2014年高考数学分类汇编(数列)学生版
近五年(2017-2021)高考数学真题分类汇编07 数列
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当k≤m时,都有 成立,求m的最大值.
53.(2019·北京(文))设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
A.1盏B.3盏
C.5盏D.9盏
二、填空题
22.(2020·海南)将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.
23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列 就是二阶等差数列,数列 的前3项和是________.
A.2a4=a2+a6B.2b4=b2+b6C. D.
7.(2020·全国(文))设 是等比数列,且 , ,则 ()
A.12B.24C.30D.32
8.(2020·全国(文))记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则 =()
A.2n–1B.2–21–nC.2–2n–1D.21–n–1
近五年(2017-2021)高考数学真题分类汇编
七、数列
一、单选题
1.(2021·全国(文))记 为等比数列 的前n项和.若 , ,则 ()
A.7B.8C.9D.10
2.(2021·浙江)已知 ,函数 .若 成等比数列,则平面上点 的轨迹是()
A.直线和圆B.直线和别解答,则按第一个解答计分.
43.(2021·全国(理))记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
山东省2014届高三文科数学备考之2013届名校解析试题精选分类汇编5:数列 Word版含答案
山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编5:数列一、选择题1 .(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是 ( )A .15-B .5-C .5D .15【答案】B 【解析】由*331log 1log ()n n a a n ++=∈N ,得313log log 1n n a a +-=,即13log 1n na a +=,解得13n n a a +=,所以数列{}n a 是公比为3的等比数列.因为3579246()a a a a a a q ++=++,所以35579933a a a ++=⨯=.所以5515791333log ()log 3log 35a a a ++==-=-,选 B .2 .(【解析】山东省德州市2013届高三3月模拟检测文科数学)若正项数列{}n a 满足1111n n ga ga +=+,且a 2001+a 2002+a 2003+a 2010=2013,则a 2011+a 2012+a 2013+a 2020的值为( )A .2013·1010B .2013·1011C .2014·1010D .2014·1011【答案】A 由条件知1111lg1n n n n a ga ga a ++-==,即110n naa +=为公比是10的等比数列.因为102001201020112020()a a q a a ++=++ ,所以1020112020201310a a ++=⋅ ,选A .3 .(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)在各项均为正数的等比数列{}n a 中,31,1,s a a ==则2326372a a a a a ++=( )A .4B .6C .8D.8-【答案】C 【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+=+==,选C .4 .(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知函数()()2cos f n n n π=,且()()1,n a f n f n =++则123100a a a a +++⋅⋅⋅+=( )A .100-B .0C .100D .10200【答案】A 解:若n 为偶数,则()()221=(1)(21)na f n f n n n n =++-+=-+,为首项为25a =-,公差为4-的等差数列;若n 为奇数,则()()221=(1)21n a f n f n n n n =++-++=+,为首项为13a =,公差为4的等差数列.所以123100139924100()()a a a a a a a a a a +++⋅⋅⋅+=+++++++ 50495049503450(5)410022⨯⨯=⨯+⨯+⨯--⨯=-,选A . 5 .(【解析】山东省济南市2013届高三3月高考模拟文科数学)等差数列}{n a 中,482=+a a ,则它的前9项和=9S ( )A .9B .18C .36D .72【答案】B 在等差数列中,28194a a a a +=+=,所以1999()941822a a S +⨯===,选 B .6 .(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知各项为正的等比数列{}n a 中,4a 与14a 的等比数列中项为22,则1172a a +的最小值 ( )A .16B .8C .22D .4【答案】B 【解析】由题意知224149a a a ==,即9a =.所以设公比为(0)q q >,所以22971192228a a a a q q +=+=+≥=,2=,即42q =,所以q =,所以最小值为8,选B .7 .(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))在各项均为正数的数列{a n }中,对任意m 、*n N Î都有m n m a a +=·n a 若636,a =则9a 等于 ( )A .216B .510C .512D .l024【答案】A 解:由题意可知26336a a ==,所以36a =,所以93636636216a a a a +===⨯= ,选A .8 .(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于 ( )A .21B .30C .35D .40【答案】C 【解析】在等差数列中,由15765=++a a a 得663155a a ==,.所以3496...=77535a a a a +++=⨯=,选C .9 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-【答案】D 在等差数列中,1131313()132a a S +==,所以1132a a +=,即113221311a a =-=-=-,选 D .10.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)两旅客坐火车外出旅游,希望座位连在一起,且仅有一个靠窗,已知火车上的座位的排法如表格所示,则下列座位号码符合要求的是( )A .48,49B .62,63C .84,85D .75,76【答案】C 根据座位排法可知,做在右窗口的座位号码应为5的倍数,所以C 符合要求.选 C .11.(山东省威海市2013届高三上学期期末考试文科数学){}n a 为等差数列,n S 为其前n 项和,已知77521a S ==,,则10S =( )A .40B .35C .30D .28【答案】【答案】A 设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =.所以1011091092101040223S a d ⨯⨯=+=+⨯=,选 ( )A .12.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)已知在等比数列{}n a 中,1346510,4a a a a +=+=,则该等比数列的公比为 ( )A .14B .12C .2D .8【答案】B 解:因为31346()a a q a a +=+,所以34613514108a a q a a +===+,即12q =,选B .13.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知等差数列{}n a 的公差为d 不为0,等比数列{}n b 的公比q 是小于1的正有理数,若211,d b d a ==,且321232221b b b a a a ++++是正整数,则q 的值可以是 ( )A .71 B .-71 C .21 D .21-【答案】C 【解析】由题意知21312,23a a d d a a d d =+==+=,22222131,b b q d q b b q d q ====,所以2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,因为321232221b b b a a a ++++是正整数,所以令2141t q q=++,t 为正整数.所以2114t q q ++=,即21014t q q ++-=,解得q ===,因为t 为正整数,所以当8t =时,12122q -+===.符合题意,选C .14.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 为等差数例,其前n 项的和为n S ,若336,12a S ==,则公差d = ( )A .1B .2C .3D .53【答案】B 在等差数列中,13133()3(6)1222a a a S ++===,解得12a =所以解得2d =,选 B . 15.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知数列{}n a 的前n 项和为n S ,且122-=n S n , 则=3a( )A .-10B .6C .10D .14【答案】C 解:22332231(221)10a S S =-=⨯--⨯-=,选 C .16.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等差数列{n a }中,74a π=,则tan(678a a a ++)等于( )A .B .C .-1D .1【答案】C 在等差数列中6787334a a a a π++==,所以6784tan()tan14a a a π++==-,选 C . 17.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)已知等比数列{a n }的公比q=2,前n硕和为S n .若S 3=72,则S 6等于 ( )A .312B .632C .63D .1272【答案】B 【解析】3131(12)77122a S a -===-,所以112a =.所以6161(12)6363122a S a -===-,选 B .二、填空题18.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S =_____________ ;【答案】54- 由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-. 19.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等比数列}{n a ,2=q ,前n 项和为=24a S S n ,则____________. 【答案】215解:在等比数列中,4141(12)1512a S a -==-,所以4121151522S a a a ==.20.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A =_____________.【答案】1-【解析】由113,1,n n n a a a a +=-=得11n n na a a +-=,所以231233a -==,312a =-,43a =,所以{}n a 是以3为周期的周期数列,且1231a a a =-,又20133671=⨯,所以6712013(1)1A =-=-.21.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)在如图所示的数阵中,第9行的第2个数为___________.【答案】66 每行的第二个数构成一个数列{}n a ,由题意知23453,6,11,18a a a a ====,所以3243543,5,7,a a a a a a -=-=-=12(1)123n n a a n n --=--=-,等式两边同时相加得22[233](2)22n n n a a n n -+⨯--==-,所以()222223,2n a n n a n n n =-+=-+≥,所以29929366a =-⨯+=.22.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则______.【答案】因为()222*112,2n n n a a a n N n +-=+∈≥,所以数列2{}n a 是以211a =为首项,以2221413d a a =-=-=为公差的等差数列,所以213(1)32n a n n =+-=-,所以1n a n =≥,所以7a ==23.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中项,则n=_____.【答案】16 设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.24.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =____.【答案】190【解析】由7348a a d -==,解得2d =,由3532a a +=,解得110a =.所以101109101902S a d ⨯=+=. 25.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)已知等差数列{}n a 的前n 项和为n S ,若2,4,3a 成等比数列,则5S =_________.【答案】40因为2,4,3a 成等比数列,所以232416a ==,所以38a =.又153535()525584022a a a S a +⨯====⨯=. 26.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知等比数列{a n }中,6710111,16a a a a ==g g ,则89a a g 等于_______【答案】4【解析】在等比数列中2676()10a a a q ==>g ,所以0q >,所以289670a a a a q =>g .所以67101116a a a a =,即289()16a a =g ,所以894a a =g .27.(【解析】山东省泰安市2013届高三上学期期末考试数学文)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.【答案】(1)2n n +【解析】12341,3,6,10a a a a ====,所以2132432,3,4a a a a a a -=-=-=, 1n n a a n --=,等式两边同时累加得123n a a n -=+++ ,即(1)122n n n a n +=+++=,所以第n 个图形中小正方形的个数是(1)2n n + 三、解答题28.(【解析】山东省烟台市2013届高三上学期期末考试数学(文)试题)已知数列{a n }的前n 项和为S n ,且22n n S a =-.(1)求数列{a n }的通项公式;(2)记1213(21)n n S a a n a =+++-g g L g ,求S n【答案】29.(【解析】山东省潍坊市2013届高三上学期期末考试数学文(a ))设数列{}n a 为等差数列,且9,553==a a ;数列{}n b 的前n 项和为n S ,且2=+n n b S . (I)求数列{}n a ,{}n b 的通项公式; (II)若()+∈=N n b a c nnn ,n T 为数列{}n c 的前n 项和,求n T . 【答案】30.(【解析】山东省滨州市2013届高三第一次(3月)模拟考试数学(文)试题)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n *+=∈N (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n n b S n *+=-∈N ,令122311n T b b b b =++11n n b b ++,求n T . 【答案】31.(【解析】山东省临沂市2013届高三5月高考模拟文科数学)已知点(1,2)是函数()(01)x f x a a a =≠>且的图象上一点,数列{}n a 的前n 项和()1n S f n =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)将数列{}n a 前2013项中的第3项,第6项,,第3k 项删去,求数列{}n a 前2013项中剩余项的和.【答案】解:(Ⅰ)把点(1,2)代入函数()x f x a =,得2a =.()121,n n S f n ∴=-=-当1n =时,111211;a S ==-= 当2n ≥时,1n n n a S S -=-1(21)(21)n n -=---12n -=经验证可知1n =时,也适合上式,12n n a -∴=.(Ⅱ)由(Ⅰ)知数列{}n a 为等比数列,公比为2,故其第3项,第6项,,第2013项也为等比数列,首项31324,a -==公比32012201328,2a ==为其第671项∴此数列的和为67120134(18)4(21)187--=- 又数列{}n a 的前2013项和为2013201320131(12)21,12S ⨯-==--∴所求剩余项的和为2013201320134(21)3(21)(21)77----=32.(【解析】山东省实验中学2013届高三第三次诊断性测试文科数学)已知数列}{n a 的前n 项和为n S ,且)(14*∈+=N n a S n n . (Ⅰ)求21,a a ;(Ⅱ)设||log 3n n a b =,求数列{}n b 的通项公式.【答案】解:(1)由已知1411+=a S ,即31,14111=∴+=a a a ,又1422+=a S ,即91,1)42221-=∴+=+a a a a (;(2)当1>n 时,)1(41)1(4111+-+=-=--n n n n n a a S S a ,即13--=n n a a ,易知数列各项不为零(注:可不证不说),311-=∴-n n a a 对2≥n 恒成立, {}n a ∴是首项为31,公比为-31的等比数列,n n n n a ----=-=∴3)1()31(3111,n a n n -==∴-3log ||log 33,即n b n -=33.(【解析】山东省泰安市2013届高三上学期期末考试数学文)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,,n n S b S q a b b +==求与; 【答案】34.(【解析】山东省济宁市2013届高三1月份期末测试(数学文)解析)设数列{}n a 的前n 项和为n S ,若对于任意的正整数n 都有23n n S a n =-.(I)设3n n b a =+,求证:数列{}n b 是等比数列,并求出{}n a 的通项公式; (II)求数列{}n nb 的前n 项和T n .【答案】35.(【解析】山东省德州市2013届高三3月模拟检测文科数学)数列{}n a 是公差不小0的等差数列a 1、a 3,是函数2()1(66)f x n x x =-+的零点,数列{}n b 的前n 项和为n T ,且*12()n n T b n N =-∈ (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和S n .【答案】36.(【解析】山东省德州市2013届高三上学期期末校际联考数学(文))已知数列{a n }的公差为2的等差数列,它的前n 项和为n S ,且1321,1,1a a a +++成等比数列. (I)求{a n }的通项公式; (2)13{},.4n n n n T T S <记数列的前项求证: 【答案】37.(【解析】山东省济南市2013届高三上学期期末考试文科数学)已知等差数列{}n a 的前n 项和为n S ,且满足24a =,3417a a +=. (1)求{}n a 的通项公式; (2)设22n a n b +=,证明数列{}n b 是等比数列并求其前n 项和n T .【答案】解:(1)设等差数列{}n a 的公差为d .由题意知3411212317,4,a a a d a d a a d +=+++=⎧⎨=+=⎩解得,11a =,3d =, ∴32n a n =-(n N *∈) (2)由题意知, 2322n a n n b +==(n N *∈),3(1)33122n n n b ---==(,2n N n *∈≥)∴333312282n n n n b b --===(,2n N n *∈≥),又18b = ∴{}n b 是以18b =,公比为8的等比数列()()818881187n nn T -==-- 38.(山东省烟台市2013届高三3月诊断性测试数学文)设{a n }是正数组成的数列,a 1=3.若点()2*11,2()n n n a aa n N ++-∈在函数321()23f x x x =+-的导函数()y f x '=图像上. (1)求数列{a n }的通项公式; (2)设12n n nb a a +=⋅,是否存在最小的正数M,使得对任意n *N ∈都有b 1+b 2++b n <M 成立?请说明理由.【答案】39.(【解析】山东省济宁市2013届高三第一次模拟考试文科数学 )(本小题满分l2分)设数列{n a }满足:a 1=5,a n+1+4a n =5,(n ∈N*)(I)是否存在实数t ,使{a n +t }是等比数列?(Ⅱ)设数列b n =|a n |,求{b n }的前2013项和S 2013.【答案】解:(I)由+1+4=5n n a a 得+1=4+5n n a a -令()+1+=4+n n a t a t -,得+1=45n n a a t -- 则5=5t -,=1t - 从而()+11=41n n a a --- .又11=4a -, {}1n a ∴-是首项为4,公比为4-的等比数列,∴存在这样的实数=1t -,使{}+n a t 是等比数列(II)由(I)得()11=44n n a --⋅- ()=14nn a ∴--{1+4, 41==n n n n n n b a -∴为奇数,为偶数()()()()()123420132013122013=++=1+4+41+1+4+41++1+4S b b b ∴--1232013=4+4+4++4+1 201420144441=+1=143--- 40.(【解析】山东省枣庄市2013届高三3月模拟考试 数学(文)试题)已知等比数列13212{}1,6,,8n a q a a a a a >=-的公比且成等差数列.(1)求数列{a n }的通项公式;(2)设(1),: 1.n n nn n b b a +=≤求证 【答案】41.(【解析】山东省青岛市2013届高三第一次模拟考试文科数学)已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根.(Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,,第.n a 项,删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.【答案】解:(Ⅰ)2)1(3n n d -+= ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== 因为42,b b 为方程064202=+-x x 的两个不相等的实数根. 所以2042=+b b ,6442=⋅b b 解得:42=b ,164=b ,所以:n n b 2=(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+ 1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- 42.(【解析】山东省潍坊市2013届高三第一次模拟考试文科数学)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (Ⅱ)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T.【答案】解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯=设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q === 1.+2+3++9=45,故50a 是数阵中第10行第5个数, 而445010102160.a b q ==⨯= (Ⅱ)12n S =++ (1),2n n n ++=1211n n n T S S ++∴=++21nS +22(1)(2)(2)(3)n n n n =++++++22(21)n n ++11112(1223n n n n =-+-+++++11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++43.(山东省青岛即墨市2013届高三上学期期末考试 数学(文)试题)等差数列}{n a 中,9,155432==++a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设213+=n a n b ,求数列},21{n n b a +的前n 项和n S 【答案】解:(Ⅰ)设数列{}由题意得首项的公差为,1a d a n且⎩⎨⎧=+=+⎩⎨⎧==++941563915115432d a d a a a a a 即 解得⎩⎨⎧==211d a所以数列{}12-=n a a n n 的通项公式为 (Ⅱ)由(Ⅰ)可得n n n a b 3231==+ 所以n n n n b a 3..21=+ 所以+++=323.33.23.11n S 13.+n n两式相减得++++-=433333(22n S 13.)3+++n n n 10 分43).12(323..1233.31313111+++-+=-+=+---=n n n n n n S n n n 即)()(44.(【解析】山东省潍坊市2013届高三第二次模拟考试文科数学)某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%(I)设第n 年该生产线的维护费用为n a ,求n a 的表达式; (Ⅱ)设该生产线前n 年维护费为n S ,求n S .【答案】45.(山东省威海市2013届高三上学期期末考试文科数学)已知数列{}n a ,15a =-,22a =-,记()A n =12n a a a +++ ,23()B n a a =+1n a +++ ,()C n =342+n a a a +++ (*N n ∈),若对于任意*N n ∈,()A n ,()B n ,()C n 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}||n a 的前n 项和.【答案】解:(Ⅰ)根据题意()A n ,()B n ,()C n 成等差数列∴()+()2()A n C n B n =整理得2121253n n a a a a ++-=-=-+= ∴数列{}n a 是首项为5-,公差为3的等差数列 ∴53(1)38n a n n =-+-=- (Ⅱ)38,2||38,3n n n a n n -+≤⎧=⎨-≥⎩记数列{}||n a 的前n 项和为n S .当2n ≤时,2(583)313222n n n n S n +-==-+ 当3n ≥时,2(2)(138)313714222n n n n S n -+-=+=-+综上,2231322231314322n n n n S n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩ 46.(【解析】山东省实验中学2013届高三第一次诊断性测试数学(文)试题)已知{}n a 是公比大于1的等经数列,13,a a 是函数9()10f x x x=+-的两个零点(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足312312,80n n b og n b b b b =+++++≥ 且,求n 的最小值.【答案】47.(【解析】山东省济南市2013届高三3月高考模拟文科数学)正项等比数列}{n a 的前n 项和为n S ,164=a ,且32,a a 的等差中项为2S . (1)求数列}{n a 的通项公式; (2)设12-=n n a n b ,求数列}{n b 的前n 项和n T .【答案】解:(1)设等比数列}{n a 的公比为)0(>q q ,由题意,得⎪⎩⎪⎨⎧+=+=)(2161121131q a a q a q a q a ,解得⎩⎨⎧==221q a所以n n a 2= (2)因为12122--==n n n n a n b ,所以12753224232221-+++++=n n nT , 121275322123222141+-+-++++=n n n nn T , 所以12127532212121212143+--+++++=n n n n T122411)411(21+---=n n n 12233432+⋅+-=n n故2181612992n n nT ++=-⋅ 48.(山东省淄博市2013届高三复习阶段性检测(二模)数学(文)试题)等比数列....{}n c 满足(){}1*1104,n n n n c c n N a -++=⋅∈数列的前n 项和为n S ,且2log .n n a c =(I)求,n n a S ;(II)数列{}{}1,41n n n n n b b T b S =-满足为数列的前n 项和,是否存在正整数m,()1m >,使得16,,m m T T T 成等比数列?若存在,求出所有m 的值;若不存在,请说明理由.【答案】解: (Ⅰ)40,103221=+=+c c c c ,所以公比4=q10411=+c c 得21=c121242--=⋅=n n n c所以212log 221n n a n -==-21()[1(21)]22n n n a a n n S n ++-=== (Ⅱ)由(Ⅰ)知211114122121n b n n n ⎛⎫==- ⎪--+⎝⎭于是11111112335212121n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦假设存在正整数()1m m >,使得16,,m m T T T 成等比数列,则216213121m m m m ⎛⎫=⨯ ⎪++⎝⎭, 整理得24720m m --=, 解得14m =-或 2m = 由,1m N m *∈>,得2m =, 因此,存在正整数2m =,使得16,,m m T T T 成等比数列49.(【解析】山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)已知等比数列{n a }的首项为l,公比q≠1,n S 为其前n 项和,a l ,a 2,a 3分别为某等差数列的第一、第二、第四项.(I)求n a 和n S ;(Ⅱ)设21n n b log a +=,数列{21n n b b +}的前n 项和为T n ,求证:34n T <.【答案】50.(【解析】山东省烟台市2013届高三5月适应性练习(一)文科数学)在等差数列{}n a 中,a 1 =3,其前n项和为S n ,等比数列{b n }的各项均为正数,b 1 =1,公比为q,且b 2 +S 2 =12, q=22S b . (1)求a n 与b n ; (2)设数列{C n }满足c n =1nS ,求{n c }的前n 项和T n . 【答案】51.(【解析】山东省青岛一中2013届高三1月调研考试文科数学)已知等差数列{}n a 的首项1a =1,公差d>0,且第2项、第5项、第14项分别为等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{n c }对n ∈N +均有11c b +22c b ++nnc b =1n a +成立,求1c +2c 3c ++2012c . 【答案】.解答:(1)由已知得2a =1+d, 5a =1+4d, 14a =1+13d,∴2(14)d +=(1+d)(1+13d), ∴d=2, n a =2n-1又2b =2a =3,3b = 5a =9 ∴数列{n b }的公比为3,n b =3⋅23n -=13n -(2)由11c b +22c b ++nnc b =1n a + (1) 当n=1时,11c b =2a =3, ∴1c =3当n>1时,11c b +22c b ++11n n c b --= n a (2) (1)-(2)得nnc b =1n a +-n a =2 ∴n c =2n b =2⋅13n - 对1c 不适用∴n c =131232n n n -=⎧⎨∙≥⎩∴123c c c +++2012c =3+2⋅3+2⋅23++2⋅20113=1+2⋅1+2⋅3+2⋅23++2⋅20113=1+2⋅20121313--=2012352.(【解析】山东省泰安市2013届高三第一轮复习质量检测数学(文)试题)设等比数列{}n a 的前n 项和为,415349,,,n S a a a a a =-成等差数列.(I)求数列{}n a 的通项公式;(II)证明:对任意21,,,k k k R N S S S +++∈成等差数列.【答案】。
2014高考系统复习数学(文)精品课件(人教A版) 7-1 数列的概念与简单表示法
与名师对话
高考总复习 ·课标版 ·A
数学(文)
解析:从图中可观察星星的构成规律,n=1 时,有 1 个; n=2 时,有 3 个;n=3 时,有 6 个;n=4 时,有 10 个;„ nn+1 ∴an=1+2+3+4+„+n= . 2
答案:C
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(文)
解:(1)因为各项是从 4 开始的偶数, 所以 an=2n+2. (2) 由 于 每 一 项 分 子 比 分 母 少 1 , 而 分 母 可 写 为 2n-1 21,22,23,24,25, 故所求数列的一个通项公式可写为 an= n . „, 2 (3)由于带有正负号,故数列可以用(-1)n 去掉负号,观察可得.
)
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(文)
3 解析:∵1 可以写成 ,∴分母为 3,5,7,9, 3 即 2n+1,分子可以看为 1×3,2×4,3×5,4×6, nn+2 故为 n(n+2),即 an= . 2n+1 1 此题也可用排除法求解, 只需验证当 n=1 时, 选项为 , A 3 3 3 B 选项为2,C 选项为4,均不为 1,故排除 A、B、C,从而选 D.
课前自主回顾
课堂互动探究
课时作业
与名师对话
高考总复习 ·课标版 ·A
数学(文)
(3)各项的分母分别为 21,22,23,24,„易看出第 2,3,4 项的分 2-3 子分别比分母少 3.因此把第 1 项变为- 2 , 原数列可化为- 21-3 22-3 23-3 24-3 , 2 ,- 3 , 4 ,„, 21 2 2 2 2n-3 ∴an=(-1)n· n . 2
历年(2019-2024)全国高考数学真题分类(数列)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
2014年高中数学题型分析(数列选择题)
2014年全国高考理科数学试题分类汇编:数列选择题(教师)1、2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C2、(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B3、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B4、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m qD.数列{}n c 为等比数列,公比为mm q【答案】C5、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C6、(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A.3 B.4 C.5 D.6【答案】C7、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D8、(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24 【答案】A 9、(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n n s -=10、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-11、(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100012、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________. 【答案】1213、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+14、(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6415、(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S __________.【答案】25766n n - 16、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2017、(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()( 18、(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.19、(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-20、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】632014年全国高考理科数学试题分类汇编:数列选择题(学生)1、2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-2、(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列3、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,34、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m qD.数列{}n c 为等比数列,公比为mm q5、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91 (D)91-6、(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A.3 B.4C.5D.67、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p8、(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.249、(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.10、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.11、(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________.12、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________.13、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+ 14、(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =15、(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S __________.16、(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.17、(2013年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 18、(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.19、(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.20、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =_________.。
十年(2014-2023)高考数学真题分项汇编文科专题5 数列小题(文科)(解析版)
n 项和
Sn,公差
d≠0, a1 d
1 .记
b1=S2,
bn+1=Sn+2–S2n, n N ,下列等式不可能成立的是
( )
A.2a4=a2+a6
B.2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
解析:对于 A,因为数列an 为等差数列,所以根据等差数列的下标和性质,由 4 4 2 6 可得,
由 an
a1
n
1 d
0
可得 n
1
a1 d
,取
N0
1
a1 d
1 ,则当 n
N0
时, an
0,
所以,“an 是递增数列” “存在正整数 N0 ,当 n N0 时, an 0 ”;
若存在正整数 N0 ,当 n N0 时, an 0 ,取 k N 且 k N0 , ak 0 ,
假设 d
0 ,令 an
Sn =
1 2
An An+1 ×tan q Bn Bn+1 ,都为定值,所以 Sn+1 - Sn 为定值.故选 A.
3.(2022 高考北京卷·第 15 题)己知数列an 各项均为正数,其前 n 项和 Sn 满足 an Sn 9(n 1, 2,) .给
出下列四个结论:
①an 的第 2 项小于 3; ②an 为等比数列;
2a4 a2 a6 ,A 正确;
对于 B,由题意可知, bn1 S2n2 S2n a2n1 a2n2 , b1 S2 a1 a2 ,
∴ b2 a3 a4 , b4 a7 a8 , b6 a11 a12 , b8 a15 a16 .
∴ 2b4 2 a7 a8 , b2 b6 a3 a4 a11 a12 .
[2014-2018]北京高考数学真题分类汇编 专题六 数列
专题六 数列1.(2018.9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 . 2.(2017.10)若等差数列{a n }和等比数列{b n }满足a 1=b 1=﹣1,a 4=b 4=8,则a 2b 2= .3.(2017.20)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n =1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数. (1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c n n>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.4.(2016.12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= .5.(2016.20)设数列A :a 1,a 2,…,a N (N ≥2).如果对小于n (2≤n ≤N )的每个正整数k 都有a k <a n ,则称n 是数列A 的一个“G 时刻”,记G (A )是数列A 的所有“G 时刻”组成的集合.(Ⅰ)对数列A :﹣2,2,﹣1,1,3,写出G (A )的所有元素; (Ⅱ)证明:若数列A 中存在a n 使得a n >a 1,则G (A )≠∅;(Ⅲ)证明:若数列A 满足a n ﹣a n ﹣1≤1(n =2,3,…,N ),则G (A )的元素个数不小于a N ﹣a 1.6. (2015.6)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>√a 1a 3D .若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)>07.(2015.20)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1={2a n ,a n ≤182a n −36,a n >18(n =1,2,…),记集合M ={a n |n ∈N *}.(Ⅰ)若a 1=6,写出集合M 的所有元素;(Ⅱ)如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.8. (2014.5)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2014.12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n = 时,{a n }的前n 项和最大.专题六 数列 答案部分1.解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36, ∴{a 1=3a 1+d +a 1+4d =36, 解得a 1=3,d =6,∴a n =a 1+(n ﹣1)d =3+(n ﹣1)×6=6n ﹣3. ∴{a n }的通项公式为a n =6n ﹣3. 故答案为:a n =6n ﹣3.2. 解:等差数列{a n }和等比数列{b n }满足a 1=b 1=﹣1,a 4=b 4=8, 设等差数列的公差为d ,等比数列的公比为q . 可得:8=﹣1+3d ,d =3,a 2=2; 8=﹣q 3,解得q =﹣2,∴b 2=2. 可得a 2b 2=1.故答案为:1.3. 解:(1)a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5, 当n =1时,c 1=max {b 1﹣a 1}=max {0}=0,当n =2时,c 2=max {b 1﹣2a 1,b 2﹣2a 2}=max {﹣1,﹣1}=﹣1,当n =3时,c 3=max {b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max {﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n+1﹣c n=﹣1对∀n∈N*均成立,∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n+1﹣c n=d2﹣a1,∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n ≥m 时,c n =b 1﹣a 1n ,此时c n +1﹣c n =﹣a 1,故数列{c n }从第m 项开始为等差数列,命题成立; ③若d 1<0,此时﹣d 1n +d 2为一个关于n 的一次项系数为正数的一次函数, 故必存在s ∈N *,使得n ≥s 时,﹣d 1n +d 2>0,则当n ≥s 时,(b i ﹣a i n )﹣(b n ﹣a n n )=(i ﹣1)(﹣d 1n +d 2)≤0,(i ∈N *,1≤i ≤n ), 因此,当n ≥s 时,c n =b n ﹣a n n , 此时=b n −a n n n =−a n +bn n, =﹣d 2n +(d 1﹣a 1+d 2)+b 1−d 2n, 令﹣d 1=A >0,d 1﹣a 1+d 2=B ,b 1﹣d 2=C , 下面证明:c n n=An +B +Cn 对任意正整数M ,存在正整数m ,使得n ≥m ,c n n>M ,若C ≥0,取m =[|M−B|A+1],[x ]表示不大于x 的最大整数,当n ≥m 时,c n n≥An +B ≥Am +B =A [|M−B|A+1]+B >A •M−B A+B =M ,此时命题成立; 若C <0,取m =[|M−C−B|A]+1,当n ≥m 时,c n n≥An +B +Cn ≥Am +B +C >A •|M−C−B|A+B +C ≥M ﹣C ﹣B +B +C =M ,此时命题成立,因此对任意正数M ,存在正整数m ,使得当n ≥m 时,c n n>M ;综合以上三种情况,命题得证.4. 解:∵{a n }为等差数列,S n 为其前n 项和. a 1=6,a 3+a 5=0, ∴a 1+2d +a 1+4d =0, ∴12+6d =0, 解得d =﹣2,∴S 6=6a 1+6×52d =36﹣30=6. 故答案为:6.5. 解:(Ⅰ)根据题干可得,a 1=﹣2,a 2=2,a 3=﹣1,a 4=1,a 5=3,a 1<a 2满足条件,2满足条件,a 2>a 3不满足条件,3不满足条件,a 2>a 4不满足条件,4不满足条件,a 1,a 2,a 3,a 4,均小于a 5,因此5满足条件,因此G (A )={2,5}.(Ⅱ)因为存在a n >a 1,设数列A 中第一个大于a 1的项为a k ,则a k >a 1≥a i ,其中2≤i ≤k ﹣1,所以k ∈G (A ),G (A )≠∅;(Ⅲ)设A 数列的所有“G 时刻”为i 1<i 2<…<i k ,对于第一个“G 时刻”i 1,有a i 1>a 1≥a i (i =2,3,…,i 1﹣1),则 a i 1−a 1≤a i 1−a i 1−1≤1.对于第二个“G 时刻”i 1,有a i 2>a i 1≥a i (i =2,3,…,i 1﹣1),则 a i 2−a i 1≤a i 2−a i 2−1≤1.类似的a i 3−a i 2≤1,…,a i k −a i k−1≤1.于是,k ≥(a i k −a i k−1)+(a i k−1−a i k−2)+…+(a i 2−a i 1)+(a i 1−a 1)=a i k −a 1. 对于a N ,若N ∈G (A ),则a i k =a N .若N ∉G (A ),则a N ≤a i k ,否则由(2)知a i k ,a i k+1,…,a N ,中存在“G 时刻”与只有k 个“G 时刻”矛盾. 从而k ≥a i k −a 1≥a N ﹣a 1.6. 解:若a 1+a 2>0,则2a 1+d >0,a 2+a 3=2a 1+3d >2d ,d >0时,结论成立,即A 不正确; 若a 1+a 3<0,则a 1+a 2=2a 1+d <0,a 2+a 3=2a 1+3d <2d ,d <0时,结论成立,即B 不正确; {a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2√a 1a 3,∴a 2>√a 1a 3,即C 正确; 若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .7. 解:(Ⅰ)若a 1=6,由于a n +1={2a n ,a n ≤182a n −36,a n >18(n =1,2,…),M ={a n |n ∈N *}.故集合M 的所有元素为6,12,24;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数,由a n +1={2a n ,a n ≤182a n −36,a n >18(n =1,2,…),可归纳证明对任意n ≥k ,a n 是3的倍数. 如果k =1,M 的所有元素都是3的倍数;如果k >1,因为a k =2a k ﹣1,或a k =2a k ﹣1﹣36,所以2a k ﹣1是3的倍数;于是a k ﹣1是3的倍数;类似可得,a k ﹣2,…,a 1都是3的倍数; 从而对任意n ≥1,a n 是3的倍数;综上,若集合M 存在一个元素是3的倍数,则集合M 的所有元素都是3的倍数 (Ⅲ)对a 1≤36,a n ={2a n−1,a n ≤182a n−1−36,a n >18(n =1,2,…),可归纳证明对任意n ≥k ,a n <36(n =2,3,…)因为a 1是正整数,a 2={2a 1,a 1≤182a 1−36,a 1>18,所以a 2是2的倍数.从而当n ≥2时,a n 是2的倍数.如果a 1是3的倍数,由(Ⅱ)知,对所有正整数n ,a n 是3的倍数. 因此当n ≥3时,a n ∈{12,24,36},这时M 的元素个数不超过5. 如果a 1不是3的倍数,由(Ⅱ)知,对所有正整数n ,a n 不是3的倍数. 因此当n ≥3时,a n ∈{4,8,16,20,28,32},这时M 的元素个数不超过8. 当a 1=1时,M ={1,2,4,8,16,20,28,32},有8个元素. 综上可知,集合M 的元素个数的最大值为8.5.解:等比数列﹣1,﹣2,﹣4,…,满足公比q =2>1,但{a n }不是递增数列,充分性不成立.若a n =﹣1⋅(12)n−1为递增数列,但q =12>1不成立,即必要性不成立, 故“q >1”是“{a n }为递增数列”的既不充分也不必要条件, 故选:D .6. 解:由等差数列的性质可得a 7+a 8+a 9=3a 8>0, ∴a 8>0,又a 7+a 10=a 8+a 9<0,∴a 9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.。
十年高考真题分类汇编(2010-2019) 数学 专题08 数列 Word版原卷版
十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8nD.S n =12n 2-2n2.(2019·浙江·T 10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10D.当b=-4时,a 10>103.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10D.124.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 45.(2018·北京·理T4文T 5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23fB.√223fC.√2512fD.√2712f6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.1107.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3C.3D.88.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.979.(2015·浙江·理T13)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(2015·全国2·文T5)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.1111.(2015·全国1·文T7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10= ( )A.172B.192C.10D.1212.(2015·全国2·理T4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.8413.(2015·全国2·文T9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=()A.2B.1C.1D.114.(2014·大纲全国·文T8)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.6415.(2014·全国2·文T5)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)216.(2013·全国2·理T3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-1917.(2013·全国1·文T6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n18.(2013·全国1·理T12)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.620.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5D.-721.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .3.(2019·江苏·T 8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 .4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 .5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .9.(2018·上海·T 10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S n a n+1=12,则q=.10.(2018·江苏·T 14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k=____________.12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= .13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 18.(2015·湖南·理T14)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = .19.(2015·福建·文T16)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 20.(2015·江苏·理T11)设数列{a n }满足a 1=1,且a n+1- a n =n+1(n ∈N *).则数列{1a n}前10项的和为____________.21.(2015·全国2·理T16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 22.(2015·广东·理T10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .23.(2015·陕西·文T13)中位数为 1 010的一组数构成等差数列,其末项为 2 015,则该数列的首项为 .24.(2014·江苏·理T7)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 25.(2014·广东·文T13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .26.(2014·安徽·理T12)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 27.(2014·全国2·文T16)数列{a n }满足a n+1=11-a n,a 8=2,则a 1=____________.28.(2014·北京·理T12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 29.(2014·天津·理T11)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为 .30.(2013·全国2·理T16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 31.(2013·辽宁·理T14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= .32.(2013·全国1·理T14)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 33.(2012·全国·文T14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 三、计算题1.(2019·全国2·文T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.2.(2019·全国2·理T19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文T18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).4.(2019·天津·理T19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i=12na i c i (n ∈N *).5.(2019·浙江·T 20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 6.(2019·江苏·T 20)定义首项为1且公比为正数的等比数列为“M - 数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M - 数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n−2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M - 数列”{c n }(n ∈N *),对任意正整数k,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.7.(2018·北京·文T15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意x ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n+1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由; (2)设数列{a n }的前四项为a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m:(3)已知{a n }是公差为d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列. (1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1, √2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).10.(2018·天津·文T18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.11.(2018·天津·理T18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k=1n(T k +b k+2)b k(k+1)(k+2)=2n+2-2(n ∈N *). 12.(2018·全国2·理T17文T17)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.13.(2018·全国1·文T17)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =ann .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国3·理T17文T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m.15.(2017·全国1·文T17)设S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.16.(2017·全国2·文T17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.17.(2017·全国3·文T17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;}的前n项和.(2)求数列{a n2n+118.(2017·天津·理T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(2017·山东·理T19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.20.(2017·山东·文T19)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.1)求数列{a n}的通项公式;}的前n项和T n.(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列{b na n21.(2017·天津·文T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).22.(2016·全国2·理T17)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.23.(2016·全国2·文T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文T17)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.25.(2016·北京·文T15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.26.(2016·山东·理T18文T19)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .27.(2016·天津·理T18)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12−b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)kb k 2,n ∈N *,求证:∑k=1n1T k<12d2.28.(2016·天津·文T18)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1−1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n 2}的前2n 项和.29.(2016·全国1·文T17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.30.(2016·全国3·文T17)已知各项都为正数的数列{a n }满足a 1=1, a n 2-(2a n+1-1)a n -2a n+1=0. (1)求a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国3·理T17)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.32.(2015·北京·文T16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 33.(2015·重庆·文T16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 34.(2015·福建·文T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n,求b 1+b 2+b 3+…+b 10的值.35.(2015·全国1·理T17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.36.(2015·安徽·文T18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n+1S n S n+1,求数列{b n }的前n 项和T n .37.(2015·天津·理T18)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.38.(2015·山东·文T19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .39.(2015·浙江·文T17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n+1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .40.(2015·天津·文T18)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.41.(2015·湖北·文T19)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=a nb n,求数列{c n}的前n项和T n.42.(2014·全国2·理T17)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+…+1a n<32.43.(2014·福建·文T17)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.44.(2014·湖南·文T16)已知数列{a n}的前n项和S n=n 2+n2,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(-1)n a n,求数列{b n}的前2n项和.45.(2014·北京·文T14)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.46.(2014·大纲全国·理T18)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.47.(2014·山东·理T19)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.48.(2014·全国1·文T17)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)求数列{an 2n }的前n 项和. 49.(2014·安徽·文T18)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *.(1)证明:数列{a n n }是等差数列;(2)设b n =3n ·√a n ,求数列{b n }的前n 项和S n .50.(2014·山东·文T19)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项.(1)求数列{a n }的通项公式;(2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n . 51.(2014·大纲全国·文T17)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.52.(2014·全国1·理T17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数.(1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国2·文T17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n-2.54.(2013·全国1·文T17)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{12n -12n+1}的前n 项和.55.(2012·湖北·理T18文T20)已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.56.(2011·全国·文T17)已知等比数列{a n }中,a 1=13,公比q=13.(1)S n 为{a n }的前n 项和,证明:S n =1-an 2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理T17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(1)求数列{a n}的通项公式;}的前n项和.(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n58.(2010·全国·理T17)设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.59.(2010·全国·文T17)设等差数列{a n}满足a3=5,a10=-9,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n及使得S n最大的序号n的值.。
2014年全国高考数学分类汇编--数列
全国2014年高考数学(理科)分类汇编1(2014福建理){}n a 的前n 项和n S ,假设132,12a S ==,则6a =( ).8A .10B .12C .14D2(2014广西理){}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .33(2014广西文){}n a 的前n 项和为n S ,假设243,15,S S ==则6S =〔 〕 A .31 B .32 C .63 D .644(2014重庆文){}n a 中,1352,10a a a =+=,则7a = 〔 〕.5A .8B .10C .14D5(2014辽宁文理){}n a 的公差为d ,假设数列1{2}n a a为递减数列,则〔 〕 A.0d < B.0d > C.10a d < D.10a d >6(2014天津文)5.设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,假设,,,421S S S 成等比数列,则1a = 〔 〕A.2B.-2C.12D .12-7(2014课标2文)〔5〕等差数列{}n a 的公差为2,假设2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n s = ( ) 〔A 〕 ()1n n + 〔B 〕()1n n - 〔C 〕()12n n + (D) ()12n n -8(2014重庆理){}n a ,以下说法一定正确的选项是 〔 〕139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列9(2014安徽理){}a n 是等差数列,假设1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________.10(2014安徽文)12.如图,学科网在等腰直角三角形ABC 中,斜边22BC =过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.11(2014北京理)9.假设等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =______ 时{}n a 的前n 项和最大.12(2014广东理)13.假设等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则=+++n a a a 221ln ln ln .13(2014广东文){}n a 的各项均为正数,且154a a =,则212223log log log a a a ++2425log log a a ++=14(2014江苏文理)7.在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值 是 .15(2014江西文)14.在等差数列{}n a 中,17a =,公差为d ,前n 项和为{}n a ,当且仅当8=n 时n S 取最大值,则d 的取值范围_______.16(2014天津理)〔11〕设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 124,,S S S 成等比数列,则1a 的值为__________.17(2014课标2文)〔16〕数列{}n a 满足111n na a +=-,2a =2,则1a =_________.【答案】 CCCBC DAD 9.1 10.1411.812.5n 13.5 14.4 15.7(1,)8-- 16.17.12全国2014年高考数学(文史)分类汇编1(2014重庆文)16.已知{}n a 是首项为1, 公差为2的等差数列,n S 表示{}n a 的前n 项和. 〔I 〕求n a 及n S ;〔Ⅱ〕设{}n b 是首项为2的等比数列,公比q 满足()24410q a q S -++=,求{}n b 的通项公式 及其前n 项和n T .【点拨】(I)221,n n a n S n =-=;(Ⅱ)由()24410q a q S -++=得4q =,所以2122,(41)3n n n n b T -==-2(2014重庆理)22.设111,(*)n a a b n N +==∈(1)假设1b =,求23,a a 及数列{}n a 的通项公式;(2)假设1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n N ∈成立?证明你的结论.【点拨】(1)12341,2,1,1,a a a a ==猜想1n a (可数归完成);(2)设函数()1f x ,令()f x x =得不动点14x =.仿(1)得1231,0,1,a a a ==用数学归纳法可证明:22114n n a a +<<.事实上,2311.1014n a a ==<=当时,显然成立. 2.假定当22114k k a a n k +<<=时,成立,那么当1n k =+时,2221()1k k a f a ++=22222221221(1)(1)1(1)(1)14k k k a a a ++++=-+⇒+<-+2214n a +<.又2223222322()(1)(1)1k k k k a f a a a ++++=⇒+=-+ 3222321(1)(114)14k k a a ++∴+>->+⇒这就是说当1n k =+时,222314k k a a ++<<也成立.…3(2014浙江文)19、已知等差数列{}n a 的公差0d >,设{}n a 的前n 项和为n S ,11a =,2336S S ⋅=.〔1〕求d 及n S ;〔2〕求,m k 〔*,m k N ∈〕的值,使得 1265m m m m k a a a a +++++++=【点拨】(1)22,n d S n ==;〔2〕(1)21,(1)(21)2652m k ka m k m +=-∴+-+⨯= (1)(21)513k m k ++-=⨯{{15421135k k m k m +==⇒⇒+-==….4(2014浙江理)19.已知数列{}n a 和{}n b 满足12(2)()nb n a a a n N *=∈.假设{}n a 为等比数列,且1322,6a b b ==+ (1)求n a 与n b ;(2)设11()n n nc n N a b *=-∈.记数列{}n c 的前n 项和为n S .〔i 〕求n S ;〔ii 〕求正整数k ,使得对任意n N *∈,均有k n S S ≥. 【点拨】(1)12312,a a a a a 两式相除得38a =.从而332,2n n n q a a q -=∴=⋅=.由(1)212(2)2,(1)nn n b n n a a a b n n +=⇒∴=+(2)11111()12n nn n c a b n n =-=--+.所以 123111(i)2n n n S c c c c n =++++=-+(分组裂项)(ii)(1)211(1)2(1)2n n n nn n c n n n n +-=-=++⋅,易见10c =, 234,,0,50n c c c n c >≥<当时,.可见4S 最大,即 4.4n k S S ≥∴=.5(2014课标2理){}n a 满足1a =1,131n n a a +=+. 〔Ⅰ〕证明{}12n a +是等比数列,并求{}n a 的通项公式;〔Ⅱ〕证明:1231112n a a a ++<…+.【点拨】〔Ⅰ〕在131n n a a +=+中两边加12:1113()22n n a a -+=+,可见数列{}12n a +是以3为公比,以13122a +=131223312n nn a -=⨯--=.〔Ⅱ〕法1(放缩法)1231n n a =-123123123311112222313131312121212131131131131131(1)()23 23nn n a a a a ∴++++=++++----++++≤++++-+-+-+-+=-<本用的"加糖"是定理点题 法2(数学归纳法)先证一个条件更強的结论: 1123311111223n n a a a a -++++≤-⨯.事实上,10131211.123123n a ===--⨯当时,,等号成立.112531141243223n a a =+=<=-⨯当时,,新命题成立.2.假定对于n 新命题成立,即11111311111223n a a a a -++++≤-⨯,那么对于1n +的情形,我们有: 123111111111131222331331211222331123n n n n n n n a a a a a +-+-++++++≤-+⨯-+<-+=-⨯-+⨯ …所以1111133111112223n a a a a -++++≤-<⨯6(2014天津文理)19.已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-,集合{}112,,1,2,,n n i A x x x x q x q x M i n -+∈===++ 〔Ⅰ〕当2q =,3n =时,用列举法表示集合A ; 〔Ⅱ〕设,s tA ,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中,i i a b M ∈,1,2,,i n =. 证明:假设n n a b <,则s t .【点拨】〔Ⅰ〕解:当2q =,3n =时,{}0,1M =,{}12324,,1,2,3i A x x x x x M x i ==+∈=+.其中123,,x x x 的分布:可得,{}0,1,2,3,4,5,6,7A =.〔Ⅱ〕证明:由,s tA ,112n n s a a q a q -=+++,112n n t b b q b q -=+++,,i i a b M ∈,1,2,,i n =及n n a b <,可得 ()()()()21122111 .n n n n n n s t a b a b q a b q a b q -----=-+-++-+-()()()21111n n q q q q q q --≤-+-++--()()11111n n q q q q----=--10=-<.所以,s t .7(2014四川文)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上〔n N *∈〕. 〔Ⅰ〕证明:数列{}n b 为等比数列;〔Ⅱ〕假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln2-,求数列2{}n n a b 的前n 项和n S .【点拨】〔Ⅰ〕11222n nan d a n b b ++==… 〔Ⅱ〕()22x f x ln '=,222a k ln =切.切线方程 222222()a a y ln x a -=-,依题设有211222a ln ln -=-22a ∴=,24b =.从而24nn n a b n =⋅(等比差数列,乘公比、错位相减)得1(31)449n n n S +-+=8(2014四川理)19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上〔*n N ∈〕. 〔1〕假设12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ;〔2〕假设11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln2-,求数列{}n na b 的前n 项和n T .【点拨】〔1〕8872774222a a a b b -=⇒== 2d ⇒=.23n S n n ∴=-;〔2〕()22x f x ln '=,222a k ln =切.切线方程123123 0 0 0 0 1 10 0 1 1 0 10 1 0 1 1 01 0 0 1 1 1x x x x x x222222()a a y ln x a -=-,依题设有211222a ln ln -=-22a ∴=,24b =.从而2n nn a n b = (等比差数列,乘公比、错位相减)得222n n n T +=-9(2014上海文)23.已知数列{}n a 满足1113,,13n n n a a a n N a *+≤≤∈=(1)假设2342,,9a a x a ===,求x 的取值范围;(2)假设{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(3)假设12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.【点拨】(1)由232343133[3,6]133a a a x a a a ⎧≤≤⎪⇒∈⎨≤≤⎪⎩;(2)易见0,n a >1113333n n n a a a q +≤≤⇒≤≤又11111()810003m m m a q m --==⨯≥⇒≥,8m =.q ∴.(3)①1111111,33n a a a d a ==∴≤+≤⇒当时, 223d -≤≤. 11111001,33n n n n a a a a --≤≤=≤≤⇒当2时,②221d n -≥-取2100,199n d -=≥. 综上22199d -≤≤.10(2014上海理)23.已知数列{}n a 满足 1113,,13n n n a a a n N a *+≤≤∈=.(1)假设2342,,9a a x a ===,求x 的取值范围;(2)没{}n a 是公比为q 等比数列,123n n S a a a a =++++,113,3n n n S S S n N *+≤≤∈求q 的取值范围;(3)假设12,,,k a a a 成等差数列,且121000k a a a +++=,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a 的公差.【点拨】(1)由232343133[3,6]133a a a x a a a ⎧≤≤⎪⇒∈⎨≤≤⎪⎩;(2)由1113,1333n n n a a q a a q ≤≤=⇒≤≤,结合1111113,233S S a q S q ≤+≤⇒≤≤.下面证明任意的2n ≥,上式都成立. ①当1q =时,显然成立. ②当1q ≠时,11(1)1(1)1(1)13,3111n n nq q q q q q +⋅---⨯≤≤⨯---其中左不等式 显然成立.对于右不等式等价于: 13201n n q q q +-+≥-.令132()(1),1x x q q f x x q+-+=≥-ln ()(3)01x q q f x q q⋅'=->-,要使()0f x ≥,只需(1)0f ≥即232021q q q q-+≥⇒≤-.结合13q ≥, 所以123q ≤≤.(3) ①1111111,33n a a a d a ==∴≤+≤⇒当时, 223d -≤≤. 11111,33n n n n k a a a a --≤≤=≤≤⇒2,②当时221d n -≥-取2,21n k d k -=≥-. 1(1)(1)210002221k k k k k a d k k ---=⋅+⋅≥+⋅-,1999k ⇒≤,从而当219991999k q ==-时,.11(2014山东文) (19)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.〔I〕求数列{}n a 的通项公式;〔II 〕设(1)2n n n b a +=,记1234n T b b b b =-+-+-…(1)nn b +-,求n T .【点拨】〔I〕12a =,2n a n =〔Ⅱ〕(1)n b n n =+(分奇偶讨论求和) 2(1) ()2(2) ()2n n n T n n +⎧-⎪=⎨+⎪⎩奇偶为数为数12(2014山东理)19.已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列.〔Ⅰ〕求数列{}n a 的通项公式;〔Ⅱ〕令114(1)n n n n n b a a -+=-,求数列{}n b 的前n 项和n T .得到【点拨】〔Ⅰ〕11,21n a a n ==-;〔Ⅱ〕11(1)[]2121nn b n n =-+-+(分奇偶讨论,最后合并)21(1)2nn mn T ++-=.13(2014课标1文)17.已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
2014年高考数学分类汇编 集合与简易逻辑用语
2014年高考数学分类汇编(一) 集合与常用逻辑用语1、【2014安徽2】命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x2、【2014安徽理2】“0<x ”是“0)1ln(<+x ”的( )A 、 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3、【北京理5】.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件.D 既不充分也不必要条件4、【大纲理2】.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-5、【福建理6】.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的( ) .A 充分而不必要条件.B 必要而不充分条件 .C 充分必要条件.D 既不充分又不必要条件6、【福建理14】若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.8、【湖北理3】. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件9、【湖南理5】.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④10、【江西文2】.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -11、【江西文6】.下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ12、【辽宁5】.设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝13、【山东理(2)】设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则AB = (A )[0,2](B )(1,3)(C )[1,3)(D )(1,4)14、【陕西理8】.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假15、【新课标(3)】函数()f x 在0x=x 处导数存在,若()00p f 0::x q x x '==:是()f x 的极值点,则p 是q(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D) 既充分也不必要条件16、【浙江文2】、设四边形ABCD 的两条对角线AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件17、【浙江理2】已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件18、【广东8】.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90 C.120 D.13019、【福建文16】. 已知集合{}{}2,1,0,,=c b a ,且下列三个关系:①2≠a ②2=b ③0≠c 有且只有一个正确,则________10100=++c b a。
2014高考数学数列汇编
2014高考数学------数列1. (辽宁)设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则(C ) A .0d < B .0d > C .10a d < D .10a d >2.(北京)设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的(D ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件3.(北京)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =_8_______时{}n a 的前n 项和最大.4.(天津)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-. 5. (江苏) 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲ .6.(重庆2)对任意等比数列{}n a ,下列说法一定正确的是( D )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 239.,,D a a a 成等比数列7.(大纲卷10).等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( C )A .6B .5C .4D .38.(广东13)若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= .51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则9.(大纲)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (1)求{}n a 的通项公式;an=13-3n (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 10.(江苏)(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”; (2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以12,1,2,2,n n n a n -=⎧=⎨≥⎩,所11.(陕西) (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值. 【解析】(1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+= 即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==12.(天津)(本小题满分14分)已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-,集合{}112,,1,2,,n n i A x x x x q x q x M in -+?==++.(Ⅰ)当2q =,3n =时,用列举法表示集合A ; (Ⅱ)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中,i i a b M Î,1,2,,i n =. 证明:若n n a b <,则s t <.解(Ⅰ):当2q =,3n =时,{}0,1M =,{}12324,,1,2,3i A x x x x x M x i==+?+.可得,{}0,1,2,3,4,5,6,7A =. (Ⅱ)证明:由,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,,i i a b M Î,1,2,,i n =及n n a b <,可得()()()()11222111n n n n n n a b q a b q s t a b a b q -----=-+-++-+- ()()()21111n n q q q q q q --?+-++--()()11111n n q q q q----=--10=-<.所以,s t <.13.(浙江)(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}n a 为等比数列,且.6,2231b b a +== (1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
2014年高考数学六大题之四数列下
2014年高考数学六大题之四:数列题型预测(上)1、直线1 过(1,0)点,且1 关于直线y=x 对称的直线为2 ,已知点1(,)()n n na A n n N a *+∈在2 上,11a =。
当n ≥2时,有2111n n n n n a a a a a +--=+(1)求2 的方程; (2)求{ a n }的通项公式; (3)设()(2)!nn a b n N n *=∈+求数列{ b n }的前n 项和S n2、已知等差数列{ a n }的第2项a 2=5,前10项之和S 10=120,若从数列{ a n }中,依次取出第2项,第4项,第8项,…,第2n项,按原来的顺序组成一个新数列{b n },设{b n }的前n 项和为T n ,试比较T n+1与2T n 的大小。
3、已知数列{}n a 中,*1111,(),()2n n n a a a n N +==∈(1)求证:数列2{}n a 与*21{}()n a n N -∈都是等比数列;(2)求数列{}n a 前2n 的和2n T ;(3)若数列{}n a 前2n 的和为2n T ,不等式222643(1)n n n T a ka ⋅≤-对*n N ∈恒成立,求k 的最大值。
4、已知等差数列{}n a 的公差大于0,且53,a a 是方程045142=+-x x 的两根,数列{}n b 的前n 项的和为n S ,且n n b S 211-=. (1) 求数列{}n a ,{}n b 的通项公式; (2) 记n n n b a c ⋅=,求证:n n c c ≤+1.5、已知数列}{n a 的前n 项和为n S ,对一切正整数n ,点),(n n S n P 都在函数x x x f 2)(2+=的图像上,且过点),(n n S n P 的切线的斜率为n k . (1)求数列}{n a 的通项公式. (2)若n k na b n 2=,求数列}{n b 的前n 项和n T .(3)设},2{},,{**∈==∈==N n a x x R N n k x x Q n n ,等差数列}{n c 的任一项R Q c n ⋂∈,其中1c 是R Q ⋂中的最小数,11511010<<c ,求}{n c 的通项公式.6、函数)(x f 对任意x ∈R 都有f(x)+f(1-x)=12.(1)求))(1()1()21(N n nn f nf f ∈-+和的值; (2)数列}{),1()1()2()1()0(}{n n n a f nn f n f n f f a a 求数列满足+-++++= 的通项公式。
(学生版)2024年高考数学真题分类汇编04:数列
数列一、单选题1.(2024·全国)等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A .2-B .73C .1D .292.(2024·全国)等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2二、填空题3.(2024·全国)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.4.(2024·北京)已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是.①n a ,n b 均为等差数列,则M 中最多一个元素;②n a ,n b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素;④n a 单调递增,n b 单调递减,则M 中最多一个元素.5.(2024·上海)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-ÎÈ,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.三、解答题6.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j £<£,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ³时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.7.(2024·全国)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.8.(2024·全国)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.9.(2024·全国)记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .10.(2024·北京)设集合(){}{}{}{}(){},,,1,2,3,4,5,6,7,8,2M i j s t i j s t i j s t =ÎÎÎÎ+++.对于给定有穷数列{}():18n A a n ££,及序列12:,,...,s w w w W ,(),,,k k k k k i j s t M w =Î,定义变换T :将数列A 的第1111,,,i j s t 项加1,得到数列()1T A ;将数列()1T A 的第2222,,,i j s t 列加1,得到数列()21T T A …;重复上述操作,得到数列()21...s T T T A ,记为()A W .(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7W ,写出()A W ;(2)是否存在序列W ,使得()A W 为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的W ;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,证明:“存在序列W ,使得()A W为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.11.(2024·天津)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.。
历年(2019-2024)全国高考数学真题分类(数列、函数与集合新定义)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(数列、函数与集合新定义)汇编考点01 数列新定义一、小题1.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=2.(2020∙全国新Ⅱ卷∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011C .10001D .11001二、大题1.(2024∙全国新Ⅰ卷∙高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >. 2.(2024∙北京∙高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.3.(2023∙北京∙高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+.4.(2022∙北京∙高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列. (1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2021∙北京∙高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,‐2,‐2,‐1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.6.(2020∙北京∙高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n …,在{}n a 中都存在两项,()k l a a k l >.使得2k n l a a a =. ()Ⅰ若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;()Ⅱ若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;()Ⅲ若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.7.(2020∙江苏∙高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a 是2”数列,且an >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且an ≥0?若存在,求λ的取值范围;若不存在,说明理由,8.(2019∙江苏∙高考真题)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值.考点02 函数新定义一、大题1.(2024∙上海∙高考真题)对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”; (2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2.(2020∙江苏∙高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()2222()f x x x g x x x D =+=-+=-∞+∞,,,,求h (x )的表达式; (2)若2()1()ln (),(0)f x x x g x k x h x kx k D =-+==-=+∞,,,,求k 的取值范围; (3)若()()()()422342248432(0f x x x g x x h x t t x t t t =-=-=--+<≤,,,[],D m n ⎡=⊆⎣,求证:n m -≤.考点03 集合新定义一、小题1.(2020∙浙江∙高考真题)设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足: ①对于任意x,y∈S,若x≠y,都有xy∈T②对于任意x,y∈T,若x<y,则yx∈S;下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素考点04 其他新定义1.(2020∙北京∙高考真题)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔∙卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔∙卡西的方法,π的近似值的表达式是().A.30303sin tannn n︒︒⎛⎫+⎪⎝⎭B.30306sin tannn n︒︒⎛⎫+⎪⎝⎭C.60603sin tannn n︒︒⎛⎫+⎪⎝⎭D.60606sin tannn n︒︒⎛⎫+⎪⎝⎭参考答案 考点01 数列新定义一、小题1.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=【答案】ACD【详细分析】利用()n ω的定义可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误.【答案详解】对于A 选项,()01k n a a a ω=+++ ,12101122222k k k k n a a a a +-=⋅+⋅++⋅+⋅ ,所以,()()012k n a a a n ωω=+++= ,A 选项正确;对于B 选项,取2n =,012237121212n +==⋅+⋅+⋅,()73ω∴=, 而0120212=⋅+⋅,则()21ω=,即()()721ωω≠+,B 选项错误;对于C 选项,3430234301018522251212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ ,所以,()01852k n a a a ω+=++++ ,2320123201014322231212222k k k k n a a a a a a +++=⋅+⋅++⋅+=⋅+⋅+⋅+⋅++⋅ , 所以,()01432k n a a a ω+=++++ ,因此,()()8543n n ωω+=+,C 选项正确;对于D 选项,01121222n n --=+++ ,故()21nn ω-=,D 选项正确.故选:ACD.2.(2020∙全国新Ⅱ卷∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010 B .11011C .10001D .11001【答案】C【详细分析】根据新定义,逐一检验即可【答案详解】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、大题1.(2024∙全国新Ⅰ卷∙高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >. 【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【详细分析】(1)直接根据(),i j -可分数列的定义即可; (2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【答案详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+', 得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可. 换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列. 那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6. 所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组. (如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立, 则数列1,2,...,42m +一定是(),i j -可分数列: 命题1:,i A j B ∈∈或,i B j A ∈∈; 命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠. 此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后, 剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列: ①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组; ③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组. (如果某一部分的组数为0,则忽略之) 故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠. 此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈. 则由i j <可知124241k k +<+,即2114k k ->,故21k k >. 由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组; ③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组. (如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数. 这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=. 但这导致2112k k -=,矛盾,所以,i B j A ∈∈. 设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个. 所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++. 这就证明了结论.【点评】关键点点评:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.2.(2024∙北京∙高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”. 【答案】(1)():3,4,4,5,8,4,3,10A Ω (2)不存在符合条件的Ω,理由见解析 (3)证明见解析【详细分析】(1)直接按照()ΩA 的定义写出()ΩA 即可;(2)解法一:利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;解法二:对于任意序列,所得数列之和比原数列之和多4,可知序列Ω共有8项,可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==,检验即可;(3)解法一:分充分性和必要性两方面论证;解法二:若12345678a a a a a a a a +=+=+=+,分类讨论1357,,,a a a a 相等得个数,结合题意证明即可;若存在序列Ω,使得()ΩA 为常数列,结合定义详细分析证明即可.【答案详解】(1)因为数列:1,3,2,4,6,3,1,9A , 由序列()11,3,5,7T 可得()1:2,3,3,4,7,3,2,9T A ; 由序列()22,4,6,8T 可得()21:2,4,3,5,7,4,2,10T T A ; 由序列()31,3,5,7T 可得()321:3,4,4,5,8,4,3,10T T T A ; 所以()Ω:3,4,4,5,8,4,3,10A .(2)解法一:假设存在符合条件的Ω,可知()ΩA 的第1,2项之和为12a a s ++,第3,4项之和为34a a s ++, 则()()()()121234342642a a a a sa a a a s⎧+++=++⎪⎨+++=++⎪⎩,而该方程组无解,故假设不成立, 故不存在符合条件的Ω;解法二:由题意可知:对于任意序列,所得数列之和比原数列之和多4, 假设存在符合条件的Ω,且()128Ω:,,,A b b b ⋅⋅⋅, 因为2642824484+++++++=,即序列Ω共有8项,由题意可知:()()2122128,1,2,3,4n n n n b b a a n --+-+==, 检验可知:当2,3n =时,上式不成立, 即假设不成立,所以不存在符合条件的Ω.(3)解法一:我们设序列()21...s T T T A 为{}(),18s n a n ≤≤,特别规定()0,18n n a a n =≤≤. 必要性:若存在序列12:,,s T T T Ω ,使得()ΩA 的各项都相等.则,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a =======,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+. 根据()21...s T T T A 的定义,显然有,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =. 所以不断使用该式就得到12345678,1,2s s a a a a a a a a a a s +=+=+=+=+-,必要性得证. 充分性:若12345678a a a a a a a a +=+=+=+.由已知,1357a a a a +++为偶数,而12345678a a a a a a a a +=+=+=+,所以()()24681213574a a a a a a a a a a +++=+-+++也是偶数.我们设()21...s T T T A 是通过合法的序列Ω的变换能得到的所有可能的数列()ΩA 中,使得,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-最小的一个.上面已经说明,21,21,211,21s j s j s j s j a a a a ----+=++,这里1,2,3,4j =,1,2,...s =.从而由12345678a a a a a a a a +=+=+=+可得,1,2,3,4,5,6,7,812s s s s s s s s a a a a a a a a a a s +=+=+=+=++. 同时,由于t t t t i j k w +++总是偶数,所以,1,3,5,7t t t t a a a a +++和,2,4,6,8t t t t a a a a +++的奇偶性保持不变,从而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数. 下面证明不存在1,2,3,4j =使得,21,22s j s j a a --≥.假设存在,根据对称性,不妨设1j =,,21,22s j s j a a --≥,即,1,22s s a a -≥.情况1:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+-=,则由,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,知,1,24s s a a -≥.对该数列连续作四次变换()()()()2,3,5,8,2,4,6,8,2,3,6,7,2,4,5,7后,新的4,14,24,34,44,54,64,74,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-减少4,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2:若,3,4,5,6,7,80s s s s s s a a a a a a -+-+->,不妨设,3,40s s a a ->.情况2‐1:如果,3,41s s a a -≥,则对该数列连续作两次变换()()2,4,5,7,2,4,6,8后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾;情况2‐2:如果,4,31s s a a -≥,则对该数列连续作两次变换()()2,3,5,8,2,3,6,7后,新的2,12,22,32,42,52,62,72,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-相比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-至少减少2,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的1,2,3,4j =都有,21,21s j s j a a --≤. 假设存在1,2,3,4j =使得,21,21s j s j a a --=,则,21,2s j s j a a -+是奇数,所以,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+都是奇数,设为21N +.则此时对任意1,2,3,4j =,由,21,21s j s j a a --≤可知必有{}{},21,2,,1s j s j a a N N -=+.而,1,3,5,7s s s s a a a a +++和,2,4,6,8s s s s a a a a +++都是偶数,故集合{},s m m a N =中的四个元素,,,i j k w 之和为偶数,对该数列进行一次变换(),,,i j k w ,则该数列成为常数列,新的1,11,21,31,41,51,61,71,8s s s s s s s s a a a a a a a a ++++++++-+-+-+-等于零,比原来的,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-更小,这与,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a -+-+-+-的最小性矛盾.综上,只可能(),21,201,2,3,4s j s j a a j --==,而,1,2,3,4,5,6,7,8s s s s s s s s a a a a a a a a +=+=+=+,故{}(),Ωs n a A =是常数列,充分性得证.解法二:由题意可知:Ω中序列的顺序不影响()ΩA 的结果, 且()()()()12345678,,,,,,,a a a a a a a a 相对于序列也是无序的, (ⅰ)若12345678a a a a a a a a +=+=+=+, 不妨设1357a a a a ≤≤≤,则2468a a a a ≥≥≥, ①当1357a a a a ===,则8642a a a a ===, 分别执行1a 个序列()2,4,6,8、2a 个序列()1,3,5,7,可得1212121212121212,,,,,,,a a a a a a a a a a a a a a a a ++++++++,为常数列,符合题意; ②当1357,,,a a a a 中有且仅有三个数相等,不妨设135a a a ==,则246a a a ==, 即12121278,,,,,,,a a a a a a a a ,分别执行2a 个序列()1,3,5,7、7a 个序列()2,4,6,8可得1227122712272778,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即1227122712272712,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 因为1357a a a a +++为偶数,即173a a +为偶数, 可知17,a a 的奇偶性相同,则*712a a -∈N , 分别执行712a a -个序列()1,3,5,7,()1,3,6,8,()2,3,5,8,()1,4,5,8, 可得7217217217217217217217213232323232323232,,,,,,,22222222a a a a a a a a a a a a a a a a a a a a a a a a +-+-+-+-+-+-+-+-,为常数列,符合题意;③若1357a a a a =<=,则2468a a a a =>=,即12125656,,,,,,,a a a a a a a a , 分别执行5a 个()1,3,6,8、1a 个()2,4,5,7,可得1512151215561556,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 因为1256a a a a +=+,可得1512151215121512,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为①,可知符合题意;④当1357,,,a a a a 中有且仅有两个数相等,不妨设13a a =,则24a a =,即12125678,,,,,,,a a a a a a a a ,分别执行1a 个()2,4,5,7、5a 个()1,3,6,8,可得1512151215561758,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1256a a a a +=+,可得1512151215121758,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为②,可知符合题意;⑤若1357a a a a <<<,则2468a a a a >>>,即12345678,,,,,,,a a a a a a a a , 分别执行1a 个()2,3,5,8、3a 个()1,4,6,7,可得1312133415363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++,且1234a a a a +=+,可得1312131215363718,,,,,,,a a a a a a a a a a a a a a a a ++++++++, 即转为③,可知符合题意;综上所述:若12345678a a a a a a a a +=+=+=+,则存在序列Ω,使得()ΩA 为常数列; (ⅱ)若存在序列Ω,使得()ΩA 为常数列, 因为对任意()128Ω:,,,A b b b ⋅⋅⋅,均有()()()()12123434b b a a b b a a +-+=+-+()()()()56567878b b a a b b a a =+-+=+-+成立, 若()ΩA 为常数列,则12345678b b b b b b b b +=+=+=+, 所以12345678a a a a a a a a +=+=+=+;综上所述:“存在序列Ω,使得()ΩA 为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”. 【点评】关键点点评:本题第三问的关键在于对新定义的理解,以及对其本质的详细分析.3.(2023∙北京∙高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值; (2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >> 使得t p s q A B A B +=+. 【答案】(1)00r =,11r =,21r =,32r = (2),n r n n =∈N (3)证明见答案详解【详细分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意详细分析求解; (2)根据题意题意详细分析可得11i ir r +-≥,利用反证可得11i i r r +-=,在结合等差数列运算求解;(3)讨论,m m A B 的大小,根据题意结合反证法详细分析证明.【答案详解】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========, 当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =; 当1k =时,则01111,,,2,3i B A B A B A i <<>=,故11r =;当2k =时,则22232,0,1,,,i B A i B A B A ≤=>>故21r =; 当3k =时,则333,0,1,2,i B A i B A ≤=>,故32r =; 综上所述:00r =,11r =,21r =,32r =. (2)由题意可知:nr m≤,且nr ∈N,因为1,1n n a b ≥≥,且11a b ≥,则10n A B B ≥>对任意*n ∈N 恒成立, 所以010,1r r =≥, 又因为112ii i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-≥,可得11i ir r +-≥,反证:假设满足11n n r r +->的最小正整数为01j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i ir r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-, 又因为01j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>, 假设不成立,故11n n r r +-=,即数列{}n r 是以首项为1,公差为1的等差数列,所以01,n r n n n =+⨯=∈N . (3)因为,n n a b 均为正整数,则{}{},n n A B 均为递增数列,(ⅰ)若m m A B =,则可取0t q ==,满足,,p q s t >> 使得t p s q A B A B +=+; (ⅱ)若m m A B <,则k r m <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->, 这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B =, 可取0,,N t q p N s r ====,满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈--⋅⋅⋅--,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =,即X Y r X r Y B A B A -=-,可得X Y Y r X r A B A B +=+, 可取,,,Y X p Y s r q X t r ====,满足,p q s t >>,使得t p s q A B A B +=+; (ⅲ)若m m A B >,定义{}max ,{0,1,2,,}k i k R i A B i m =≤∈L ∣,则k R m <,构建,1n n R n S A B n m =-≤≤,由题意可得:0n S ≤,且n S 为整数, 反证,假设存在正整数,1K K m ≤≤,使得K S m ≤-,则1,0K K R K R K A B m A B +-≤-->,可得()()111K K K K K R R R R K R K a A A A B A B m +++=-=--->, 这与{}11,2,,K R a m +∈⋅⋅⋅相矛盾,故对任意11,n m n ≤≤-∈N ,均有1n S m≥-.①若存在正整数N ,使得0N N R N S A B =-=,即N R N A B =, 可取0,,N q t s N p R ====,即满足,p q s t >>,使得t p s q A B A B +=+; ②若不存在正整数N ,使得0NS =,因为(){}1,2,,1n S m ∈--⋅⋅⋅--,且1n m ≤≤, 所以必存在1X Y m ≤<≤,使得X Y S S =, 即X Y R X R Y A B A B -=-,可得Y X R X R Y A B A B +=+, 可取,,,Y X p R t X q R s Y ====, 满足,p q s t >>,使得t p s q A B A B +=+.综上所述:存在0,0q p m t s m ≤<≤≤<≤使得t p s q A B A B +=+.4.(2022∙北京∙高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列. (1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由; (2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥. 【答案】(1)是5-连续可表数列;不是6-连续可表数列. (2)证明见解析. (3)证明见解析.【详细分析】(1)直接利用定义验证即可;(2)先考虑3k ≤不符合,再列举一个4k =合题即可;(3)5k ≤时,根据和的个数易得显然不行,再讨论6k =时,由12620a a a +++< 可知里面必然有负数,再确定负数只能是1-,然后分类讨论验证不行即可.【答案详解】(1)21a =,12a =,123a a +=,34a =,235a a +=,所以Q 是5-连续可表数列;易知,不存在,i j 使得16i i i j a a a +++++= ,所以Q 不是6-连续可表数列.(2)若3k ≤,设为:Q ,,a b c ,则至多,,,,,a b b c a b c a b c ++++,6个数字,没有8个,矛盾;当4k =时,数列:1,4,1,2Q ,满足11a =,42a =,343a a +=,24a =,125a a +=,1236a a a ++=,2347a a a ++=,12348a a a a +++=, min 4k ∴=.(3)12:,,,k Q a a a ,若i j =最多有k 种,若i j ≠,最多有2C k 种,所以最多有()21C 2k k k k ++=种, 若5k ≤,则12,,,k a a a …至多可表()551152+=个数,矛盾, 从而若7k <,则6k =,,,,,,a b c d e f 至多可表6(61)212+=个数, 而20a b c d e f +++++<,所以其中有负的,从而,,,,,a b c d e f 可表1~20及那个负数(恰 21个),这表明~a f 中仅一个负的,没有0,且这个负的在~a f 中绝对值最小,同时~a f 中没有两数相同,设那个负数为(1)m m -≥ ,则所有数之和125415m m m m m ≥++++++-=+ ,415191m m +≤⇒=,{,,,,,}{1,2,3,4,5,6}a b c d e f ∴=-,再考虑排序,排序中不能有和相同,否则不足20个,112=-+ (仅一种方式),1∴-与2相邻,若1-不在两端,则",1,2,__,__,__"x -形式,若6x =,则56(1)=+-(有2种结果相同,方式矛盾),6x ∴≠, 同理5,4,3x ≠ ,故1-在一端,不妨为"1,2,,,"A B C D -形式,若3A =,则523=+ (有2种结果相同,矛盾),4A =同理不行,5A =,则6125=-++ (有2种结果相同,矛盾),从而6A =,由于7126=-++,由表法唯一知3,4不相邻,、 故只能1,2,6,3,5,4-,①或1,2,6,4,5,3-,② 这2种情形,对①:96354=+=+,矛盾,对②:82653=+=+,也矛盾,综上6k ≠, 当7k =时,数列1,2,4,5,8,2,1--满足题意,7k ∴≥.【点评】关键点评,先理解题意,是否为m -可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从1到m 中间的任意一个值.本题第二问3k ≤时,通过和值可能个数否定3k ≤;第三问先通过和值的可能个数否定5k ≤,再验证6k =时,数列中的几项如果符合必然是{1,2,3,4,5,6}-的一个排序,可验证这组数不合题.5.(2021∙北京∙高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=; ②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,‐2,‐2,‐1,那么{}n a 是否可能为2ℜ数列?说明理由; (2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.【答案】(1)不可以是2R 数列;理由见解析;(2)51a =;(3)存在;2p =. 【详细分析】(1)由题意考查3a 的值即可说明数列不是2ℜ数列; (2)由题意首先确定数列的前4项,然后讨论计算即可确定5a 的值;(3)构造数列n n b a p =+,易知数列{}n b 是0ℜ的,结合(2)中的结论求解不等式即可确定满足题意的实数p 的值.【答案详解】(1)因 为 122,2,2,p a a ===- 所以12122,13a a p a a p ++=+++=, 因 为32,a =-所 以{}312122,21a a a a a ∈+++++ 所以数列{}n a ,不可能是2ℜ数列. (2)性质①120,0a a ≥=,由性质③{}2,1m m m a a a +∈+,因此31a a =或311a a =+,40a =或41a =, 若40a =,由性质②可知34a a <,即10a <或110a +<,矛盾; 若4311,1a a a ==+,由34a a <有111a +<,矛盾. 因此只能是4311,a a a ==.又因为413a a a =+或4131a a a =++,所以112a =或10a =. 若112a =,则{}{}{}2111111110,012,211,2a a a a a a a a +=∈+++++=+=, 不满足20a =,舍去.当10a =,则{}n a 前四项为:0,0,0,1,下面用数学归纳法证明()444(1,2,3),1n i n a n i a n n N ++===+∈: 当0n =时,经验证命题成立,假设当(0)n k k ≤≥时命题成立, 当1n k =+时:若1i =,则()()4541145k k j k j a a a +++++-==,利用性质③:{}*45,144{,1}jk j aa j N j k k k +-+∈≤≤+=+∣,此时可得:451k a k +=+; 否则,若45k a k +=,取0k =可得:50a =,而由性质②可得:{}5141,2a a a =+∈,与50a =矛盾. 同理可得:{}*46,145{,1}jk j a a j N j k k k +-+∈≤≤+=+∣,有461k a k +=+; {}*48,246{1,2}jk j a a j N j k k k +-+∈≤≤+=++∣,有482k a k +=+;{}*47,146{1}jk j aa j N j k k +-+∈≤≤+=+∣,又因为4748k k a a ++<,有47 1.k a k +=+ 即当1n k =+时命题成立,证毕. 综上可得:10a =,54111a a ⨯+==. (3)令n nb a p =+,由性质③可知:*,,m n m n m n N b a p ++∀∈=+∈{},1m n m n a p a p a p a p +++++++{},1m n m n b b b b =+++,由于11224141440,0,n n n n b a p b a p b a p a p b --=+≥=+==+<+=, 因此数列{}n b 为0ℜ数列. 由(2)可知:若444,(1,2,3),1n i n n N a n p i a n p ++∀∈=-==+-;11111402320a S S a p ⨯+-==-≥=,91010422(2)0S S a a p ⨯+-=-=-=--≥,因此2p =,此时1210,,,0a a a ⋯≤,()011j a j ≥≥,满足题意.【点评】本题属于数列中的“新定义问题”,“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.6.(2020∙北京∙高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n …,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =. ()Ⅰ若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;()Ⅱ若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;()Ⅲ若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.【答案】()Ⅰ详见解析;()Ⅱ答案详解解析;()Ⅲ证明详见解析. 【详细分析】()Ⅰ根据定义验证,即可判断;()Ⅱ根据定义逐一验证,即可判断;()Ⅲ解法一:首先,证明数列中的项数同号,然后证明2231a a a =,最后,用数学归纳法证明数列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得123,,a a a 成等比数列,之后证得1234,,,a a a a 成等比数列,同理即可证得数列为等比数列,从而命题得证.【答案详解】()Ⅰ{}2323292,3,2n a a a a Z a ===∉∴Q 不具有性质①; ()Ⅱ{}22*(2)1*2,,,2,2i j i i i j n j ja a i j N i j i j N a a a a ---∀∈>=-∈∴=∴Q 具有性质①; {}2*(2)11,3,1,2,22,k l n k n n la n N n k n l a n a a ---∀∈≥∃=-=-===∴Q 具有性质②;()Ⅲ解法一首先,证明数列中的项数同号,不妨设恒为正数:显然()0*n a n N ≠∉,假设数列中存在负项,设{}0max |0n N n a =<, 第一种情况:若01N =,即01230a a a a <<<<< ,由①可知:存在1m ,满足12210m a a a =<,存在2m ,满足22310m a a a =<, 由01N =可知223211a a a a =,从而23a a =,与数列的单调性矛盾,假设不成立.第二种情况:若02N ≥,由①知存在实数m ,满足0210Nm a a a =<,由0N 的定义可知:0m N ≤,另一方面,000221NNm N N a a a a a a =>=,由数列的单调性可知:0m N >,这与0N 的定义矛盾,假设不成立. 同理可证得数列中的项数恒为负数. 综上可得,数列中的项数同号.其次,证明2231a a a =:利用性质②:取3n =,此时()23kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <,此时必有2,1k l ==,即2231a a a =,最后,用数学归纳法证明数列为等比数列:假设数列{}n a 的前()3k k ≥项成等比数列,不妨设()111s s a a q s k -=≤≤,其中10,1a q >>,(10,01a q <<<的情况类似)由①可得:存在整数m ,满足211k k m k k a a a q a a -==>,且11k m k a a q a +=≥ (*) 由②得:存在s t >,满足:21s s k s s t t a aa a a a a +==⋅>,由数列的单调性可知:1t s k <≤+, 由()111s s a a qs k -=≤≤可得:2211111s t k s k k ta a a q a a q a ---+==>= (**)由(**)和(*)式可得:211111k s t k a q a qa q ---≥>, 结合数列的单调性有:211k s t k ≥-->-, 注意到,,s t k 均为整数,故21k s t =--, 代入(**)式,从而11kk a a q +=.总上可得,数列{}n a 的通项公式为:11n n a a q -=.即数列{}n a 为等比数列. 解法二:假设数列中的项数均为正数:首先利用性质②:取3n =,此时23()kla a k l a =>,由数列的单调性可知0k l a a >>, 而3kk k la a a a a =⋅>,故3k <, 此时必有2,1k l ==,即2231a a a =,即123,,a a a 成等比数列,不妨设22131,(1)a a q a a q q ==>,然后利用性质①:取3,2i j ==,则224331121m a a q a a q a a q===, 即数列中必然存在一项的值为31a q ,下面我们来证明341a a q =,否则,由数列的单调性可知341a a q <,在性质②中,取4n =,则24k k k k l la aa a a a a ==>,从而4k <,与前面类似的可知则存在{,}{1,2,3}()k l k l ⊆>,满足24kl a a a =,若3,2k l ==,则:2341kla a a q a ==,与假设矛盾; 若3,1k l ==,则:243411k la a a q a q a ==>,与假设矛盾; 若2,1k l ==,则:22413k la a a q a a ===,与数列的单调性矛盾; 即不存在满足题意的正整数,k l ,可见341a a q <不成立,从而341a a q =, 然后利用性质①:取4,3i j ==,则数列中存在一项2264411231m a a q a a q a a q===, 下面我们用反证法来证明451a a q =, 否则,由数列的单调性可知34151a q a a q <<,在性质②中,取5n =,则25k k k k l la aa a a a a ==>,从而5k <, 与前面类似的可知则存在{}{}(),1,2,3,4k l k l ⊆>,满足25k la a a =,即由②可知:22222115111k k l k l l a a q a a q a a q----===, 若214k l --=,则451a a q =,与假设矛盾; 若214k l -->,则451a a q >,与假设矛盾;若214k l --<,由于,k l 为正整数,故213k l --≤,则351a a q ≤,与315a q a <矛盾;综上可知,假设不成立,则451a a q =.同理可得:566171,,a a q a a q == ,从而数列{}n a 为等比数列,同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数. 从而题中的结论得证,数列{}n a 为等比数列.【点评】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.7.(2020∙江苏∙高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列. (1)若等差数列{}n a 是“λ~1”数列,求λ的值;。
北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word
北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题一、选择题1 .(2013北京海淀二模数学理科试题及答案)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列 C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列 D .Q m ∃∈且2m ≥,数列{}n a 是周期数列2 .(2013北京昌平二模数学理科试题及答案)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->; ③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是 ( )A .①③B .①④C .②③D .②④二、填空题3 .(2013届北京市延庆县一模数学理)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .4 .5 .(北京市石景山区2013届高三一模数学理试题)对于各数互不相等的整数数组(n i i i i ,,,,321⋅⋅⋅)(n 是不小于3的正整数),若对任意的q p ,∈{n ,,⋅⋅⋅3,2,1},当q p <时有q p i i >,则称q p i i ,是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1) 2 4(3题图)6 .(2013朝阳二模数学理科)数列{21}n-的前n 项1,3,7,,21n - 组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合n A 中任取k (1,2,3,,)k n = 个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++ .例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A =,113T =+,213T =⨯,213137S =++⨯=.则当3n =时,3S =______;试写出n S =______.7 .(2013届西城区一模理科)记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为m a x {,,}m i n {,a b ca tbc a b =⋅,}bc ca .(ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.8 .(海淀区北师特学校13届高三第四次月考理科)对任意x ∈R ,函数()f x满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = . 9 .(北京市东城区2013届高三上学期期末考试数学理科试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = .10.(2013北京东城高三二模数学理科)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .11.(北京市朝阳区2013届高三上学期期末考试数学理试题 )将整数1,2,3,,25 填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .12.(2013北京房山二模数学理科试题及答案)在数列{}n a 中,如果对任意的*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为比等差数列,λ称为比公差.现给出以下命题:①若数列{}n F 满足1212(3)n n n F F F F F n --=+≥=1,=1,,则该数列不是比等差数列; ②若数列{}n a 满足123-⋅=n n a ,则数列{}n a 是比等差数列,且比公差0=λ;③等比数列一定是比等差数列,等差数列一定不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是____ .三、解答题13.(海淀区2013届高三上学期期中练习数学(理))已知数集12{,,A a a =,}n a 12(1a a =<<,2)n a n <≥具有性质P:对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立. (Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由; (Ⅱ)求证:122n a a a ≤++1(2)n a n -+≥;(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.14.(2013届北京海滨一模理科)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;(Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.15.(西城区2013届高三上学期期末考试数学理科)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.16.(2011年高考(北京理))若数列12:,,(2)n n A a a a n ≥ 满足1||1(1,2,,1)k k a a k n +-==- ,则称n A 为E 数列.记12()n n S A a a a =+++ (Ⅰ)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(Ⅱ)若112,2000a n ==,证明: E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.17.(2013丰台二模数学理科)已知等差数列{}n a 的通项公式为23-=n a n ,等比数列{}n b 中,1143,1b a b a ==+.记集合{},*,n A x x a n N ==∈ {},*n B x x b n N ==∈,U A B =⋃,把集合U 中的元素按从小到大依次排列,构成数列{}n c .(Ⅰ)求数列{}n b 的通项公式,并写出数列{}n c 的前4项;(Ⅱ)把集合U C A 中的元素从小到大依次排列构成数列{}n d ,求数列{}n d 的通项公式,并说明理由; (Ⅲ)求数列{}n c 的前n 项和.nS18.(北京市朝阳区2013届高三第一次综合练习理科数学)设1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|kk k S xx τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值;(Ⅱ)求()S τ的最大值; (Ⅲ)求使()S τ达到最大值的所有排列τ的个数.19.(顺义13届高三第一次统练理科)已知数列{}n a 的前n 项和为n S ,且点()n S n ,在函数221-=+x y的图像上.(I)求数列{}n a 的通项公式;(II)设数列{}n b 满足:()*,011N ∈=+=+n a b b b n n n ,求数列{}n b 的前n 项和公式;(III)在第(II)问的条件下,若对于任意的*N ∈n 不等式1+<n n b b λ恒成立,求实数λ的取值范围20.(丰台区2013届高三上学期期末理 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形.(Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.21.(海淀区2013届高三上学期期末理科)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x=在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.22.(石景山区2013届高三上学期期末理)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)23.(朝阳区2013届高三上学期期中考试(理))给定一个n 项的实数列12,,,(N)n a a a n *∈ ,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c --- ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次变换记为()k k T c ,其中k c 为第k 次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c ,22()T c ,,()k k T c 为 “k 次归零变换”.(Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤; (Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”;(Ⅲ)对于数列231,2,3,,nn ,是否存在“1n -次归零变换”?请说明理由.24.(2013届丰台区一模理科)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++= ;② 1231n a a a a ++++= . (Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某2k+1(*k N ∈)阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n = ,试证:(1)21≤k S ; (2)111.22ni i a in =≤-∑25.(2013北京昌平二模数学理科试题及答案)本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I)当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.26.(昌平区2013届高三上学期期末理)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.27.(2013北京朝阳二模数学理科试题)已知实数12,,,n x x x (2n ≥)满足||1(1,2,3,,)i x i n ≤= ,记121(,,,)n i j i j nS x x x x x ≤<≤=∑.(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)求12(,,,)n S x x x 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.28.(北京四中2013届高三上学期期中测验数学(理))已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线21=x 上,且.(1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.29.(2013北京海淀二模数学理科试题及答案)(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.30.(2013北京房山二模数学理科试题)设3>m ,对于项数为m 的有穷数列{}n a ,令k b 为)(,,,21m k a a a k≤ 中的最大值,称数列{}n b 为{}n a 的“创新数列”.例如数列3,的创新数列为3,5,5,7.考查自然数)3(,,2,1>m m 的所有排列,将每种排列都视为一个有穷数列{}n c .(Ⅰ)若5m =,写出创新数列为3,5,5,5,5的所有数列{}n c ;(Ⅱ)是否存在数列{}n c 的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由; (Ⅲ)是否存在数列{}n c ,使它的创新数列为等差数列?若存在,求出所有符合条件的数列{}n c 的个数;若不存在,请说明理由.22221212a a a a a a a a ------31.(东城区2013届高三上学期期末考试数学理科)已知实数组成的数组123(,,,,)n x x x x 满足条件:①10nii x==∑; ②11ni i x ==∑.(Ⅰ) 当2n =时,求1x ,2x 的值; (Ⅱ)当3n =时,求证:123321x x x ++≤; (Ⅲ)设123n a a a a ≥≥≥≥ ,且1n a a >(2)n ≥,求证:111()2ni in i a xa a =≤-∑.32.(东城区普通校2013届高三3月联考数学(理)试题 )设1a ,2a ,…20a 是首项为1,公比为2的等比数列,对于满足190≤≤k 的整数k ,数列1b ,2b ,…20b 由⎩⎨⎧-++20k n k n a a 时,当时,当20-20201≤<-≤≤n k k n 确定。
2014年全国高考理科数学试题分类汇编11:概率与统计_有答案
2014年全国高考理科数学试题分类汇编11:概率与统计一、选择题1某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B2某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B3某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C4某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D5如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是()A .14π-B .12π- C .22π-D .4π【答案】A6节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国高考数学试题分类汇编(数列)
1.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N , 得出数列的通项公式是( )
.2n Aa n = .2(1)n B a n =-
.2n n C a = 1.2n n D a -=
2.【2014·安徽卷(文12)】如图,在等腰直角三角形ABC
中,斜边BC =A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,
123A A a =,…,567
A A a =,则7a =_____ ___.
3.【2014·江西卷(文13)】在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,则d 的取值范围_________.
4.【2014·全国卷Ⅰ(理17)】已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.
(Ⅰ)证明:2n n a a λ+-=;
(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.
B
A 1
C
第12题图
A
A 2
A 3 A 4
A 5
A 6
5.【2014·全国卷Ⅱ(理17)】已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{
}
12
n a +是等比数列,并求{}n a 的通项公式;
(Ⅱ)证明:1231112
n
a a a ++<…+.
6.【2014·山东卷(理19)】已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。
(I )求数列}{n a 的通项公式; (II )令n b =,4)1(1
1+--n n n a a n
求数列}{n b 的前n 项和n T 。
7.【2014·山东卷(文19)】在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (I)求数列{}n a 的通项公式;
(II )设(1)2
n n n b a +=,记1234(1)n n n T b b b b b =-+-+-+-…,求n T .
8.【2014·浙江卷(理19)】已知数列{}n a 和{}n b 满足()()*
∈=N n a a a n
b n 221 .若{}n
a 为等比
数列,且.6,2231b b a +== (1)求n a 与n b ; (2)设()
*∈-=
N n b a c n
n n 1
1。
记数列{}n c 的前n 项和为n S . (i )求n S ;
(ii )求正整数k ,使得对任意*
∈N n ,均有n k S S ≥.
9.【2014·天津卷(文理19)】已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-,
集合{}11
2
,,1,2,
,n n i A x x x x q x q x M i
n -+?=
=++
.
(Ⅰ)当2q =,3n =时,用列举法表示集合A ; (Ⅱ)设,s t A Î,112n n s a a q a q -=++
+,112n n t b b q b q -=+++,其中,i i a b M Î,
1,2,,
i n =. 证明:若n n a b <,则s t <.
10.【2014·辽宁卷(理17)】已知首项都是1的两个数列(),满足
.
(1) 令,求数列的通项公式; (2) 若
,求数列
的前n 项和.
11.【2014·湖南卷(理20)】已知数列{n a }满足*111,||,.n n n a a a p n N +=-=∈ (1)若{n a }是递增数列,且12,3,23a a a 成等差数列,求p 的值; (2)若1
2
p =
,且{21n a -}是递增数列,{2n a }是递减数列,求数列{n a }的通项公式.
12.【2014·湖北卷(理16)】已知等差数列满足:=2,且,成等比数列.
(1)求数列的通项公式.
(2)记为数列的前n 项和,是否存在正整数n ,使得若存在,求n 的最小
值;若不存在,说明理由.
13.【2014·广东卷(理文19)】设数列{}n a 的前n 和为n S ,满足2*
1234,n n S na n n n N +=--∈,且315S =, (1)求123,,a a a 的值;
(2)求数列{}n a 的通项公式。