用巴特莱特窗函数法设计数字FIR带通滤波器dsp课程设计

合集下载

数字信号处理实验——用窗函数设计FIR滤波器

数字信号处理实验——用窗函数设计FIR滤波器

实验四 用窗函数设计FIR 滤波器一、 实验目的1、熟悉FIR 滤波器设计的基本方法。

2、掌握用窗函数设计FIR 数字滤波器的原理及方法,熟悉相应的计算机高级语言编程。

3、熟悉线性相位FIR 滤波器的幅频特性和相位特性。

4、了解各种不同窗函数对滤波器性能的响应。

二、 实验原理和方法窗函数法设计的任务在于寻找一个可实现有限长单位脉冲响应的传递函数H(e jw )=∑-=10N n h(n)e -jwn 去逼近h d (n)=1/2π⎰π20H d (e jw )e jwn dw即h(n)=h d (n)w (n ) (一)几种常用的窗函数1、矩形窗 w(n)=R N (n)2、Hanning 窗 w(n)=0.5[1-cos(2πn /N-1)]R N (n)3、Hamming 窗 w(n)=[0.54-0.46cos(2πn /N-1)]R N (n)4、Blackman 窗 w(n)=[0.42-0.5 cos(2πn /N-1)+0.08 cos(4πn /N-1)] R N (n)5、Kaiser 窗 w(n)=I 0(β(1-[(2n /(N-1))-1]2)½)/I 0(β)(二)窗函数法设计线性相位FIR 滤波器的步骤1、确定数字滤波器的性能要求。

确定各临界频率{w k }和滤波器单位脉冲响应长度N 。

2、根据性能要求和N 值,合理地选择单位脉冲响应h(n)有奇偶对称性,从而确定理想频率响应h d (e jw)的幅频特性和相位特性。

3、用傅里叶反变换公式求得理想单位脉冲响应h d (n)。

4、选择适当的窗函数W (n ),求得所设计的FIR 滤波器单位脉冲响应。

5、用傅里叶变换求得其频率响应H (e jw),分析它的幅频特性,若不满足要求,可适当改变窗函数形式或长度N ,重复上述过程,直至得到满意的结果。

三、实验内容和步骤1、分别用矩形窗、Hanning 窗、Hamming 窗、Blackman 窗、Kaiser 窗(β=8.5)设计一个长度N=8的线性相位FIR 滤波器。

FIR带通滤波器的设计-课程设计

FIR带通滤波器的设计-课程设计

目录1 技术要求 12 基本原理 12.1 FIR带通滤波器简介 11.2 窗函数法原理 33 建立模型描述 43.1 MATLAB常用函数 43.1.1 窗函数 43.1.2 fir1函数 53.1.3 freqz函数 53.14 ceil函数 53.1.5 其他函数与命令 53.2 程序流程图 64 源程序代码(含注释) 84.1 矩形窗 84.2 凯泽窗 84.3 布拉克曼窗 94.4 海明窗 105 调试过程及结论 115.1 程序运行结果 115.2 实验结果分析 136 心得体会 147 思考题 148 参考文献 15FIR带通滤波器的设计1 技术要求用窗函数法设计FIR带通滤波器。

要求低端阻带截止频率ω1s=0.2π,低端通带截止频率ω1p=0.35π, 高端通带截止频率ωμp=0.65π, 高端阻带截止频率ωμp=0.8π。

绘出h(n)及其幅频响应特性曲线。

2 基本原理2.1 FIR带通滤波器简介带通滤波器是从滤波器的特性上划分的,带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。

从实现的网络结构或者从单位脉冲响应长度分类,可以分为无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器。

IIR数字滤波器设计方法是利用模拟滤波器成熟的理论及设计图表进行设计的,因而保留了一些经典模拟滤波器优良的幅度特性。

但设计中只考虑了幅度特性,没考虑相位特性,所设计的滤波器一般是某种确定的非线性相位特性。

为了得到线性相位特性,对IIR滤波器必须另外增加相位相校正网络,是滤波器设计变得复杂,成本也高,又难以得到严格的线性相位特性。

FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。

两者各有优点,择其而取之。

后面的FIR滤波器的设计中,为获得有限长单位取样响应,需要用窗函数截断无限长单位取样响应序列。

实验7 窗函数法设计FIR数字滤波器

实验7 窗函数法设计FIR数字滤波器

实验7窗函数法设计FIR数字滤波器一、实验目的掌握窗函数法设计F1R数字滤波器的原理和具体方法二、实验设备与环境计算机、Mat1ab软件环境三、实验基础理论1>基本原理窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器Hd(,3),然后用窗函数截取它的单位脉冲响应%(九),得到线性相位和因果的FIR滤波器,这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。

2、设计步骤(1)给定理想滤波器的频率响应Hd("3),在通带上具有单位增益和线性相位,在阻带上具有零响应。

一个带宽为g(3c<Tr)的低通滤波器由下式给定h(e j^=(eW∣ω∣≤ωc虱)一1Oωc<∣ω∣<π其中α为采样延迟,其作用是为了得到因果的系统。

(2)确定这个滤波器的单位脉冲响应为了得到一个h(n)长度为N的因果的线性相位FIR滤波器,我们令N-Ia=-2-(3)用窗函数截取hd(τι)得到所设计FIR数字滤波器h(n)h(n)=h d(n)w(n)3、窗函数的选择常用的窗函数有矩形窗、汉宁窗、海明窗、布莱克曼窗、凯瑟窗等。

Mat1ab提供了一些函数用于产生窗函数,如下表所示:在设计过程中我们需要根据给定的滤波器技术指标,选择滤波器长度N 和窗函数3(n)°表7.2列出了常用的窗函数的一些特性,可供设计时参考。

其中幻是修正的零阶贝塞尔函数,参数B 控制最小阻带衰减,这种窗函数对于相同的N 可以提供不同的过渡带宽。

由于贝塞尔函数比较更杂,这种窗函数的设计方程很难推导,然而幸运的是,有一些经验设计方程可以直接使用。

已知给定的指标叫Msc,Rp 和4,滤波器长度N 和凯瑟窗参数B 可以按如下凯瑟窗设计方程给出过渡带宽:∆ω=ωst -ωp入一7.95 2.285∆ω_(0.1102(4-8.7) ,P=iθ.5842(4-21)04+0.07886(4-21), 四、实验内容1、设计一个数字低通FIR 滤波器,其技术指标如下ωp =0.2τr,RP=0.25dBωst =0.3τr,A s =50dB分别采用矩形窗、汉宁窗、海明窗、布莱克曼窗、凯瑟窗设计该滤波器。

第24章--用窗函数法设计FIR数字滤波器

第24章--用窗函数法设计FIR数字滤波器

17
用窗函数法设计FIR数字滤波器的根本步骤是: (1)根据过渡带和阻带衰减设计指标选择窗函数的类型, 估算滤波器的阶数N。 (2)由数字滤波器的理想频率响应H(ejw)求出其单位冲 激响应hd(n)。 对于理想的数字低通滤波器频率响应,有以下的子程 序可以实现(该程序名为ideal-lp.m): functionhd=ideal-lp(wc,N) %hd=点0到N-1之间的理想脉冲响应 %wc=截止频率(弧度)
当Wn=[W1W2]时,fir1函数可得到带通滤波器, 其通带为w1<w<w2。
13
※b=fir1(n,Wn,ftype);可设计高通和带阻滤波器, 由ftype决定:
·当ftype=high时,设计高通FIR滤波器; ·当ftype=stop时,设计带阻FIR滤波器。 在设计高通和带阻滤波器时,fir1函数总是使用偶对称 N为奇数(即第一类线性相位FIR滤波器)的结构,因此当输 入的阶次为偶数时,fir1函数会自动加1。
29
图24-2 例24-2设计的数字低通滤波器特性
30
例24-3 选择适宜的窗函数设计一个FIR数字低通滤波 器,要求:通带截止频率为wp=0.3p,Rp=0.05 dB;阻带 截止频率为ws=0.45p,As=50 dB。描绘该滤波器的脉冲 响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。
解 查表24-1,选择哈明窗。程序如下: wp=0.3*pi;ws=0.45*pi; %输入设计指标 deltaw=ws-wp;%计算过渡带的宽度 N0=ceil(6.6*pi/deltaw); %按表24-1所示哈明窗数
18
%N=理想滤波器的长度 tao=(N-1)/2; n=[0:(N-1)]; m=n-tao+eps; %加一个小数以防止0作除数 hd=sin(wc*m)./(pi*m); 其它选频滤波器那么可以由低通频响特性合成。如一 个通带在wc1~wc2之间的带通滤波器,在给定N值的条件 下,可以用以下程序实现: hd=ideal-lp(wc2,N)-ideal-lp(wc1,N);

DSP实验6 用窗函数法设计FIR滤波器

DSP实验6 用窗函数法设计FIR滤波器

用窗函数法设计FIR 滤波器一、实验目的1. 掌握窗函数法设计FIR 滤波器的原理和方法,观察用几种常用窗函数设计的FIR 数字滤波器技术指标;2. 掌握FIR 滤波器的线性相位特性;3. 了解各种窗函数对滤波特性的影响。

二、实验原理与方法如果所希望的滤波器的理想频率响应函数为H d (e jω),则其对应的单位脉冲响应为ωπωππωd e e H n h n j j d ⎰-=)(21)(,用窗函数w N (n)将h d (n)截断,并进行加权处理,得到实际滤波器的单位脉冲响应h (n )=h d (n )w N (n ),其频率响应函数为n j N n j e n h e H ωω--=∑=10)()(。

如果要求线性相位特性,则h (n )还必须满足)1()(n N h n h --±=。

可根据具体情况选择h(n)的长度及对称性。

三、实验步骤1. 写出理想低通滤波器的传输函数和单位脉冲响应。

2. 写出用四种窗函数设计的滤波器的单位脉冲响应。

3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。

要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减;4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。

四、实验用MATLAB 函数可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

fir1是用窗函数法设计线性相位FIRDF 的工具箱函数,调用格式如下: hn=fir1(N, wc, ‘ftype ’, window)fir1实现线性相位FIR 滤波器的标准窗函数法设计。

用窗函数设计FIR滤波器实验报告

用窗函数设计FIR滤波器实验报告

实验 用窗函数设计FIR 滤波器一、实验目的1、熟悉FIR 滤波器设计的基本方法。

2、熟悉线性相位FIR 滤波器的幅频特性和相位特性。

3、掌握用窗函数设计FIR 数字滤波器的原理及方法,了解各种不同窗函数对滤波器性能的影响。

二、实验原理1、FIR 滤波器的设计 在前面的实验中,我们介绍了IIR 滤波器的设计方法并实践了其中的双线性变换法,IIR 具有许多诱人的特性;但与此同时,也具有一些缺点。

例如:若想利用快速傅立叶变换技术进行快速卷积实现滤波器,则要求单位脉冲响应是有限长的。

此外,IIR 滤波器的优异幅度响应,一般是以相位的非线性为代价的,非线性相位会引起频率色散。

FIR 滤波器具有严格的相位特性,这对于许多信号的处理和数据传输是很重要的。

目前FIR 滤波器的设计方法主要有三种:窗函数法、频率采样法和切比雪夫等波纹逼近的最优化设计方法。

窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求不高的时候是比较灵活方便的。

它是从时域出发,用一个窗函数截取理想的[]d h n 得到[]h n ,以有限长序列[]h n 近似理想的[]d h n ;如果从频域出发,用理想的[]j d h e ω在单位圆上等角度取样得到[]H k ,根据[]H k 得到[]H z 将逼近理想的[]d h z ,这就是频率采样法。

2 、窗函数设计法同其他的数字滤波器的设计方法一样,用窗函数设计滤波器也是首先要对滤波器提出性能指标。

一般是给定一个理想的频率响应[]j d H e ω,使所设计的FIR 滤波器的频率响应[]j H e ω去逼近所要求的理性的滤波器的响应[]j d H e ω。

窗函数法设计的任务在于寻找一个可实现(有限长单位脉冲响应)的传递函数1()[]N j j nn H e h n e ωω--==∑ (4.1)去逼近[]j d H e ω。

我们知道,一个理想的频率响应[]j d H e ω的傅立叶反变换201[]()2j j n d d h n H e e d πωωωπ=⎰(4.2)所得到的理想单位脉冲响应[]d h n 往往是一个无限长序列。

FIR数字滤波器的DSP课程设计

FIR数字滤波器的DSP课程设计

DSP原理课程设计报告题目: FIR数字滤波器专业电子信息工程姓名 xxx 班级 2012级电工本1班学号 xxxxxxxxx 指导教师 xxx时间 2015.09—2015.10 教师评分目录一、课程设计的任务和目的 (1)二、课程设计相关知识 (1)2.1 SEED-DEC2812 嵌入式DSP开发板 (1)三、设计思路 (1)3.1 大致过程 (1)3.2 FIR滤波器的设计方法 (2)四、设计总框图和程序流程图及程序源代码 (3)4.1 FIR滤波器设计总框图 (3)4.2 程序流程图 (4)4.3 程序源代码 (5)五、系统仿真 (9)5.1 仿真设置 (9)5.2 仿真图 (11)六、参考文献 (15)七、总结 (15)1题目:FIR 数字滤波器一、课程设计的任务和目的课程设计的任务:本课程设计主要是利用C 语言在CCS 环境中编写一个FIR 滤波器程序,并能利用已设计好的滤波器对常用信号进行滤波处理。

选用TMS320C54X 作为DSP 处理芯片,通过对其编程来实现FIR滤波器。

通过课程设计环节来加强对所学知识的理解和应用。

二、课程设计相关知识2.1 SEED-DEC2812 嵌入式DSP 开发板SEED-DEC2812 嵌入式DSP 开发板原理框图如图2.1所示:图 2.1 SEED-DEC2812嵌入式DSP 开发板原理框图三、设计思路3.1 大致过程在TMS320C54x 系统开发环境CCS (Code Composer Studio )下对FIR 滤波器的DSP 实现原理进行讨论。

利用C 语言设计相应的滤波器,通过实验仿真,从输入信号和输出信号的时域和频域曲线可看出在DSP上实现的FIR滤波器能完成预定的滤波任务。

3.2 FIR滤波器的设计方法循环缓冲算法:对于N级的FIR滤波器,在数据存储器中开辟一个称之为滑窗的N 个单元的缓冲区,滑窗中存放最新的N个输入样本。

每次输入新的样本时,一新样本改写滑窗中的最老的数据,而滑窗中的其他数据不需要移动。

用窗函数法设计FIR数字滤波器---数字信号处理课程设计

用窗函数法设计FIR数字滤波器---数字信号处理课程设计

课程设计任务书学生姓名:专业班级:电信指导教师:工作单位:信息工程学院题目:用窗函数法设计FIR数字滤波器初始条件:1.MATLAB6.5以上版本软件2.课程设计辅导资料:“MATLAB语言基础及使用入门”、“数字信号处理原理与实现”、“MATLAB及在电子信息课程中的应用”等;3.先修课程:信号与系统、数字信号处理、MATLAB应用实践及信号处理类课程等。

时间安排:第20周理论设计、实验室安装调试,地点:鉴主15楼通信实验室一指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)Abstract (2)1 绪论 (3)1.1 数字滤波技术 (3)1.2 FIR滤波器 (3)2 设计方法 (4)2.1 MATLAB结合窗函数法的设计方法 (4)2.2 窗函数设计法 (4)2.2.1设计函数的选取 (4)2.2.2窗函数的构造 (5)2.2.1窗函数的设计条件 (5)3 基本窗函数 (7)3.1 三类基本窗函数介绍 (7)3.1.1矩形窗 (7)3.1.2三角形窗 (7)3.1.3汉宁窗(升余弦窗) (8)4 各类窗函数比较 (9)4.1窗函数绘图比较 (9)4.2窗函数法设计步骤 (10)4.3窗函数法设计比较 (10)5具体设计内容 (15)6总结与体会 (21)7参考文献 (22)摘要现代图像、语声、数据通信对线性相位的要求是普遍的。

正是此原因,使得具有线性相位的FIR数字滤波器得到迅速发展和广泛应用。

在实际进行数字信号处理时,往往需要把信号的观察时间限制在一定的时间间隔内,只需要选择一段时间信号对其进行分析。

这样,取用有限个数据,即将信号数据截断的过程,就等于将信号进行加窗函数操作。

而这样操作以后,常常会发生频谱分量从其正常频谱扩展开来的现象,即所谓的“频谱泄漏”。

当进行离散傅立叶变换时,时域中的截断是必需的,因此泄漏效应也是离散傅立叶变换所固有的,必须进行抑制。

而要对频谱泄漏进行抑制,可以通过窗函数加权抑制DFT的等效滤波器的振幅特性的副瓣,或用窗函数加权使有限长度的输入信号周期延拓后在边界上尽量减少不连续程度的方法实现。

FIR滤波器DSP实现课程设计

FIR滤波器DSP实现课程设计

课程设计一FIR滤波器的DSP实现一、课程设计目的1、复习用C语言对数字信号处理器的编程方法,熟悉如何使用C5000系列数字信号处理器中的模数转换器;2、复习用窗函数法设计FIR数字滤波器;3、对TMS320VC5509编程实现不同参数的FIR滤波器。

二、课程设计原理(一)TMS320VC5509简介TMS320VC5509是TI公司出产的定点DSP芯片,它的源代码与C54x系列兼容,但速度更快,时钟频率可达300MHz,功耗是C54x系列的1/6。

C5509的CPU内部有2个乘法器、1个40位的加法器、1个16位的加法器、4个累加器。

共有12组总线,其中3组数据存储器读总线,2组数据存储器写总线,及相应5组数据存储器地址总线,程序存储器读总线及地址线各一组。

片内外设资源也比C54x系列数字信号处理器丰富,4通道10位A/D、DMA单元、RTC电路、McBSP、定时器等。

本设计中将用到A/D单元。

TMS320C5509A内部有一个4通道10位A/D,相关寄存器有4个,通过对这4个寄存器的操作来控制A/D模块。

1.、ADC控制寄存器:ADCCTLADCSTART:0 无作用;1 启动A/D转换CHSELECT:从4个模拟通道中选择一个作为输入信号Reserved:保留2、ADC数据寄存器:ADCDATAADCBUSY:0 ADC数据准备好,即A/D转换结束;1 正在进行A/D转换CHSELECT:从4个模拟通道中选择一个作为输入信号ADCDATA:A/D转换得到的10位二进制数3、ADC时钟控制寄存器:ADCCLKCTLIDLEEN:0 不允许ADC处于休眠状态;1 允许ADC处于休眠状态CPUCLKDIV:决定ADC时钟频率ADC Clock:(CPU Clock) / ( CPUCLKDIV+1)4、ADC时钟分频寄存器:ADCCLKDIVSAMPTIMEDIV :与CONVRATEDIV 一起决定采样/保持周期ADC Sample and Hold Time = (ADC Clock Period)*2*(CONVRATEDIV+1+ SAMPTIMEDIV)CONVRATEDIV :决定A/D 转换时钟频率ADC Conversion Clock = (ADC Clock) / (2*( CONVRATEDIV+1))完成一次A/D 转换需要13个A/D 转换时钟,所以,一次转换时间是t = 13 / ADC Conversion Clock一次完整的A/D 转换时间是采样/保持周期和转换时间的和,采样频率是其倒数ADC Total Conversion Time = ADC Sample and Hold Period+tSampling Rate = 1/ ADC Total Conversion Time(二)窗函数法设计FIR 滤波器的原理根据阻带最小衰减和过渡带宽选择合适的窗函数,实现不同指标的各种类型FIR 数字滤波器的设计。

(完整word版)FIR带通滤波器的设计-课程设计

(完整word版)FIR带通滤波器的设计-课程设计

目录1 技术要求 (1)2 基本原理 (1)2.1 FIR带通滤波器简介 (1)1.2 窗函数法原理 (3)3建立模型描述 (3)3.1 MATLAB常用函数 (3)3.1.1 窗函数 (3)3.1.2 fir1函数 (4)3.1.3 freqz函数 (4)3.14 ceil函数 (5)3.1.5 其他函数与命令 (5)3.2 程序流程图 (5)4 源程序代码(含注释) (7)4.1 矩形窗 (7)4.2 凯泽窗 (7)4.3 布拉克曼窗 (8)4.4 海明窗 (9)5 调试过程及结论 (10)5.1 程序运行结果 (10)5.2 实验结果分析 (12)6 心得体会 (13)7 思考题 (13)8 参考文献 (14)FIR带通滤波器的设计1 技术要求用窗函数法设计FIR带通滤波器。

要求低端阻带截止频率ω1s=0.2π,低端通带截止频率ω1p=0.35π, 高端通带截止频率ωμp=0.65π, 高端阻带截止频率ωμp=0.8π。

绘出h(n)及其幅频响应特性曲线。

2 基本原理2.1 FIR带通滤波器简介带通滤波器是从滤波器的特性上划分的,带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。

从实现的网络结构或者从单位脉冲响应长度分类,可以分为无限长单位脉冲响应(IIR)滤波器和有限长单位脉冲响应(FIR)滤波器。

IIR数字滤波器设计方法是利用模拟滤波器成熟的理论及设计图表进行设计的,因而保留了一些经典模拟滤波器优良的幅度特性。

但设计中只考虑了幅度特性,没考虑相位特性,所设计的滤波器一般是某种确定的非线性相位特性。

为了得到线性相位特性,对IIR滤波器必须另外增加相位相校正网络,是滤波器设计变得复杂,成本也高,又难以得到严格的线性相位特性。

FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。

两者各有优点,择其而取之。

基于窗函数法的FIR数字高通滤波器设计.doc

基于窗函数法的FIR数字高通滤波器设计.doc

课程设计说明书题目:基于窗函数法的FIR数字高通滤波器设计姓名:院(系):专业班级:学号:指导教师:成绩:时间:课程设计任务书题目基于窗函数法的FIR数字高通滤波器设计主要内容、基本要求、主要参考资料等:主要内容:利用MATLAB软件读取一段含有噪声的.wav格式的语音信号,然后基于FFT对该信号进行频谱分析;基于含噪语音信号的频谱确定滤波器的参数,利用窗函数法设计一个FIR数字高通滤波器,并利用所设计的滤波器对信号进行滤波处理。

比较滤波前后语音信号的时域波形及频谱,分析滤波前后的语音变化。

基本要求:1、基于含噪语音信号的频谱确定滤波器的参数;2、分别采用矩形窗、汉明窗和布莱克曼窗设计FIR数字高通滤波器;3、掌握利用wavread函数读取、播放.wav格式语音信号的方法;4、对语音信号进行滤波,绘制滤波前后信号的时域波形及频谱;5、回放语音信号,分析滤波前后的语音变化。

主要参考资料:1、从玉良.数字信号处理原理及其MATLAB实现[M].北京:电子工业出版社.2009.72、胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社.2003,8完成期限:一指导教师签名:课程负责人签名:目录摘要 (1)1数字滤波器简介 (2)2FIR数字滤波器设计 (2)2.1 FIR数字滤波器的原理 (2)2.2设计工具 (2)2.3用窗函数法设计FIR数字滤波器 (3)2.3.1常用窗函数 (3)2.4 FIR数字滤波器的一般设计步骤: (5)3MATLAB仿真设计 (6)4主要程序 (7)5仿真结果图 (11)6总结 (13)参考资料 (14)基于窗函数法的FIR数字高通滤波器设计摘要:数字滤波器在图像处理、数据传输等场合具有广泛应用,其设计是信号处理的核心问题之一,软件实现数字滤波优势体现在滤波器参数的改变伴随滤波器性能的改变.阐述了数字滤波器的设计方法,讨论了线性相位的条件和幅度特性,并以窗函数在MATLAB软件中实现了滤波器的仿真设计。

DSP实验6用窗函数法设计FIR滤波器

DSP实验6用窗函数法设计FIR滤波器

DSP实验6用窗函数法设计FIR滤波器实验六用窗函数法设计FIR 滤波器一、实验目的1. 掌握窗函数法设计FIR 滤波器的原理和方法,观察用几种常用窗函数设计的FIR 数字滤波器技术指标;2. 掌握FIR 滤波器的线性相位特性;3. 了解各种窗函数对滤波特性的影响。

二、实验原理与方法如果所希望的滤波器的理想频率响应函数为H d (e jω),则其对应的单位脉冲响应为ωπωππωd e e H n h n j j d ?-=)(21)(,用窗函数w N (n)将h d (n)截断,并进行加权处理,得到实际滤波器的单位脉冲响应h (n )=h d (n )w N (n ),其频率响应函数为n j N n j e n h e H ωω--=∑=10)()(。

如果要求线性相位特性,则h (n )还必须满足)1()(n N h n h --±=。

可根据具体情况选择h(n)的长度及对称性。

三、实验步骤1. 写出理想低通滤波器的传输函数和单位脉冲响应。

2. 写出用四种窗函数设计的滤波器的单位脉冲响应。

3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。

要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减;4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。

四、实验用MATLAB 函数可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

fir1是用窗函数法设计线性相位FIRDF 的工具箱函数,调用格式如下:hn=fir1(N, wc, ‘ftype ’, window)fir1实现线性相位FIR 滤波器的标准窗函数法设计。

用窗函数法设计FIR数字滤波器课程设计报告

用窗函数法设计FIR数字滤波器课程设计报告

课程设计任务书题目:用窗函数法设计FIR数字滤波器初始条件:1. Matlab6.5以上版本软件;2. 课程设计辅导资料:“Matlab语言基础及使用入门”、“数字信号处理原理与实现”、“Matlab及在电子信息课程中的应用”等;3. 先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.课程设计时间:1周(课实践);2.课程设计容:用窗函数法设计FIR数字滤波器,具体包括:用窗函数法设计FIR数字滤波器基本方法,各种窗函数的应用、比较、选择,线性相位FIR滤波器的设计等;3.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结;4.课程设计说明书按学校“课程设计工作规”中的“统一书写格式”撰写,具体包括:①目录;②与设计题目相关的理论分析、归纳和总结;③与设计容相关的原理分析、建模、推导、可行性分析;④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结;⑤课程设计的心得体会(至少500字);⑥参考文献;⑦其它必要容等。

时间安排:第19周参考文献:泉、阙大顺、郭志强著,《数字信号处理原理与实现》,:电子工业,2009.6薛喜年著,《MATLAB在数字信号处理中的应用》,国防科技大学阙大顺、郭志强著,《数字信号处理学习指导与考研辅导》,理工大学指导教师签名:年月日系主任(或责任教师)签名:年月日目录1、绪论 (2)2、软件介绍 (3)3、课程设计题目及要求 (4)4、设计原理 (5)4.1基本原理 (5)4.2典型窗函数 (6)5、FIR滤波器的窗函数设计过程 (9)5.1利用三角窗设计 (9)5.2利用矩形窗设计 (12)5.3 利用布莱克曼窗设计 (13)5.4、结果分析 (14)6、心得体会 (15)7、参考文献 (16)用窗函数法设计FIR数字滤波器1、绪论在许多数字信号处理系统中,FIR滤波器是最常用的组件之一,他完成信号预调、频带选择和滤波等功能。

用窗函数法设计 FIR 数字滤波器实验报告及代码展示

用窗函数法设计 FIR 数字滤波器实验报告及代码展示

本科生实验报告数字信号处理 课 程 实 验 报 告实验名称 用窗函数法设计 FIR 数字滤波器 一、实验原理、目的与要求1. 实验原理如果所希望的滤波器的理想频率响应函数为,则其对应的单位脉冲响应为:用窗函数w(n)将)(d n h 截断,并进行加权处理,得到:h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(jw H e 为:式中,N 为所选窗函数w(n)的长度。

用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 。

因此,在设计过程中,要根据对阻带最小衰减和过度带宽度的要求选择合适的窗函数类型和窗口长度N 。

选定窗函数了形和长度N 后,求出单位脉冲响应h(n)=hd(n)·w(n),并可以求出)(jw H e 。

)(jw H e 是否满足要求,要进行验算。

一般在h(n)尾部加零使长度满足2的整数次幂,以便用FFT 计算)(jw H e 。

如果要观察细节,补零点数增多即可。

如果)(jw H e如果要求线性相位特性,则h(n)还必须满足:根据上式中的正、负号和长度N的奇偶性又将线性相位FIR滤波器分成四类。

要根据所设计的滤波特性正确选择其中一类。

例如,要设计线性相位低通特性,可选择h(n)=h(N-1-n)一类,而不能选h(n)=-h(N-1-n)一类。

2. 实验目的(1)掌握用窗函数法设计 FIR 数字滤波器的原理和方法。

(2)熟悉线性相位 FIR 数字滤波器特性。

(3)了解各种窗函数对滤波特性的影响。

3. 实验要求(1)简述实验目的及原理。

(2)按照实验步骤及要求,比较各种情况下的滤波性能,说明窗口长度 N 和窗函数类型对滤波特性的影响。

(3)总结用窗函数法设计 FIR 滤波器的主要特点。

(4)简要回答思考题。

二、实验仪器设备(标注实验设备名称及设备号)Windows 计算机台号 22Matlab 软件三、实验内容步骤及结果分析1.用升余弦窗设计一线性相位低通 FIR 数字滤波器,截至频率wc = π/ 4 rad。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计课程设计名称:数字信号处理课程设计专业班级:电信学生姓名:学号:指导教师:乔丽红课程设计时间: 6.16-6.20电子信息工程专业课程设计任务书说明:本表由指导教师填写,由教研室主任审核后下达给选题学生,装订在设计(论文)首页一需求分析和设计内容数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

现如今随着电子设备工作频率范围的不断扩大,电磁干扰也越来越严重,接收机接收到的信号也越来越复杂。

为了得到所需要频率的信号,就需要对接收到的信号进行过滤,从而得到所需频率段的信号,这就是滤波器的工作原理。

对于传统的滤波器而言,如果滤波器的输入,输出都是离散时间信号,则该滤波器的冲激响应也必然是离散的,这样的滤波器定义为数字滤波器。

它通过对采样数据信号进行数学运算来达到频域滤波的目的.滤波器在功能上可分为四类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每种又有模拟滤波器(AF)和数字滤波器(DF)两种形式。

对数字滤波器,从实现方法上,具有有限长冲激响应的数字滤波器被称为FIR滤波器,具有无限长冲激响应的数字滤波器被称为IIR 滤波器。

FIR 数字滤波器的主要优点有:一、具有严格的线性相位特性;二、不存在稳定性问题;三、可利用DFT 来实现。

这些优点使FIR 数字滤波器得到了广泛应用。

窗函数法是一种设计FIR 数字滤波器的基本方法,但它不是最佳设计方法,在满足同样设计指标的情况下,用这种方法设计出的滤波器的阶数通常偏大。

在窗函数法的基础上,以所定义的逼近误差最小为准则来进行优化设计的算法,由于其中的逼近误差可根据不同的设计要求进行定义,故此算法适应性强,它既可用于设计选频型滤波器,又适用于非选频型滤波器的设计。

常用的窗函数有矩形窗函数、巴特莱特窗函数、三角窗函数、汉宁(Hann )窗函数、海明(Hamming )窗函数、布莱克曼(Blackman )窗函数、凯塞(Kaiser )窗函数等。

本设计通过MATLAB 软件对FIR 型滤波器进行理论上的实现,利用巴特莱特窗函数设计数字FIR 带通滤波器。

FIR 系统不像IIR 系统那样易取得较好的通带和阻带衰减特性,要取得较好的衰减特性,一般要求H (z )阶次要高,也即M 要大。

FIR 系统有自己突出的优点:系统总是稳定的;易实现线性相位;允许设计多通带(或多阻带)滤波器,后两项都是IIR 系统不易实现的。

FIR 数字滤波器的设计方法有多种,如窗函数设计法、频率采样法和Chebyshev 逼近法等。

随着Matlab 软件尤其是Matlab 的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。

本实验的数字滤波器的MATLAB 实现是指调用MATLAB 信号处理工具箱函数filter 对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n )。

用巴特莱特窗函数法设计一个数字FIR 带通滤波器,要求通带边界频率为400Hz ,500Hz ,阻带边界频率为350Hz ,550Hz ,通带最大衰减1dB ,阻带最小衰减40dB ,抽样频率为2000Hz ,用MATLAB 画出幅频特性,画出并分析滤波器传输函数的零极点;信号)2sin()2sin()()()(2121t f t f t x t x t x ππ+=+=经过该滤波器,其中=1f 450Hz ,=2f 600Hz ,滤波器的输出)(t y 是什么?用Matlab 验证你的结论并给出)(),(),(),(21t y t x t x t x 的图形。

二 设计原理及设计思路1.设计FIR 数字滤波器的基本方法:FIR 数字滤波器的系统函数无分母,为1100()()N N in i i i H Z b z h n z ----====∑∑,系统频率响应可写成:10()()N jwjwn n H e h n e --==∑,令()jw H e =()()j w H w e ϕ,H(w)为幅度函数,()w ϕ称为相位函数。

这与模和辐角的表示方法不同,H(w)为可为正可为负的实数,这是为了表达上的方便。

如某系统频率响应()jwe-,如果采用模和幅角的表示方法,sin4w的变H e=sin4w3j w号相当于在相位上加上π(因-1= j eπ),从而造成相位曲线的不连贯和表达不方便,用()H w eϕ则连贯而方便。

窗函数法又称傅里叶级数法,其设计是在时域进行的。

?函数()j w一般是无限长且非因果的,设计时需用一个合适的窗函数把它截成有限长的因果序列,使对应的频率响应(的傅里叶变换)尽可能好地逼近理想频率响应。

窗函数法的主要缺点是:一、不容易设计预先给定截止频率的滤波器;二、满足同样设计指标的情况下所设计出的滤波器的阶数通常偏大。

一些固定窗函数的特性表2.FIR数字滤波器设计的基本步骤如下:(1)确定技术指标在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。

在很多实际应用中,数字滤波器常被用来实现选频操作。

因此,指标的形式一般在频域中给出幅度和相位响应。

幅度指标主要以2种方式给出。

第一种是绝对指标。

他提供对幅度响应函数的要求,一般应用于FIR滤波器的设计。

第二种指标是相对指标。

他以分贝值的形式给出要求。

本文中滤波器的设计就以线性相位FIR滤波器的设计为例。

(2)逼近确定了技术指标后,就可以建立一个目标的数字滤波器模型(通常采用理想的数字滤波器模型)。

之后,利用数字滤波器的设计方法(窗函数法、频率采样法等),设计出一个实际滤波器模型来逼近给定的目标。

(3)性能分析和计算机仿真上两步的结果是得到以差分或系统函数或冲激响应描述的滤波器。

根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。

三程序流程图四程序源代码clear all; clcFs=2000;fpl=400;fpu=500;fsl=350;fsu=550;wpl=2*pi*fpl/Fs;wpu=2*pi*fpu/Fs;%通带截止频率%wsl=2*pi*fsl/Fs;wsu=2*pi*fsu/Fs;%阻带截止频率%B=wpl-wsl; %计算过渡带宽度%%N=2*ceil(3.32*pi/Bt)+1;%计算所需h(n)长度N0,ceil取大于等于%wc=[(wpl+wsl)/2/pi,(wpu+wsu)/2/pi];%计算理想带通滤波器截止频率%ap=1;as=40;dp=1-10^(-ap/20);ds=10^(-as/20);fenzi=-20*log10(sqrt(dp*ds))-13;fenmu=14.6*B/2/pi;N=ceil(fenzi/fenmu);n=0:N;hn=fir1(N,wc,bartlett(N+1));%调用firl计算带通FIR数字滤波器的h(n)%[H,w]=freqz(hn,1,1024);%计算频率响应函数h(n)%figure(1);magH=20*log10(abs(H)/max(abs(H)));%计算幅度%subplot(3,1,1);stem(n,hn,'.');xlabel('n');ylabel('h(n)');title('巴特莱特窗FIR数字带通滤波器的单位脉冲响应');subplot(3,1,2);plot(w/pi*Fs/2,magH);%绘制幅度特性%title('巴特莱特窗FIR数字带通滤波器的幅度特性');xlabel('频率/Hz');ylabel('20lg|Hg(e^j^\omega)|/max(|Hg(e^j^\omega)|)');grid on;subplot(3,1,3);plot(w/pi*Fs/2,unwrap(angle(H)));%频率响应相位% title('巴特莱特窗FIR数字带通滤波器的相位特性');xlabel('频率/Hz');ylabel('相位/rad');grid on;figure(2);zplane(hn,1);;%绘制零极点图%title('巴特莱特窗FIR数字带通滤波器系统函数的零极点图');legend('零点','极点');grid on;n=0:1023;dt=1/10000;t=n*dt;f1=450;f2=600;x=sin(2*pi*f1*t)+sin(2*pi*f2*t);x1=sin(2*pi*f1*t);x2=sin(2*pi*f2*t);y=filter(hn,1,x);figure(3);subplot(3,1,1);plot(x);title('输入信号x(t)');xlabel('t/s');ylabel('x(t)');grid on;axis([0,50*pi,-2,2]);subplot(3,1,2);plot(x1);grid on;title('输入信号x1(t)');xlabel('t/s');ylabel('x1(t)');axis([0,50*pi,-2,2]);subplot(3,1,3);plot(x2);grid on;title('输入信号x2(t)');xlabel('t/s');ylabel('x2(t)');axis([0,50*pi,-2,2]);figure(4)plot(y);grid on;title('输出信号y(t)');xlabel('t/s');ylabel('y(t)');axis([0,50*pi,min(y),max(y)]);%频谱图fs=2000;N=1024;n=0:N-1;t=n/fs;f1=450;f2=600;x=sin(2*pi*f1*t)+sin(2*pi*f2*t)y=filter(hn,1,x);Y1=fft(x,N);Y2=fft(y,N)mag1=abs(Y1);mag2=abs(Y2);f=n*fs/N;figure(5)subplot(2,1,1);plot(f(1:N/2),mag1(1:N/2));title('输入信号的频谱图');xlabel('频率/HZ');ylabel('振幅');grid on;subplot(2,1,2);plot(f(1:N/2),mag2(1:N/2));title('输出信号的频谱图');xlabel('频率/HZ');ylabel('振幅');grid on;五仿真结果图巴特莱特窗FIR数字带通滤波器的单位脉冲响应,幅度特性及相位特性巴特莱特窗FIR数字带通滤波器系统函数的零极点图输入信号x1(t),x2(t)及和信号x(t)输出信号y(t)输入信号的频谱图及输出信号的频谱图六参考资料[1] 胡广书. 数字信号处理—理论、算法与实现[M]. 北京: 清华大学出版社, 1997.[2] R. Lyons. Understanding Digital Signal Processing [M]. 2nd ed. Prentice HallPTR., 2004.[3] A.V.奥本海姆, R.W.谢弗 and J.R.巴克. 离散时间信号处理[M]. 第二版. 西安交通大学出版社, 2001.[4] S. K. Mitra. Digital Signal Processing: A Computer-Based Approach[M]. 3rded. McGraw-Hill, 2005.[5] 程佩青,《数字信号处理教程》,清华大学出版社,2001[6] 郭仕剑,《MATLAB 7.x数字信号处理》,人民邮电出版社,2006[7] 陈怀琛,数字信号处理教程——MATLAB释义与实现,电子工业出版社,2004七设计心得通过本次课程设计,不仅加深了对理论知识的了解,巩固了课堂上所学的理论知识,而且还增加了自己的动手能力,并且理解与掌握数字信号处理中的基本概念、基本原理、基本分析方法。

相关文档
最新文档