元素杂质指导原则PPT课件

合集下载

ICH Q D元素杂质指导原则

ICH Q D元素杂质指导原则
说明:如药物产品中含有该类元素杂质,则需要按着其 他指导原则和地方性法规进行处理
4. 元素分级
Table 4.1 元素分级汇总
分级
元素杂质
是否进行风险评价
Class 1
As、Pb、Cd、Hg

Class 2A Class 2B Class 3 Class 4
V、Mo、Se、Co
Ag、Au、Tl、Pd、Pt、Ir、 Os、Rh、Ru
5. 元素杂质的评价与控制
5.3 潜在元素杂质的鉴别
5.3.1 Class 1元素杂质 基于元素的内在毒性,进行安全性评价时应包含Class 1中 所有元素杂质。对该类杂质元素的任何可能的潜在来源应 进行评价,以明确其转移引入药品的可能性。
部分而刻意加入,否则无需进行安全性评价。对于吸入性 制剂和注射剂等,任何可引入该类元素的可能性均需进行 风险评价
4. 元素分级
Class 4
依据:已评价,但由于低毒性或者区域性法规尚未建立 PDE标准
元素: Al(铝)、B(硼)、Fe(铁)、Zn(锌)、K (钾)、Ca(钙)、Na(钠)、Mn(锰)、Mg(镁) 、W(钨)
2. 适用范围
2. 适用范围
适用
Q3D适用于新的成品药物制剂和采用已有质和多肽(从重组或非重组细胞培养表达系统产生), 及其衍生物和组分产品(例如,共轭物等)包含在该指导原 则的范围。
此外,含有合成多肽、多核苷酸、低聚糖的药物制剂也在这 一指导原则的范围内。
Table A.2.1. 元素杂质PDE标准(每日允许暴露量)
元素
As Cd Hg Pb Co Mo Se V Ag Au Ir Os
级别
1 1 1 1 2A 2A 2A 2A 2B 2B 2B 2B

ICH Q3D元素杂质指导原则

ICH Q3D元素杂质指导原则

2. 适用范围
不适用
Q3D不适用于草药产品、放射性药品、疫苗、细胞代谢物、 DNA产品、致敏物、细胞、全血、血细胞成分、动物或植物 来源的粗产品、非体循环的透析液或含有以治疗为目的元素 的药品。
此外,也不适用于临床研究期间的药物制剂。
3. 元素杂质的安全性评价
3. 元素杂质的安全性评价
3. 元素杂质的安全性评价
2. 适用范围
2. 适用范围
适用
Q3D适用于新的成品药物制剂和采用已有原料药的新药制 剂。
主要包括: 蛋白质和多肽(从重组或非重组细胞培养表达系统产生), 及其衍生物和组分产品(例如,共轭物等)包含在该指导原 则的范围。
此外,含有合成多肽、多核苷酸、低聚糖的药物制剂也在这 一指导原则的范围内。
元素杂质PDE标准的建立方法见Appendix 1。
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
1. 氧化状态的元素可能出现在药物制剂中 2. 有参考价值的人体暴露量及其安全性数据 3. 直接相关的动物试验研究 4. 给药途径 5. 相关端点和名称的选择(如:国际癌症研究机构分类、 动物致癌性、生殖毒性及靶器官毒性等)
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
6. 以长期动物研究数据为依据建立PDE。在某种情况下, 短期动物研究数据可用于个体元素杂质PDE标准建立最直 接评价手段 7. 注射或吸入性给药数据缺失或/和数据可用,但不足以 进行安全评估时,则采用缺省因子以口服给药PDE标准为 基础建立以上两种给药途径的PDE标准 8. 吸入性药物制剂中,可溶性盐较悬浮微粒更适合评价杂 质元素的毒性。因此,吸入制剂采用可溶性盐对吸入性制 剂及其衍生制剂进行PDE标准研究

元素杂质限度和测定指导原则

元素杂质限度和测定指导原则

元素杂质限度和测定指导原则本指导原则提供了评估和控制化学药品中元素杂质有关依据,以及元素杂质种类及其限度的确认方法、测定元素杂质的可选方法。

除另有规定外,化学药品中元素杂质的限度应符合本指导原则的相关要求。

元素杂质包括可能存在于原料药、辅料或药品中的催化剂和环境污染物。

这些元素杂质可能是天然存在的,或是人为引入的(如催化剂),也可能是非人为引入的(例如:药品生产过程中由所用原料药、水或辅料或生产设备引入,以及包装材料可能迁移带入)。

本指导原则规定的限度不适用于中药、中成药、放射性药物、疫苗、细胞代谢产物、DNA产品、过敏原提取物、细胞、全血、血细胞成份或包括血浆及血浆衍生物在内的血液衍生物、非体循环透析液,以及为了治疗作用而人为引入到药品中的元素;也不适用于基于基因(基因治疗)、细胞(细胞治疗)和组织(组织工程)的药品。

除另有规定外,本指导原则规定的限度不直接适用于原料药和辅料。

但为使药品中的元素杂质限度能符合规定,药品生产企业需要一些原料药或辅料中元素杂质含量(或浓度)相关信息。

药品生产企业可以使用原料药或辅料生产企业提供的元素杂质测试数据或者风险评估报告。

原料药和辅料的合格供应商提供的元素杂质数据可供药品生产企业用于证明最终药品是否符合本指导原则的限度要求。

原料药和辅料生产企业选择进行风险评估的元素,须依照表2进行。

对某些天然来源的原料,因其含有自然界与生俱来的元素,必须在风险评估中加以考虑。

1. 风险评估中应考察的元素根据药品中元素杂质分类及其毒性、是否人为引入以及给药途径,风险评估中应考虑的元素杂质见表1。

表1 风险评估中应考察的元素注:①1类元素是对人体有害元素,在药品生产中禁用或限制使用。

②2类元素通常被认为是给药途径依赖型的人体有害元素。

根据它们出现于药品中的相对可能性,进一步分成2A和2B亚类。

③3类元素口服给药途径的毒性相对较低(高PDE值,通常>500µg/天),但在吸入和注射给药途径的风险评估中仍需考虑。

元素杂质指导原则

元素杂质指导原则

终点控制
在药品质量标准中设定元素杂质 的限度,通过终点检验确保上市 药品中元素杂质的风险可控。
检测方法原则
专属性
检测方法应能准确、特异地识别目标元素杂质, 避免其他成分的干扰。
准确性
检测方法应具有良好的准确性,确保测定结果的 可靠性。
ABCD
灵敏度
检测方法应具有足够的灵敏度,能够检测出含量 很低的元素杂质。
X射线荧光光谱法(XRF)
利用X射线激发样品中元素产生特征X射线荧光进行定量分析,具有无损分析、 快速准确等优点,但仪器价格较高,对轻元素检测灵敏度较低。
方法选择及优缺点比较
方法选择
根据实际需求选择合适的检测方法,如AAS、AFS等传统方法适用于高精度、高灵敏度分析;ICP-OES等多元素 分析方法适用于复杂样品分析;LIBS等新型方法适用于实时在线分析等。
06
检测方法
传统检测方法
原子吸收光谱法(AAS)
利用被测元素在特定波长下的原子吸收现象进行定量分析,具有灵敏度高、选择性好等优 点,但操作复杂,分析时间长。
原子荧光光谱法(AFS)
通过测量被测元素在特定波长下的原子荧光强度进行定量分析,具有灵敏度高、线性范围 宽等优点,但易受干扰,对样品前处理要求较高。
实验研究
采用合适的实验方法,检测药品中元素杂质的 含量。
风险评估模型
建立风险评估模型,对元素杂质的风险进行定量评估。
评估结果及应用
评估结果
得出元素杂质的风险等级,包括高风 险、中风险和低风险。
结果应用
根据风险等级,采取相应的控制措施 ,如优化生产工艺、加强质量控制等 ,以降低元素杂质的风险。同时,可 将评估结果用于指导药品研发、注册 和监管工作。

ICH Q3D:元素杂质指导原则

ICH Q3D:元素杂质指导原则

ICH Q3D 元素杂质指导原则国家药品监督管理局药品审评中心2020年11月28日1Q3DQ3D (R1)(有效版本)Q3D (R2)(征求意见稿)2014.11•2016.06 新上市 •2017.12 已上市欧美日等国家和地区新药和仿制药上市申请以及已上市药品均已实施Q3D•纠正Cd 吸入途径PDE 2μg/ml→3μg/ml•增加皮肤途径PDE•修订Au 各论•修订Ag 各论•纠正Ni 吸入途径PDE2019.03 2020.09•计划2021.07 Step 4来源:ICH 网站2017.6 中国加入ICH2020.1 NMPA发布适用11个ICH指导原则的公告(2020年第7号)2来源:NMPA网站1来源:ICH Q3D (R1)3. 安全性评估1. 引言2. 范围 4. 元素分类5. 风险评估和风险控制6. 元素杂质的控制7. PDE 值与浓度限度转换 8. 形态和其他考虑 9. 分析方法10.生命周期管理药品中元素杂质有多种来源三部分内容•评估元素杂质毒性数据•每种元素每日允许暴露量(PDE )•运用基于风险的方法控制41. 引言来源:ICH Q3D (R1)元素杂质需要被控制在可接受限度范围内✓安全角度:没有超过PDE ,不必收紧限度✓质量角度:•影响药品其他质量属性,控制更低水平 •较高PDE 值元素,考虑其他限度采用ICH Q9风险管理原则来评估和控制药品中元素杂质思考题?适用范围•新药(New finished drug products)•仿制药(New drug products containing existing drug substance)•纯化蛋白和多肽及其衍生物、偶联物•化学合成多肽、寡核苷酸、寡糖不适用范围•植物药、放射性药品、疫苗、细胞代谢物、DNA产品、过敏原提取物、细胞、全血、血细胞成份或血液衍生物•非体循环透析液(dialysatesolutions not intended forsystemic circulation)•药品中起治疗作用的元素(elements that are intentionally includedin the drug products fortherapeutic benefit)•基因、细胞和组织等先进治疗药品•临床研究阶段的药品52. 范围过渡期•颁布36个月内已上市药品暂不实施(Application of Q3D to existingproducts is not expected prior to 36months after publication of theguideline by ICH)来源:ICH Q3D(R1)6来源:ICH Q3D (R1)Modifying factors 剂量/用量 安全性评估风险评估和控制策略实测值或预测值公认安全性数据PDE可接受限度控制措施新元素新给药途径Modifying Factor: An individual factor determined by professional judgment of a toxicologist and applied to bioassay data to relate that data to human safety.(ICH Q3C) 校正因子由毒理学家确定,建立试验数据与安全性的关系Permitted Daily Exposure (PDE ): The maximum acceptable intake of elemental impurity in pharmaceutical products per day 每日允许暴露量Permitted Concentrations :可接受限度药品中元素可能氧化态人体暴露和安全性数据最相关动物研究相关给药途径5相关终点安全性数据的选择•公认安全性数据:如科学杂志、政府研究报告、国际标准、地区性研究报告等•选择顺序•可以选用来自食物、水、空气和职业暴露的数据•一般用最长时间动物研究建立PDE;若短期动物研究最相关,也可以采用•在吸入给药研究中优选可溶性盐的数据,而不是颗粒的数据;根据局部(呼吸系统)或全身毒性数据,建立吸入PDE•统一用24h+7day暴露量来计算PDE7来源:ICH Q3D(R1)有充分的安全性数据8来源:ICH Q3D (R1)• 毒理学参数:NOEL 、NOAEL 、LOEL 、LOAEL• 50kg• 不同物种系数人1、犬2、兔2.5、猴3、大鼠5、小鼠12、其他动物10• 个体差异系数10• 短期毒性研究系数持续一半生命周期及涵盖全部器官形成1持续时间较短10• 严重毒性系数与母体相关胎儿毒性1,无关胎儿毒性5 与母体相关致畸作用5,无关致畸作用10• 毒理学参数系数缺乏充分的安全性数据•根据口服生物利用度选择校正因子•用口服PDE 和校正因子推算注射/吸入途径PDE•缺乏口服生物利用度数据,校正因子以100计9来源:ICH Q3D (R1)口服生物利用度校正因子 <1% 100 1%~50% 10 50%~90%2≥90% 13. 安全性评估其他给药途径✓启动点:口服、注射、吸入PDE✓评估是否产生局部作用•产生局部作用:校正•不产生局部作用:不校正•注意选择与拟定给药途径相关的毒性终点✓对拟定给药途径的生物利用度进行评估并比较Class 1•As、Cd、Hg、Pb4. 元素分类Class 2✓Class 2A•Co、Ni、V✓Class 2B•Ag、Au、Ir、Os、Pd、Pt、Rh、Ru、Se、Tl Class 3•Ba、Cr、Cu、Li、Mo、Sb、Sn其他元素•Fe、B、W、Zn、K、Ca、Na、Zr、Mn、Mg •Al•W风险评估三步骤识别药品中已知和潜在元素杂质来源确定药品中元素杂质实测值或预测值,并与PDE比较总结和记录风险评估。

ICH-Q3D元素杂质指导原则

ICH-Q3D元素杂质指导原则

Table A.2.1. 元素杂质PDE标准(每日允许暴露量)
元素
As Cd Hg Pb Co Mo Se V Ag Au Ir Os
级别
1 1 1 1 2A 2A 2A 2A 2B 2B 2B 2B
口服制剂 PDE µg/day
15 5.0 40 5.0 50 180 170 120 170 130 1000 1000
元素杂质PDE标准的建立方法见Appendix 1。
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
1. 氧化状态的元素可能出现在药物制剂中 2. 有参考价值的人体暴露量及其安全性数据 3. 直接相关的动物试验研究 4. 给药途径 5. 相关端点和名称的选择(如:国际癌症研究机构分类、 动物致癌性、生殖毒性及靶器官毒性等)
Sb、Ba、Li、Cr、Cu、 Sn、Ni
B、Fe、Zn、K、Ca、Na、 Mn、Mg、W、Al
是 仅刻意添加时 视给药途径而定

5. 元素杂质的评价与控制
5. 元素杂质的评价与控制
5.1 总则
元素杂质的评价过程可分为四步:鉴别、分析、评价及控 制。
在很多情况下以上四步是同时进行的。如分析和评价步骤 可能是迭代步骤,初步调整并控制元素。评价的结果可能 发展成为最终的方法以保证潜在元素杂质在PDE标准范围 以内。
生产设备①
5. 元素杂质的评价与控制
原料药
药品中元素 杂质
制药用水②
容器密闭 系统
辅料
① 生产设备引入元素杂质的风险,可通过对生产过程的正确理解、 对生产设备的适当选择、仪器设备的有效验证及GMP的良好执行来 降低;
② 制药用水引入元素杂质的风险,可通过严格遵守药典(如:EP、 JP及USP)对制药用水的质量要求来降低。

ICH-Q3D元素杂质指导原则知识讲解

ICH-Q3D元素杂质指导原则知识讲解

2. 适用范围
不适用
Q3D不适用于草药产品、放射性药品、疫苗、细胞代谢物、 DNA产品、致敏物、细胞、全血、血细胞成分、动物或植物 来源的粗产品、非体循环的透析液或含有以治疗为目的元素 的药品。
此外,也不适用于临床研究期间的药物制剂。
3. 元素杂质的安全性评价
3. 元素杂质的安全性评价
3.1 口服、肠外及吸入性给药途径制剂的杂质元素安全性 评价原则
Q3D中元素杂质的安全性评价主要通过汇总公开的数据而 得,公开数据主要来源包括:科学期刊、政府研究报告、 适用于药品的国际监管标准及指导原则、监管机构的研究 评估报告等。
通过以上途径获得的数据来建立口服、肠外及吸入性给药 途径的药物制剂日允许暴露量( Permitted Daily Exposure,PDE)标准并给予指导。
2. 适用范围
2. 适用范围
适用
Q3D适用于新的成品药物制剂和采用已有原料药的新药制 剂。
主要包括: 蛋白质和多肽(从重组或非重组细胞培养表达系统产生), 及其衍生物和组分产品(例如,共轭物等)包含在该指导原 则的范围。
此外,含有合成多肽、多核苷酸、低聚糖的药物制剂也在这 一指导原则的范围内。
10 10 10 10 8.0 1300 1100 130 390 60 600 640
吸入性制剂 PDE, µg/day
1.0 1.4 1.4 1.4 69 340 2.9 13 25 6.0 22 64
3. 元素杂质的安全性评价
说明: 锇(Os)、铱(Rh)、钌(Ru)、铑(Ir)等杂质元素 ,因无充分的数据进行安全性评价,无法建立任何一种给 药途径的PDE标准。但由于其性质与铂(Pt)极其相似, 遂参考铂元素的PDE标准。

元素杂质指导原则详解演示文稿

元素杂质指导原则详解演示文稿
元素杂质PDE标准的建立方法见Appendix 1。
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
1. 氧化状态的元素可能出现在药物制剂中 2. 有参考价值的人体暴露量及其安全性数据 3. 直接相关的动物试验研究 4. 给药途径 5. 相关端点和名称的选择(如:国际癌症研究机构分类、 动物致癌性、生殖毒性及靶器官毒性等)
元素杂质指导原则详解演示文 稿
优选元素杂质指导原则
1. 背景介绍
1. 背景介绍
ICH指导委员会于2009年10月批准了Q3D:金属杂质课题。 这一新指导原则建议对于药品中的金属杂质进行定性和定量 限制提供全球性的政策。
ICH Q3A指导原则将杂质分为有机杂质、无机杂质和残留 溶剂。
Q3A和Q3B主要针对有机杂质 Q3C主要针对残留溶剂。 Q3D对无机杂质中的金属提出分类要求。 经过专家工作组的若干次讨论,将题目“Q3D: Guideline for Metal Impurities”修订为“Q3D:Guideline for Elemental Impurities”,并形成了指导原则的初稿。 截止2013年7月,现行版本为Step 2b。
的建立,及控制药品中元素杂质水平手段的发展。
该指导原则并非通过申请者对药品的处理能力使药品中杂 质达到或低于PDE水平的一种限制。而是通过建立PDE来保 障患者,包括儿童的公众健康。
在某些情况下,较低水平杂质的存在是必要的,尤其低于 毒性阈值时的杂质水平会对药物的性质产生重要影响(如杂 质的存在有可能对药物成分产生催化降解作用)。
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
6. 以长期动物研究数据为依据建立PDE。在某种情况下, 短期动物研究数据可用于个体元素杂质PDE标准建立最直 接评价手段 7. 注射或吸入性给药数据缺失或/和数据可用,但不足以 进行安全评估时,则采用缺省因子以口服给药PDE标准为 基础建立以上两种给药途径的PDE标准 8. 吸入性药物制剂中,可溶性盐较悬浮微粒更适合评价杂 质元素的毒性。因此,吸入制剂采用可溶性盐对吸入性制 剂及其衍生制剂进行PDE标准研究

ICHQ3D:元素杂质指导原则

ICHQ3D:元素杂质指导原则

ICHQ3D:元素杂质指导原则内容:1.背景介绍2.适用范围3.元素杂质的安全性评价4.元素分级5.元素杂质的评价与控制背景介绍ICH指导委员会于2009年10月批准了Q3D:金属杂质课题。

这一新指导原则建议对于药品中的金属杂质进行定性和定量限制全球性的政Q3D策。

ICH Q3A指导原则将杂质分为有机杂质、无机杂质和残留溶剂。

Q3A和Q3B主要针对有机杂质。

Q3C主要针对残留溶剂。

Q3D对无机杂质中的金属提出分类要求。

经过专家工作组的若干次讨论,将题目“Q3D:Guidance for Metal Impurities”修订为“Q3D:Guidance for Elemental Impurities”并形成了指导原则的初稿。

截止2013年7月,现行版本为Step 2b.药品中的元素杂质可能有多个来源:可能在合成中有意添加,或可能作为污染物存在(列如,通过与生产设备的相互作用,或通过药品的组分存在),因此可在药品中被检测到。

由于元素杂质不能给病人提供任何治疗益处,所以药品中元素杂质含量应该被控制在可接受的限度。

Q3D主要由三部分构成:潜在元素杂质的毒性评估,毒性元素允许日暴露量(PDE)建立,及控制药品中元素杂质水平手段的发展。

该指导原则并非通过申请者对药品的处理能力使药品中杂质达到或低于PDE水平的一种限制。

而是通过建立PDE来保障患者,包括儿童的公众健康。

在某些情况下,较低水平杂质的存在是必要的,尤其低于毒性阙值的杂质水平会对药物的性质产生重要影响(如杂质的存在有可能对药物成分产生催化降解作用)。

Q3D限制元素杂质的处理过程主要包括:鉴别、分析、评价及控制。

Q3D给定的安全数据会适当更新。

当新的安全数据一经确认,杂质允许日暴露量(PDE)有可能会变化。

本指导原则会随着新的安全数据的使用而更新,包括不同元素杂质、或不同的给药途径等。

来自各方的安全数据均将考虑在内,作为Q3D安全数据的参考。

适用范围适用Q3D适用于新的成品药物制剂和采用已有原料药的新药制剂。

元素杂质指导原则

元素杂质指导原则
Q3D中元素杂质的安全性评价主要通过汇总公开的数据而 得,公开数据主要来源包括:科学期刊、政府研究报告、 适用于药品的国际监管标准及指导原则、监管机构的研究 评估报告等。
通过以上途径获得的数据来建立口服、肠外及吸入性给药 途径的药物制剂日允许暴露量( Permitted Daily Exposure,PDE)标准并给予指导。
注射剂 PDE µg/day
15 6.0 4.0 5.0 5.0 180 85 12 35 130 10 10
吸入性制剂 PDE, µg/day
1.9 3.4 1.2 5.0 2.9 7.6 140 1.2 6.9 1.3 1.4 1.4
Table A.2.1.元素杂质PDE标准(每日允许暴露量)(续)
ICH Q3A指导原则将杂质分为有机杂质、无机杂质和残留 溶剂。
Q3A和Q3B主要针对有机杂质 Q3C主要针对残留溶剂。 Q3D对无机杂质中的金属提出分类要求。 经过专家工作组的若干次讨论,将题目“Q3D: Guideline for Metal Impurities”修订为“Q3D:Guideline for Elemental Impurities”,并形成了指导原则的初稿。 截止2013年7月,现行版本为Step 2b。
1. 背景介绍
药品中的元素杂质可能有多个来源:可以在合成中有意 添加,或可能作为污染物存在(例如,通过与生产设备的相 互作用பைடு நூலகம்或通过药品的组分存在),因此可在药品中被检测 到。由于元素杂质不能给病人提供任何治疗益处,所以药品 中元素杂质含量应该被控制在可接受的限度。
1. 背景介绍
Q3D主要由三部分构成: 潜在元素杂质的毒性评估,毒性元素允许日暴露量(PDE)
3. 元素杂质的安全性评价

ICHQ3D元素杂质指导原则

ICHQ3D元素杂质指导原则

.
13
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
6. 以长期动物研究数据为依据建立PDE。在某种情况下, 短期动物研究数据可用于个体元素杂质PDE标准建立最直 接评价手段
7. 注射或吸入性给药数据缺失或/和数据可用,但不足以进 行安全评估时,则采用缺省因子以口服给药PDE标准为基 础建立以上两种给药途径的PDE标准
.
7
2. 适用范围
.
8
2. 适用范围
适用
Q3D适用于新的成品药物制剂和采用已有原料药的新药制剂 。
主要包括:
蛋白质和多肽(从重组或非重组细胞培养表达系统产生), 及其衍生物和组分产品(例如,共轭物等)包含在该指导原 则的范围。
此外,含有合成多肽、多核苷酸、低聚糖的药物制剂也在这 一指导原则的范围内。
.
9
2. 适用范围
不适用
Q3D不适用于草药产品、放射性药品、疫苗、细胞代谢物、 DNA产品、致敏物、细胞、全血、血细胞成分、动物或植物 来源的粗产品、非体循环的透析液或含有以治疗为目的元素 的药品。
此外,也不适用于临床研究期间的药物制剂。
.
10
3. 元素杂质的安全性评价
.
11
3. 元素杂质的安全性评价
的建立,及控制药品中元素杂质水平手段的发展。
该指导原则并非通过申请者对药品的处理能力使药品中杂 质达到或低于PDE水平的一种限制。而是通过建立PDE来保 障患者,包括儿童的公众健康。
在某些情况下,较低水平杂质的存在是必要的,尤其低于 毒性阈值时的杂质水平会对药物的性质产生重要影响(如杂质 的存在有可能对药物成分产生催化降解作用)。
ICH Q3D:元素杂质指导原则

ICHQ3D元素杂质指导原则

ICHQ3D元素杂质指导原则
实用文档
5. 元素杂质的评价与控制
鉴别( Identify ): 鉴别已知的元素杂质,并找出其引入药品的潜在源头

分析( Analyze ): 确定特定元素杂质存在药物中的可能性。
评价( Evaluate ): 以PDE标准比较实际测得值与预测值差距。
控制( Control ): 建立并实施控制手段实用限文档定药品中的元素杂质。
铱)、Os(锇)、Rh(铑)、Ag(银)、Ru(钌) 说明:只有当这些元素刻意添加到原料生产过程时才需要
评价其潜在来源
实用文档
4. 元素分级
Class 3
依据:口服毒性低,其他给药途径需考察 元素: Sb(锑)、Ba(钡)、Li(锂)、Cr(铬)、Cu(
铜)、Sn(锡)、Ni(镍) 说明:对于口服给药的制剂,除非该类元素作为原料的一
Class 1
依据:具有明显的毒性 元素: As(砷)、Cd(镉)、Hg(汞)、Pb(铅) 说明:由于具有明显的毒性,因此,各种给药途径的药物
制剂均需考察。一般情况下在药物生产中限制使用或不用 ,但会以杂质的形式出现在原料中,且不易除掉。因此在 进行安全性评价时应考察其所有可能的来源
实用文档
Q3D主要由三部分构成: 潜在元素杂质的毒性评估,毒性元素允许日暴露量(
PDE)的建立,及控制药品中元素杂质水平手段的发展。
该指导原则并非通过申请者对药品的处理能力使药品 中杂质达到或低于PDE水平的一种限制。而是通过建立PDE来 保障患者,包括儿童的公众健康。
在某些情况下,较低水平杂质的存在是必要的,尤其 低于毒性阈值时的杂质水平会对药物的性质产生重要影响( 如杂质的存在有可能对药物成分产生催化降解作用)。
说明:如药物产品中含有该类元素杂质,则需要按着其 他指导原则和地方性法规进行处理

ICH Q3元素杂质指导原则

ICH Q3元素杂质指导原则
ICH Q3A指导原则将杂质分为有机杂质、无机杂质和残留 溶剂。
Q3A和Q3B主要针对有机杂质 Q3C主要针对残留溶剂。 Q3D对无机杂质中的金属提出分类要求。 经过专家工作组的若干次讨论,将题目“Q3D: Guideline for Metal Impurities”修订为“Q3D:Guideline for Elemental Impurities”,并形成了指导原则的初稿。 截止2013年7月,现行版本为Step 2b。
Table A.2.1. 元素杂质PDE标准(每日允许暴露量)
元素
As Cd Hg Pb Co Mo Se V Ag Au Ir Os
级别
1 1 1 1 2A 2A 2A 2A 2B 2B 2B 2B
口服制剂 PDE µg/day
15 5.0 40 5.0 50 180 170 120 170 130 1000 1000
元素杂质PDE标准的建立方法见Appendix 1。
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
1. 氧化状态的元素可能出现在药物制剂中 2. 有参考价值的人体暴露量及其安全性数据 3. 直接相关的动物试验研究 4. 给药途径 5. 相关端点和名称的选择(如:国际癌症研究机构分类、 动物致癌性、生殖毒性及靶器官毒性等)
5. 元素杂质的评价与控制
5.2 元素杂质的潜在来源
考虑药物的生产过程,元素杂质的主要来源可分为以下几 大类: ⑴ 残余元素杂质。主要来源于刻意加入参与生产反应或在 原料药、试剂、起始原料或辅料生产处理过程中引入的元 素残留(如:金属催化剂)。 ⑵ 原料药、试剂、起始原料或辅料中已知的或可能存在的 元素杂质。 ⑶ 通过生产设备引入的已知的或可能存在的元素杂质 ⑷ 通过药物容器密封系统引入的元素杂质

ICH-Q3D元素杂质指导原则ppt课件

ICH-Q3D元素杂质指导原则ppt课件
该类杂质毒性的大小与药物制剂的给药途径有关。 该分类中某些元素,很少以杂质的形式出现在药品辅料中,
因此,除非该类元素是药品生产过程中刻意添加的,否则在 药品中不会出现该类杂质,也不会产生重大危险。 将该类元素进一步分级为Class 2A和Class 2B,以确定何时 有必要进行风险评价?何时该类杂质的作用可忽略不计?
6
1. 背景介绍
Q3D限制元素杂质的处理过程主要包括:鉴别、分析、评 价及控制。
Q3D给定的安全数据会适当更新。当新的安全数据一经确 认,杂质允许日暴露量(PDE)有可能会变化。本指导原 则会随着新的安全数据的使用而更新,包括不同的元素杂 质、或不同的给药途径等。
来自各方的安全数据均将考虑在内,作为Q3D安全性数据 的参考
元素
Pd Pt Rh Ru Tl Ba Cr Cu Li Ni Sb Sn
级别
2B 2B 2B 2B 2B 3 3 3 3 3 3 3
口服制剂 PDE µg/day
100 1000 1000 1000 8.0 13000 11000 1300 780 600 1200 6400
注射剂 PDE, µg/day
32
5. 元素杂质的评价与控制
鉴别( Identify ): 鉴别已知的元素杂质,并找出其引入药品的潜在源头。
分析( Analyze ): 确定特定元素杂质存在药物中的可能性。
评价( Evaluate ): 以PDE标准比较实际测得值与预测值差距。
控制( Control ): 建立并实施控制手段限定药品中的元素杂质。
13
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
6. 以长期动物研究数据为依据建立PDE。在某种情况下, 短期动物研究数据可用于个体元素杂质PDE标准建立最直 接评价手段 7. 注射或吸入性给药数据缺失或/和数据可用,但不足以 进行安全评估时,则采用缺省因子以口服给药PDE标准为 基础建立以上两种给药途径的PDE标准 8. 吸入性药物制剂中,可溶性盐较悬浮微粒更适合评价杂 质元素的毒性。因此,吸入制剂采用可溶性盐对吸入性制 剂及其衍生制剂进行PDE标准研究

ICH元素杂质指导原则

ICH元素杂质指导原则

5. 元素杂质的评价与控制
5.3 潜在元素杂质的鉴别
5.3.1 Class 1元素杂质 基于元素的内在毒性,进行安全性评价时应包含Class 1中 所有元素杂质。对该类杂质元素的任何可能的潜在来源应 进行评价,以明确其转移引入药品的可能性。
5. 元素杂质的评价与控制
5.3.2 参与反应的催化剂或试剂引入的元素杂质
3. 元素杂质的安全性评价
由于表中涉及到的元素杂质不同程度的存在于食物、水、 空气及职业环境中,相对比较复杂。因此,元素杂质的 PDE标准也未必一成不变。在某些特殊情况下,需要借助 校正因子等手段建立PDE标准。
通常情况下:
生物利用度 <1% <50%
50%~90% >90%
×校正因子 0.01 0.1 0.5 1.0
5. 元素杂质的评价与控制
5.2 元素杂质的潜在来源
考虑药物的生产过程,元素杂质的主要来源可分为以下几 大类: ⑴ 残余元素杂质。主要来源于刻意加入参与生产反应或在 原料药、试剂、起始原料或辅料生产处理过程中引入的元 素残留(如:金属催化剂)。 ⑵ 原料药、试剂、起始原料或辅料中已知的或可能存在的 元素杂质。 ⑶ 通过生产设备引入的已知的或可能存在的元素杂质 ⑷ 通过药物容器密封系统引入的元素杂质
Q3D中元素杂质的安全性评价主要通过汇总公开的数据而 得,公开数据主要来源包括:科学期刊、政府研究报告、 适用于药品的国际监管标准及指导原则、监管机构的研究 评估报告等。
通过以上途径获得的数据来建立口服、肠外及吸入性给药 途径的药物制剂日允许暴露量( Permitted Daily Exposure,PDE)标准并给予指导。
Table A.2.1. 元素杂质PDE标准(每日允许暴露量)
元素

元素杂质指导原则PPT文档共88页

元素杂质指导原则PPT文档共88页

41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教元素杂质指导原则
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

·
6
1. 背景介绍
Q3D限制元素杂质的处理过程主要包括:鉴别、分析、评价 及控制。
Q3D给定的安全数据会适当更新。当新的安全数据一经确认 ,杂质允许日暴露量(PDE)有可能会变化。本指导原则会 随着新的安全数据的使用而更新,包括不同的元素杂质、 或不同的给药途径等。
来自各方的安全数据均将考虑在内,作为Q3D安全性数据的 参考
3.1 口服、肠外及吸入性给药途径制剂的杂质元素安全性 评价原则
Q3D中元素杂质的安全性评价主要通过汇总公开的数据而得 ,公开数据主要来源包括:科学期刊、政府研究报告、适 用于药品的国际监管标准及指导原则、监管机构的研究评 估报告等。
通过以上途径获得的数据来建立口服、肠外及吸入性给药 途径的药物制剂日允许暴露量( Permitted Daily Exposure,PDE)标准并给予指导。
口服制剂 PDE µg/day
15
5.0
40
5.0
50
180
170
120
170
130
1000
1000
·
注射剂 PDE µg/day
15 6.0 4.0 5.0 5.0 180 85 12 35 130 10 10
吸入性制剂 PDE, µg/day
1.9 3.4 1.2 5.0 2.9 7.6 140 1.2 6.9 1.3 1.4 1.4 15
·
13
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
6. 以长期动物研究数据为依据建立PDE。在某种情况下 ,短期动物研究数据可用于个体元素杂质PDE标准建立最直 接评价手段
7. 注射或吸入性给药数据缺失或/和数据可用,但不足 以进行安全评估时,则采用缺省因子以口服给药PDE标准为 基础建立以上两种给药途径的PDE标准
Table A.2.1.元素杂质PDE标准(每日允许暴露量)(续)
元素
Pd Pt Rh Ru Tl Ba Cr Cu Li Ni Sb Sn
级别
2B 2B 2B 2B 2B 3 3 3 3 3 3 3
口服制剂 PDE µg/day
100
1000
1000
1000
8.0
13000
11000
1300
780
8. 吸入性药物制剂中,可溶性盐较悬浮微粒更适合评 价杂质元素的毒性。因此,吸入制剂采用可溶性盐对吸入 性制剂及其衍生制剂进行PDE标准研究
·
14
Table A.2.1. 元素杂质PDE标准(每日允许暴露量)
元素
As Cd Hg Pb Co Mo Se V Ag Au Ir Os
级别
1 1 1 1 2A 2A 2A 2A 2B 2B 2B 2B
·
9
2. 适用范围
不适用
Q3D不适用于草药产品、放射性药品、疫苗、细胞代谢物、 DNA产品、致敏物、细胞、全血、血细胞成分、动物或植物来 源的粗产品、非体循环的透析液或含有以治疗为目的元素的 药品。
此外,也不适用于临床研究期间的药物制剂。
·
10
3. 元素杂质的安全性评价
·
11
3. 元素杂质的安全性评价
,因无充分的数据进行安全性评价,无法建立任何一种给 药途径的PDE标准。但由于其性质与铂(Pt)极其相似,遂 参考铂元素的PDE标准。
定量限制提供全球性的政策。
ICH Q3A指导原则将杂质分为有机杂质、无机杂质和残
留溶剂。
Q3A和Q3B主要针对有机杂质
Q3C主要针对残留溶剂。
Q3D对无机杂质中的金属提出分类要求。
经过专家工作组的若干次讨论,将题目“Q3D:
Guideline for Metal Impurities”修订为“Q3D:
·
5
1. 背景介绍
Q3D主要由三部分构成: 潜在元素杂质的毒性评估,毒性元素允许日暴露量
(PDE)的建立,及控制药品中元素杂质水平手段的发展。
该指导原则并非通过申请者对药品的处理能力使药品 中杂质达到或低于PDE水平的一种限制。而是通过建立PDE来 保障患者,包括儿童的公众健康。
在某些情况下,较低水平杂质的存在是必要的,尤其 低于毒性阈值时的杂质水平会对药物的性质产生重要影响 (如杂质的存在有可能对药物成分产生催化降解作用)。
元素杂质PDE标准的建立方法见Appendix 1。
·
12
3. 元素杂质的安全性评价
元素杂质的PDE标准建立需要考虑哪些因素?
1. 氧化状态的元素可能出现在药物制剂中 2. 有参考价值的人体暴露量及其安全性数据 3. 直接相关的动物试验研究 4. 给药途径 5. 相关端点和名称的选择(如:国际癌症研究机构分 类、动物致癌性、生殖毒性及靶器官毒性等)
·
7
2. 适用范围
·
8
2. 适用范围
适用
Q3D适用于新的成品药物制剂和采用已有原料药的新药制剂 。
主要包括:
蛋白质和多肽(从重组或非重组细胞培养表达系统产生) ,及其衍生物和组分产品(例如,共轭物等)包含在该指导 原则的范围。
此外,含有合成多肽、多核苷酸、低聚糖的药物制剂也在这 一指导原则的范围内。
Guideline for Elemental Impurities”,并形成了指导原
则的初稿。
截止2013年7月,现行版本为Step 2b。
·
4
1. 背景介绍
药品中的元素杂质可能有多个来源:可以在合成中有意 添加,或可能作为污染物存在(例如,通过与生产设备的相 互作用,或通过药品的组分存在),因此可在药品中被检测 到。由于元素杂质不能给病人提供任何治疗益处,所以药品 中元素杂质含量应该被控制在可接受的限度。
ICH Q3D:元素杂质指导原则
Guideline for Elemental Impurities
·
1
1 背景介绍
2 适用范围


3 元素杂质的安全性评价
4 元素分级
5 元素杂质的评价与控制
·

1. 背景介绍
ICH指导委员会于2009年10月批准了Q3D:金属杂质课
题。这一新指导原则建议对于药品中的金属杂质进行定性和
600
1200
6400
·
注射剂 PDE, µg/day
10 10 10 10 8.0 1300 1100 130 390 60 600 640
吸入性制剂 PDE, µg/day
1.0 1.4 1.4 1.4 69 340 2.9 13 25 6.0 22 64 16
3. 元素杂质的安全性评价
说明: 锇(Os)、铱(Rh)、钌(Ru)、铑(Ir)等杂质元素
相关文档
最新文档