2020高考数学不等式专题测试试卷
2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc
限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。
2020年高考数学试题解析分项版 专题6 不等式 理
2020年高考试题解析数学(理科)分项版06 不等式一、选择题:1. (2020年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6] (C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞4.(2020年高考浙江卷理科5)设实数,x y 满足不等式组250270,0x y x y x +->⎧⎪+->⎨⎪≥≥⎩,y 0,若,x y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19【答案】 B【解析】:作出可行域,5032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得,,x y 为整数,所以4,1x y ==,min 344116z =⨯+⨯=故选B .5.(2020年高考浙江卷理科7)若,a b 为实数,则“01ab <<”是11a b b a<>或的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 【答案】 A【解析】1111ab ab a b b b a a---=-=或则21111(1)()()ab ab ab a b b a b a ab -----=⋅=因为01ab <<所以2(1)0ab ab -> 即11()()0a b b a -->于是11()()0a b b a -->所以11a b b a<>或成立,充分条件;反之11a b b a<>或成立,即111100ab ab a b b b a a---=<-=>或则11()()a b b a --2(1)0ab ab -=<故0ab <,不必要条件。
故选A6.(2020年高考安徽卷理科4)设变量,x y 满足1,x y +≤则2x y +的最大值和最小值分别为 (A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 【答案】B【命题意图】本题考查线性规划问题.属容易题. 【解析】不等式1x y +≤对应的区域如图所示,当目标函数过点(0,-1),(0,1)时,分别取最小或最大值,所以2x y +的最大值和最小值分别为2,-2.故选B.7. (2020年高考天津卷理科2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件9. (2020年高考天津卷理科8)对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x xx R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D.11. (2020年高考江西卷理科3)若()log ()f x x 121=2+1,则()f x 的定义域为A. (,)1-02B. (,]1-02C. (,)1-+∞2D.(,)0+∞ 【答案】A【解析】要使原函数有意义,只须12log (21)0x +>,即0211x <+<,解得x 1-<<02,故选A.12. (2020年高考江西卷理科4)若()ln f x x x x 2=-2-4,则'()f x >0的解集为A. (,)0+∞B. -+10⋃2∞(,)(,)C. (,)2+∞D. (,)-10311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭【答案】C【解析】因为'()x x f x x x x242-2-4=2-2-=,原函数的定义域为(0,)+∞,所以由'()f x >0可得220x x -->,解得2x >,故选C.13. (2020年高考湖南卷理科7)设,1>m 在约束条件⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 下,目标函数my x z +=的最大值小于2,则m 的取值范围为 A.()21,1+ B. ()+∞+,21 C. ()3,1 D. ()+∞,3答案:A解析:画出可行域,或分别解方程组⎩⎨⎧==mx y x y ,⎩⎨⎧=+=1y x x y ,⎩⎨⎧=+=1y x mxy 得到三个区域端点()0,0,⎪⎭⎫ ⎝⎛21,21, ⎪⎭⎫ ⎝⎛++1,11m m m ,当且仅当直线my x z +=过点⎪⎭⎫ ⎝⎛++1,11m m m 时,z 取到最大值2112<++=m m z ,解得()21,1+∈m 。
高中数学不等式高考真题精选和解析
高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。
2020年高考数学试题分项版—不等式(解析版)
2020年高考数学试题分项版——不等式(解析版)一、选择题1.(2020·新高考全国Ⅰ,11)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确.2.(2020·新高考全国Ⅱ,12)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2 答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确.3.(2020·浙江,3)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≥0,则z =x +2y 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞)答案 B解析 如图,l 1:x -3y +1=0,l 2:x +y -3=0.不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≥0表示的平面区域为图中阴影部分(含边界).设初始直线为l :y =-12x ,直线l 通过向上平移经过可行域内的第一个点为l 1与l 2的交点P (2,1), 因此z 的最小值z min =2+2×1=4, 所以z ≥4. 二、填空题1.(2020·全国Ⅰ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________. 答案 1解析 画出可行域如图阴影部分所示.由z =x +7y ,得y =-17x +17z .平移直线l 0:y =-17x ,可知当直线y =-17x +17z 过点A 时z 最大.由⎩⎪⎨⎪⎧ 2x +y -2=0,x -y -1=0,得⎩⎪⎨⎪⎧x =1,y =0,即A (1,0), ∴z max =1+7×0=1.2.(2020·全国Ⅲ理,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为________.答案 7解析 作出不等式组所表示的可行域,如图中阴影部分(含边界)所示.z =3x +2y 可化为y =-32x +12z ,作直线y =-32x ,并平移该直线,易知当直线经过点A (1,2)时,z 最大,z max =7.3.(2020·天津,14)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.答案 4解析 因为a >0,b >0,ab =1, 所以原式=ab 2a +ab 2b +8a +b=a +b 2+8a +b≥2a +b 2·8a +b=4, 当且仅当a +b 2=8a +b ,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4. 4.(2020·江苏,12)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 方法一 由题意知y ≠0.由5x 2y 2+y 4=1, 可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝⎛⎭⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.方法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1, 所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0. 由Δ=25t 2-16≥0, 解得t ≥45⎝⎛⎭⎫t ≤-45舍去. 故x 2+y 2的最小值为45.5.(2020·浙江,9)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则( )A .a <0B .a >0C .b <0D .b >0 答案 C解析 由题意,知a ≠0,b ≠0,则方程(x -a )(x -b )(x -2a -b )=0的根为a ,b,2a +b . ①a ,b,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0,此时(x -a )2(x +a )≥0,如图(2),符合题意.(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,如图(3),符合题意.综合①②,可知b <0符合题意.6.(2020·全国Ⅰ文,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≤0,x -y -1≥0,y +1≥0,则z =x +7y 的最大值为________. 答案 1解析 画出可行域如图阴影部分所示.由z =x +7y ,得y =-17x +17z .平移直线l 0:y =-17x ,可知当直线y =-17x +17z 过点A 时z 最大.由⎩⎪⎨⎪⎧ 2x +y -2=0,x -y -1=0,得⎩⎪⎨⎪⎧x =1,y =0,即A (1,0), ∴z max =1+7×0=1.7.(2020·全国Ⅱ文,15)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,x -y ≥-1,2x -y ≤1,则z =x +2y 的最大值是________.答案 8解析 作出可行域,如图阴影部分(含边界)所示.z =x +2y 可变形为y =-12x +12z ,作直线l 0:y =-12x ,并平移,可知当直线过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =-1,2x -y =1,得A (2,3), 所以z max =2+2×3=8.8.(2020·全国Ⅲ文,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,2x -y ≥0,x ≤1,则z =3x +2y 的最大值为________.答案 7解析 作出不等式组所表示的可行域,如图中阴影部分(含边界)所示.z =3x +2y 可化为y =-32x +12z ,作直线y =-32x ,并平移该直线,易知当直线经过点A (1,2)时,z 最大,z max =7. 三、解答题1.(2020·全国Ⅰ理,23)[选修4—5:不等式选讲] 已知函数f (x )=|3x +1|-2|x -1|. (1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)因为f (x )=⎩⎪⎨⎪⎧x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位长度, 可得函数f (x +1)的图象,如图所示,由-x -3=5(x +1)-1,解得x =-76.由图象可知当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方.所以不等式的解集为⎝⎛⎭⎫-∞,-76. 2.(2020·全国Ⅱ理,23)[选修4—5:不等式选讲] 已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1| ≥|a 2-2a +1|=(a -1)2,故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 3.(2020·全国Ⅲ理,23)[选修4—5:不等式选讲] 设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 的最大值,证明:max{a ,b ,c }≥34. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +bc +ca =-12(a 2+b 2+c 2).∵abc =1,∴a ,b ,c 均不为0,∴a 2+b 2+c 2>0, ∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0, ∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bcbc=4. 当且仅当b =c 时,取等号, ∴a ≥34,即max{a ,b ,c }≥34.4.(2020·江苏,21)C .[选修4-5:不等式选讲] 设x ∈R ,解不等式2|x +1|+|x |<4.解 当x >0时,原不等式可化为2x +2+x <4, 解得0<x <23;当-1≤x ≤0时,原不等式可化为2x +2-x <4, 解得-1≤x ≤0;当x <-1时,原不等式可化为-2x -2-x <4, 解得-2<x <-1.综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <23. 5.(2020·全国Ⅰ文,23)[选修4-5:不等式选讲] 已知函数f (x )=|3x +1|-2|x -1|. (1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)因为f (x )=⎩⎪⎨⎪⎧x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位长度, 可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.由图象可知当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方.所以不等式的解集为⎝⎛⎭⎫-∞,-76. 6.(2020·全国Ⅱ文,23)[选修4—5:不等式选讲] 已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1| ≥|a 2-2a +1|=(a -1)2,故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 7.(2020·全国Ⅲ文,23)[选修4-5:不等式选讲] 设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +bc +ca =-12(a 2+b 2+c 2).∵abc =1,∴a ,b ,c 均不为0, ∴a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0, ∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bcbc=4. 当且仅当b =c 时,取等号, ∴a ≥34,即max{a ,b ,c }≥34.。
2020届高考数学(文)二轮复习专题过关检测:专题3 不等式 Word版含答案
2020届高考数学(文)二轮复习专题过关检测专题3 不等式1.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≤-1或x ≥92 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤92 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-92或x ≥1D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1 解析:选D 不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,所以(2x +9)(x -1)≤0,解得-92≤x ≤1.所以不等式(x +5)(3-2x )≥6的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-92≤x ≤1.故选D. 2.设a >b ,a ,b ,c ∈R ,则下列式子正确的是( ) A .ac 2>bc 2B.ab>1 C .a -c >b -cD .a 2>b 2解析:选C 若c =0,则ac 2=bc 2,故A 错;若b <0,则a b<1,故B 错;不论c 取何值,都有a -c >b -c ,故C 正确;若a ,b 都小于0,则a 2<b 2,故D 错.于是选C.3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2).所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.4.设不等式组⎩⎪⎨⎪⎧x -2y ≤0,x -y +2≥0,x ≥0表示的可行域为Ω,则( )A .原点O 在Ω内B .Ω的面积是1C .Ω内的点到y 轴的距离有最大值D .若点P (x 0,y 0)∈Ω,则x 0+y 0≠0。
高考数学一轮复习专题训练—不等式恒成立或有解问题
微课2 不等式恒成立或有解问题题型一 分离法求参数的取值范围【例1】(2020·全国Ⅰ卷)已知函数f (x )=e x +ax 2-x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.解 (1)当a =1时,f (x )=e x +x 2-x ,x ∈R , f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由f (x )≥12x 3+1得,e x +ax 2-x ≥12x 3+1,其中x ≥0,①当x =0时,不等式为1≥1,显然成立,此时a ∈R . ②当x >0时,分离参数a ,得a ≥-e x -12x 3-x -1x 2,记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3.令h (x )=e x -12x 2-x -1(x >0),则h ′(x )=e x -x -1,令H (x )=e x -x -1, H ′(x )=e x -1>0,故h ′(x )在(0,+∞)上是增函数,因此h ′(x )>h ′(0)=0,故函数h (x )在(0,+∞)上递增, ∴h (x )>h (0)=0,即e x -12x 2-x -1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增; 当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减. 因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎡⎭⎫7-e 24,+∞. 感悟升华 分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实数)恒成立问题中参数取值范围的基本步骤(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 【训练1】已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围. 解 (1)f (x )的定义域为(0,+∞),且f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,∴f (x )在(0, +∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ,由f ′(x )>0得x >1a ,∴f (x )在⎝⎛⎭⎫0,1a 上递减,在⎝⎛⎭⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点,当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值, ∴a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎤-∞,1-1e 2. 题型二 等价转化法求参数范围 【例2】函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值; (2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a -3x ,令g (x )=2ln x +x -a +3x,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数; 在区间(1,e]上,g ′(x )>0,函数g (x )为增函数. 由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4, 所以实数a 的取值范围是(-∞,4].感悟升华 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,如f (x )≥a 恒成立,则f (x )min ≥a ,然后利用最值确定参数满足的不等式,解不等式即得参数范围. 【训练2】已知f (x )=e x -ax 2,若f (x )≥x +(1-x ) e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].题型三 可化为不等式恒成立求参数的取值范围(含有解问题) 【例3】已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解 (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立, 即a ≥-(x +1)2+1在[1,+∞)上恒成立, 而函数y =-(x +1)2+1在[1,+∞)单调递减, 则y max =-3,所以a ≥-3,所以a 的最小值为-3. (2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2, 使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增,所以f ′(x )max =f ′(2)=8+a . 而g ′(x )=1-xe x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1, 所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,所以实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. 感悟升华 含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有: (1)∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min . (2)∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max . (3)∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min . (4)∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【训练3】已知函数f (x )=ax -e x (a ∈R ),g (x )=ln xx .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 解 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max . 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) + 0 - h (x )极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e .1.已知函数f (x )=ax -1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( )A.a >2B.a <3C.a ≤1D.a ≥3答案 C解析 函数f (x )的定义域是(0,+∞),不等式ax -1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解.令h (x )=x -x ln x ,则h ′(x )=-ln x . 由h ′(x )=0,得x =1.当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0. 故当x =1时,函数h (x )=x -x ln x 取得最大值1, 所以要使不等式a ≤x -x ln x 在(0,+∞)上有解, 只要a ≤h (x )max 即可,即a ≤1.2.已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A.[0,1] B.[0,2]C.[0,e]D.[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a , 所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤xln x恒成立.设g (x )=xln x (x >1),则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0, ∴g (x )min =g (e)=e ,∴a ≤e. 综上,a 的取值范围是[0,e].3.已知函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围. 解 依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx 能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e.由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e . 4.设f (x )=x e x ,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解 (1)因为F (x )=f (x )+g (x )=x e x +12x 2+x ,所以F ′(x )=(x +1)(e x +1), 令F ′(x )>0,解得x >-1, 令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立, 所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x -12x 2-x ,x ∈[-1,+∞),即只需h (x )在[-1,+∞)上单调递增即可.故h ′(x )=(x +1)(m e x -1)≥0在[-1,+∞)上恒成立,故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞). 5.已知函数f (x )=m e x -x 2.(1)若m =1,求曲线y =f (x )在(0,f (0))处的切线方程;(2)若关于x 的不等式f (x )≥x (4-m e x )在[0,+∞)上恒成立,求实数m 的取值范围.解 (1)当m =1时,f (x )=e x -x 2,则f ′(x )=e x -2x . 所以f (0)=1,且斜率k =f ′(0)=1.故所求切线方程为y -1=x ,即x -y +1=0. (2)由m e x -x 2≥x (4-m e x )得m e x (x +1)≥x 2+4x . 故问题转化为当x ≥0时,m ≥⎝ ⎛⎭⎪⎫x 2+4x e x (x +1)max . 令g (x )=x 2+4xe x (x +1),x ≥0,则g ′(x )=-(x +2)(x 2+2x -2)(x +1)2e x .由g ′(x )=0及x ≥0,得x =3-1.当x ∈(0,3-1)时,g ′(x )>0,g (x )单调递增; 当x ∈(3-1,+∞)时,g ′(x )<0,g (x )单调递减. 所以当x =3-1时,g (x )max =g (3-1)=2e 1-3.所以m ≥2e 1-3.即实数m 的取值范围为[2e 1-3,+∞).。
2020年高考数学专项突破50题(6)--不等式【含答案解析】
2020年高考数学专项突破50题(6)--不等式学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(本题共40道小题,每小题2分,共80分)1.不等式ax 2+bx +2>0的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ,则a -b 等于 A.-4 B.14 C.-10 D.10 2.若x ,y 满足约束条件220210320x y x y x y -+≥⎧⎪++≥⎨⎪+-≤⎩,则z x y =-的取值范围是( )A. [-2,2]B. (-∞,2]C. [-1,2]D. [-2,+∞)3.不等式()(2)0x y x y -+->表示的平面区域(用阴影表示)为( )A. B.C. D.4.己知()()4,0,0,4M N -,点(),P x y 的坐标x ,y 满足0034120x y x y ≤⎧⎪≥⎨⎪-+≥⎩,则MP NP u u u vu u u v ⋅的最小值为( ). A. 25B.425C. 19625-D.455.已知0a b >>,b x a be =+,ay b ae =+,b z b ae =+,则( ) A. x z y << B. z x y << C. z y x <<D. y z x <<6.已知x ,y 满足条件020x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A .2B .3C .4D .57.若,,,a b c R a b ∈>,则下列不等式成立的是( ) A. 11a b< B. 22a b >C. 1122+>+c bc a D. ||||c b c a >8.一元二次不等式()()250x x +->的解集为( ) A. {}25x x x -或 B. {}52x x x -或 C. {}25x x -<< D. {}52x x -<<9.若实数x ,y 满足不等式组2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A. 0B. 4C. 5D. 610.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( ) A.(-∞,1] B. [0,2]C. [-2,1]D. (-2,2]11.对于问题“已知关于x 的不等式02>++c bx ax 的解集为(-1,2),解关于x 的不等式20ax bx c -+>”,给出一种解法:由02>++c bx ax 的解集为(-1,2),得2()()0a x b x c -+-+>的解集为(-2,1),即关于x 的不等式20ax bx c -+>的解集为()1,2-.思考上述解法,若关于x 的不等式0k x b x a x c++<++的解集为111,,132⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭,则关于x 的不等式1011kx bx ax cx ++<++的解集为( ) A. (-3,-1) ∪(1,2) B. (1,2)C.(-1,2)D. (-3,2)12.若关于x ,y 的不等式组2230,0,0x y x m y m -+>⎧⎪-<⎨⎪->⎩表示的平面区域内存在点()00,P x y 满足00230x y --=,则实数m 的取值范围是( )A. (-1,3)B. (3,+∞)C.(-∞,-1)D. (-∞,-1)∪(3,+∞) 13.已知-1<a <0,b <0,则b ,ab ,a 2b 的大小关系是( ) A. 2b ab a b << B. 2a b ab b << C. 2a b b ab << D. 2b a b ab <<14.已知正数x ,y 满足1x y +=,则141x y++的最小值为( ) A. 5 B.143 C.92D. 215.若,,a b c ∈R 且a b >,则下列不等式成立的是( ) A. 22a b > B. 11a b< C. a c b c > D.2211a bc c >++ 16.若不等式220ax x c ++<的解集是11,,32⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,则不等式220cx x a ++≤的解集是( ). A. 11,23⎡⎤-⎢⎥⎣⎦ B. 11,32⎡⎤-⎢⎥⎣⎦C. [-2,3]D. [-3,2]17.已知()22f x x bx c =-++,不等式()0f x >的解集是(-1,3),若对于任意[]1,0x ∈-,不等式()4f x t +≤恒成立,则t 的取值范围( )A. (-∞,2]B. (-∞,-2]C. (-∞,-4]D. (-∞,4]18.下面的四个不等式:①222a b c ab bc ca ++≥++;②()114a a -≤;③2a bb a +≥ ;④()()()22222•a b c d ac bd ++≥+.其中不成立的有( )A. 1个B. 2个C. 3个D. 4个19.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( ) A. (-1,1) B. (0,1)C.(-∞,1)∪(1,+∞)D. (-1,0]20..若正数a ,b 满足4310a b +-=,则112a b a b+++的最小值为( )A. 3+B. 1+C. 2+D. 21.不等式2210x x -->的解集是( ) A. 1|12x x ⎧⎫-<<⎨⎬⎩⎭B. {}|1x x >C. 1|12x x x ⎧⎫-⎨⎬⎩⎭或D. {}|12x x x <>或22.设x ,y 满足约束条件200,40x y x y z x y y 则+≥⎧⎪-≤=+⎨⎪-≤⎩的最大值是A. -4B. 0C. 8D. 1223.若关于x ,y 的混合组:2190802140(0,1)x x y x y x y y a a a +-≥⎧⎪-+≥⎪⎨+-≤⎪⎪=>≠⎩有解,则a 的取值范围是( )A.[1,3]B.[2,9] 24.定义:{},,min ,,.a a b a b b a b ≤⎧=⎨>⎩在区域02,0 3.x y ≤≤⎧⎨≤≤⎩内任取一点(),P x y ,则点(),P x y 满足{}min 21,11x y x y x y -++-=+-的概率为( )A.12B.16C.18D.11225.若a ,b 都是正数,且1=+b a ,则)1)(1(++b a 的最大值为( ) A.23 B. 2 C.94D. 426.在平面直角坐标系中,不等式组240220x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域的面积是( )A. 3B. 6C. 9D. 1227.已知0,10a b <-<<,那么下列不等式成立的是( ) A. 2a ab ab >> B. 2ab ab a >>C. 2ab a ab >>D. 2ab ab a >>28.若两个正实数x ,y 满足141x y +=,且存在这样的x ,y 使不等式234y x m m +<+有解,则实数m 的取值范围是( ) A. (-1,4) B. (-4,1)C.(-∞,-4)∪(1,+∞)D. (-∞,-3)∪(0,+∞) 29.若实数x ,y 满足约束条件2027030x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则1x z y +=的最小值为( )A.23B. 1C. 2D.14530.已知0,0x y >>,且211x y+=,若对任意的正数x ,y ,不等式222x y m m +>+恒成立,则实数m 的取值范围是( )A. 4m ≥或2m ≤-B. 2m ≥或4m ≤-C. 24m -<<D. 42m -<<31.已知实数x ,y 满足⎪⎩⎪⎨⎧≥≥≤-+0002y x y x ,则y x z 2+=的最大值为A .4B .3 C. 0 D .2 32.已知实数x ,y 满足55y x -≤≤≤,则x y +有( )A .最小值为-5B .最大值为0C .最大值为5D .最大值为10 33.若a >b >c ,则使11k a b b c a c+≥---恒成立的最大的正整数k 为( ) A. 2 B. 3C. 4D. 534.已知a ,b ∈(0,+∞),且291ab a b+=+,则a +b 的取值范围是 A.[1,9] B.[1,8] C. [8,+ ∞) D .[9,+∞) 35.若正数a ,b 满足111a b +=,则1411a b +--的最小值为( ) A. 3 B. 4C. 5D. 636.已知正数x ,y 满足1=+y x ,则141x y++的最小值为( )A. 5B.314 C.92D. 237.已知变量x ,y 满足约束条件121x y x ≤+≤⎧⎨≤-⎩,则y y x +的取值范围是( )A. 12,23⎡⎤⎢⎥⎣⎦B. 20,3⎛⎤ ⎥⎝⎦C. 11,3⎛⎤-- ⎥⎝⎦D. 3,22⎡⎤⎢⎥⎣⎦38.已知实数x,y满足约束条件241yx yx y≤⎧⎪+≥⎨⎪-≤⎩,则3z x y=+的最小值为()A. 11B. 9C. 8D. 339.若变量x,y满足条件106010x yx yx--≤⎧⎪+-≤⎨⎪-≥⎩,则xy的取值范围是()A. [0,5]B.35[5,]4C.35[0,]4D. [0,9]40.已知变量x,y满足约束条件1031010x yx yx y+-≤⎧⎪-+≥⎨⎪--≤⎩则2z x y=+的最大值为()A. 1B. 2C. 3D. 4第II 卷(非选择题)请点击修改第II 卷的文字说明二、(本题共10道小题,每小题7分,共70分)41.已知x ∈R 时不等式22(1)(1)10a x a x ----<恒成立,求实数a 的取值范围。
基本不等式 高考数学真题分类题库2020解析版 考点27
考点27基本不等式一、填空题1.(2020·新高考全国Ⅰ卷)(多选题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.+≤2【命题意图】本题考查基本不等式的应用,考查利用基本不等式求最值,体现了数学抽象和逻辑推理等核心素养.【解析】选ABD.因为a+b=1,所以由2(a2+b2)≥(a+b)2(当且仅当a=b时,等号成立),得a2+b2≥12,故A项正确;由题意可得0<b<1,所以-1<a-b=1-2b<1,所以2a-b>12,故B项正确;因为a+b≥2B(当且仅当a=b时,等号成立),所以ab≤14,所以log2a+log2b≤log214=-2,故C项错误;由2(a+b)≥+2(当且仅当a=b时,等号成立),得+≤2,故D项正确.2..(2020·天津高考·T14)已知a>0,b>0,且ab=1,则12+12+8r的最小值为.【命题意图】本题考查应用基本不等式求最值,“1”的合理变换是解题的关键,属于基础题.【解题指南】根据已知条件,将所求的式子化为r2+8r,利用基本不等式即可求解.【解析】因为a>0,b>0,所以a+b>0,又ab=1,所以12+12+8r=B2+B2+8r=r2+8r≥2a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.答案:4【易错提醒】使用基本不等式求最值时一定要验证等号能否成立.3.(2020·江苏高考·T12)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.【命题意图】本题主要考查不等式,利用消元法结合基本不等式求最值.【解析】因为5x2y2+y4=1(x,y∈R),所以y≠0,所以x2=1-452,则x2+y2=152+45y2=45,152=45y2时,即y2=12,x2=310时,x2+y2的最小值是45.答案:45【光速解题】4=(5x2+y2)·4y2=254(2+2)2,故x2+y2≥45,当且仅当5x2+y2=4y2=2,即x2=310,y2=12时,取等号.所以(2+2)min=45.答案:45。
2020年全国高考理科数学试题分类汇编6:不等式 Word版含答案
2020年全国高考理科数学试题分类汇编6:不等式一、选择题1 .(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为 ( )A .0B .1C .94D .3【答案】B2 .(2020年高考陕西卷(理))设[x]表示不大于x 的最大整数, 则对任意实数x, y, 有 ( )A .[-x] = -[x]B .[2x] = 2[x]C .[x+y]≤[x]+[y]D .[x-y]≤[x]-【答案】D3 .(2020年高考湖南卷(理))若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是 ( )A .5-2B .0C .53D .52【答案】C4 .(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A,若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是 ( ) A .15,02⎛⎫- ⎪⎪⎝⎭B .13,02⎛⎫- ⎪⎪⎝⎭C .15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪⎝⎭⎪⎭ D .52,1⎛⎫-- ⎪ ⎝⎭∞⎪【答案】A5 .(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知0a >,,x y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .2【答案】B6 .(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))设变量x, y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 ( )A .-7B .-4C .1D .2【答案】A7 .(2020年高考湖北卷(理))一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止.在此期间汽车继续行驶的距离(单位;m )是 ( )A .125ln5+B .11825ln3+ C .425ln5+ D .450ln 2+【答案】C8 .(2020年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0x f 的解集为( )A .{}|<-1>lg2x x x 或B .{}|-1<<lg2x xC .{}|>-lg2x xD .{}|<-lg2x x【答案】D9 .(2020年上海市春季高考数学试卷(含答案))如果0a b <<,那么下列不等式成立的是 ( )A .11a b<B .2ab b <C .2ab a -<-D .11ab-<-【答案】D10.(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为 ( )A .2B .1C .13-D .12-【答案】C11.(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设357log 6,log 10,log 14a b c ===,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>【答案】12.(2020年高考北京卷(理))设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .2,3⎛⎫-∞- ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭【答案】C 二、填空题13.(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,若直线()1y a x =+与D 公共点,则a 的取值范围是______. 【答案】1[,4]214.(2020年高考陕西卷(理))若点(x, y)位于曲线|1|y x =-与y=2所围成的封闭区域, 则2x-y 的最小值为___-4_____.【答案】- 415.(2020年高考四川卷(理))已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是____________.【答案】(7,3)-16.(2020年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈,是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定______条不同的直线.【答案】617.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设y kx z +=,其中实数y x ,满足⎪⎩⎪⎨⎧≤--≥+-≥-+04204202y x y x y x ,若z 的最大值为12,则实数=k ________.【答案】218.(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))设a +b = 2, b>0, 则当a = ______时,1||2||a a b+取得最小值.【答案】2-19.(2020年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))不等式220x x +-<的解集为___________.【答案】()2,1-20.(2020年高考湖南卷(理))已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为______.【答案】12 三、解答题21.(2020年上海市春季高考数学试卷(含答案))如图,某校有一块形如直角三角形ABC 的空地,其中B ∠为直角,AB 长40米, BC 长50米,现欲在此空地上建造一间健身房,其占地形状为矩形,且B 为矩形的一个顶点,求该健身房的最大占地面积.【答案】[解]如图,设矩形为EBFP , FP 长为x 米,其中040x <<,AB C健身房占地面积为y 平方米.因为CFP ∆∽CBA ∆,以FP CF BA CB =,504050x BF -=,求得5504BF x =-, 从而255(50)5044y BF FP x x x x =⋅=-=-+25(20)5005004x =--+≤,当且仅当20x =时,等号成立.答:该健身房的最大占地面积为500平方米.22.(2020年高考上海卷(理))(6分+8分)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.【答案】(1)根据题意,33200(51)30005140x x x x+-≥⇒--≥又110x ≤≤,可解得310x ≤≤ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+ 故6x =时,max 457500y =元.ABCFP E。
安徽省各地市2020年高考数学最新联考试题分类大汇编(6)不等式
第6部分:不等式一、选择题:(10) (安徽省“江南十校”2020年3月高三联考理科)若不等式组表示 的平面区三角形,则实数K 的取值范围是 (A) (B) (C) (D)(10) C 【解析】符合题意的直线在如图中的阴影区域内, 可求得320≤<k 或2-<k .(10) (安徽省“江南十校”2020年3月高三联考文科) 已知x ,y 满足记目标函数z = + 的最大值为7,最小值为1,则b ,c 的值分别为( )A. -1,-4B. -1,-3C. -2,-1D. -1,-23、(安徽省皖南八校2020届高三第二次联考理科)若变量,x y 满足约束条件223y x y x x ≤⎧⎪≥-⎨⎪≤⎩,则目标函数2z x y =-的最大值为A 、9-B 、0C 、9D 、153.D 画出满足不等式组的可行域,易得目标函数过直线),的交点即(与直线6-323x y x -==时取最大值,故15max =z5.(安徽省合肥一中2020届高三下学期第二次质量检测理科)不等式2|3||1|3x x a a ++-≥-对任意实数x 恒成立,则实数a 的取值范围为( A )A .[]4,1-B .(,2][5,)-∞-+∞UC .(,1][4,)-∞-+∞UD .[]5,2-6. (安徽省安庆市2020年3月高三第二次模拟文科)已知:x ,y 满足不等式组22y x x y x ≤⎧⎪+≥⎨⎪≤⎩,则z=2x +y 的最大值与最小值的比值为A .12B 、2C .32D 、43【答案】B10、(安徽省蚌埠市2020年3月高三第二次质检文科)已知正项等比数列{n a }满足:7652a a a =+,若存在两项,m n a a 使得m n a a =12a ,则41m n+的最小值为 A 、1 B 、3 C 、9 D 、不存在【答案】B 9、(安徽省蚌埠市2020年3月高三第二次质检理科)已知正项等比数列{n a }满足:7652a a a =+,若存在两项,m n a a 使得m n a a =12a ,则41m n+的最小值为 A 、1 B 、3 C 、9 D 、不存在【答案】B二、填空题: (13) (安徽省“江南十校”2020年3月高三联考文科) 定义在[-2,2]上的奇函数在(0,2]上的图象如图所示,则不等式的解集为________,(13)解析:画出()y f x =与y x =的图象为:解出坐标为:22,33⎛⎫⎪⎝⎭和22,33⎛⎫-- ⎪⎝⎭,由图知, 解集为22,3⎡⎫--⎪⎢⎣⎭∪20,3⎛⎫ ⎪⎝⎭ 14、(安徽省皖南八校2020届高三第二次联考理科)已知函数23410(2)()log (1)6(2)x x x f x x x ⎧-+-≤⎪=⎨-->⎪⎩,若2(6)(5)f a f a ->,则实数a 的取值范围是________14.()1,6- ()a a x f 5-62>∴为单调递增函数,. 14. (安徽省安庆市2020年3月高三第二次模拟文科)已知命题p::∃x ∈R ,x 2+m<0; 命题q :∀ x ∈R ,x 2+mx +1>0,若p q ∧为真命题,则实数m 的取值范围为_____ ]0,2(-12、(安徽省安庆市2020年3月高三第二次模拟理科)已知实数,x ,y 满足约束条件221x y y x y +≤⎧⎪≤+⎨⎪≥⎩,则z =2x +y 的最小值是__-1__。
江苏省各地市2020年高考数学 最新联考试题分类汇编(6) 不等式
江苏省各地市2020年高考数学 最新联考试题分类汇编(6) 不等式一、填空题:⒓(江苏省盐城市2020年3月高三第二次模拟)定义运算,则关于非零实数x 的不等式的解集为 。
【答案】()[)1,00,2,2⎛⎤-∞⋃⋃+∞ ⎥⎝⎦12. (江苏省无锡市2020年2月高三质量检测)当0< x ≤31时,不等式8x<log a x 恒成立,则实数a 的取值范围是 ▲ . 【答案】(33,1) 13. (江苏省无锡市2020年2月高三质量检测)已知函数f (x )=x 2+a x,若x < 0时恒有f (x )≥3,则实数a 的取值范围是 ▲ . 【答案】(-∞,-2]1、(常州市2020届高三期末)已知实数,x y 同时满足54276x y --+=,2741log log 6y x -≥,2741y x -≤,则x y +的取值范围是 ▲ . 答案:56⎧⎫⎨⎬⎩⎭2、(连云港市2020届高三期末)关于x 的不等式x 2-ax +2a <0的解集为A ,若集合A 中恰有两个整数,则实数a 的取值范围是 ▲ .答案:125[1,)(,9]33--6、(苏州市2020届高三期末)已知()1f x x x =+,则11()()42f x f -<的解集是 . 答案:7、(无锡市2020届高三期末)已知变量x ,y 满足约束条件004x y y x ≤⎧⎪≥⎨⎪-≤⎩,表示平面区域M ,若-4≤a≤t 时,动直线x+y=a 所经过的平面区域M 的面积为7.则t= . 答案:28、(扬州市2020届高三期末)设,x y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥52420y x y x x ,则y x z -=2的最大值是 ▲ . 答案:3二、解答题 23.(江苏省盐城市2020年3月高三第二次模拟)(本小题满分10分)已知数列}{n a 满足21=a ,)1(11+-=++n a a n n n 。
2020年高考数学复习题:基本不等式及其应用
2020年高考数学复习题:基本不等式及其应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN基本不等式及其应用[基础训练]1.下列结论中正确的个数是( ) ①若a >0,则a 2+1a 的最小值是2a ;②函数f (x )=sin 2x 3+cos 2x 的最大值是2;③函数f (x )=x +1x 的值域是[2,+∞);④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b .A .0B .1C .2D .3答案:B 解析:①错误:设f (a )=a 2+1a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值;②错误:f (x )=sin 2x3+cos 2x ≤sin 2x +3+cos 2x 2=2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1x ≥2x ·1x =2,当且仅当x =1x ,即x =1时等号成立;当x <0时,-x >0,x +1x =-⎝ ⎛⎭⎪⎫-x +1-x≤-2(-x )·1-x=-2,当且仅当-x =-1x ,即x =-1时等号成立. ∴f (x )=x +1x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab ,其中等号成立的条件是a +b =0,即a =-b .2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则2a -1+1b 的最小值为( )A .4B .5C .6D .8答案:D 解析:因为a >1,b >0,且a +2b =2, 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =⎝ ⎛⎭⎪⎫2a -1+1b ·[(a -1)+2b ]=4+4b a -1+a -1b ≥4+24b a -1·a -1b=8, 当且仅当4b a -1=a -1b 时等号成立,所以2a -1+1b的最小值是8,故选D.3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2]答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立),∴2x +y≤12,∴2x +y≤14,得x +y ≤-2.故选D.4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22 B .2 2 C. 2 D .2答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.5.用一段长为L 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积为( )A.L 28B.L 24 C.L 22D .L 2答案:A 解析:设菜园平行于墙的一边长为x ,其邻边长为y ,则x +2y =L ,面积S =xy ,因为x +2y ≥22xy , 所以xy ≤(x +2y )28=L 28,当且仅当x =2y =L 2,即x =L 2,y =L 4时,S max =L 28, 故选A.6.[2019云南玉溪一中月考]已知f (x )=x 2-2x +1x,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( ) A.12 B.43 C .-1 D .0答案:D 解析:f (x )=x 2-2x +1x =x +1x -2≥2-2=0, 当且仅当x =1x ,即x =1时等号成立.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.7.[2019天津和平区期末]已知a >0,则(a -1)(4a -1)a 的最小值为________.答案:-1 解析:(a -1)(4a -1)a =4a 2-a -4a +1a =4a -5+1a .∵a >0,∴4a -5+1a ≥24a ·1a -5=-1,当且仅当4a =1a ,即a =12时等号成立, ∴(a -1)(4a -1)a的最小值为-1. 8.[2019江苏苏北四市联考]若实数x ,y 满足xy +3x =3⎝ ⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值为________. 答案:8 解析:∵实数x ,y 满足xy +3x =3⎝⎛⎭⎪⎫0<x <12,∴x =3y +3∈⎝⎛⎭⎪⎫0,12,解得y >3,则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4⎝ ⎛⎭⎪⎫x =37时等号成立. 9.[2019天津第一中学月考]对任意的θ∈⎝ ⎛⎭⎪⎫0,π2,不等式1sin 2θ+4cos 2θ≥|2x -1|恒成立,则实数x 的取值范围是________.答案:[-4,5] 解析:∵当θ∈⎝ ⎛⎭⎪⎫0,π2时,1sin 2θ+4cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+4cos 2θ(sin 2θ+cos 2θ)=5+cos 2θsin 2θ+4sin 2θcos 2θ ≥5+2cos 2θsin 2θ·4sin 2θcos 2θ=9,当且仅当sin θ=33,cos θ=63时等号成立, 又1sin 2θ+4cos 2θ≥|2x -1|恒成立,∴|2x -1|≤9,∴-4≤x ≤5,即x ∈[-4,5].10.[2019安徽黄山一模]已知函数f (x )=k -|x -4|,x ∈R ,且f (x +4)≥0的解集为[-1,1].(1)求k 的值;(2)若a ,b ,c 是正实数,且1ka +12kb +13kc =1,求证:19a +29b +39c ≥1.(1)解:因为f (x )=k -|x -4|, 所以f (x +4)≥0等价于|x |≤k .由|x |≤k 有解得k ≥0,且其解集为{x |-k ≤x ≤k }. 又f (x +4)≥0的解集为[-1,1],故k =1. (2)证明:由(1)知1a +12b +13c =1, 又a ,b ,c 是正实数,由均值不等式得 a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c =3+⎝ ⎛⎭⎪⎫a 2b +2b a +⎝ ⎛⎭⎪⎫a 3c +3c a +⎝ ⎛⎭⎪⎫2b 3c +3c 2b≥3+2+2+2=9.当且仅当a =2b =3c 时等号成立, 所以19a +29b +39c ≥1.[强化训练]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.322答案:B 解析:解法一:因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本(均值)不等式可知, (3-a )(a +6)≤(3-a )+(a +6)2=92, 当且仅当a =-32时等号成立.解法二:(3-a )(a +6)=-⎝ ⎛⎭⎪⎫a +322+814≤92, 当且仅当a =-32时等号成立.2.[2018内蒙古包头二模]已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256答案:A 解析:解法一(常数代换法): 设数列{a n }的公比为q (q >0),由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5, 可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0,所以q =2.因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24, 所以m +n =6,所以1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝⎛⎭⎪⎫5+n m +4m n ≥16×(5+4)=32,当且仅当n m =4mn 时,等号成立, 所以1m +4n 的最小值为32,故选A. 解法二(拼凑法):由解法一可得m +n =6,所以n =6-m , 又m ,n ≥1,所以1≤m ≤5.故1m +4n =1m +46-m =6-m +4m m (6-m )=3(m +2)m (6-m )=3m (6-m )m +2=-3[(m +2)-2][(m +2)-8]m +2=-3(m +2)+16m +2-10. 由基本不等式,得(m +2)+16m +2-10 ≥2(m +2)×16m +2-10=-2⎝ ⎛⎭⎪⎫当且仅当m +2=16m +2,即m =2时等号成立,易知(m +2)+16m +2-10<0,所以1m +4n ≥-3-2=32.故选A.3.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案:B 解析:因为b >a >0,故a +b2>ab . 又f (x )=ln x (x >0)为增函数,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .4.[2019西安模拟]设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8 D .9答案:D 解析:因为AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2),若A ,B ,C 三点共线,则有AB →∥AC →, 所以(a -1)×2-1×(-b -1)=0, 所以2a +b =1,又a >0,b >0, 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab ≥5+22b a ×2ab =9,当且仅当⎩⎨⎧2b a=2a b ,2a +b =1,即a =b =13时等号成立.5.[2018河南信阳二模]如图,将一半径为2的半圆形纸板裁剪成等腰梯形ABCD 的形状,下底AB 是半圆的直径,上底CD 的端点在圆周上,则所得梯形面积的最大值为( )A .3 3B .3 2C .5 3D .5 2 答案:A 解析:如图,设半圆圆心为O ,连接OD ,过C ,D 分别作DE ⊥AB ,CF ⊥AB , 垂足分别为E ,F .设∠AOD =θ,θ∈⎝⎛⎭⎪⎫0,π2,OE =2cos θ,DE =2sin θ.可得CD =2OE =4cos θ,∴梯形ABCD 的面积为S =12(4+4cos θ)·2sin θ=4sin θ(1+cos θ),S ′=4(cos θ+cos 2θ-sin 2θ)=4(2cos 2θ+cos θ-1) =4(2cos θ-1)(cos θ+1).∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴当θ∈⎝ ⎛⎭⎪⎫0,π3时,S ′>0;当θ∈⎝⎛⎭⎪⎫π3,π2时,S ′<0.∴当θ=π3,S 取得最大值,S =3 3.6.[2019广东广州质检]设a =x 2-xy +y 2,b =p xy ,c =x +y ,若对任意的正实数x ,y ,都存在以a ,b ,c 为三边长的三角形,则实数p 的取值范围是( )A .(1,3)B .(1,2]C.⎝ ⎛⎭⎪⎫12,72 D.⎝ ⎛⎭⎪⎫12,3 答案:A 解析:对任意的正实数x ,y ,a =x 2-xy +y 2≥2xy -xy =xy ,当且仅当x =y 时等号成立, b =p xy ,c =x +y ≥2xy , 当且仅当x =y 时等号成立.又三角形的任意两边之和大于第三边, 所以xy +2xy >p xy ,p xy +xy >2xy , p xy +2xy >xy ,解得1<p <3, 故实数p 的取值范围是(1,3).7.[2019广东揭阳期末]当0<x <π2时,函数f (x )=1+cos 2x +8sin 2xsin 2x的最小值为( )A .2B .2 3C .4D .4 3答案:C 解析:∵0<x <π2,∴tan x >0,∴f (x )=1+cos 2x +8sin 2x sin 2x=2cos 2x +8sin 2x 2sin x cos x =1+4tan 2x tan x =1tan x +4tan x≥21tan x ·4tan x =4, 当且仅当tan x =12时等号成立,∴函数f (x )=1+cos 2x +8sin 2x sin 2x的最小值为4, 故选C.8.[2019四川成都月考]实数x ,y 满足2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1,则xy 的最小值为( ) A .2 B .1 C.12 D.14答案:D 解析:因为2cos 2(x +y -1)∈[0,2],(x +1)2+(y -1)2-2xy x -y +1=x 2+y 2+1-2xy +2x -2y +1x -y +1=(x -y +1)2+1x -y +1=x -y +1+1x -y +1∈(-∞,-2]∪[2,+∞), 又2cos 2(x +y -1)=(x +1)2+(y -1)2-2xy x -y +1, 所以2cos 2(x +y -1)=2,所以x -y +1=1,x +y -1=k π(k ∈Z ),所以x =y =k π+12(k ∈Z ),所以xy =⎝ ⎛⎭⎪⎫k π+122≥14, 当且仅当k =0时等号成立,故选D.9.[2019江苏如皋质量调研]已知x ,y ,z 均为正数,2x +1y =2,x +2y +2z =xyz ,则xyz 的最小值为________.答案:16 解析:∵2x +1y =2y +x xy =2,∴2y +x =2xy ,∴x +2y +2z =2xy +2z =xyz .∵x ,y ,z 均为正数,z =2xy xy -2>0,xy -2>0, ∴xyz =2(xy )2xy -2=2(xy -2)+8xy -2+8 ≥22(xy -2)×8xy -2+8=16, 当且仅当2(xy -2)=8xy -2,即xy =4时等号成立, ∴xyz 的最小值为16.10.[2017江苏卷]某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30 解析:一年的总运费为6×600x =3 600x (万元).一年的总存储费用为4x 万元.总运费与总存储费用的和为⎝ ⎛⎭⎪⎫3 600x +4x 万元. 因为3 600x +4x ≥2 3 600x ·4x =240, 当且仅当3 600x =4x ,即x =30时等号成立,所以当x =30时,一年的总运费与总存储费用之和最小.11.若正实数x ,y 满足不等式(x +y )(1+xy )=5xy ,则x +y 的最大值是________.答案:4 解析:∵x ,y >0,∴由xy ≤(x +y )24可得x +y xy ≥4x +y, 又∵(x +y )(1+xy )=5xy ,∴5=x +y xy +(x +y )≥4x +y+x +y , 整理得(x +y )2-5(x +y )+4≤0, 解得1≤x +y ≤4.当且仅当x =y =12时,x +y 取得最小值1;当且仅当x =y =2时,x +y 取得最大值4.。
2020年高考数学压轴题不等式专项(解析版)
2020年高考数学压轴必刷题专题07不等式(文理合卷)1.【2019年北京理科08】数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x |y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过√2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【解答】解:将x 换成﹣x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,﹣1);当x >0时,方程变为y 2﹣xy +x 2﹣1=0,所以△=x 2﹣4(x 2﹣1)≥0,解得x ∈(0,2√33],所以x 只能取整数1,当x =1时,y 2﹣y =0,解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(﹣1,0),(﹣1,1), 故曲线一共经过6个整点,故①正确.当x >0时,由x 2+y 2=1+xy 得x 2+y 2﹣1=xy ≤x 2+y 22,(当x =y 时取等),∴x 2+y 2≤2,∴√x 2+y 2≤√2,即曲线C 上y 轴右边的点到原点的距离不超过√2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过√2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误. 故选:C .2.【2016年浙江理科08】已知实数a ,b ,c .( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b ﹣c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b ﹣c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2﹣c |≤1,则a 2+b 2+c 2<100【解答】解:A .设a =b =10,c =﹣110,则|a 2+b +c |+|a +b 2+c |=0≤1,a 2+b 2+c 2>100; B .设a =10,b =﹣100,c =0,则|a 2+b +c |+|a 2+b ﹣c |=0≤1,a 2+b 2+c 2>100; C .设a =100,b =﹣100,c =0,则|a +b +c 2|+|a +b ﹣c 2|=0≤1,a 2+b 2+c 2>100; 故选:D .3.【2014年浙江理科10】设函数f 1(x )=x 2,f 2(x )=2(x ﹣x 2),f 3(x)=13|sin2πx|,a i =i99,i =0,1,2,…,99.记I k =|f k (a 1)﹣f k (a 0)|+|f k (a 2)﹣f k (a 1)丨+…+|f k (a 99)﹣f k (a 98)|,k =1,2,3,则( ) A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 1【解答】解:由|(i 99)2−(i−199)2|=199×2i−199,故I 1=199(199+399+599+⋯+2×99−199)=199×99299=1,由2|i 99−i−199−(i 99)2+(i−199)2|=2×199|99−(2i−1)99|,故I 2=2×199×58(98+0)2×99=9899×10099<1, I 3=13[||sin2π⋅199|−|sin2π⋅099||+||sin2π⋅299|−|sin2π⋅199||+⋯+||sin2π⋅9999|−|sin2π⋅9899||] =13(2sin2π⋅2599−2sin2π⋅7499)>1, 故I 2<I 1<I 3, 故选:B .4.【2013年北京理科08】设关于x ,y 的不等式组{2x −y +1>0,x +m <0,y −m >0表示的平面区域内存在点P (x 0,y 0),满足x 0﹣2y 0=2,求得m 的取值范围是( )A .(−∞,43) B .(−∞,13)C .(−∞,−23)D .(−∞,−53)【解答】解:先根据约束条件{2x −y +1>0,x +m <0,y −m >0画出可行域,要使可行域存在,必有m <﹣2m +1,要求可行域包含直线y =12x ﹣1上的点,只要边界点(﹣m ,1﹣2m ) 在直线y =12x ﹣1的上方,且(﹣m ,m )在直线y =12x ﹣1的下方, 故得不等式组{m <−2m +11−2m >−12m −1m <−12m −1,解之得:m <−23. 故选:C .5.【2012年浙江理科09】设a >0,b >0,下列命题中正确的是( ) A .若2a +2a =2b +3b ,则a >b B .若2a +2a =2b +3b ,则a <bC .若2a ﹣2a =2b ﹣3b ,则a >bD .若2a ﹣2a =2b ﹣3b ,则a <b【解答】解:∵a ≤b 时,2a +2a ≤2b +2b <2b +3b , ∴若2a +2a =2b +3b ,则a >b ,故A 正确,B 错误;对于2a ﹣2a =2b ﹣3b ,若a ≥b 成立,则必有2a ≥2b ,故必有2a ≥3b ,即有a ≥32b ,而不是a >b 排除C ,也不是a <b ,排除D . 故选:A .6.【2010年北京理科07】设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0表示的平面区域为D ,若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( ) A .(1,3]B .[2,3]C .(1,2]D .[3,+∞]【解答】解:作出区域D 的图象,联系指数函数y =a x 的图象, 由{x +y −11=03x −y +3=0得到点C (2,9), 当图象经过区域的边界点C (2,9)时,a 可以取到最大值3, 而显然只要a 大于1,图象必然经过区域内的点. 故选:A .7.【2019年天津理科13】设x >0,y >0,x +2y =5,则(x+1)(2y+1)√xy的最小值为 .【解答】解:x >0,y >0,x +2y =5, 则√xy=√xy=√xy=2√xy √xy; 由基本不等式有:2√xy +6√xy ≥2√2√xy ⋅6√xy =4√3;当且仅当2√xy =6√xy 时,即:xy =3,x +2y =5时,即:{x =3y =1或{x =2y =32时;等号成立, 故√xy的最小值为4√3;故答案为:4√38.【2019年北京理科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【解答】解:①当x =10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元), 即有顾客需要支付140﹣10=130(元); ②在促销活动中,设订单总金额为m 元, 可得(m ﹣x )×80%≥m ×70%, 即有x ≤m8, 由题意可得m ≥120, 可得x ≤1208=15, 则x 的最大值为15元. 故答案为:130,159.【2018年江苏13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为 . 【解答】解:由题意得12ac sin120°=12a sin60°+12c sin60°,即ac =a +c , 得1a +1c=1,得4a +c =(4a +c )(1a +1c )=ca +4ac +5≥2√c a ⋅4ac +5=4+5=9,当且仅当ca =4a c,即c =2a 时,取等号,故答案为:9.10.【2018年天津理科13】已知a ,b ∈R ,且a ﹣3b +6=0,则2a +18b 的最小值为.【解答】解:a ,b ∈R ,且a ﹣3b +6=0, 可得:3b =a +6, 则2a +18b=2a +12a+6=2a +126⋅2a ≥2√2a⋅1262a =14,当且仅当2a =12a+6.即a =﹣3时取等号.函数的最小值为:14.故答案为:14.11.【2017年上海11】设a 1、a 2∈R ,且12+sina 1+12+sin(2a 2)=2,则|10π﹣a 1﹣a 2|的最小值等于 .【解答】解:根据三角函数的性质,可知sin α1,sin2α2的范围在[﹣1,1], 要使12+sinα1+12+sin2α2=2,∴sin α1=﹣1,sin2α2=﹣1. 则:α1=−π2+2k 1π,k 1∈Z .2α2=−π2+2k 2π,即α2=−π4+k 2π,k 2∈Z . 那么:α1+α2=(2k 1+k 2)π−3π4,k 1、k 2∈Z .∴|10π﹣α1﹣α2|=|10π+3π4−(2k 1+k 2)π|的最小值为π4.故答案为:π4.12.【2016年新课标1理科16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元.【解答】解:(1)设A 、B 两种产品分别是x 件和y 件,获利为z 元. 由题意,得{ x ∈N ,y ∈N1.5x +0.5y ≤150x +0.3y ≤905x +3y ≤600,z =2100x +900y .不等式组表示的可行域如图:由题意可得{x +0.3y =905x +3y =600,解得:{x =60y =100,A (60,100),目标函数z =2100x +900y .经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.13.【2015年浙江理科14】若实数x ,y 满足x 2+y 2≤1,则|2x +y ﹣2|+|6﹣x ﹣3y |的最小值是 . 【解答】解:由x 2+y 2≤1,可得6﹣x ﹣3y >0,即|6﹣x ﹣3y |=6﹣x ﹣3y , 如图直线2x +y ﹣2=0将圆x 2+y 2=1分成两部分,在直线的上方(含直线),即有2x +y ﹣2≥0,即|2x +y ﹣2|=2x +y ﹣2, 此时|2x +y ﹣2|+|6﹣x ﹣3y |=(2x +y ﹣2)+(6﹣x ﹣3y )=x ﹣2y +4, 利用平移可得在A (35,45)处取得最小值3;在直线的下方(含直线),即有2x +y ﹣2≤0, 即|2x +y ﹣2|=﹣(2x +y ﹣2),此时|2x +y ﹣2|+|6﹣x ﹣3y |=﹣(2x +y ﹣2)+(6﹣x ﹣3y )=8﹣3x ﹣4y , 利用平移可得在A (35,45)处取得最小值3.综上可得,当x =35,y =45时,|2x +y ﹣2|+|6﹣x ﹣3y |的最小值为3. 故答案为:3.14.【2013年江苏13】在平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图象上一动点,若点P,A之间的最短距离为2√2,则满足条件的实数a的所有值为.【解答】解:设点P(x,1x)(x>0),则|P A|=√(x−a)2+(1x−a)2=√x2+1x2−2a(x+1x)+2a2=√(x+1x)2−2a(x+1x)+2a2−2,令t=x+1x,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2=(2√2)2,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2=(2√2)2,解得a=√10.综上可知:a=﹣1或√10.故答案为﹣1或√10.15.【2013年天津理科14】设a+b=2,b>0,则当a=时,12|a|+|a|b取得最小值.【解答】解:∵a+b=2,b>0,∴12|a|+|a|b=12|a|+|a|2−a,(a<2)设f(a)=12|a|+|a|2−a,(a<2),画出此函数的图象,如图所示.利用导数研究其单调性得,当a<0时,f(a)=−12a+a a−2,f′(a)=12a2−2(a−2)2=−(3a−2)(a+2)2a2(a−2)2,当a<﹣2时,f′(a)<0,当﹣2<a<0时,f′(a)>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数,∴当a=﹣2时,12|a|+|a|b取得最小值34.同样地,当0<a<2时,得到当a=23时,12|a|+|a|b取得最小值54.综合,则当a=﹣2时,12|a|+|a|b取得最小值.故答案为:﹣2.16.【2012年浙江理科17】设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a = . 【解答】解:(1)a =1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y =0,得M (1a−1,0),∴a >1;考查函数y 2=x 2﹣ax ﹣1,∵x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0, ∴y 2=x 2﹣ax ﹣1过点M (1a−1,0),代入得:(1a−1)2−aa−1−1=0,解之得:a =32,或a =0(舍去). 故答案为:32.17.【2011年浙江理科16】设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是 . 【解答】解:∵4x 2+y 2+xy =1 ∴(2x +y )2﹣3xy =1令t =2x +y 则y =t ﹣2x ∴t 2﹣3(t ﹣2x )x =1 即6x 2﹣3tx +t 2﹣1=0∴△=9t 2﹣24(t 2﹣1)=﹣15t 2+24≥0 解得−2√105≤t ≤2√105∴2x +y 的最大值是 2√105故答案为2√10518.【2010年江苏12】设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是 .【解答】解:因为实数x ,y 满足3≤xy 2≤8,4≤x 2y≤9, 则有:(x 2y )2∈[16,81],1xy 2∈[18,13],再根据 x 3y 4=(x 2y)2⋅1xy 2∈[2,27],即当且仅当x =3,y =1取得等号,即有x 3y 4的最大值是27.故答案为:27.1.【2019年新课标3文科11】记不等式组{x +y ≥6,2x −y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题 ①p ∨q ②¬p ∨q ③p ∧¬q ④¬p ∧¬q这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④【解答】解:作出等式组{x +y ≥6,2x −y ≥0的平面区域为D .在图形可行域范围内可知: 命题p :∃(x ,y )∈D ,2x +y ≥9;是真命题,则¬p 假命题; 命题q :∀(x ,y )∈D ,2x +y ≤12.是假命题,则¬q 真命题;所以:由或且非逻辑连词连接的命题判断真假有: ①p ∨q 真;②¬p ∨q 假;③p ∧¬q 真;④¬p ∧¬q 假; 故答案①③真,正确. 故选:A .2.【2016年北京文科07】已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x ﹣y 的最大值为( ) A .﹣1B .3C .7D .8【解答】解:如图A (2,5),B (4,1).若点P (x ,y )在线段AB 上, 令z =2x ﹣y ,则平行y =2x ﹣z 当直线经过B 时截距最小,Z 取得最大值, 可得2x ﹣y 的最大值为:2×4﹣1=7. 故选:C .3.【2013年新课标2文科12】若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是( ) A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【解答】解:因为2x (x ﹣a )<1,所以a >x −12x , 函数y =x −12x 是增函数,x >0,所以y >﹣1,即a >﹣1, 所以a 的取值范围是(﹣1,+∞). 故选:D .4.【2011年北京文科07】某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件B .80件C .100件D .120件【解答】解:根据题意,该生产x 件产品的生产准备费用与仓储费用之和是800+x ⋅x 8=800+18x 2 这样平均每件的生产准备费用与仓储费用之和为f(x)=800+18x 2x =800x+18x (x 为正整数) 由基本不等式,得f(x)≥2√800x ⋅18x =20 当且仅当800x=18x =10时,f (x )取得最小值、可得x =80时,每件产品的生产准备费用与仓储费用之和最小 故选:B .5.【2010年新课标1文科11】已知▱ABCD 的三个顶点为A (﹣1,2),B (3,4),C (4,﹣2),点(x ,y )在▱ABCD 的内部,则z =2x ﹣5y 的取值范围是( ) A .(﹣14,16)B .(﹣14,20)C .(﹣12,18)D .(﹣12,20)【解答】解:由已知条件得AB →=DC →⇒D (0,﹣4),由z =2x ﹣5y 得y =25x −z 5,平移直线当直线经过点B (3,4)时,−z 5最大, 即z 取最小为﹣14;当直线经过点D (0,﹣4)时,−z5最小,即z 取最大为20, 又由于点(x ,y )在四边形的内部,故z ∈(﹣14,20). 如图:故选B .6.【2019年天津文科13】设x >0,y >0,x +2y =4,则(x+1)(2y+1)xy的最小值为 .【解答】解:x >0,y >0,x +2y =4, 则(x+1)(2y+1)xy=2xy+x+2y+1xy=2xy+5xy=2+5xy ;x >0,y >0,x +2y =4,由基本不等式有:4=x +2y ≥2√2xy ,∴0<xy ≤2,5xy≥52,故:2+5xy ≥2+52=92;(当且仅当x =2y =2时,即:x =2,y =1时,等号成立), 故(x+1)(2y+1)xy 的最小值为92;故答案为:92.7.【2019年北京文科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【解答】解:①当x =10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元), 即有顾客需要支付140﹣10=130(元); ②在促销活动中,设订单总金额为m 元, 可得(m ﹣x )×80%≥m ×70%, 即有x ≤m8, 由题意可得m ≥120, 可得x ≤1208=15, 则x 的最大值为15元. 故答案为:130,158.【2018年天津文科13】已知a ,b ∈R ,且a ﹣3b +6=0,则2a +18b 的最小值为.【解答】解:a ,b ∈R ,且a ﹣3b +6=0, 可得:3b =a +6, 则2a +18b=2a +12a+6=2a +126⋅2a ≥2√2a⋅1262a =14, 当且仅当2a =12a+6.即a =﹣3时取等号.函数的最小值为:14.故答案为:14.9.【2017年北京文科14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i )男学生人数多于女学生人数; (ii )女学生人数多于教师人数; (iii )教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .【解答】解:①设男学生女学生分别为x ,y 人, 若教师人数为4,则{x >y y >42×4>x,即4<y <x <8,即x 的最大值为7,y 的最大值为6, 即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z ,则{x >yy >z 2z >x,即z <y <x <2z即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1210.【2017年天津文科13】若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为 .【解答】解:【解法一】a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab≥2√a 4⋅4b 4+1ab=4a 2b 2+1ab=4ab +1ab ≥2√4ab ⋅1ab =4,当且仅当{a 4=4b 44ab =1ab,即{a 2=2b 2a 2b 2=14,即a =√24,b =√84或a =√24,b =√84时取“=”; ∴上式的最小值为4. 【解法二】a ,b ∈R ,ab >0,∴a 4+4b 4+1ab=a 3b +4b 3a +12ab +12ab≥4√a 3b ⋅4b 3a ⋅12ab ⋅12ab 4=4,当且仅当{a 4=4b 44ab =1ab,即{a 2=2b 2a 2b 2=14,即a =√24,b =√84或a =√24,b =√84时取“=”; ∴上式的最小值为4. 故答案为:4.11.【2016年新课标1文科16】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【解答】解:(1)设A 、B 两种产品分别是x 件和y 件,获利为z 元. 由题意,得{ x ∈N ,y ∈N1.5x +0.5y ≤150x +0.3y ≤905x +3y ≤600,z =2100x +900y .不等式组表示的可行域如图:由题意可得{x +0.3y =905x +3y =600,解得:{x =60y =100,A (60,100),目标函数z =2100x +900y .经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.12.【2013年天津文科14】设a +b =2,b >0,则12|a|+|a|b的最小值为 .【解答】解:∵a +b =2,∴a+b 2=1, ∴12|a|+|a|b=a 4|a|+b 4|a|+|a|b,∵b >0,|a |>0,∴b4|a|+|a|b≥1(当且仅当b 2=4a 2时取等号),∴12|a|+|a|b≥a 4|a|+1,故当a <0时,12|a|+|a|b的最小值为34.故答案为:34.。
高考高中数学专题复习测试题不等式二高考数学专题复习测试数列极限
数学专题复习测试题:不等式〔二〕一、二、 选择题(每一小题5分,一共60分) 1.)(11,,都成立的充要条件是与则不等式设yx y x R y x >>∈A .x y > 0B .x > 0, y < 0C .x y < 0D .x y ≠0 2.假设a < b < 0,那么以下不等式中不能成立的是〔 〕 b a aa Db a C b B ba A )21()21(.0||||.2.11.>>>>>3.假如c < b < a, 且ac < 0,那么以下选项里面,不一定成立的是〔 〕 A .ab > ac B .c (b - a) > 0 C .cb 2 < ab 2 D .ac (a - c) < 04.{})(,11,2=⋂⎭⎬⎫⎩⎨⎧<=<=B A x x B x x A 则若集合{}}012|{.}21|{.}022|{.2102.≠<<-<<≠<<-<<<<-x x x D x x C x x x B x x x A 且且或5. )(031的解集是不等式>-xx)31,(.)31,31(.),31()0,31(.)31,()31,0(.--∞-∞+⋃---∞⋃D C B A6.不等式 |x - m| <1成立的充分非必要条件是2131<<x ,那么实数m 的取值范围是〔 〕 ],34[.)21,(.]34,21[.]21,34[.∞+--∞--D C B A7. 设a, b >0,,那么一定有〔 〕a b ab D a b a b C a b a b B ab a b A -≤-<-≥->2.2.2.2.2222)(,,)()(,,,,,.8222222恰当的是的大小表述最则关于设n m d b c a n d c b a m R d c b a -+-=+++=∈A .m < nB .m ≤nC .m > nD .m ≥n9.)(},301|{2的值是则实数或的解集为已知不等式a x x x xax ≤<-≤≤-A .-3B .-1C .1D .3 10.)(112的解集为不等式+<-x x{}}1x 1|x {.D }1x |x {.C }0x |x {.B 1x 0x .A ≤≤-->>≤<11.)(,16)(,,22的最小值为则且已知b a b a ab R b a +=+∈+A .4B .6C .8D .1012.给出3个函数①)0(,4≠+=x xx y ②)2x 0(x cos 4x cos y π<<+=③),x cot 221)(x cot 1(y ++=)2x 0(π<<,其中以4为最小值的函数的个数是〔 〕A .0B .1C .2D .3三、 填空题〔每一小题4分,一共16分〕.______________________b ,2b a ,a ,16cos 16sin a ,16cos 16sin b ,15cos 15sin a .1322的大小关系是则则已知+︒+︒=+=+=14.假设正数a, b 满足ab =a + b +3,那么ab 的取值范围是 .________________________a a |2x ||1x |x ,R x .15围是的取值范的解集非空,则实数的不等式关于若≤-+-∈16.定义运算,)y x (y )y x (x y x ⎩⎨⎧>≤=*假设,1m m 1m -=*-那么实数m 的取值范围是 .四、 解答题〔17—21每一小题12分,22题14分〕0a x 2cx ,c a ),21,31(0c x 2ax )(.1722>-+-->++并解不等式和求的解集为已知不等式文. )1a (x1ax 1x )1a (2>>+-+解不等式(理)1ab )b (f )a (f ,b a 0,0x ,x11)x (f .18>=<<>-=时,且当证明:设函数19.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段间隔 才能停下,这段间隔 叫做刹车滑距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学不等式专题测试试卷班级 .姓名 .得分 .一、填空题:(每小题5分,共70分)1.不等式242x x ->+的解集是 .2.设A ={x |x 2-2x -3>0},B ={x |x 2+5x ≤0},则A B I 等于 .3. 若0<x<21, 函数y=x(1–2x)的最大值是 .4.设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 。
5.若关于x 的不等式a x 2-a x +1>0对于x ∈R 恒成立,则实数a 的取值范围是 .6.若实数a 、b 满足a +b =2,则3a +3b 的最小值是 .7.⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是 .8.建造一个容积为18 m 3,深为2 m 的长方体无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么池的最低造价为 (元) 9.设a b ==a b 与的大小关系是 10.不等式(x-2)(x+1)<0解集为11.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是12.已知方程2(2)50x m x m ++++=有两个正实数根,则实数m 的取值范围是_____________13.若y x y x -=+则,422的最大值是 . 14.已知集合{1,1}M =-,11{|24,}2x N x x Z +=<<∈则M N =I .二、解答题:(6小题,共90分)15.(14分)解关于x 的一元二次不等式2(3)30x a x a -++>16.(14分)二次函数2()f x ax bx c =++的图象开口向下,且满足,,a b c -是等差数列,(),,a b a c -是等比数列,试求不等式()0f x ≥的解集。
17.(15分)已知数列{}n a 满足12n n a a +=+,n S 是其前n 项和,且39S =,二次函数2()2n n f x S x a x =+-的图象与x 轴有两个交点()()12,0,0x x 和,且12312x x -<<-<<,试求n 的值。
18.(15分)某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨,二级子棉1吨;生产乙种棉纱1吨需耗一级子棉1吨,二级子棉2吨;每一吨甲种棉纱的利润是600元,每一吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨。
甲、乙两种棉纱应各生产多少吨,才能能使利润总额最大?19.(16分)如图,动物园要围成相同面积的长方形虎笼四间。
一面可利用原有的墙,其他各面用钢筋网围成。
⑴现有可围成36m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?⑵若使每间虎笼的面积为242m ,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?20.设函数f(x)=log b axx x 21222++-(b>0且b ≠1),(1)求f(x)的定义域;(2)当b>1时,求使f(x)>0的所有x 的值。
答案1.(-2,1) 2.{}51x x -≤<- 3.81, 4.(2,)+∞ 5..[)0,46.6 7.2个 8.5400 9.a b > 10 ()1,2- 11.212.54m -<≤- 13.22 14.{1}-15. 解:(14分)∵2(3)30x a x a -++>,∴()()30x x a -->⑴当3,3a x a x <<>时或,不等式解集为{}3x x a x <>或; ⑵当3a =时,不等式为()230x ->,解集为{}3x x R x ∈≠且; ⑶当3,3a x x a ><>时或,不等式解集为{}3x x x a <>或;16.解:(14分)由已知条件得202()0a b a cb a ac b <⎧⎪=-+⎪⎨=⋅-⎪⎪≠⎩023a b a c a <⎧⎪⇒=-⎨⎪=-⎩ ∴不等式()0f x ≥即为2230ax ax a --≥,又∵0a <,∴2230x x --≤,13x -≤≤。
故不等式()0f x ≥的解集为{}13x x -≤≤。
17.解:(15分)∵数列{}n a 满足12n n a a +=+,∴数列{}n a 是等差数列,且公差2d =,又∵39S =,∴1339,a d +=又d=2,∴11a =,从而21n a n =-,21()2n n n a a S n +==。
∴22()(21)2f x n x n x =+--,由于,1n N n ∈≥,又()222214(2)12410n n n n ∆=--⋅-=-+>,∴22()(21)2f x n x n x =+--的图象的开口向上,与x 轴有两个交点()()12,0,0x x 和,依题意有(3)0(1)0(2)0f f f ->⎧⎪-<⇒⎨⎪>⎩222193(21)203(21)201142(21)201122n n n n n n n n n n ⎧≠⎪⎧--->⎪⎪⎪---<⇒<+⎨⎨⎪⎪+-->--⎩⎪><⎪⎩, 由于,1n N n ∈≥,故12n n ==或。
18.解:(15分)先列出下面表格设生产甲种棉纱x 吨,乙种棉纱y 吨, 总利润为z 元,依题意得 目标函数为:600900z x y =+ 作出可行域如图阴影所示。
目标函数可变形为2:3900zl y x =-+,从图上可知,当 直线l 经过可行域的M 点时,直线的截距900z最大,从而z 最大。
23002250x y x y +=⎧⎨+=⎩35032003x y ⎧=⎪⎪⇒⎨⎪=⎪⎩,即350200(,)33M 。
故生产甲种棉纱3503吨,乙种棉纱2003吨时,总利润最大。
最大总利润是max 35020060090013000033z =⨯+⨯=(元) 19.解:(16分)⑴设每间虎笼长为xm ,宽为ym ,则463600x y x y +=⎧⎪>⎨⎪>⎩,面积S xy =。
由于 23x y +≥=,所以2718,2xy ≤≤得,即272S ≤,当 且仅当23x y =时取等号。
23 4.523183x y x x y y ==⎧⎧⇒⎨⎨+==⎩⎩,所以,每间虎笼长、宽 分别为4.53m m 、时,可使面积最大。
⑵设围成四间虎笼的钢筋网总长为lm ,则4,24l x y xy =+=且,所以y=2300225000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩462(23)2448()l x y x y m =+=+≥⨯===,当且仅当23x y =时取等号。
246234xy x x y y ==⎧⎧⇒⎨⎨==⎩⎩。
故每间虎笼长、宽分别为6m 、4m 时,可使钢筋的总长最小,为48m 。
20解 (1)∵x 2-2x+2恒正,∴f(x)的定义域是1+2ax>0,即当a=0时,f(x)定义域是全体实数。
当a>0时,f(x)的定义域是(-a21,+∞) 当a<0时,f(x)的定义域是(-∞,-a21) (2)当b>1时,在f(x)的定义域内,f(x)>0⇔axx x 21222++->1⇔x 2-2x+2>1+2ax⇔x 2-2(1+a)x+1>0其判别式Δ=4(1+a)2-4=4a(a+2) (i)当Δ<0时,即-2<a<0时 ∵x 2-2(1+a)x+1>0 ∴f(x)>0⇔x<-a21 (ii)当Δ=0时,即a=-2或0时 若a=0,f(x)>0⇔(x -1)2>0 ⇔x ∈R 且x ≠1若a=-2,f(x)>0⇔(x+1)2>0⇔x <41且x ≠-1(iii )当△>0时,即a >0或a <-2时方程x 2-2(1+a)x+1=0的两根为 x 1=1+a -a a 22+,x 2=1+a+a a 22+ 若a >0,则x 2>x 1>0>-a21 ∴a a a x x f 210)(2+++>⇔>或a a a x a21212--+<<- 若a<-2,则ax x 2121-<<∴f(x)>0⇔x <1+a -a a 22+或1+a+a a 22+<x <-a21 综上所述:当-2<a <0时,x 的取值集合为{x|x <-a21} 当a=0时,x ∈R 且x ≠1,x ∈R ,当a=-2时:{x|x <-1或-1<x <41} 当a >0时,x ∈{x|x >1+a+a a 22+或-a21<x <1+a -a a 22+} 当a <-2时,x ∈{x|x <1+a -a a 22+或1+a+a a 22+<x <-a21}。