当月每销售1辆汽车,生产厂另外返还给销售公司1万元/辆.(1)按方案一进货:①当x=11时,该型号汽车的进价为万元/辆;②当x>5时,写出进价y(万元/辆)与x(辆)的函数关系式;(2)当月该型号汽车的销售量为多少辆时,选用方案一和方案二销售公司获利相同?(注:销售利润=销售价﹣进价+返利).27.(12分)问题情境:在学完2.4节圆周角之后,老师出了这样一道题:如图1,已知点A为∠MPN的平分线PQ上的任一点,以AP为弦作圆O与边PM、PN分别交于B、C两点,连结AB、BC、CA,形成了圆O的内接△ABC.小明同学发现△ABC是一个等腰三角形,理由是∠ABC=∠APC,∠ACB=∠APB,又由角平分线得∠APC=∠APB,所以∠ABC=∠ACB,AB=AC得证.请你说出小明使用的是圆周角的哪个性质:(只写文字内容).深入探究:爱钻研的小慧却画出了图2,与边PN的反向延长线交于点C,其它条件不变,△ABC仍是等腰三角形,请你写出证明过程.拓展提高:妙想的小聪提出如图3,如果圆O与边PN相切于点C(与P点已重合),其它条件不变,△ABC仍是等腰三角形吗?若是,请写出证明过程;若不是,请说明理由.28.(12分)已知抛物线y=+bx+c与x轴相交,其中一个交点A(4,0),与y轴的交点B(0,2).(1)求b、c的值;(2)如图1,若将线段AB绕A点顺时针旋转90°至AD,求D点的坐标,并判断D点是否在此抛物线上;(3)在(2)中条件不变的情况下,如图2,点P为x轴上一动点,过P点作x 轴的垂线分别交BD、BA于M、N,交抛物线于Q,当P点从原点O出发,以每秒1个单位的速度沿x轴向右移动t秒时(0<t<4),此垂线也在向右平移.①当t为何值时,线段MQ的长度最大;②当t为何值时,以B、P、Q为顶点构成的三角形的面积与△BMN的面积相等.2015-2016学年江苏省盐城市亭湖区初三上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【解答】解:根据⊙O的直径为3cm,∴半径为1.5cm,点P到圆心O的距离OP=2cm>1.5cm,所以点P在⊙O外.故选:A.3.(3分)若x=﹣1是关于x的方程x2+mx﹣1=0的一个根,则m的值是()A.0B.1C.2D.﹣2【解答】解:把x=﹣1代入方程x2﹣mx﹣1=0,得:1+m﹣1=0,解方程得:m=0.故选:A.4.(3分)如图,点A、B、C是⊙O上三点,∠AOC=130°,则∠ABC等于()A.50°B.60°C.65°D.70°【解答】解:∵∠AOC=130°,∴∠ABC=∠AOC=65°.故选:C.5.(3分)下列事件中属于随机事件的是()A.抛出的篮球会落下B.从装有黑球,白球的袋里摸出红球C.367人中有2人是同月同日出生D.买1张彩票,中500万大奖【解答】解:A、抛出的篮球会落下是必然事件,故本选项错误;B、从装有黑球,白球的袋里摸出红球,是不可能事件,故本选项错误;C、367人中有2人是同月同日出生,是必然事件,故本选项错误;D、买一张彩票,中500万大奖是随机事件,故本选正确.故选:D.6.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.7.(3分)已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm2【解答】解:圆锥的侧面积=2π×3×5÷2=15π.故选:D.8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P (3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.2【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.二、填空题(共10小题,每小题3分,满分30分)9.(3分)当x满足x≠2时,分式在实数范围内有意义.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.10.(3分)一元二次方程x2=3x的解是:x1=0,x2=3.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.11.(3分)甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是s甲2=3,s乙2=2.5,则射击成绩较稳定的是乙.【解答】解:∵s甲2=3,s乙2=2.5,∴s甲2>s乙2,∴则射击成绩较稳定的是乙,故答案为:乙.12.(3分)抛物线y=2(x﹣3)2+5的顶点坐标为(3,5).【解答】解:因为y=2(x﹣3)2+5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,5);故答案为(3,5).13.(3分)若关于x的方程x2﹣6x+m=0有两个相等的实数根,则实数m=9.【解答】解:∵方程有两个相等实数根,∴△=(﹣6)2﹣4m=0,∴m=9.故答案为:9.14.(3分)某小区2012年屋顶绿化面积为2000平方米,计划2014年屋顶绿化面积要达到2880平方米,如果每年屋顶绿化面积的增长率相同,那么这个增长率是20%.【解答】解:设平均增长率为x,根据题意可列出方程为:2000(1+x)2=2880,(1+x)2=1.44.1+x=±1.2.所以x1=0.2,x2=﹣2.2(舍去).故x=0.2=20%.即:这个增长率为20%.故答案是:20%.15.(3分)若a2﹣3a=﹣1,则代数式﹣a2+3a+5值为6.【解答】解:∵a2﹣3a=﹣1,∴﹣a2+3a+5=﹣(﹣1)+5=6,故答案为6.16.(3分)如图,等腰△ABC中,AB=AC,∠BAC=50°,以AB为直径的圆O与边AC交于点D,则∠DBC的度数为25度.【解答】解:∵AB为圆O的直径,∴∠ADB=90°,∵∠BAC=50°,∴∠ABD=90°﹣∠BAC=40°,∵AB=AC,∴∠ABC==65°,∴∠DBC=∠ABC﹣∠ABD=25°.故答案为:25.17.(3分)如图,边长为4cm的正方形ABCD,以点B为圆心、BD为半径画弧与BC边的延长线交于点E,则图中阴影部分的面积为4π﹣8cm2.【解答】解:∵正方形ABCD的边长为4cm,∴BD=4cm,∠DBC=45°,∴S阴影=S扇形﹣S△BDC=﹣=4π﹣8cm2.故答案为:4π﹣8.18.(3分)如图,将正六边形ABCDEF放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2016次翻转之后,点C的坐标是(4033,).【解答】解:∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2016÷6=336,∴经过2016次翻转为第336循环,点C在开始时的位置,∵A(﹣2,0),∴AB=2,∴翻转前进的距离=2×2016=4032,如图,过点C作CG⊥x于G,则∠CBG=60°,∴AG=2×=1,BG=2×=,∴OG=4032+1=4033,∴点C的坐标为(4033,).故答案为:(4033,).三、解答题(共10小题,满分96分)19.(8分)(1)计算:1﹣2﹣(3﹣π)0+(2)解方程:x2﹣4x﹣5=0.【解答】解:(1)原式=1﹣1+3=3;(2)x2﹣4x﹣5=0(x﹣5)(x+1)=0解得:x1=5,x2=﹣1.20.(8分)若x2﹣2x﹣1=0,先化简,后求出(x﹣1)2+x(x﹣2)的值.【解答】解:(x﹣1)2+x(x﹣2)=x2﹣2x+1+x2﹣2x=2x2﹣4x+1,∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴原式=2x2﹣4x+1=2(x2﹣2x)+1=2×1+1=3.21.(8分)如图,已知圆O中,AB=CD,连结AC、BD.求证:AC=BD.【解答】解:∵AB=CD,∴弧AB=弧CD,∴弧AB+弧AD=弧CD+弧AD,∴弧BD=弧AC,∴BD=AC.22.(8分)如图,学校打算用长为16cm的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB为宽);(1)写出长方形的面积y(m2)与宽x(m)之间的函数关系式.(2)当x为何值时,长方形的面积最大?最大面积为多少?【解答】解:(1)当长方形的宽AB=x时,其长BC=16﹣2x,故长方形的面积y=x(16﹣2x)=﹣2x2+16x,即y=﹣2x2+16x;(2)y=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,y取得最大值,最大值为32,答:当x=4时,面积最大为32 m2.23.(10分)为了解某市去年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A:40分;B:39﹣37分;C:36﹣34分;D:33﹣28分;E:27﹣0分)统计如图:根据上面提供的信息,回答下列问题:(1)这次抽样调查中,抽取的学生人数为多少人?并将条形统计图补充完整;(2)这次抽样调查中,成绩的中位数应属哪一组?(3)如果把成绩在34分以上(含34分)定为优秀,估计该市去年9000名九年级学生中,体育成绩为优秀的学生人数有多少人?【解答】解:(1)根据题意得:70÷35%=200(人),所以抽取的学生人数为200人.B组的人数是:200﹣70﹣40﹣30﹣10=50(人),补图如下:(2)总人数为200,70+50=120,所以成绩的中位数应属B组.(3)根据题意得:=80%,9000×80%=7200(人),答:体育成绩为优秀的学生人数有7200人.24.(10分)如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字1 2 3 4出现的次数16201410(1)计算上述试验中“4朝下”的频率是;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是.”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.【解答】解:(1)“4朝下”的频率:;…(2分)故答案为:.(2)这种说法是错误的.在60次试验中,“2朝下”的频率为并不能说明“2朝下”这一事件发生的概率为.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.…(5分)(3)随机投掷正四面体两次,所有可能出现的结果如下: 第一次 第二次 12341 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3) 4(1,4) (2,4) (3,4) (4,4)…(8分)总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于4的结果有10种.…(9分)∴.…(10分)25.(10分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线顶点A的坐标是(2,﹣4);(2)抛物线与x轴的交点的坐标是(0,0)和(4,0);(3)通过观察图象,写出x2﹣4x>0时x的取值范围.【解答】解:(1)∵y=x2﹣4x=(x2﹣4x+4)﹣4=(x﹣2)2﹣4∴顶点为(2,﹣4),故答案为(2,﹣4).(2)令y=0得到x2﹣4x=0,∴x(x﹣4)=0∴x=0或4∴抛物线与X轴交点为(0,0)和(4,0),故答案为(0,0)和(4,0).(3)由图象可知:x>4或x<0.26.(10分)风驰汽车销售公司12月份销售某型号汽车,进价为30万元/辆,售价为32万元/辆,当月销售量为x辆(x≤30,且x为正整数),销售公司有两种进货方案供选择:方案一:当x不超过5时,进价不变;当x超过5时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆(比如,当x=8时,该型号汽车的进价为29.7万元/辆);方案二:进价始终不变,当月每销售1辆汽车,生产厂另外返还给销售公司1万元/辆.(1)按方案一进货:①当x=11时,该型号汽车的进价为29.4万元/辆;②当x>5时,写出进价y(万元/辆)与x(辆)的函数关系式;(2)当月该型号汽车的销售量为多少辆时,选用方案一和方案二销售公司获利相同?(注:销售利润=销售价﹣进价+返利).【解答】解:(1)①当x=11时,该型号汽车的进价为:30﹣0.1×(11﹣5)=29.4万元/辆,故答案为:29.4,②当x>5时,进价y(万元/辆)与x(辆)的函数关系式:y=30﹣0.1×(x﹣5)=30.5﹣0.1x,(2)设当月该型号汽车的销售量为x辆时,选用方案一和方案二销售公司获利相同,根据题意得:x[32﹣(30.5﹣0.1x)]=3x解得:x1=0(舍去),x2=15.答:该月售出15辆汽车时,选用方案一和方案二销售公司获利相同.27.(12分)问题情境:在学完2.4节圆周角之后,老师出了这样一道题:如图1,已知点A为∠MPN的平分线PQ上的任一点,以AP为弦作圆O与边PM、PN分别交于B、C两点,连结AB、BC、CA,形成了圆O的内接△ABC.小明同学发现△ABC是一个等腰三角形,理由是∠ABC=∠APC,∠ACB=∠APB,又由角平分线得∠APC=∠APB,所以∠ABC=∠ACB,AB=AC得证.请你说出小明使用的是圆周角的哪个性质:同弧所对的圆周角相等(只写文字内容).深入探究:爱钻研的小慧却画出了图2,与边PN的反向延长线交于点C,其它条件不变,△ABC仍是等腰三角形,请你写出证明过程.拓展提高:妙想的小聪提出如图3,如果圆O与边PN相切于点C(与P点已重合),其它条件不变,△ABC仍是等腰三角形吗?若是,请写出证明过程;若不是,请说明理由.【解答】解:问题情境:同弧所对的圆周角相等,深入探究:△ABC仍是等腰三角形,理由如下:∵∠ABC+∠APC=180°,∠APN+∠APC=180°,∴∠ABC=∠APN.∵PA 平分∠MPN,∴∠APB=∠APN,∴∠ABC=∠APB.而∠APB=∠ACB,∴∠ABC=∠ACB,∴AB=AC;拓展提高:△ABC仍是等腰三角形理由如下:作直径CH,连结AH,∵CH为直径,∴∠AHC=90°,∴∠H+∠ACH=90°.∵CN与圆O相切,∴CN⊥CH,∴∠ACN+∠ACH=90°,∴∠ACN=∠H.∵∠ABC=∠H,∴∠ACN=∠ABC.∵PA 平分∠MPN,∴∠ACB=∠CAN.∴∠ABC=∠ACB,∴AB=AC.28.(12分)已知抛物线y=+bx+c与x轴相交,其中一个交点A(4,0),与y轴的交点B(0,2).(1)求b、c的值;(2)如图1,若将线段AB绕A点顺时针旋转90°至AD,求D点的坐标,并判断D点是否在此抛物线上;(3)在(2)中条件不变的情况下,如图2,点P为x轴上一动点,过P点作x 轴的垂线分别交BD、BA于M、N,交抛物线于Q,当P点从原点O出发,以每秒1个单位的速度沿x轴向右移动t秒时(0<t<4),此垂线也在向右平移.①当t为何值时,线段MQ的长度最大;②当t为何值时,以B、P、Q为顶点构成的三角形的面积与△BMN的面积相等.【解答】解:(1)将A、B点坐标代入,得,解得;(2)过点D作DH⊥x 轴于点H,如图1:,由旋转90°,得BA=AD,∠BAD=90°.∵∠BAO+∠DAH=90°,∠DAH+∠D=90°,∴∠BAO=∠D.在△AOB和△DHA中,,△BOA≌△AHD(AAS),AH=OB=2,DH=OA=4,OH=OA+AH=6,D(6,4),当x=6时,代入中得y=4,所以D点在抛物线上;(3)①BD:,所以当x=t 时,,,MQ=y M﹣y Q==,当t=3时,MQ最大.=S△BMN,就是QP=MN,以抛物线与x轴的另一交点(,0)为界分类:②S△BQP(Ⅰ)0<t<,y Q=y M﹣y N,,得,另一解(舍去);(Ⅱ)≤t<4,﹣y Q=y M﹣y N,,方程无实数根;综上所述:得,以B、P、Q为顶点构成的三角形的面积与△BMN的面积相等.。
九年级上册盐城数学期末试卷试卷(word版含答案)

九年级上册盐城数学期末试卷试卷(word 版含答案)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm4.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断5.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 6.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,27.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .118.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 729.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2 B .y =32x +2C .y =3()22x -D .y =3()22x +10.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的11.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3412.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题13.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .14.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.15.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 16.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;17.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.18.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.19.数据8,8,10,6,7的众数是__________.20.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.21.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.22.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.23.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.24.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题25.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标. 26.解方程: (1)x 2+4x ﹣21=0 (2)x 2﹣7x ﹣2=027.已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.(1)直接写出A、B、C、D坐标;(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.(3)若直线y=13x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.28.如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.29.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?30.(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P,求证:DP EP BQ CQ=;(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .31.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.32.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可. 【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5, ∵沿DE 折叠A 落在BC 边上的点F 上, ∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y , ∵BF =2,BC =5, ∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°, ∴∠DFB =∠FEC , ∵∠C =∠B , ∴△DBF ∽△FCE , ∴BD BF DFFC CE EF==, 即2535x x y y-==-, 解得:x =218, 即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.B解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.6.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.7.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.8.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.9.D解析:D 【解析】 【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可. 【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2. 故选:D . 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.11.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】∵AB为O的直径90ADB∴∠=︒22226511 BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以解析:16【解析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n14.46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.15.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 16.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.17.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,5==∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:32. 【点睛】 本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM 为边,另两边为定值的的三角形是解答此题的关键和难点.18.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,, 455【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.19.8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解解析:8【解析】【分析】根据众数的概念即可得出答案.【详解】众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8故答案为:8.【点睛】本题主要考查众数,掌握众数的概念是解题的关键.20.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 21.1,,【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答. 【详解】解:如图:当DP∥AB 时∴△DCP∽△BCA∴即,解得DP=1如图:当P 在AB 上,即DP∥AC∴△DC解析:1,83,32【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】 本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.22.【解析】【分析】 根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.23.相离 【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离 【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离24.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣2×32x =1,解得:x =故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.三、解答题25.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】 【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解; (2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++,得093542b cb c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++. (2)由图像可知,当12y y >时,2x <-或3x >. (3)令0x =,则3y =,∴()0,3C .∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==. 设点(),3E a a -,则()3,6D a a +-,∴()()263233a a a -=-++++,∴11a =,26a =-(舍去).∴()4,5D -. 【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.26.(1)x 1=3,x 2=﹣7;(2)x 1x 2【解析】 【分析】(1)根据因式分解法解方程即可; (2)根据公式法解方程即可. 【详解】解:(1)x 2+4x ﹣21=0 (x ﹣3)(x+7)=0 解得x 1=3,x 2=﹣7; (2)x 2﹣7x ﹣2=0 ∵△=49+8=57∴x =72±解得x 1=72+x 2=72-. 【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键. 27.(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣32);(2)存在,(12,﹣154);(3)﹣15736<t <﹣1 【解析】 【分析】(1)可通过二次函数的解析式列出方程,即可求出相关点的坐标;(2)存在,先求出直线BC 和直线BD 的解析式,设点P 的坐标为(x ,x 2﹣2x ﹣3),则E (x ,0),H (x ,12x ﹣32),G (x ,x ﹣3),列出等式方程,即可求出点P 坐标; (3)求出直线y =13x+t 经过点B 时t 的值,再列出当直线y =13x+t 与抛物线y =x 2﹣2x ﹣3只有一个交点时的方程,使根的判别式为0,求出t 的值,即可写出t 的取值范围. 【详解】解:(1)在y =x 2﹣2x ﹣3中,当x =0时,y =﹣3;当y =0时,x 1=﹣1,x 2=3, ∴A (﹣1,0),B (3,0),C (0,﹣3), ∵D 为OC 的中点, ∴D (0,﹣32); (2)存在,理由如下: 设直线BC 的解析式为y =kx ﹣3, 将点B (3,0)代入y =kx ﹣3, 解得k =1,∴直线BC 的解析式为y =x ﹣3, 设直线BD 的解析式为y =mx ﹣32, 将点B (3,0)代入y =mx ﹣32, 解得m =12, ∴直线BD 的解析式为y =12x ﹣32,设点P的坐标为(x,x2﹣2x﹣3),则E(x,0),H(x,12x﹣32),G(x,x﹣3),∴EH=﹣12x+32,HG=12x﹣32﹣(x﹣3)=﹣12x+32,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,当EH=HG=GP时,﹣12x+32=﹣x2+3x,解得x1=12,x2=3(舍去),∴点P的坐标为(12,﹣154);(3)当直线y=13x+t经过点B时,将点B(3,0)代入y=13x+t,得,t=﹣1,当直线y=13x+t与抛物线y=x2﹣2x﹣3只有一个交点时,方程13x+t=x2﹣2x﹣3只有一个解,即x2﹣73x﹣3﹣t=0,△=(73)2﹣4(﹣3﹣t)=0,解得t=﹣157 36,∴由图2可以看出,当直线y=13x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点时,t的取值范围为:﹣15736<t<﹣1时.【点睛】本题考查了二次函数与一次函数的综合,涉及了求二次函数与坐标轴的交点坐标、一次函数的解析式、解一元二次方程、确定一次函数与二次函数的图像的交点个数,灵活运用一次函数与二次函数的图像与性质是解题的关键.28.(1)△FAG是等腰三角形,理由见解析;(2)成立,理由见解析;(3)BC=523.【解析】【分析】(1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;(2)成立,同(1)的证明方法即可得答案;(3)由(2)知∠DAC=∠AGB,推出∠BAD=∠ABG,得到F为BG的中点根据直角三角形的性质得到AF=BF=12BG=13,求得AD=AF﹣DF=13﹣5=8,根据勾股定理得到BD=12,AB=ABC=∠ABD,∠BAC=∠ADB=90°可证明△ABC∽△DBA,根据相似三角形的性质即可得到结论.【详解】(1)△FAG等腰三角形;理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(2)成立,理由如下:∵BC为直径,∴∠BAC=90°,∴∠ABE+∠AGB=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵AE AB=,∴∠ABE=∠ACD,∴∠DAC=∠AGB,∴FA=FG,∴△FAG是等腰三角形.(3)由(2)知∠DAC=∠AGB,且∠BAD+∠DAC=90°,∠ABG+∠AGB=90°,∴∠BAD=∠ABG,∴AF=BF,∵AF=FG,∴BF=GF,即F为BG的中点,∵△BAG为直角三角形,∴AF=BF=12BG=13,∵DF=5,∴AD=AF﹣DF=13﹣5=8,∴在Rt△BDF中,BD12,∴在Rt△BDA中,AB=∵∠ABC=∠ABD,∠BAC=∠ADB=90°,∴△ABC∽△DBA,∴BCBA=ABDB,∴BC=523,∴⊙O的直径BC=523.【点睛】本题考查圆周角定理、相似三角形的判定与性质及勾股定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.29.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差 ∴成绩较为整齐的是乙队. 【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.30.(1)证明见解析;(2;②证明见解析. 【解析】 【分析】(1)易证明△ADP ∽△ABQ ,△ACQ ∽△ADP ,从而得出DP EP BQ CQ=;(2)①根据等腰直角三角形的性质和勾股定理,求出BC 边上的高2,根据△ADE ∽△ABC ,求出正方形DEFG 的边长3.从而,由△AMN ∽△AGF 和△AMN 的MN边上高6,△AGF 的GF 边上高2,GF=3,根据 MN :GF 等于高之比即可求出MN ;②可得出△BGD ∽△EFC ,则DG•EF=CF•BG ;又DG=GF=EF ,得GF 2=CF•BG ,再根据(1)DM MN ENBG GF CF ==,从而得出结论. 【详解】解:(1)在△ABQ 和△ADP 中, ∵DP ∥BQ , ∴△ADP ∽△ABQ , ∴DP APBQ AQ=, 同理在△ACQ 和△APE 中,EP APCQ AQ=, ∴DP PEBQ QC=; (2)①作AQ ⊥BC 于点Q .∵BC 边上的高, ∵DE=DG=GF=EF=BG=CF∴DE :BC=1:3 又∵DE ∥BC ∴AD :AB=1:3, ∴AD=13,DE=23, ∵DE 边上的高为26,MN :GF=26:22,∴MN :23=26:22,∴MN=29. 故答案为:29.②证明:∵∠B+∠C=90°∠CEF+∠C=90°, ∴∠B=∠CEF , 又∵∠BGD=∠EFC , ∴△BGD ∽△EFC , ∴DG BGCF EF=, ∴DG•EF=CF•BG , 又∵DG=GF=EF , ∴GF 2=CF•BG , 由(1)得DM MN ENBG GF FC==, ∴MN MN DM ENGF GF BG CF =,∴2()MN DM ENGF BG CF=, ∵GF 2=CF•BG , ∴MN 2=DM•EN . 【点睛】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.31.1m =,此时方程的根为121x x == 【解析】 【分析】直接利用根的判别式≥0得出m 的取值范围进而解方程得出答案.【详解】解:∵关于x 的方程x 2-2x+2m-1=0有实数根, ∴b 2-4ac=4-4(2m-1)≥0, 解得:m≤1, ∵m 为正整数, ∴m=1,∴此时二次方程为:x 2-2x+1=0, 则(x-1)2=0, 解得:x 1=x 2=1. 【点睛】此题主要考查了根的判别式,正确得出m 的值是解题关键.32.(1)3m ;(2)生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2 【解析】 【分析】(1)设垂直于墙的一边长为x 米,则平行于墙的一边长为(12-3x )米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可; (2)设围成生物园的面积为y ,由题意可得:y =x (12﹣3x )且53≤x <4,从而求出y 的最大值即可. 【详解】设这个生物园垂直于墙的一边长为xm , (1)由题意,得x (12﹣3x )=9, 解得,x 1=1(不符合题意,舍去),x 2=3, 答:这个生物园垂直于墙的一边长为3m ; (2)设围成生物园的面积为ym 2. 由题意,得()()21233212y x x x -+==--, ∵12371230x x -≤⎧⎨-⎩>∴53≤x <4 ∴当x =2时,y 最大值=12,12﹣3x =6,答:生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.。
盐城市数学九年级上册期末试卷(含答案)

盐城市数学九年级上册期末试卷(含答案)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:3 3.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠AC D=α,则cosα的值为( ) A .45 B .34C .43D .35 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π 5.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( )A .小于12B .等于12C .大于12D .无法确定6.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y += 7.已知反比例函数k y x =的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限 8.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°9.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 10.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .3 11.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1912.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0 B .c =1 C .c =0或c =1 D .c =0或c =﹣113.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x ﹣2实数根的情况是 ( ) A .有三个实数根 B .有两个实数根C .有一个实数根D .无实数根 14.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110° 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断 二、填空题16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____.18.一元二次方程290x 的解是__.19.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.20.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .21.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.22.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;23.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2=,扇形的圆心角120r cmθ=,则该圆锥的母线长l为___cm.24.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.x+=x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=25.像233,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=3时,9=3满足题意;当x2=﹣1时,1=﹣1不符合题意;所以原方程的解是x=3.运用以上x+=1的解为_____.经验,则方程x+526.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.27.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.28.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.29.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____.30.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.三、解答题31.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).32.如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E 在边AB上.(1)求证:△ADG∽△FEB;(2)若AD=2GD,则△ADG面积与△BEF面积的比为.33.解方程:(1)x2﹣2x﹣1=0;(2)(2x﹣1)2=4(2x﹣1).34.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DE C′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.(1)V D= ,C 坐标为;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).35.如图,点P是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由. ②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13 ,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x ,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M ,N ,P 为⊙O 上的三点,且∠P=β,sinβ=35 ,求sin2β的值.37.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.38.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________;(2)求线段QH 的长(用含t 的式子表示); (3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m a m b--的值为 ;当点M 不在y 轴上时,求证:m a m b--为一个定值,并求出这个值.40.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.A解析:A【解析】 【分析】根据勾股定理求出AB 的长,在求出∠ACD 的等角∠B ,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3,∴2222AB AC BC 345=+=+=,∵CD ⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.4.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.B解析:B【解析】【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B .【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键. 6.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.7.B解析:B【解析】【分析】【详解】解:将点(m ,3m )代入反比例函数k y x=得, k=m •3m=3m 2>0;故函数在第一、三象限,故选B . 8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.10.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.11.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.12.C解析:C【解析】【分析】根据二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,可知二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点两种情况,然后分别计算出c 的值即可解答本题.【详解】解:∵二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,∴二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点或者与x 轴有两个公共点,其中一个为原点,当二次函数y =x 2﹣2x +c 的图象与x 轴只有一个公共点时,(﹣2)2﹣4×1×c =0,得c =1;当二次函数y =x 2﹣2x +c 的图象与轴有两个公共点,其中一个为原点时,则c =0,y =x 2﹣2x =x (x ﹣2),与x 轴两个交点,坐标分别为(0,0),(2,0);由上可得,c 的值是1或0,故选:C .【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.13.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.14.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.18.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 20.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BEN K 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.【详解】解:如 解析:133【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL 的面积减去梯形BENK 的面积,再利用相似三角形的性质求出BK 、EN 的长从而求出梯形的面积即可得出答案.解:如图所示,∵四边形MEGH 为正方形,∴NE GH∴△AEN ~△AHG∴NE:GH=AE:AG ∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9 ∴NE=209同理可求BK=89 梯形BENK 的面积:12081432993⎛⎫⨯+⨯= ⎪⎝⎭ ∴阴影部分的面积:14133333⨯-= 故答案为:133. 【点睛】 本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.21.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.22.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.23.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 24.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE ,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE =15(5﹣2)×180°=108°,BC =CD =DE ,得出 BC =CD =DE ,由圆周角定理即可得出答案.【详解】∵⊙O 是正五边形ABCDE 的外接圆,∴∠BAE =15(n ﹣2)×180°=15(5﹣2)×180°=108°,BC =CD =DE , ∴BC =CD =DE , ∴∠CAD =13×108°=36°; 故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.25.x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.26.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 27.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.28.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长;(2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.29.2+【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣2×32x =1,解得:x =故答案为:【点睛】 本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.30.【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中AB ADABF DBF DE=⎧⎪∠=∠⎨⎪=⎩∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等边三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°3故答案为:32. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,33BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到33401603x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.32.(1)证明见解析;(2)4.【解析】【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,∴∠A+∠B=90°,∵四边形DEFG 是矩形,∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°,∴∠A+∠AGD=90°,∴∠B=∠AGD ,且∠GDA=∠FEB=90°,∴△ADG ∽△FEB .(2)解:∵△ADG ∽△FEB , ∴AD EF DG BE=, ∵AD =2GD, ∴2AD DG=, ∴224ADG FEB S S ==. 【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键.33.(1)x=2;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.34.(1)点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).(2)5;45;25.(3)①当点C′在线段BC上时,S=14t2;②当点C′在CB的延长线上,S=−1312t2+85t−203;③当点E在x轴负半轴, S=t2−45t+20.【解析】【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=5时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=12BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△C DE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=5时,B和C′点重合,如图1所示,此时S=12×12CE•OB=54,∴CE=52,∴BE=52.∵OB=2,∴OE2253222⎛⎫-=⎪⎝⎭,∴OC=OE+EC=32+52=4,BC222425+=CD55÷5=1(单位长度/秒), ∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t =k 时,点D 与点B 重合,此时k =1BC =25; 当t =m 时,点E 和点O 重合,如图2所示.sin ∠C =OB BC =25=5,cos ∠C =25525OC BC ==, OD =OC •sin ∠C =4×5=455,CD =OC •cos ∠C =4×25=855. ∴m =1CD =855,n =12BD •OD =12×(25−855)×455=45. 故答案为:855;45;25. (3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑:①当点C ′在线段BC 上时,如图3所示.此时CD =t ,CC ′=2t ,0<CC ′≤BC ,∴0<t 5∵tan ∠C =12OB OC =, ∴DE =CD •tan ∠C =12t , 此时S =12CD •DE =14t2; ②当点C ′在CB 的延长线上,点E 在线段OC 上时,如图4所示.此时CD =t ,BC ′=2t−25,DE =CD •tan ∠C=12t ,CE =CD cos C∠=5t ,OE =OC−CE =4−5t , ∵CC BC CE OC '⎧⎨≤⎩>,即22554t t ⎧⎪⎨≤⎪>, 解得:5<t ≤855. 由(1)可知tan ∠OEF =232=43, ∴OF =OE •tan ∠OEF =162533-t ,BF =OB−OF =251033t -, ∴FM =BF •cos ∠C =4453t -. 此时S =12CD•DE−12BC ′•FM =−2138520123t t +-; ③当点E 在x 轴负半轴,点D 在线段BC 上时,如图5所示.此时CD =t ,BD =BC−CD =5,CE 5t ,DF =2452BD BD t tan C==∠, ∵CE OC CD BC ⎧⎨≤⎩>,即5425t t ⎪⎨⎪≤⎩>, 85<t ≤5此时S =12BD •DF =12×2×(25−t)2=t2−45t +20. 综上,当点C ′在线段BC 上时, S =14t2;当点C ′在CB 的延长线上, S=−1312t2+85t−203;当点E 在x 轴负半轴, S =t2−45t +20. 【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC 、OC 的长度;(2)根据图象能够了解当t =m 和t =k 时,点DE 的位置;(3)分三种情况求出S 关于t 的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S 关于t 的函数解析式.35.(1)①P 与直线相切.理由见解析;②()1,1P 或()5,3P -;(2)9131,4⎛⎫+- ⎪⎝⎭或9131,4⎛⎫-+- ⎪⎝⎭. 【解析】【分析】(1)①作直线l 的垂线,利用两点之间的距离公式及二次函数图象上点的特征证明线段相等即可;②利用两点之间的距离公式及二次函数图象上点的特征构建方程即可求得答案.(2)利用两点之间的距离公式分别求得各线段的长,根据“和谐点”的定义及二次函数图象上点的特征构建方程即可求得答案.【详解】(1)①P 与直线相切.如图,过P 作PQ ⊥直线l ,垂足为Q ,设()P m n ,.则()2221PB m n =-+,()222PQ n =- 21(1)14n m =--+,即:()2144m n -=-。
2015-2016学年江苏盐城景山中学九年级上期末数学试卷(带解析)

绝密★启用前2015-2016学年江苏盐城景山中学九年级上期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:96分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,在平面直角坐标系xOy 中,抛物线y=+bx+c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若AB=3,则点M 到直线l 的距离为( ).A .B .C .2D .【答案】B. 【解析】试题分析:设M 到直线l 的距离为m ,则有+bx+c=m 两根的差为3,又+bx+c=0试卷第2页,共23页时,△=0,列式求解即可.∵抛物线y=+bx+c 与x 轴只有一个交点,∴△=﹣4ac=0,∴﹣4c=0,则有+bx+c=m 两根的差为3,可得:﹣4(c ﹣m )=9,解得:m=.故选:B .考点:抛物线与x 轴的交点. 2、已知二次函数y=+bx+c 的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:(1)ac >0;(2)方程ax2+bx+c=0的两根是=﹣1,=3;(3)2a ﹣b=0;(4)当x >1时,y 随x 的增大而减小;则以上结论中正确的有( ).A .1个B .2个C .3个D .4个【答案】B. 【解析】试题分析:由二次函数y=+bx+c 的图象可得:抛物线开口向下,即a <0,抛物线与y 轴的交点在y 轴正半轴,即c >0,ac <0,(1)错误;由图象可得抛物线与x 轴的一个交点为(3,0),又对称轴为直线x=1,抛物线与x 轴的另一个交点为(﹣1,0),则方程+bx+c=0的两根是=﹣1,=3,(2)正确.∵对称轴为直线x=1,∴=1,即2a+b=0,(3)错误;由函数图象可得:当x >1时,y 随x 的增大而减小,故(4)正确;综上所知正确的有(2)(4)两个. 故选:B .考点:二次函数图象与系数的关系.3、如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm ),则该圆的半径为( ).A .5cmB .cmC .cmD .cm【答案】C. 【解析】试题分析:根据题意可知,圆内的弦长为3cm ,作出弦的弦心距,根据垂径定理和勾股定理,可以求出圆的半径.如图示,连接OA ,根据题意知,PC=2cm ,OP ⊥AB ,∴AP=BP ,∵AB=3cm ,∴AP=cm ,在Rt △AOP 中,设OA=x ,则0P=x ﹣2,根据勾股定理得,,解得,x=.故选:C .考点:垂径定理;勾股定理.4、一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( ).A .B .C .D .1【答案】B. 【解析】试题分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出概率即可.用A 和a 分别表示粉色有盖茶杯的杯盖和茶杯;用B 和b 分别表示白色有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa 、Ab 、试卷第4页,共23页Ba 、Bb ,所以颜色搭配正确的概率是.故选:B .考点:列表法与树状图法. 5、在抛物线y=﹣4x ﹣4上的一个点是( ).A .(4,4)B .(,)C .(3,﹣1)D .(﹣2,﹣8)【答案】B. 【解析】试题分析:把x=4、、3、﹣2分别代入y=﹣4x ﹣4,计算出对应的函数值后进行判断.∵当x=4时,y=﹣4x ﹣4=﹣4;当x=时,y=﹣4x ﹣4=;当x=3时,y=﹣4x ﹣4=﹣7;当x=﹣2时,y=﹣4x ﹣4=8;∴点(,)在抛物线y=﹣4x ﹣4上. 故选:B .考点:二次函数图象上点的坐标特征.6、一组数据2、5、4、3、5、4、5的中位数和众数分别是( ). A .3.5,5B .4,4C .4,5D .4.5,4【答案】C. 【解析】试题分析:根据众数和中位数的概念求解.这组数据按照从小到大的顺序排列为:2,3,4,4,5,5,5,则众数为5,中位数为4. 故选:C.考点:众数;中位数.7、在Rt△ABC中,∠C=90°,如果把Rt△ABC的各边的长都缩小为原来的,则∠A 的正切值().B.扩大为原来的4倍A.缩小为原来的D.没有变化C.缩小为原来的【答案】D.【解析】试题分析:根据题意得到锐角A的对边与邻边的比值不变,然后根据正切的定义可判断锐角A的正切值不变.∵在Rt△ABC中,如果每个边都缩小为原来的,∴锐角A的对边与邻边的比值不变,∴锐角A的正切值不变.故选:D.考点:锐角三角函数的定义.8、已知四条线段满足,将它改写成为比例式,下面正确的是(). A.B.C.D.【答案】C.【解析】试题分析:根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.根据四条线段满足,可得ab=cd,A、如果,那么ad=cb,故此选项错误;B、如果,那么ad=bc,故此选项错误;C、如果,那么ab=cd,故此选项正确;D、如果,那么ac=bd,故此选项错误.故选:C.考点:比例线段.试卷第6页,共23页第II 卷(非选择题)二、填空题(题型注释)9、△ABC 中,AD 是BC 边上的高,BD=3,CD=1,AD=2,P 、Q 、R 分别是BC 、AB 、AC 边上的动点,则△PQR 周长的最小值为 .【答案】.【解析】试题分析:如图1中,作P 点关于AB 的对称点P′,作P 点关于AC 的对称点P″,连接P′P″,与AB 交于点Q′,与AC 交于点R′,连接PP′交AB 于M ,连接PP″交AC 于N ,此时△PQ′R′的周长最小,这个最小值=P′P″,∵PM=MP′,PN=NP″,∴P′P″=2MN ,∴当MN 最小时P′P″最小.如图2中,∵∠AMP=∠ANP=90°,∴A 、M 、P 、N 四点共圆,线段AP 就是圆的直径,MN 是弦,∵∠MAN 是定值,∴直径AP 最小时,弦MN 最小,∴当点P 与点D 重合时,PA 最小,此时MN 最小.如图3中,∵在RT △ABD 中,∠ADB=90°,AD=2,DB=3,∴AB=,在RT △ADC 中,∵∠ADC=90°,AD=2,CD=1,∴AC=,∵DM ⊥AB ,DN ⊥AC ,∴•AC•DN=•DC•AD ,∴DN=,AN=,∵∠MAD=∠DAB ,∠AMD=∠ADB ,∴△AMD ∽△ADB ,∴,∴=AM•AB ,同理=AN•AC ,∴AM•AB=AN•AC ,∴,∵∠MAN=∠CAB ,∴△AMN ∽△ACB ,∴,∴,∴MN=,∴△PQR 周长的最小值=P′P″=2MN=.故答案为:.考点:轴对称-最短路线问题.10、若A (,),B (,),C (1,)为二次函数y=+4x ﹣5的图象上的三点,则、、的大小关系是 .【答案】<<.【解析】试题分析:将二次函数y=+4x ﹣5配方得,所以抛物线开口向上,对称轴为x=﹣2,因为A 、B 、C 三点中,B 点离对称轴最近,C 点离对称轴最远,所以<<.故答案为:<<.考点:二次函数图象上点的坐标特征.11、如图,⊙O 与正方形ABCD 的两边AB 、AD 相切,且DE 与⊙O 相切于E 点.若正方形ABCD 的周长为44,且DE=6,则sin ∠ODE= .试卷第8页,共23页【答案】.【解析】试题分析:求出正方形ANOM ,求出AM 长,根据勾股定理切点OD 的长,根据解直角三角形求出即可.设切线AD 的切点为M ,切线AB 的切点为N ,连接OM 、ON 、OE ,∵四边形ABCD 是正方形,正方形ABCD 的周长为44,∴AD=AB=11,∠A=90°,∵圆O 与正方形ABCD 的两边AB 、AD 相切,∴∠OMA=∠ONA=90°=∠A ,∵OM=ON ,∴四边形ANOM 是正方形,∵AD 和DE 与圆O 相切,∴OE ⊥DE ,DM=DE=6,∴AM=11﹣6=5,∴OM=ON=OE=5,在RT △ODM 中,OD===,∵OE=OM=5,∴sin ∠ODE==.故答案为: .考点:切线的性质;正方形的性质. 12、已知a 是方程+3x ﹣6=0的一个根,则代数式3a (2a+1)﹣(2a+1)(2a ﹣1)的值为 .【答案】7. 【解析】试题分析:首先把代数式3a (2a+1)﹣(2a+1)(2a ﹣1)去括号合并同类项得到+3a+1,然后把a 代入方程+3x ﹣6=0得到+3a=6,所以+3a+1=6+1=7.即代数式3a(2a+1)﹣(2a+1)(2a ﹣1)的值为7. 故答案为:7.考点:一元二次方程的解.13、如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是 .【答案】.【解析】试题分析:连接AC ,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC 、AB ,根据正切的定义计算即可.连接AC ,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=,则tan ∠ABC==.故答案为:.考点:锐角三角函数的定义;勾股定理;勾股定理的逆定理.14、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积为____________.【答案】8π.【解析】试题分析:求出圆锥的底面圆周长,利用公式S=LR 即可求出圆锥的侧面积.圆锥的地面圆周长为2π×2=4π,则圆锥的侧面积为×4π×4=8π. 故答案为:8π. 考点:圆锥的计算.15、小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是 .试卷第10页,共23页【答案】.【解析】试题分析:根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.观察这个图可知:黑色区域(4块)的面积占总面积(9块)的,则它最终停留在黑色方砖上的概率是.故答案为:.考点:几何概率.16、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:=36,=158,则小麦长势比较整齐的试验田是 .【答案】甲. 【解析】试题分析:根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.由方差的意义,观察数据可知甲块试验田的方差小,故甲试验田小麦长势比较整齐. 故答案为:甲. 考点:方差.17、已知△ABC 与△DEF 相似且周长比为2:5,则△ABC 与△DEF 的相似比为 .【答案】2:5. 【解析】试题分析:直接根据相似三角形性质进行解答即可.∵△ABC 与△DEF 相似且周长比为2:5,∴两三角形的形似比为2:5. 故答案为:2:5.考点:相似三角形的性质. 18、一元二次方程﹣x=0的根是 .【答案】=0,=1.【解析】试题分析:方程左边分解因式后得:x (x ﹣1)=0,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,即x=0或x ﹣1=0,解得=0,=1.故答案为:=0,=1.考点:解一元二次方程——因式分解法.三、解答题(题型注释)19、(2015秋•盐城校级期末)如图,二次函数y=+bx ﹣的图象与x 轴交于点A(﹣3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E . (1)b= ;点D 的坐标: ;(2)线段AO 上是否存在点P (点P 不与A 、O 重合),使得OE 的长为1; (3)在x 轴负半轴上是否存在这样的点P ,使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.【答案】(1)1;(﹣3,4);(2)线段AO 上不存在点P (点P 不与A 、O 重合),使得OE 的长为1 ;(3).【解析】试题分析:(1)利用点在二次函数图象上,代入即可求得b ,将二次函数换成交点式,即能得出B 点的坐标,由AD=AB 可算出D 点坐标;(2)假设存在,由DP ⊥AE ,找出∠EPO=∠PDA ,利用等角的正切相等,可得出一个关于OP 长度的一元二次方程,由方程无解可得知不存在这样的点;试卷第12页,共23页(3)利用角和边的关系,找到全等,再利用三角形相似,借助相似比即可求得AM ,求出△ADM 的面积即是所求.试题解析:(1)∵点A (﹣3,0)在二次函数y=+bx ﹣的图象上,∴0=﹣3b ﹣,解得b=1,∴二次函数解析式为y=+x ﹣=(x+3)(x ﹣1),∴点B (1,0),AB=1﹣(﹣3)=4, ∵四边形ABCD 为正方形, ∴AD=AB=4, ∴点D (﹣3,4), 故答案为:1;(﹣3,4).(2)直线PE 交y 轴于点E ,如图1,假设存在点P ,使得OE 的长为1,设OP=a ,则AP=3﹣a , ∵DP ⊥AE ,∠APD+∠DPE+∠EPO=180°, ∴∠EPO=90°﹣∠APD=∠ADP ,tan ∠ADP==,tan ∠EPO==,∴=,即﹣3a+4=0,△=﹣4×4=﹣7<0,无解,故线段AO 上不存在点P (点P 不与A 、O 重合),使得OE 的长为1. (3)假设存在这样的点P ,DE 交x 轴于点M ,如图2,∵△PED是等腰三角形,∴DP=PE,∵DP⊥PE,四边形ABCD为正方形∴∠EPO+∠APD=90°,∠DAP=90°,∠PAD+∠APD=90°,∴∠EPO=∠PDA,∠PEO=∠DPA,在△PEO和△DAP中,∠EPO=∠PDA,DP=PE,∠PEO=∠DPA,∴△PEO≌△DAP,∴PO=DA=4,OE=AP=PO﹣AO=4﹣3=1,∴点P坐标为(﹣4,0).∵DA⊥x轴,∴DA∥EO,∴∠ADM=∠OEM(两直线平行,内错角相等),又∵∠AMD=∠OME(对顶角),∴△DAM∽EOM,∴,∵OM+MA=OA=3,∴MA=×3=,△PED与正方形ABCD重叠部分△ADM面积为×AD×AM=×4×=.答:存在这样的点P,点P的坐标为(﹣4,1),此时△PED与正方形ABCD重叠部分的面积为.考点:二次函数综合题.试卷第14页,共23页20、(2010•通化)如图,四边形ABCD 中,AD=CD ,∠DAB=∠ACB=90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E . (1)求证:AB•AF=CB•CD ;(2)已知AB=15cm ,BC=9cm ,P 是线段DE 上的动点.设DP="x" cm ,梯形BCDP 的面积为y.①求y 关于x 的函数关系式.②y 是否存在最大值?若有求出这个最大值,若不存在请说明理由.【答案】(1)证明详见解析;(1)①y=3x+27;②存在,当x=时,y 有最大值,此时y=. 【解析】试题分析:(1)先根据AD=CD ,DE ⊥AC 判断出DE 垂直平分AC ,再由线段垂直平分线的性质及直角三角形的性质可得出∠DCF=∠DAF=∠B ,在Rt △DCF 和Rt △ABC 中,∠DFC=∠ACB=90°,∠DCF=∠B 可知△DCF ∽△ABC ,由相似三角形的对应边成比例即可得出答案;(2)①先根据勾股定理求出AC 的长,再由梯形的面积公式即可得出x 、y 之间的函数关系式;②由EF ∥BC ,得△AEF ∽△ABC ,由相似三角形的对应边成比例可求出AB 、EF 的长,进而可得出△AEF ∽△DEA 及DF 的长,根据DE=DF+FE 可求出DE 的长,由①中的函数关系式即可得出结论.试题解析:(1)∵AD=CD ,DE ⊥AC , ∴DE 垂直平分AC ,∴AF=CF ,∠DFA=∠DFC=90°,∠DAF=∠DCF . ∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°, ∴∠DCF=∠DAF=∠B .在Rt △DCF 和Rt △ABC 中,∠DFC=∠ACB=90°,∠DCF=∠B , ∴△DCF ∽△ABC .∴,即,∴AB•AF=CB•CD ; (2)解:连接PB ,①∵AB=15,BC=9,∠ACB=90°, ∴AC==12,∴CF=AF=6.∴y=(x+9)×6=3x+27;②由EF ∥BC ,得△AEF ∽△ABC .AE=BE=AB=,EF=.由∠EAD=∠AFE=90°,∠AEF=∠DEA ,得△AEF ∽△DEA .Rt △ADF 中,AD=CD==10,AF=6,∴DF=8.∴DE=DF+FE=8+=.∵y=3x+27(0≤x≤),函数值y 随着x 的增大而增大,∴当x=时,y 有最大值,此时y=.考点:相似三角形的判定与性质;一次函数的性质;勾股定理.试卷第16页,共23页21、(2015秋•盐城校级期末)公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金1750万元进行相关生产设备的改进.已知生产过程中,每件产品的成本为60元.在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x (元)(x >120),年销售量为y (万件),第一年年获利(年获利=年销售额﹣生产成本)为z (万元). (1)求出y 与x 之间,z 与x 之间的函数关系式; (2)该公司能否在第一年收回投资.【答案】(1)y=x+36;z=+42x ﹣2160;(2)公司不能在第一年收回投资.【解析】试题分析:(1)根据:年销量=原销量﹣因价格上涨减少的销量,年获利=单件利润×年销售量,可列出函数关系式;(2)将(1)中年利润函数关系式配成顶点式,可知其最大值小于总投资,故第一年不能收回投资. 试题解析:由题意得,y=24﹣,即y=x+36,z=(x ﹣60)(x+36)=+42x ﹣2160;(2)z=+42x ﹣2160=+2250,当x=210时,第一年的年最大利润为2250万元, ∵2250<750+1750,∴公司不能在第一年收回投资. 考点:二次函数的应用.22、(2015秋•盐城校级期末)如图,抛物线y=+bx+c 与x 轴交于A (﹣1,0),B(3,0)两点,与y 轴交于C (0,﹣3). (1)求抛物线的解析式;(2)D 是y 轴正半轴上的点,OD=3,在线段BD 上任取一点E (不与B ,D 重合),经过A ,B ,E 三点的圆交直线BC 于点F , ①试说明EF 是圆的直径;②判断△AEF 的形状,并说明理由.【答案】(1) y=﹣2x ﹣3;(2)①证明详见解析;②△AEF 是等腰直角三角形,理由详见解析. 【解析】试题分析:(1)将A 、B 、C 三点坐标代入抛物线方程,即可求得a 、b 、c 的值; (2)①由B 、C 、D 三点的坐标即可得出∠CBO=∠OBD=45°,从而得出∠EBF=90°,即可得出EF 为圆的直径;②利用同圆内,同弧所对的圆周角相等,可以找到∠AEF=∠AFE=45°,从而得出△AEF 是等腰直角三角形. 试题解析:(1)∵抛物线y=+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C (0,﹣3),∴,解得,∴抛物线的解析式为y=﹣2x ﹣3;(2)按照题意画出图形,如下图,①∵B 点坐标(3,0)、C 点坐标(0,﹣3), ∴OB=OC=3,试卷第18页,共23页∴△BOC 为等腰直角三角形, ∴∠CBO=45°,又∵D 是y 轴正半轴上的点,OD=3, ∴△BOD 为等腰直接三角形, ∴∠OBD=45°,∠CBD=∠CBO+∠OBD=45°+45°=90°, 即∠FBE=90°, ∴EF 是圆的直径.②∵∠CBO=∠OBD=45°,∠AFE=∠OBD ,∠AEF=∠CBO (在同圆中,同弧所对的圆周角相等),∴∠AEF=∠AFE=45°, ∴∠FAE=90°,AE=AF , ∴△AEF 是等腰直角三角形. 考点:二次函数综合题.23、(2015秋•盐城校级期末)某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【答案】3米. 【解析】试题分析:过C 点作AB 的垂线交AB 的延长线于点D ,通过解Rt △ADC 得到AD=2CD=2x ,在Rt △BDC 中利用锐角三角函数的定义即可求出CD 的值. 试题解析:作CD ⊥AB 交AB 延长线于D ,设CD="x" 米. Rt △ADC 中,∠DAC=25°,所以tan25°==0.5,所以AD==2x .Rt △BDC 中,∠DBC=60°,由tan 60°==,解得:x≈3.所以生命迹象所在位置C 的深度约为3米.考点:解直角三角形的应用.24、(2015秋•盐城校级期末)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)连接AE ,试证明:AB•CD=AE•AC .【答案】(1)证明详见解析;(2)证明详见解析. 【解析】试题分析:(1)由圆周角定理,可得∠BAD=∠E ,又由BE ∥AD ,易证得∠BAD=∠ADE ,然后由AD 是△ABC 的角平分线,证得∠CAD=∠ADE ,继而证得结论;(2)首先连接AE ,易得∠CAD=∠ABE ,∠ADC=∠AEB ,则可证得△ADC ∽△BEA ,然后由相似三角形的对应边成比例,证得结论. 试题解析:(1)∵BE ∥AD , ∴∠E=∠ADE , ∵∠BAD=∠E , ∴∠BAD=∠ADE ,∵AD 是△ABC 的角平分线, ∴∠BAD=∠CAD , ∴∠CAD=∠ADE , ∴ED ∥AC ;试卷第20页,共23页(2)连接AE ,∵∠CAD=∠ADE ,∠ADE=∠ABE , ∴∠CAD=∠ABE ,∵∠ADC+∠ADB=180°,∠ADB+∠AEB=180°, ∴∠ADC=∠AEB , ∴△ADC ∽△BEA , ∴AC :AB=CD :AE , ∴AB•CD=AE•AC .考点:相似三角形的判定与性质;圆周角定理.25、一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ;(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【答案】(1) ;(2).【解析】试题分析:(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.试题解析:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:试卷第21页,共23页所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P (两次摸到红球)==.考点:列表法与树状图法;概率公式.26、A ,B ,C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则B 在扇形统计图中所占的圆心角是 度. (3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.【答案】(1)补全统计表和统计图详见解析;(2) 144;(3) B 当选. 【解析】试题分析:(1)根据统计图可得A 的口试成绩是90,根据统计表可得C 的笔试成绩是90分,即可作图;(2)利用B 所占的比例乘以360度即可求解;(3)首先求得A 、B 、C 的投票得分,然后利用加权平均数公式即可求解. 试题解析:(1)补充图形如下:试卷第22页,共23页;(2)360°×40%=144°,故答案为:144°;(3)A的投票得分是:300×35%=105(分),则A的最后得分是=92.5(分);B的投票得到是:300×40%=120(分),则B的最后得分是=98(分);C的投票得分是:300×25%=75(分),则C的最终得分是=84(分).所以B当选.考点:条形统计图;统计表;加权平均数.27、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.【答案】(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).试卷第23页,共23页【解析】试题分析:(1)延长BO 到B′,使OB′=2OB ,则B′就是B 的对应点,同样可以作出C 的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标. 试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2). 考点:作图-位似变换.28、(2015秋•盐城校级期末)(1)计算:tan260°+4sin30°•cos45°; (2)解方程:﹣4x+3=0.【答案】(1) ;(2)=1,=3.【解析】试题分析:(1)直接把tan60°=、sin30°=和cos45°=代入原式化简求值即可;(2)直接利用十字相乘法对方程的左边进行因式分解得到(x ﹣1)(x ﹣3)=0,再解两个一元一次方程即可.试题解析:(1)tan260°+4sin30°•cos45°=+4××=;(2)x2﹣4x+3=0,因式分解得,(x ﹣1)(x ﹣3)=0, 解得,=1,=3.考点:解一元二次方程-因式分解法;特殊角的三角函数值.。
2015-2016学年第一学期期末考试九年级数学附答案

15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)
盐城市九年级(上)期末数学试卷(含答案)

盐城市九年级(上)期末数学试卷(含答案)一、选择题1.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .70 2.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2 B .m>-2 C .m≥-2 D .m≤-2 3.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±94.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4 D .y =2(x ﹣3)2+4 5.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <16.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A 43B .3C 33D .3227.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,158.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--9.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1211.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-312.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( ) ①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0). A .1B .2C .3D .413.如图,△ABC 中,∠C =90°,∠B =30°,AC =7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .3B .3C .7D .714.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .215.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.18.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).19.长度等于62的弦所对的圆心角是90°,则该圆半径为_____. 20.一组数据:2,5,3,1,6,则这组数据的中位数是________.21.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.22.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒23.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.24.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.25.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.26.已知3a =4b ≠0,那么ab=_____. 27.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.28.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题31.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).32.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地要走多少千米?(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)33.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.34.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.35.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围, (3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由,四、压轴题36.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标Bx的取值范围.37.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.38.如图,AB是⊙O的直径,AF是⊙O的弦,AE平分BAF∠,交⊙O于点E,过点E作直线ED AF⊥,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.39.如图,⊙M 与菱形ABCD 在平面直角坐标系中,点M 的坐标为(﹣3,1),点A 的坐标为(2,0),点B 的坐标为(1,﹣3),点D 在x 轴上,且点D 在点A 的右侧. (1)求菱形ABCD 的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.40.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵∠ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.3.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.4.A解析:A 【解析】 【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可. 【详解】解:原抛物线y =2(x ﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4). 所以,平移后抛物线的表达式是y =2(x+1)2+4, 故选:A . 【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.5.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.7.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.10.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =,∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.11.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.12.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】①y =x 2+2x +3,a =1>0,函数的图象的开口向上,故①错误;②y =x 2+2x +3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确;③y =x 2+2x +3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.13.B解析:B【解析】【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC,∠ABC=30°,∴AB=2AC=,BC AC,∵DE∥AB,∴CDCA=CECB,,∴CE∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE∴E′H=12CE′=32,CH=3HE′=32,∴BH=22BC CH-=9214-=53∴BE′=HE′+BH=33,故选:B.【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.14.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同,3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案. 由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.7【解析】设树的高度为m ,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 18.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.19.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB=90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.20.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.21.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是, 解析:49【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4, ∴飞镖落在阴影部分的概率是49, 故答案为:49. 【点睛】此题考查几何概率,解题关键在于掌握运算法则. 22.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.23.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.24.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB为整数及三角形三边关系,即可解析:6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)2AC (8-AC)+≥⋅,可得2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)2AC (8-AC)+≥⋅,∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 25.2+2【解析】【分析】作AD⊥OB 于点D ,根据题目条件得出∠OAD=60°、∠DAB=45°、OA =4km ,再分别求出AD 、OD 、BD 的长,从而得出答案.【详解】如图所示,过点A 作AD⊥O解析:23+2【解析】【分析】作AD ⊥OB 于点D ,根据题目条件得出∠OAD =60°、∠DAB =45°、OA =4km ,再分别求出AD 、OD 、BD 的长,从而得出答案.【详解】如图所示,过点A 作AD ⊥OB 于点D ,由题意知,∠AOD =30°,OA =4km ,则∠OAD =60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=4km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=2(km),故答案为:2.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.26..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.27.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.28.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,∴112331==3PB BB A BBB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 29.y=0.5(x-2)+5【解析】解:∵函数y=(x ﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B (4,3),过A 作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y =12(x ﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m =12(1﹣2)2+1=112,n =12(4﹣2)2+1=3,∴A (1,112),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,112),∴AC =4﹣1=3.∵曲线段AB 扫过的面积为12(图中的阴影部分),∴AC •AA ′=3AA ′=12,∴AA ′=4,即将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y =12(x ﹣2)2+5.故答案为y =0.5(x ﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA ′是解题的关键.30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.该段运河的河宽为.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到33401603x x ++=, 解得:303x =,即303CH m =, 则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.32.(1)开通隧道前,汽车从A 地到B 地要走2)千米;(2)汽车从A 地到B 地比原来少走的路程为23千米.【解析】【分析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可;(2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程.【详解】(1)过点C 作AB 的垂线CD ,垂足为D ,∵AB ⊥CD ,sin30°=CD BC,BC =80千米, ∴CD =BC •sin30°=80×12=40(千米), AC =CD 402sin 45︒=千米), AC +BC =80+1-8(千米), 答:开通隧道前,汽车从A 地到B 地要走(80+1-8)千米; (2)∵cos30°=BD BC,BC =80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为 [40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.33.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,。
2015-2016年江苏省盐城市盐都区初三上学期期末数学试卷及参考答案

A.2:3
4. (3 分)一元二次方程 x2+x﹣3=0 的根的情况是( A.有两个不相等的实数根 C.只有一个实数根
B.有两个相等的实数根 D.没有实数根
5. (3 分)如图,点 A、B、C 是⊙O 上的三点,若∠BOC=80°,则∠A 的度数是 ( )
A.30°
B.40°
CБайду номын сангаас50°
D.100°
6. (3 分)如图,直线 l1∥l2∥l3,直线 AC 分别交 l1,l2,l3 于点 A,B,C;直线 DF 分别交 l1, l2, l3 于点 D, E, F. AC 与 DF 相交于点 H, 且 AH=2, HB=1, BC=5, 则 的值为( )
) ,⊙O 的半径为 1(O 为坐标原点) ,点 P 在直线 AB 上,过点 P 作⊙O )
的一条切线 PQ,Q 为切点,则切线长 PQ 的最小值为(
A.
B.2
C.3
D.
二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分.不需写出解答过程, 请将答案直接写在答题卡相应位置上) 9. (3 分)二次函数 y=x2+bx+1 的图象的对称轴是过点(1,0)且平行于 y 轴的 一条直线,则 b= .
2015-2016 学年江苏省盐城市盐都区初三上学期期末数学试卷
一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分.在每小题所给出的四个 选项中,只有一项是符合题目要求的,请将正确选項的字母代号填涂在答题 卡相应位置上) 1. (3 分)二次函数 y=﹣(x﹣2)2﹣1 的图象的顶点坐标是( A. (2,﹣1) B. (﹣2,﹣1) C. (﹣2,1) )
13. (3 分)如图,AB 是⊙O 的弦,AO 的延长线交过点 B 的⊙O 的切线于点 C, 如果∠ABO=28°,则∠C 的度数是 .
2015-2016学年江苏省盐城市建湖县海南中学九年级(上)期末数学试卷与答案

14. (3 分)一个四边形四条边顺次为 a,b,c,d 且 a2+b2+c2+d2=2ac+2bd,则这 个四边形是 .
15. (3 分)已知直线 y=ax 与双曲线 y= 交于点 A(x1,y1) ,B(x2,y2) ,则﹣ x1y2+3x2y1= .
16. (3 分)已知点 P 为(6,8) ,A 为(1,4) ,B 为(3,2) .若过点 P 的直线 y=kx+b 与线段 AB 有公共点,则 b 的取值范围是 .
26. (10 分)小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若 甲商品每件利润 10 元,乙商品每件利润 20 元,则每周能卖出甲商品 40 件, 乙商品 20 件.经调查,甲、乙两种商品零售单价分别每降价 1 元,这两种商 品每周可各多销售 10 件.为了提高销售量,小明决定把甲、乙两种商品的零 售单价都降价 x 元. (1)直接写出甲、乙两种商品每周的销售量 y(件)与降价 x(元)之间的函数 关系式:y 甲= ,y 乙= ;
第 1 页(共 26 页)
A.10
B.12
C.14
D.16
8. (3 分)如图,点 A、B 为直线 y=x 上的两点,过 A、B 两点分别作 y 轴的平行 线交双曲线 ( ) (x>0)于点 C、D 两点.若 BD=2AC,则 4OC2﹣OD2 的值为
A.5
B.6
C.7
D.8
二、填空题(共 10 小题,每小题 3 分,满分 30 分) 9. (3 分) 的相反数是 . .
2015-2016 学年江苏省盐城市建湖县海南中学九年级(上)期末 数学试卷
一、选择题(共 8 小题,每小题 3 分,满分 24 分) 1. (3 分)在数 1,0,﹣1,﹣2 中,最小的数是( A.1 B.0 ) C. (a3)2=a5 D. (3a)3=3a3 ) C.﹣1 ) D.﹣2
江苏省盐城中学九年级数学上学期期末考试试题(含解析)苏科版

江苏省盐城中学九年级数学上学期期末考试试题(含解析)苏科版一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中不是中心对称图形的为()A.正方形B.正五边形 C.正六边形 D.正八边形2.若两个相似三角形的周长比为1:3,则面积比为()A.1:3 B.3:1 C.1:9 D.9:13.小华上周每天的睡眠时间为(单位:小时):7,8,10,11,8,8,9.这组数据的众数是()A.7 B.8 C.9 D.104.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)25.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m6.圆锥的地面半径为4,母线长为9,则该圆锥的侧面积为()A.36π B.48π C.72π D.144π7.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④8.某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如表:序号①②③④⑤x 0 1 2 3 4y 8 3 0 1 0经检查,发现表格中恰好有一组数据计算错误,错误的那组数据的序号是()A.①B.②C.③D.④二、填空题:(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.已知,且x+y=5,则x= .10.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.56环2,S乙2=0.60环2,则成绩最稳定的是.11.二次函数y=2(x﹣3)2﹣1的顶点坐标为.12.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.13.如果线段b是线段a、c的比例中项,且a=2,c=8,则b= .14.五个数据:2,x,3,4,5 的平均数是4,则这组数据的中位数是.15.如图,在△ABC中,AD是中线,G是重心,AD=6,则DG= .16.如图所示,在由边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在网格线的交点上,则∠AED的正切值等于.17.如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为.18.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为.三、解答题:(本大题共有10小题,其中第19题~22题每题8分,第23题~26题每题10分,第27题、第28题每题12分,共96分)19.求下列各式的值.(1)2cos60°+3sin30°﹣2tan45°(2)tan260﹣2sin60°sin45°.20.已知二次函数y=(x﹣2)2﹣4.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,直接写出当y<0时x的取值范围.21.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.22.一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.23.小明到美丽的盐城滩涂参加社会实践活动,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(取1.73)24.如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求⊙O的半径;(2)求出图中阴影扇形OBD的面积.25.如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.26.[问题情境](1)如图1,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为矩形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,设A1B1=A2B2=xcm,矩形纸片ABCD剪去阴影部分余下的面积为ycm2.①求y与x的函数关系式;②求当x=2时,求y的值.[操作验证](2)如图2,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为平行四边形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,且A1B1=A2B2=2cm,A1D1⊥A2D2,则矩形纸片ABCD剪去阴影部分余下的面积与图1相比发生变化吗?如果不变,请说明理由;如果变化,请直接写出变大还是变小.27.如图1,在△ABC中,AB=AC,BD⊥AC,垂足为D,且AD=4,DC=2,动点M以每秒2个单位长度的速度从点D出发,沿射线DB做匀速运动,设运动时间为t秒.(1)当t=1秒时,则CM= ;(2)当t为何值时,∠AMC=90°;(3)如图2,过点A作AN∥BC,并使得∠NDB=∠C,求AN•BC的值.28.如图所示,抛物线y=+bx+c经过A、B两点,A、B两点的坐标分别为(﹣2,0)、(0,﹣6).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.2015-2016学年江苏省盐城中学九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中不是中心对称图形的为()A.正方形B.正五边形 C.正六边形 D.正八边形【考点】中心对称图形.【分析】根据正多边形的性质和中心对称图形的定义解答.【解答】解:正方形是中心对称图形,A不合题意;正五边形不是中心对称图形,B符合题意;正六边形是中心对称图形,C不合题意;正八边形是中心对称图形,D不合题意.故选:B.2.若两个相似三角形的周长比为1:3,则面积比为()A.1:3 B.3:1 C.1:9 D.9:1【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的周长比为1:3,∴两个相似三角形的相似比为1:3,∴两个相似三角形的面积比为1:9,故选:C.3.小华上周每天的睡眠时间为(单位:小时):7,8,10,11,8,8,9.这组数据的众数是()A.7 B.8 C.9 D.10【考点】众数.【分析】众数是一组数据中出现次数最多的数,根据定义就可以求解.【解答】解:在这一组数据中8是出现次数最多的,故众数是8.故选B.4.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)2【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律解答.【解答】解:二次函数y=2x2的图象向上平移2个单位,得y=2x2+2.故选B.5.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.【解答】解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.6.圆锥的地面半径为4,母线长为9,则该圆锥的侧面积为()A.36π B.48π C.72π D.144π【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×9÷2=36π.故选A.7.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,有两个对应角相等的三角形相似,即可完成题目.【解答】解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应边成比例,∴①③相似.故选C.8.某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如表:序号①②③④⑤x 0 1 2 3 4y 8 3 0 1 0经检查,发现表格中恰好有一组数据计算错误,错误的那组数据的序号是()A.①B.②C.③D.④【考点】二次函数的性质.【分析】画出草图,进行判断,利用待定系数法求出二次函数解析式,然后进行验证.【解答】解:描出各点,进行初步判断,计算错误的一组数据应该是④,设解析式为y=ax2+bx+c,代入(0,8),(1,3),(2,0)得,解得∴二次函数的解析式为y=x2﹣6x+8,当x=3时,y=32﹣6×3+8=﹣1≠1,当x=4时,y=42﹣6×4+8=0,所以④数据计算错误.故选D.二、填空题:(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.已知,且x+y=5,则x= 3 .【考点】比例的性质.【分析】根据比例的性质,可用x表示y,根据解方程,可得x的值.【解答】解:由,得y=x.x+x=5,解得x=3,故答案为:3.10.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.56环2,S乙2=0.60环2,则成绩最稳定的是甲.【考点】方差.【分析】方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为s甲2=0.56,s乙2=0.60,所以s甲2<s乙2,由此可得成绩最稳定的为甲.故答案为:甲.11.二次函数y=2(x﹣3)2﹣1的顶点坐标为(3,﹣1).【考点】二次函数的性质.【分析】因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=2(x﹣3)2﹣1的顶点坐标.【解答】解:∵二次函数y=2(x﹣3)2﹣1是顶点式,∴顶点坐标为(3,﹣1).故答案为:(3,﹣1).12.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.【考点】几何概率.【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出小鸟落在阴影方格地面上的概率.【解答】解:∵正方形被等分成16份,其中黑色方格占4份,∴小鸟落在阴影方格地面上的概率为: =.故答案为:.13.如果线段b是线段a、c的比例中项,且a=2,c=8,则b= 4 .【考点】比例线段.【分析】根据比例中项的概念,可得a:b=b:c,可得b2=ac=16,故b的值可求,注意线段的长为正数.【解答】解:∵线段b是a、c的比例中项,∴b2=ac=16,解得b=±4,又∵线段是正数,∴b=4.故答案为4.14.五个数据:2,x,3,4,5 的平均数是4,则这组数据的中位数是 4 .【考点】中位数;算术平均数.【分析】首先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:由题意得, =4,解得:x=6,这组数据按照从小到大的顺序排列为:2,3,4,5,6,则中位数为:4.故答案为:4.15.如图,在△ABC中,AD是中线,G是重心,AD=6,则DG= 2 .【考点】三角形的重心.【分析】根据三角形的重心的性质进行计算即可.【解答】解:∵G是重心,∴AG=2GD,即DG=AD=2,故答案为:2.16.如图所示,在由边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在网格线的交点上,则∠AED的正切值等于.【考点】圆周角定理;锐角三角函数的定义.【分析】根据正切的定义求出tan∠ABC,根据圆周角定理得到∠AED=∠ABC,等量代换即可.【解答】解:由题意得,AC=1,AB=2,∠CAB=90°,∴tan∠ABC==,由圆周角定理得,∠AED=∠ABC,∴tan∠AED=,故答案为:.17.如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为20πcm.【考点】弧长的计算;旋转的性质.【分析】顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径,旋转的角度是180﹣60=120°,所以根据弧长公式可得.【解答】解:=20πcm.故答案为20πcm.18.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题:(本大题共有10小题,其中第19题~22题每题8分,第23题~26题每题10分,第27题、第28题每题12分,共96分)19.求下列各式的值.(1)2cos60°+3sin30°﹣2tan45°(2)tan260﹣2sin60°sin45°.【考点】特殊角的三角函数值.【分析】(1)根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案;(2)根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:(1)原式=2×+3×﹣2×1=;(2)原式=()2﹣2××=3﹣.20.已知二次函数y=(x﹣2)2﹣4.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,直接写出当y<0时x的取值范围.【考点】二次函数的图象.【分析】(1)利用列表,描点,连线作出图形即可;(2)写出函数图象在x轴下方的部分的x的取值范围即可.【解答】解:(1)列表:x …0 1 2 3 4 …y …0 ﹣3 ﹣4 ﹣3 0…描点、连线如图;(2)由图象可知:当y<0时x的取值范围是0<x<4.21.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600 .家长表示“不赞同”的人数为80 ;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.【解答】解:(1)调查的家长总数为:360÷60%=600(人),很赞同的人数:600×20%=120(人),不赞同的人数:600﹣120﹣360﹣40=80(人);故答案为:600,80;(2)表示家长“无所谓”的圆心角的度数为:×360°=24°.22.一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字积为奇数有4种情况,再利用概率公式即可求得答案【解答】解:(1)根据题意,可以画如下的树状图:由树状图可以看出,所有可能的结果共有9种,这些结果出现的可能性相等;(2)由(1)得:其中两次摸出的球上的数字积为奇数的有4种情况,场P(两次摸出的球上的数字积为奇数)=.23.小明到美丽的盐城滩涂参加社会实践活动,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(取1.73)【考点】解直角三角形的应用-方向角问题.【分析】由已知作PC⊥AB于C,可得△ABP中∠A=60°∠B=45°且PA=100m,要求AB的长,可以先求出AC和BC的长.【解答】解:由题意可知:作PC⊥AB于C,∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴AC=AP=50,PC=AC=50.在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴BC=PC=50.∴AB=AC+BC=50+50≈50+50×1.732≈136.6(米).答:景点A与B之间的距离大约为136.6米24.如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求⊙O的半径;(2)求出图中阴影扇形OBD的面积.【考点】垂径定理;勾股定理;扇形面积的计算.【分析】(1)由∠A=30°,可求得∠BOC=60°,再根据垂径定理得∠BOD=120°,求出BF 以及OB的长即可;(2)由扇形面积公式求出阴影部分的面积即可.【解答】解:(1)∵AC⊥BD于F,∠A=30°,∴∠BOC=60°,∠OBF=30°,∠BOD=120°,∴BF=AB=,在Rt△BOF中,OB===,即⊙O的半径为;(2)图中阴影扇形OBD的面积==π.25.如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.【考点】中心投影.【分析】根据相似三角形的判定,由CD∥AB得△EAB∽△ECD,利用相似比有=,同理可得=,然后解关于AB和BD的方程组求出AB即可.【解答】解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,由①②得=,解得BD=15,∴=,解得:AB=12.答:路灯杆AB的高度为12m.26.[问题情境](1)如图1,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为矩形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,设A1B1=A2B2=xcm,矩形纸片ABCD剪去阴影部分余下的面积为ycm2.①求y与x的函数关系式;②求当x=2时,求y的值.[操作验证](2)如图2,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为平行四边形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,且A1B1=A2B2=2cm,A1D1⊥A2D2,则矩形纸片ABCD剪去阴影部分余下的面积与图1相比发生变化吗?如果不变,请说明理由;如果变化,请直接写出变大还是变小.【考点】四边形综合题.【分析】(1)①由矩形和平行四边形的面积公式求出阴影部分的面积,由大矩形的面积减去阴影部分的面积,即可得出结果;②把x的值代入①的函数关系式计算即可;(2)由矩形和平行四边形的面积公式求出阴影部分的面积,由大矩形的面积减去阴影部分的面积,即可得出结果.【解答】解:(1)∵阴影部分的面积=40x+20x﹣x2=60x﹣x2,∴矩形纸片ABCD剪去阴影部分余下的面积为y=40×20﹣(60x﹣x2)=x2﹣60x+800(cm2),即y=x2﹣60x+800;②当x=2时,y=22﹣60×2+800═684(cm2);(2)矩形纸片ABCD剪去阴影部分余下的面积与图1相比不发生变化;理由如下:∵阴影部分的面积=40x+20x﹣x2=60x﹣x2,∴矩形纸片ABCD剪去阴影部分余下的面积为y=40×20﹣(60x﹣x2)=x2﹣60x+800(cm2),即y=x2﹣60x+800.27.如图1,在△ABC中,AB=AC,BD⊥AC,垂足为D,且AD=4,DC=2,动点M以每秒2个单位长度的速度从点D出发,沿射线DB做匀速运动,设运动时间为t秒.(1)当t=1秒时,则CM= 2;(2)当t为何值时,∠AMC=90°;(3)如图2,过点A作AN∥BC,并使得∠NDB=∠C,求AN•BC的值.【考点】相似形综合题.【分析】(1)当t=1秒时,DM=2,由勾股定理求出CM即可;(2)当∠AMC=90°时,由射影定理得出DM2=AD•DC,求出DM,即可得出结果;(3)连接BN,由等腰三角形的性质、平行线的性质和已知条件得出∠BAN=∠NDB,证出A、D、B、N四点共圆,由圆周角定理得出AB是圆的直径,∠BNA=90°=∠CDB,证出△ABN∽△CBD,得出对应边成比例,即可得出结果.【解答】解:(1)当t=1秒时,DM=2,∵BD⊥AC,∴∠ADB=∠CDB=90°,∴CM===2;故答案为:2;(2)当∠AMC=90°时,∵∠ADB=∠CDB=90°,∴由射影定理得:DM2=AD•DC=4×2=8,解得:DM==2,∴t=2÷2=(秒),∴当t为秒时,∠AMC=90°;(3)连接BN,如图所示:∵AB=AC=AD+DC=6,∴∠ABC=∠C,∵AN∥BC,∴∠BAN=∠ABC,∵∠NDB=∠C,∴∠BAN=∠NDB,∴A、D、B、N四点共圆,∵∠ADB=90°,∴AB是圆的直径,∴∠BNA=90°=∠CDB,又∵∠BAN=∠C,∴△ABN∽△CBD,∴,∴AN•BC=AB•CD=6×2=12.28.如图所示,抛物线y=+bx+c经过A、B两点,A、B两点的坐标分别为(﹣2,0)、(0,﹣6).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【考点】二次函数综合题.【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组求出b、c的值,即可得解;(2)令y=0,利用抛物线解析式求出点C的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理列式表示出DC2与DE2,然后解方程求出m的值,即可得到点D的坐标;(3)根据点C、D、E的坐标判定△COD和△DFE全等,根据全等三角形对应角相等可得∠EDF=∠DCO,然后求出CD⊥DE,再利用勾股定理求出CD的长度,然后①分OC与CD是对应边;②OC与DP是对应边;根据相似三角形对应边成比例列式求出DP的长度,过点P作PG⊥y轴于点G,再分点P在点D的左边与右边两种情况,分别求出DG、PG的长度,结合平面直角坐标系即可写出点P的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣2,0)、B(0,﹣6),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣6;(2)如图1中,作EF⊥y轴于点F,令y=0,则x2﹣2x﹣6=0,解得x1=﹣2,x2=6,则点C的坐标为(6,0),∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点E坐标为(2,﹣8),设点D的坐标为(0,m),∵DC2=OD2+OC2=m2+62,DE2=DF2+EF2=(m+8)2+22,∵DC=DE,∴m2+36=m2+16m+64+4,解得m=﹣2,∴点D的坐标为(0,﹣2);(3)如图2中,过点P作PG⊥y轴于点G,EF⊥y轴于F.∵点C(6,0),D(0,﹣2),E(2,﹣8),∴CO=DF=6,DO=EF=2,根据勾股定理,CD===2,在△COD和△DFE中,,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,∵PG∥EF,∴==,∴==∴DG=2,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣4),②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=解得DP=6,∵PG∥EF∴==,∴==,∴DG=18,PG=6,当点P在点D的左边时,OG=DG﹣OD=18﹣2=16,所以,点P的坐标是(﹣6,16),当点P在点D的右边时,OG=OD+DG=2+18=20,所以,点P的坐标是(6,﹣20),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣4)、(﹣6,16)、(6,﹣20).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省盐城中学初三上学期期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列图形中不是中心对称图形的为()A.正方形B.正五边形C.正六边形D.正八边形2.(3分)若两个相似三角形的周长比为1:3,则面积比为()A.1:3B.3:1C.1:9D.9:13.(3分)小华上周每天的睡眠时间为(单位:小时):7,8,10,11,8,8,9.这组数据的众数是()A.7B.8C.9D.104.(3分)在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2B.y=2x2+2C.y=2(x﹣2)2D.y=2(x+2)2 5.(3分)如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m6.(3分)圆锥的地面半径为4,母线长为9,则该圆锥的侧面积为()A.36πB.48πC.72πD.144π7.(3分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④8.(3分)某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如表:序号①②③④⑤x01234y83010经检查,发现表格中恰好有一组数据计算错误,错误的那组数据的序号是()A.①B.②C.③D.④二、填空题:(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)已知,且x+y=5,则x=.10.(3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.56环2,S乙2=0.60环2,则成绩最稳定的是.11.(3分)二次函数y=2(x﹣3)2﹣1的顶点坐标为.12.(3分)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.13.(3分)如果线段b是线段a、c的比例中项,且a=2,c=8,则b=.14.(3分)五个数据:2,x,3,4,5 的平均数是4,则这组数据的中位数是.15.(3分)如图,在△ABC中,AD是中线,G是重心,AD=6,则DG=.16.(3分)如图所示,在由边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O在网格线的交点上,则∠AED的正切值等于.17.(3分)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为.18.(3分)当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m 的值为.三、解答题:(本大题共有10小题,其中第19题~22题每题8分,第23题~26题每题10分,第27题、第28题每题12分,共96分)19.(8分)求下列各式的值.(1)2cos60°+3sin30°﹣2tan45°(2)tan260﹣2sin60°sin45°.20.(8分)已知二次函数y=(x﹣2)2﹣4.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,直接写出当y<0时x的取值范围.21.(8分)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.22.(8分)一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.23.(10分)小明到美丽的盐城滩涂参加社会实践活动,在景点P处测得景点B 位于南偏东45°方向,然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(取1.73)24.(10分)如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求⊙O的半径;(2)求出图中阴影扇形OBD的面积.25.(10分)如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.26.(10分)[问题情境](1)如图1,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为矩形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,设A1B1=A2B2=xcm,矩形纸片ABCD剪去阴影部分余下的面积为ycm2.①求y与x的函数关系式;②求当x=2时,求y的值.[操作验证](2)如图2,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为平行四边形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,且A1B1=A2B2=2cm,A1D1⊥A2D2,则矩形纸片ABCD剪去阴影部分余下的面积与图1相比发生变化吗?如果不变,请说明理由;如果变化,请直接写出变大还是变小.27.(12分)如图1,在△ABC中,AB=AC,BD⊥AC,垂足为D,且AD=4,DC=2,动点M以每秒2个单位长度的速度从点D出发,沿射线DB做匀速运动,设运动时间为t秒.(1)当t=1秒时,则CM=;(2)当t为何值时,∠AMC=90°;(3)如图2,过点A作AN∥BC,并使得∠NDB=∠C,求AN•BC的值.28.(12分)如图所示,抛物线y=+bx+c经过A、B两点,A、B两点的坐标分别为(﹣2,0)、(0,﹣6).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.2015-2016学年江苏省盐城中学初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)下列图形中不是中心对称图形的为()A.正方形B.正五边形C.正六边形D.正八边形【解答】解:正方形是中心对称图形,A不合题意;正五边形不是中心对称图形,B符合题意;正六边形是中心对称图形,C不合题意;正八边形是中心对称图形,D不合题意.故选:B.2.(3分)若两个相似三角形的周长比为1:3,则面积比为()A.1:3B.3:1C.1:9D.9:1【解答】解:∵两个相似三角形的周长比为1:3,∴两个相似三角形的相似比为1:3,∴两个相似三角形的面积比为1:9,故选:C.3.(3分)小华上周每天的睡眠时间为(单位:小时):7,8,10,11,8,8,9.这组数据的众数是()A.7B.8C.9D.10【解答】解:在这一组数据中8是出现次数最多的,故众数是8.故选:B.4.(3分)在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2B.y=2x2+2C.y=2(x﹣2)2D.y=2(x+2)2【解答】解:二次函数y=2x2的图象向上平移2个单位,得y=2x2+2.故选:B.5.(3分)如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m【解答】解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.6.(3分)圆锥的地面半径为4,母线长为9,则该圆锥的侧面积为()A.36πB.48πC.72πD.144π【解答】解:圆锥的侧面积=2π×4×9÷2=36π.故选:A.7.(3分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【解答】解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应边成比例,∴①③相似.故选:C.8.(3分)某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如表:序号①②③④⑤x01234y83010经检查,发现表格中恰好有一组数据计算错误,错误的那组数据的序号是()A.①B.②C.③D.④【解答】解:描出各点,进行初步判断,计算错误的一组数据应该是④,设解析式为y=ax2+bx+c,代入(0,8),(1,3),(2,0)得,解得∴二次函数的解析式为y=x2﹣6x+8,当x=3时,y=32﹣6×3+8=﹣1≠1,当x=4时,y=42﹣6×4+8=0,所以④数据计算错误.故选:D.二、填空题:(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)已知,且x+y=5,则x=3.【解答】解:由,得y=x.x+x=5,故答案为:3.10.(3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S甲2=0.56环2,S乙2=0.60环2,则成绩最稳定的是甲.【解答】解:因为s甲2=0.56,s乙2=0.60,所以s甲2<s乙2,由此可得成绩最稳定的为甲.故答案为:甲.11.(3分)二次函数y=2(x﹣3)2﹣1的顶点坐标为(3,﹣1).【解答】解:∵二次函数y=2(x﹣3)2﹣1是顶点式,∴顶点坐标为(3,﹣1).故答案为:(3,﹣1).12.(3分)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.【解答】解:∵正方形被等分成16份,其中黑色方格占4份,∴小鸟落在阴影方格地面上的概率为:=.故答案为:.13.(3分)如果线段b是线段a、c的比例中项,且a=2,c=8,则b=4.【解答】解:∵线段b是a、c的比例中项,∴b2=ac=16,解得b=±4,又∵线段是正数,∴b=4.故答案为4.14.(3分)五个数据:2,x,3,4,5 的平均数是4,则这组数据的中位数是4.【解答】解:由题意得,=4,这组数据按照从小到大的顺序排列为:2,3,4,5,6,则中位数为:4.故答案为:4.15.(3分)如图,在△ABC中,AD是中线,G是重心,AD=6,则DG=2.【解答】解:∵G是重心,∴AG=2GD,即DG=AD=2,故答案为:2.16.(3分)如图所示,在由边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在网格线的交点上,则∠AED的正切值等于.【解答】解:由题意得,AC=1,AB=2,∠CAB=90°,∴tan∠ABC==,由圆周角定理得,∠AED=∠ABC,∴tan∠AED=,故答案为:.17.(3分)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为20πcm.【解答】解:=20πcm.故答案为20πcm.18.(3分)当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题:(本大题共有10小题,其中第19题~22题每题8分,第23题~26题每题10分,第27题、第28题每题12分,共96分)19.(8分)求下列各式的值.(1)2cos60°+3sin30°﹣2tan45°(2)tan260﹣2sin60°sin45°.【解答】解:(1)原式=2×+3×﹣2×1=;(2)原式=()2﹣2××=3﹣.20.(8分)已知二次函数y=(x﹣2)2﹣4.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,直接写出当y<0时x的取值范围.【解答】解:(1)列表:x…01 2 34…y…0﹣3﹣4﹣30…描点、连线如图;(2)由图象可知:当y<0时x的取值范围是0<x<4.21.(8分)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为600.家长表示“不赞同”的人数为80;(2)求图②中表示家长“无所谓”的扇形圆心角的度数.【解答】解:(1)调查的家长总数为:360÷60%=600(人),很赞同的人数:600×20%=120(人),不赞同的人数:600﹣120﹣360﹣40=80(人);故答案为:600,80;(2)表示家长“无所谓”的圆心角的度数为:×360°=24°.22.(8分)一个不透明的口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机摸出一个小球,记录下数字后放回,再随机摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出球上的数字的积为奇数的概率.【解答】解:(1)根据题意,可以画如下的树状图:由树状图可以看出,所有可能的结果共有9种,这些结果出现的可能性相等;(2)由(1)得:其中两次摸出的球上的数字积为奇数的有4种情况,场P(两次摸出的球上的数字积为奇数)=.23.(10分)小明到美丽的盐城滩涂参加社会实践活动,在景点P处测得景点B 位于南偏东45°方向,然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(取1.73)【解答】解:由题意可知:作PC⊥AB于C,∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴AC=AP=50,PC=AC=50.在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴BC=PC=50.∴AB=AC+BC=50+50≈50+50×1.732≈136.6(米).答:景点A与B之间的距离大约为136.6米24.(10分)如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求⊙O的半径;(2)求出图中阴影扇形OBD的面积.【解答】解:(1)∵AC⊥BD于F,∠A=30°,∴∠BOC=60°,∠OBF=30°,∠BOD=120°,∴BF=AB=,在Rt△BOF中,OB===,即⊙O的半径为;(2)图中阴影扇形OBD的面积==π.25.(10分)如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.【解答】解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,由①②得=,解得BD=7.5,∴=,解得:AB=7.答:路灯杆AB的高度为7m.26.(10分)[问题情境](1)如图1,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为矩形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,设A1B1=A2B2=xcm,矩形纸片ABCD剪去阴影部分余下的面积为ycm2.①求y与x的函数关系式;②求当x=2时,求y的值.[操作验证](2)如图2,在宽为20cm,长为40cm的矩形纸片ABCD上,阴影部分分别为平行四边形A1B1C1D1和平行四边形A2B2C2D2,其顶点都在矩形ABCD的边上,且A1B1=A2B2=2cm,A1D1⊥A2D2,则矩形纸片ABCD剪去阴影部分余下的面积与图1相比发生变化吗?如果不变,请说明理由;如果变化,请直接写出变大还是变小.【解答】解:(1)∵阴影部分的面积=40x+20x﹣x2=60x﹣x2,∴矩形纸片ABCD剪去阴影部分余下的面积为y=40×20﹣(60x﹣x2)=x2﹣60x+800(cm2),即y=x2﹣60x+800;②当x=2时,y=22﹣60×2+800═684(cm2);(2)矩形纸片ABCD剪去阴影部分余下的面积与图1相比不发生变化;理由如下:∵阴影部分的面积=40x+20x﹣x2=60x﹣x2,∴矩形纸片ABCD剪去阴影部分余下的面积为y=40×20﹣(60x﹣x2)=x2﹣60x+800(cm2),即y=x2﹣60x+800.27.(12分)如图1,在△ABC中,AB=AC,BD⊥AC,垂足为D,且AD=4,DC=2,动点M以每秒2个单位长度的速度从点D出发,沿射线DB做匀速运动,设运动时间为t秒.(1)当t=1秒时,则CM=2;(2)当t为何值时,∠AMC=90°;(3)如图2,过点A作AN∥BC,并使得∠NDB=∠C,求AN•BC的值.【解答】解:(1)当t=1秒时,DM=2,∵BD⊥AC,∴∠ADB=∠CDB=90°,∴CM===2;故答案为:2;(2)当∠AMC=90°时,∵∠ADB=∠CDB=90°,∴由射影定理得:DM2=AD•DC=4×2=8,解得:DM==2,∴t=2÷2=(秒),∴当t为秒时,∠AMC=90°;(3)连接BN,如图所示:∵AB=AC=AD+DC=6,∴∠ABC=∠C,∵AN∥BC,∴∠BAN=∠ABC,∵∠NDB=∠C,∴∠BAN=∠NDB,∴A、D、B、N四点共圆,∵∠ADB=90°,∴AB是圆的直径,∴∠BNA=90°=∠CDB,又∵∠BAN=∠C,∴△ABN∽△CBD,∴,∴AN•BC=AB•CD=6×2=12.28.(12分)如图所示,抛物线y=+bx+c经过A、B两点,A、B两点的坐标分别为(﹣2,0)、(0,﹣6).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣2,0)、B(0,﹣6),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣6;(2)如图1中,作EF⊥y轴于点F,令y=0,则x2﹣2x﹣6=0,解得x1=﹣2,x2=6,则点C的坐标为(6,0),∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点E坐标为(2,﹣8),设点D的坐标为(0,m),∵DC2=OD2+OC2=m2+62,DE2=DF2+EF2=(m+8)2+22,∵DC=DE,∴m2+36=m2+16m+64+4,解得m=﹣2,∴点D的坐标为(0,﹣2);(3)如图2中,过点P作PG⊥y轴于点G,EF⊥y轴于F.∵点C(6,0),D(0,﹣2),E(2,﹣8),∴CO=DF=6,DO=EF=2,根据勾股定理,CD===2,在△COD和△DFE中,,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,∵PG∥EF,∴==,∴==∴DG=2,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,﹣4),②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=解得DP=6,∵PG∥EF∴==,∴==,∴DG=18,PG=6,当点P在点D的左边时,OG=DG﹣OD=18﹣2=16,所以,点P的坐标是(﹣6,16),当点P在点D的右边时,OG=OD+DG=2+18=20,所以,点P的坐标是(6,﹣20),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣4)、(﹣6,16)、(6,﹣20).。