人教版高中数学必修三 3.3 几何概型 教案
高中数学人教A版必修3教案-3.3_几何概型_教学设计_教案
教学准备1. 教学目标教学目标:知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。
2. 教学重点/难点教学重点:①理解几何概型的概念、特点;②用其求解随机事件的概率。
教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域和与事件A对应的区域,并求出它们的几何度量。
3. 教学用具4. 标签教学过程教学过程:课题引入:试验1、①、在集合{0,1,2,3,4,5,6,7,8.,9}中任取一个元素a,则a ≥3的概率为_________②、如图在线段OA上任取一点B(a,0),则a≥3的概率为_________试验2、2011年我班元旦活动中将设置两种游戏:第一种:靶子如图所示,假设靶子机随机的射击一次,射在大小相同的气球上。
规定击中红球则中奖。
第二种:靶子如图所示,假设靶子机随机的掷一个飞镖扎在靶子上,飞镖不会落脱靶。
规定飞镖落在红色区域则中奖。
每人限报一种且执行一次。
假设你在参加游戏,你更愿意选择哪种呢?【设计目的】激发学生的求知欲望,复习旧知发现新知,通过类比分散难点,培养学生的发现问题,分析问题和解决问题能力。
思考交流、概念形成:问题:(1)两组试验涉及到问题的共同特征是什么?(2)对于“无限性”类问题,其概率的计算方法的共同特点是什么?(课前准备表格,待学生讨论结束,概念、公式形成后补充完整)几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.观察类比、公式形成:2、几何概型的概率公式:一般地,在几何区域中随机地取一点,记事件"该点落在其内部一个区域内"为事件,则事件发生的概率练习:有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.解题注意事项:(1)要判断该概率模型是不是几何概型,注意与古典概型的区别;(2)要找出构成随机事件A的区域和试验的全部结果所构成的区域;(3)确定好几何度量。
高中数学必修三第三章3.3几何概型教学设计
高中数学必修三第三章3.3几何概型教学设计高中数学必修三第三章3.3几何概型教学设计一,教材分析本节课是新教材人教版必修3第三章第三节的第一课,它在课本中的位置排在古典概型之后,在概率的应用之前.我认为教材这样安排的目的,一是为了体现几何概型(3.31)和古典概型的区别和联系,在比较中巩固这两种概型;并引入了均匀随机数的产生(3.32)二是为解决实际问题提供一种简单可行的概率求法,在教材中起承上启下的作用.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.二,学情分析通过最近几年的实际调查发现,学生在学习本节课时特别容易和古典概型相混淆,把几何概型的“无限性”误认为古典概型的“有限性”.究其原因是思维不严谨,研究问题时过于“想当然”,对几何概型的概念理解不清.因此我认为要在几何概型的特征和概念的理解上下功夫,不要浮于表面.另外,在解决几何概型的问题时,几何度量的选择也是需要特别重视的,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.前面学生在已经掌握一般性的随机事件即概率的统计定义的基础上,又学习了古典概型。
在古典概型向几何概型的过渡时,以及实际背景如何转化为长度比、面积比、体积比时,会有一些困难。
但只要引导得当,理解几何概型,完成教学目标,是切实可行的。
根据学生的状况及新课程标准,对教材作了如下处理:开头的两个问题,学生独立思考,说出结果,师生共同纠正。
之后的探究处理成演示试验,以强化数学知识实际背景与形成过程,便于激发学生的学习兴趣,加深对知识的理解与应用。
高中数学《3.3几何概型》教案新人教版必修3
第六课时几何概型一、教学任务分析:1、通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。
2、通过学生玩转盘游戏、教师分析得出几何概型概率计算公式。
3、通过例题教学,使学生能掌握几何概型概率计算公式的应用,并理解均匀分布的概念。
二、教学重点与难点:重点:(1)几何概型概率计算公式及应用。
(2)如何利用几何概型,把问题转化为各种几何概型问题。
难点:正确判断几何概型并求出概率。
三、教学基本流程:四、教学情境设计:问题问题设计意图师生活动(1)谁能叙述古典概型的有关知识吗?复习上节课相关知识师:提出问题,引导学生回忆,对学生活动进行评价。
生:回忆、概括。
(2)现实生活中,常常遇到试验的所有可能结果是无穷多的情况,如何计算概率?引出课题:几何概型。
师:提出问题,引导学生思考,激发兴趣。
生:思考。
(3)学生玩转盘游戏,猜想在两种情况下,甲获胜的概率是多少?让学生通过观察,猜想几何概型的特点及计算公式。
师:提出问题,引导学生思考、猜想,得出几何概型的概率计算公式。
生:观察、思考、猜想。
(4)你能说说几何概型与古典概型的区别吗?引导学生分析、比较,更加深对几何概型的理解。
师:引导学生比较两种概型的区别,明确几何概型要求的基本事件有无限多个,明确几何概型的复习古典概型的概念提出问题,引入课题学生玩转盘游戏、猜想甲获胜的概率几何概型的概念、特点、与古典概型的区别例1 的教学,明确几何概型的计算步骤练习和小结计算公式。
生:思考,比较,理解。
(5)例题,P 147练习。
通过例1明确与长度有关的几何概型概率的求法。
在练习中设置与角度、面积、体积有关的几何概型的概率求法。
师:引导学生把问题抽象为与长度有关的几何概型问题,并明确求解步骤。
师生共同完成解题过程,然后学生独立完成相应练习,教师进行点评。
引导学生阅读书本P 131明确均匀分布的概念。
生:思考完成练习。
(6)小结,作业布置P 149习题A 组1、2。
最新人教版高中数学必修三几何概型优质教案
§3.3 几何概型§3.3.1 几何概型一、教材分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X 为[0, 1]区间上的均匀随机数.二、教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
人教版高中数学必修3第三章概率-《3.3几何概型》教案
几何概型一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。
(2)能识别实际问题中概率模型是否为几何概型。
(3)会利用几何概型公式对简单的几何概型问题进行计算。
二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。
教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
四、教学过程一、 创设情境 引入新课【知识回顾】(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(3)取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个的,因而无法利用古典概型;(4)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?(1)(2)学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;(5)有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置却是无限多个的,因而不能利用古典概型。
高中数学人教B版必修3 3.3 教学设计 《几何概型》(人教)
《几何概型》◆教学目标【知识与能力目标】初步体会几何概型的意义,会用公式求解简单的几何概型的概率。
【过程与方法能力目标】通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法。
【情感态度价值观目标】用具有现实意义的实例,激发学生的学习兴趣培养学生对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。
◆教学重难点◆【教学重点】几何概型的基本特征及如何求几何概型的概率。
【教学难点】如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量。
◆教学过程一、新课导入我们知道古典概型只有在满足“有限性”和“等可能性”两个性质的前提下才能适用,那么对于试验结果有无穷多个的情形该怎样处理呢?例1.在转盘上有8个面积相等的扇形,转动转盘,求转盘停止转动时指针落在阴影部分的概率。
例2. 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率。
观察上述两例,可知以上两个试验的可能结果个数无限,所以它们都不是古典概型。
先看例1,由经验得知“指针落在阴影部分的概率”可以用阴影部分的面积与总面积之.比来衡量,即P(A)=12同样地,例2中由于取水样的随机性,所求事件A : “在取出的2ml的水样中有草履虫”=0.04.的概率等于水样的体积与总体积之比2500二、探究新知通过对上述例题的探讨,引出几何概型的概念以及特点进行归纳总结。
几何概型如果把事件A理解为区域Ω的某一个子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称满足以上条件的试验为几何概型。
在几何概型中,事件A的概率定义为:P(A)=µA,其中μΩ表示区域Ω的几何度量,μAµΩ。
《必修三《几何概型》教案
《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。
2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。
二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。
2.难点:-运用几何概型解决实际问题。
三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。
2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。
3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。
4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。
5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。
6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。
四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。
五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。
六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。
高中数学3.3几何概型教案新人教A必修3
3.3 几何概型3.3.1—3.3.2几何概型及均匀随机数的产生一、教学目标: 1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、 情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学. 四、教学设想:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.1、 例题分析: 课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。
高中数学 3.3几何概型教学案 新人教B版必修3
高中数学必修三:3.3几何概型
教学目标:初步体会几何概型的意义。
教学重点:初步体会几何概型的意义。
教学过程:
1.古典概型要求样本点总数为有限.若是有无限个样本点,特别是连续无限的情况,虽是等可能的,也不能利用古典概型.但是类似的算法可以推广到这种情形. 若样本空间是一个包含无限个点的区域Ω(一维,二维,三维或n 维),样本点是区域中的一个点.此时用点数度量样本点的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,样本点落在这两区域上的概率相等,而与形状和位置都无关”. 在这种理解下,若记事件A={任取一个样本点,它落在区域g ⊂Ω},则A 的概率定义为 P(A)=的测度的测度Ωg . 这样定义的概率称为几何概率.
2.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).
可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故
P(A)=53=
Ω的长度的长度g .。
几何概型教案
3-3.3 几何概型一、教材分析在人教版高中数学教材的知识体系中,几何概型被安排在必修3的第三章第三节,是继古典概型后对另一常见概型的学习,是在古典概型基础上进一步的拓展,将等可能事件的概念从有限延伸至无限。
学好此节内容有助于学生全面系统地掌握概率知识和进一步形成辩证思想。
二、学情分析学生已经学习了概率的含义以及古典概型的计算方式,对概率有一定的了解,掌握了一定的概率求解方法,掌握了古典概型的相关知识。
通过对比分辨两种概型的区别与联系,进行几何概型的学习。
三、教学目标1、知识与技能:通过实际操练,使学生从多种维度体验几何概型的实际应用,初步体会几何概型的意义;将古典概型与几何概型进行对比,使学生明确几何概型与古典概型的区别,掌握几何概型概率计算公式的应用,能够运用线性规划等方法解决复杂的几何概型问题。
通过思维拓展,使学生初步了解随机模拟方法的使用及其实际意义。
2、过程与方法:通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。
3、情感、态度与价值观:帮助学生养成合作交流的习惯,初步形成建立数学模型的能力,通过学生的实际操作,激发学生学习的兴趣,重视数学在实际生活中的作用。
四、教学重点、难点1.教学重点①正确理解几何概型的定义、特点;②会用几何概型概率公式求解随机事件的概率。
2.教学难点①根据古典概型与几何概型的区别,来判断一个试验是否为几何概型;②将实际问题抽象成几何概型,并灵活运用各类方法解决几何概型问题.五、教法选择“以学生为主体”的探究性教学,讲授法,谈话法六、教学过程本节课的教学,共分为五个部分:一、知识梳理二、情境导入三、问题探究四、思维拓展五、回顾小结七、教学设计一、知识梳理【师】:同学们,上节课我们学习了古典概型,通过以下情景我们来回顾一下。
情景一:区间[0,4]上取一整数,恰好在区间[0,1]上的概率是多少?(板书在右边)这个情境里,基本事件是什么?基本事件有哪些?每一个基本事件发生的可能性为多少?什么情况下事件A发生?【生】:所取得的整数;01234五个;1/5;0,1;2/5【师】:非常好,由此我们可以得出情景一下的概率为2/5.那么由此我们可以知道古典概型有什么特点呢?【生】:基本事件可数,发生的可能性相同。
人教版高中必修3(B版)3.3.1几何概型课程设计
人教版高中必修3(B版)3.3.1几何概型课程设计一、课程背景几何概型是高中数学必修课程的重要内容之一,也是初中数学学习中重要的过渡环节。
在高中课程中,几何概型的学习不仅有利于学生形成立体思维,还有助于他们理解和掌握解决实际问题的几何方法。
本课程主要是以建立学生对几何概型基本概念和方法的认识为主要目的,同时也要在实际问题中应用所学几何知识并使学生形成科学的思维方法和逻辑思维能力。
二、教材分析本课程所使用的教材为人教版高中必修3(B版)。
该教材对几何概型的教学内容进行了比较详细的描述,包括基本概念、基本定理、平面几何、空间几何等内容。
在本课程的教学过程中,将会结合教材中的内容,进行教学和辅导。
三、课程目标本课程的主要目标是:1.让学生掌握几何概型的基本概念和术语。
2.让学生掌握几何概型的基本定理和证明方法。
3.培养学生观察、分析、解决几何问题的能力。
4.培养学生科学的思维方法和逻辑思维能力。
四、课程内容和教学方法本课程的主要内容包括:几何概型的基本概念和术语、基本定理和证明方法、平面几何与空间几何等内容。
在教学过程中,将会采用以下教学方法:1.讲解法。
通过讲解教材内容,引导学生理解概念和定理,并且让学生能够掌握证明方法。
2.实例法。
通过实际问题引出几何概型的相关知识,让学生在解决实际问题的过程中掌握几何知识。
3.讨论法。
通过讨论教材上的例题或是学生提出的问题,让学生积极参与,提高他们的思维能力和分析能力。
4.实验法。
通过实验让学生在实践中感性认识几何知识,提高他们的实际操作能力。
五、课程评估本课程的评估方式主要包括课堂测试、作业评定、实验报告、考试等。
其中,考试是本课程的重要评估方式,在考试中将会设置选择题、填空题、解答题等不同考试题型,从而全面考察学生掌握几何概型的情况。
除了考试,本课程也将充分重视学生的学习兴趣、思维习惯、合作精神等方面的培养,从而全面评估学生的学习成绩。
六、教学资源本课程的教学资源主要包括教师教学PPT、教材、讲义、练习册、作业、实验器材等。
高中数学《几何概型》教案、教学设计
高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。
【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。
【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。
二、教学重难点
【重点】几何概型的特点以及概率计算公式。
【难点】几何概型特点的归纳以及概率计算公式的推导。
三、教学过程
(一)导入新课
回顾古典概型。
出示问题情境:往一方格中投一个石子。
请学生思考石子可能落在哪里,如何求概率。
在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。
引出课题。
(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。
请学生在两种情况下分别求出甲获胜的概率是多少。
(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。
作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。
人教版高中数学数学必修三3.3+几何概型第一课时+教案
第一学期高一数学教案主备人:使用人:取一根长度为3 m的绳子,拉直后在任意位置剪断,求剪得两段的长都不小于1 m的概率.导学号95064783如图所示,墙上挂着一块边长为16 cm的正方形木板,上面画了大、中、小三个同心圆,半径分别为6 cm,4 cm,2 cm.某人站在3 m之外向此板投镖,设投镖击中线上或没有击中木板时都不算,可重投,问:导学号95064785(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?一个多面体的直观图和三视图如下图所示,M 是AB 的中点,一只蜻蜓在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为导学号 95064787( )如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条直线CM ,与线段AB 交于点M .求AM <AC 的概率.导学号 950647891.已知函数f (x )=2x,若从区间[-2,2]上任取一个实数x ,则使不等式f (x )>2成立的概率为导学号 95064796( A )A .14 B .13 C .12D .23[解析] 这是一个几何概型,其中基本事件的总数构成的区域对应的长度是2-(-2)=4,由f (x )>2可得x >1,所以满足题设的基本事件构成的区域对应的长度是2-1=1,则使不等式f (x )>2成立的概率为14.2.一个红绿灯路口,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为45秒.当你到达路口时,恰好看到黄灯亮的概率是导学号 95064797( C )A .112 B .38 C .116D .56[解析] 设看到黄灯亮为事件A ,构成事件A 的“长度”等于5,试验的全部结果所构成的区域长度是30+5+45=80,所以P (A )=580=116.3.已知ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点P ,则取到的点P 到O 的距离大于1的概率为导学号 95064798( B )A .π4B .1-π4C .π8D .1-π8[解析] 如图所示,设取到的点P 到O 的距离大于1为事件M ,则点P 应在阴影部分内,阴影部分的面积为2×1-12×π×12=2-π2,所以P (M )=2-π22=1-π4.4.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为导学号 95064799( C )A .18 B .79 C .29D .716[解析] 由题意知,这是一个与面积有关的几何概型题.这只小狗在任何一个区域的可能性一样,图中有大小相同的方砖共9块,显然小狗停在涂色方砖的概率为29.故选C .5.平面上有一组平行线且相邻平行线的距离为3 cm ,把一枚半径为1 cm 硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是导学号 95064800( B )A .14 B .13 C .12 D .23精美句子1、善思则能“从无字句处读书”。
最新人教版高中数学必修3第三章《几何概型》教案
最新人教版高中数学必修3第三章《几何概型》教案《几何概型》教案教学目标:1.正确理解几何概型的概念;可以辨别某种概型就是古典概型还是几何概型;掌控几何概型的概率公式;2.发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;3.通过自学与探究活动,体会理论源于课堂教学并应用于课堂教学的辩证唯物主义观点.教学重点难点:1.重点:几何概型的概念、公式及应用领域;2.难点:几何概型与古典概型各自的适用范围.教法与学法:1.教法挑选:使用鼓励辨认出和概括归纳结合的教学方法,通过明确提出问题、分析问题、解决问题等教学过程,观测对照、归纳概括几何概型的概念及其概率公式;2.学法指导:以学生活动为主,引导学生在动手操作、实践探索、合作交流的基础上,充分调动学生学习的积极性和主动性.结合本课的实际需要,作如下指导:对于概念,学会几何概型与古典概型的比较;立足基础知识和基本技能,掌握好典型例题;注意数形结合思想的运用,把抽象的问题转化为熟悉的几何概型.教学过程:一、设置情境,引出概念教学教学过程环节问题开篇以一个游如图,存有两个旋钮.甲、乙两人玩玩旋钮游戏,戏开篇,唤起学规定当指针指向b区域时,甲获得胜利,否则乙获得胜利.生自学兴趣,引发学生的主动教师以游戏开篇,在充分调动学生兴趣的情形下,明确提出问题.设计意图师生活动引人深思问题:在以下两种情况下分别谋甲获得胜利的概率.题中甲获得胜利的概率只与图中几何因素有关,我概念介们就说道它就是几何概型.特别注意:(1)这里“只”非常关键,如果没“只”字,那么就意味著几何概型的概率可能将还与思索.得出概念,学生在认知概教师得出概念的基础上,举念,使学生互相出来适当例子,浅探讨,并派遣代表化认知概念.列举适当例子.绍其他因素有关,这就是错误的.为时程难点并作铺垫(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积)如果每个事件出现的概率只与形成该事件区域的长度(面积或体积)成比例,则表示这样的概率模型为几何概率模型,缩写为几何概型.在几何概型中,事件a的概率的计算公式如下:二、例题揭秘,深化概念教学教学过程环节趁热打例1:假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸通过例题的讲解,深化对事直接点学生回答,教师予以点设计意图师生活动铁深化概念(称为事件a)的概率是多少.件的分类的理解.评.分析:利用几何概型的公式计算事件的概率.解:如图,正方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件a发生,所以三、归纳小结,课堂延展教学教学过程环节设计意图师生活动1.几何概型就是区别于古典概型的又一概率模概括小结作业稳固作业布置:课本练型,采用几何概型的概率计算公式时,一定必须特别注意其适用于条件:每个事件出现的概率只与形成该事件区域的长度(面积或体积)成比例.2.几何概型的特点:(1)试验中所有可能将发生稳固新知,由学生谈论体会,师生共同概括总结.础.学打下一定基的结果(基本事件)存有无穷个(2)每个基本事件发生为学生的时程研习的可能性成正比.3.在几何概型中,事件a的概率的计算公式如下:教学设计说明1.教材地位分析:“几何概型”这一节内容是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸.此节内容是为更广泛地满足随机模拟的需要而在新课标中增加的,这是与以往教材安排上的最大的不同之处.充分体现了数学与实际生活的紧密关系:来源生活,而又高于生活.同时也暗示了它在概率论中的重要作用,在高考中的题型的转变.2.学生现实分析:由于大部分学生对于数学缺少兴趣,自学数学缺乏主动性,太少动手解题.因此,教学过程中要不断进一步增强学生自学的兴趣,使学生主动自学数学.3.本节课中,从概念的形成到应用建模,再到知识的巩固拓展都是学生在这些活动中完成,教师启发引导下,学生思考、讨论、探究,从而解决问题,充分体现学生的主体地位,而且这种学习方式除了贯穿课堂,也延伸至课外.教师不要一气呵成,而应设计有梯度的问题带动学生学习的积极性,只有学生真正参与课堂,教学效果才是好的,才能教育出真正的人才.。
人教版高中数学必修三第三章概率3.3几何概型教案
【难点】几何概型的应用
师生互认学习目标,引导学生带着目标进入新课学习,有的放矢。
新
课
讲
授
新
课
讲
授
新
课
讲
授
小组内讨论:参照古典概型的特点,上述试验的特点
是什么?
特点:(1)_________________________________;
(2)______________________________________。
3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率。
巩固所学知识,提高课堂知识的运用能力。
课
堂
小
结
【反思小结】(没有总结,就没有提高!)
(1)请回顾本节课所学过的知识内容有哪些?
1、概念
2、特点
3、公式
具有上述特点的试验称为几何概型。
我们通过上面的试验,得出了几何概型的概念,明确了几何概型事件的两个基本特点。那么如何用数学表达式来解决几何概型事件的概率问题呢?
探究二:
问题1:从区间[1,6]中任取一个实数,求取到的数比3小的概率是多少?
问题2:下面是运动会射箭比赛的靶面,靶面半径为10cm,黄心半径为1cm.现一人随机射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,请问射中黄心的概率是多少?
引例2:取一个边长为2a的正方形(如图),随机地向正方形内丢一粒豆子。
思考:上述试验还是不是古典概型?为什么?
温故知新,类比正弦函数的图象和性质,研究余弦函数
展
示
目
标
齐读学习目标、学习重点、学习难点:
人教版高中数学必修3-3.3《几何概型》参考教案1
3.3.1 几何概型教学目标:1、学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型及古典概型;3、提高学生判断与选择几何概型的概率公式的能力。
教学重点与难点:重点:1、几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择教学方法:“学生为主体,教师为主导”的探究性学习模式板书设计:教学过程:【知识回顾】古典概型的特点及其概率公式: (1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数【课前练习】(赌博游戏):甲乙两赌徒掷色子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?学生分析:色子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型;学生求解:1;6p =甲16p =乙。
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?① ②学生分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;2、利用B 区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B 区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长 法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积 【问题猜想】1.两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的?2.你是如何解决这些问题的?3.有什么方法确保所求的概率是正确的?学生对比分析:。
113.人教版高中数学必修三(教案)3.3几何概型(2课时)
第一课时 3.3.1 几何概型教学要求:结合已学过两种随机事件发生的概率的方法,更进一步研究试验结果为无穷多时的概率问题理解几何概型的定义与计算公式.教学重点:初步体会几何概型的意义.教学难点:对几何概型的理解.教学过程:一、复习准备:1. 回忆基本事件的两个特点:(1)任何两个基本事件是互斥的。
(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.回忆古典概型有两个特征:有限性和等可能性.3.提出问题:在现实生活中,常常遇到试验结果是无穷多的情况,那又怎样计算呢?二、讲授新课:1. 教学:几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability )简称为几何概型.在几何概型中,事件A 概率计算公式为:()()()A P A =构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积几何概型的特点:在一个区域内均匀分布,只与该区域的大小有关.几何概型与古典概型的区别:试验的结果不是有限个.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故3()5g P A ==Ω的长度的长度 例2.某个人午觉醒来,他打开收音机。
想听电台报时,求他等待的时间不多于10分钟的概率.分析:在0到60分钟任一时刻打开收音机是等可能的,但0到60分钟之间有无穷个时刻,不能用古典概型的公式计算,,因为是等可能的,所以他在哪一时段打开收音机的概率只与该时段的长度有关而与位置无关,这符合几何概型的要求.)3. 小结: 如何利用几何概型事件和随机模拟方法来求一些求知量?三、巩固练习:1.(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.答案:592.猪八戒每天早上7点至9点之间起床,求它在7点半之前起床的概率.(将问题转化为时间长度)1. 作业:P137,A 组第1题第二课时 3.3.2均匀随机数的产生教学要求:让学生知道如何利用计算机Excel 软件产生均匀随机数关利用随机模拟方法估计求知量.教学重点:体会随机模拟中的统计思想.教学难点:如何把求未知量的问题转化为几何概型概率的问题.教学过程:一、复习准备:1. 回忆:几何概型的定义,以及相关的古典概型中的随机模拟方法.二、讲授新课:1.教学:均匀随机数的产生操作方法与整数值随机数产生的方法相同,前面学生有了基础这里易掌握只要老师在课堂是带学生操作一次就行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学公开课
课题:几何概型(第二节)
授课教师:杨全
授课班级:高一(15)
一、教材分析与设计意图:
本节课是在开展模拟实验思想方法基础上,学习区别于古典概型特征的概率问题,
1、古典概型的两个特点:
(1) 试验中所有可能出现的基本事件为有限个
(2) 每个基本事件出现的可能性相等.
2、在生活实际中遇到的问题,它们的事件特征满足
(1)试验中所有可能出现的基本事件为无限个
(2)每一个基本事件发生的可能性都相等。
怎样计算这类问题的概率?是否转化为熟知数学问题去解决。
让学生在制作数学模型并开展模拟实验操作的前提下,积极地参与到课堂教学中,展示他们的模拟相关数据与建模思想,提炼出解决问题的可行方法,通过学生动手实验和自主探究活动,亲身体验数学问题转化的全过程,促进学生对知识内容的整体把握和学生学习能力的提升。
二、教学目标
知识与技能:使学生了解并能初步运用几何概型的相关知识解决一些简单问题;
过程与方法:在学习模拟实验思想方法基础上,通过信息技术与知识结构的整合,在建立数学模型基础上,提炼出解决问题的可行方法,使学生从生活实际问题中进一步感悟几何概型
的特征与应用。
情感、态度与价值观:利用评价激励手段,加强师生学习活动的交流,创造和谐的课堂文化。
让学生在自主学习过程中亲身体验数学在生活中的重要性。
三、教学过程:
﹙一﹚、问题的提出
向一个正方形内随机地投一个点,且该点落在正方
形内任意一点都是等可能的。
求点落在该正方形内
切圆内的概率。
它是古典概型的问题吗?
1、实验活动展示:向一个正方形内随机地投一个点,且该点落在正方形内任意一点都是等可能
的。
求点落在该正方形内切圆内的概率。
(与面积有关的几何概率问题)
我国古代著名数学家祖冲之早在1500多年前就算出 的近似值,这是我国古代数学家的一
大成就。
你能用设计一种模拟方法估计圆周率 的值吗?
2、模型演示:(与长度有关的几何概率问题)
先看以下问题:有两个转盘。
甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜。
在两种情况下分别求甲获胜的概率是多少?
﹙二﹚、几何概型
如果每个事件发生的概率只与构成该事件区域的长度或面积或体积成比例,则称这样的概率模型为几何概率模型(简称几何概型); 1、在几何概型中,事件A 的概率的计算 公式如下:
2、几何概型的特点
(1)无限性:试验中的所有出现的结果(基本事件)有无限多个。
(2)等可能性:每个基本事件发生的可能性相等
条件:与区域的形状,位置无关,与区域的大小有关。
3、古典概型与几何概型的区别
(1)相同点:古典概型与几何概型中的基本事件发生的可能性都是相等的
(2)相异点:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个。
﹙三﹚、学习活动
1、分析数学问题,感悟几何概型
2、掌握建模思想,解决实际问题
4
a )2
a
()A (P 2
2
π
π=
=
=
正方形的面积
内切圆的面积(或面积或体积)试验的全部结果的长度)的长度(或面积或体积事件A )A (P =
π
π
例1:在半径 为1的圆上随机的取两点,连成一条弦,则其长度超过圆内接等边三角形的边长的概率为多少? 思路分析:
解:记事件A= {弦长超过圆内接等边三角形的边长} ,取圆内接等边三角形的顶点 B 作为弦的一个端点,则当另一个端点在劣弧CD 上时,|BE|> |BC |
而CD 的弧长是圆周的三分之一。
所以由几何概型 的概率公式得:
即弦长超过圆内接等边三角形的边长的概率为
例2 在面积为S 的三角形ABC 边AB 上任取一点D ,则△BCD 的面积 大于 的概率是多少?
解:思路分析: 解答:
记事件A={ △BCD 的面积大于 }
∵ D 点只有在离A 点 长度处内运动才会满足条件,且D 点运动的临界点为
P(A)=
例3、小明家的晚报在下午5:30~6:30之间的任何一个时间随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时间随机地开始晚餐。
(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大? (2)晚报在晚餐开始之前被送到的概率是多少? 解答 方法1
方法2
在平面上如图所示建立坐标系,
图中直线x =6,x =7,y =5.5,y =6.5围成一个正方形区域G 。
设晚餐在x(6≤x ≤7)时开始,晚报在y(5.5≤y ≤6.5)
3
1
S
54AB 5
1
1
D =的长度
的长度
AB AD 15131
)A (P =
=圆周长弧长CD S 5
4
当且仅当y 〈 X 时,阴影区域为所求,解得晚报在晚餐开始之前被送到的概率
﹙四﹚:小结方法
用几何概型解简单试验问题的方法
❖ 1、适当选择观察角度,转化为几何概型,
2、要注意基本事件是等可能的。
把基本事件转化为与之对应的区域,
❖ 3、把随机事件A 转化为与之对应的区域, ❖ 4、利用概率公式计算。
❖ 注意:1、如果事件A 的区域不好处理,可以用对立事件来求。
2、要注意基本事件是等可能的。
思考与练习
1:甲、乙两人约定在6时到7时之间在某地会面,并约定先者应等候另一个人一刻钟, 过时即可离去,求两人能会面的概率。
(会面问题)
解:以x 和y 分别表示甲、乙两人到达约会地 点的时间,则两人能够会面的条件是: |x -y|≤15如图所示: 设事件A 表示能会面
P(A)=
=
作业P184习题A 组2
8
7
=
的面积的面积G g 222604576016
-=
正方形面积
阴影部分面积。