七年级数学上册第3课时 有理数的乘法运算律
最新人教版七年级数学上册《第3课时 有理数的乘法运算律》优质教案
1.4.1 有理数的乘法第3课时有理数的乘法运算律一、导学1.课题导入:在小学的数学学习中,学习乘法的交换律、结合律与分配律,那么学习了有理数后,这些运算律是否仍然适用呢?这就是这节课我们要研究的内容.2.学习目标:(1)知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.(2)过程与方法通过对问题的探索,培养观察、分析和概括的能力.(3)情感态度能面对数学活动中的困难,有学好数学的自信心.3.学习重、难点:重点:乘法的运算律.难点:灵活运用运算律进行计算.4.自学指导:(1)自学内容:教材第32页“练习”以下到教材第33页的内容.(2)自学时间:7分钟.(3)自学要求:认真阅读课文,体验运算律在计算中有什么作用.(4)自学参考提纲:①乘法交换律是:两个数相乘,交换因数的位置,积相等,写成数学式子为ab=ba,举两个数(至少有一个是负数)验证乘法交换律.3×(-4)=(-4)×3=-12②乘法结合律是:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,写成数学式子为(ab)c=a(bc),举三个数(至少有一个数是负数)验证乘法结合律.[3×(-4)×5]=3×[(-4)×5]=-60③分配律是:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,写成数学式子为a(b+c)=ab+ac,举三个数(至少有一个数是负数)验证分配律.3×(-4+5)=3×(-4)+3×5=3④例4中,比较两种解法,他们在运算顺序上有什么区别?解法1、2运用了什么运算律?哪种解法更简便?解法1先算加减法,再算乘法;解法2先算乘法,再算加减法;运用了乘法分配律;第二种更简便.⑤下列式子的书写是否正确.a×b×c ab·2 m×(m+n)三个式子的书写均不正确.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生中了解学生自学中存在的问题.(2)差异指导:指导困难的学生,并引导小组讨论.2.生助生:学生相互帮助解决自学中的疑难问题.四、强化1.解题要领:①观察算式;②看是否可以进行简便运算;③运算顺序.2.代数式的书写要求:①数与字母相乘;②字母与字母相乘.3.计算:(1)(-85)×(-25)×(-4)(2)(-78)×15×(-117)(3)(910-115)×(-30)(4) (-65)×(-23)+(-65)×(+173)解:(1)-8500;(2)15;(3)-25;(4)-6.五、评价1.学生的自我评价(围绕三维目标):交流本节课学习中的得与失.2.教师对学生的评价:(1)表现性评价:对本节课学习过程中的积极表现与不足进行总结. (2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课主要学习乘法运算律在有理数乘法中的运用,教学时要强调在学习过程中自主探究,合作交流,让学生在学习过程中体会自主探究,合作交流的乐趣,形成主动探索问题的习惯.一、基础巩固(60分)1.(10分)计算(-100015)×(5-10)的值为(D)A.1000B.1001C.4999D.50012.(10分)下列计算(-55)×99+(-44)×99-99正确的是(C)A.原式=99×(-55-44)=-9801B.原式=99×(-55-44+1)=-9702C.原式=99×(-55-44-1)=-9900D.原式=99×(-55-44-99)=-196023.(40分)计算.(1)(-19)×(-98)×0×(-25)(2)(-0.2)×(-0.4)×(-212)×(-15)(3)15×(-56)×145×(-114)(4)(-100)×(-4)×(-1)×0.25解:(1)0;(2)0.04;(3)2258;(4)-100二、综合应用(30分)4.(30分)计算.(1)4×(-96)×0.25×(-148)(2)(8-113-0.04)×(-34)(3)(+3313)×(-2.5)×(-7)×(+4)×(-0.3)(4)791314×(-7)(5)(-14)×23-3.14×(-27)+(-13)×14+57×3.14解:(1)2;(2)-4.97;(3)-700;(4)-11192;(5)-10.86三、拓展延伸(10分)5.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6,如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?类似地:2ab-5ab又等于什么呢?解:-2a+3a=(-2+3)a;2ab-5ab=(2-5)ab.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
七年级数学上册第3章有理数的运算3.2有理数的乘法与除法教学课件新版青岛版
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。0不能作除 数。
小练习
计算:(- 36)÷(-4) (+72 )÷ (-8 ) ( -0.24 )÷(+0.4) (-12 )÷( +3) 0 ÷(-9) (-8) ÷(-2)
观察并思考:
3 4 5 12 5 60
3 4 5 3 20 60 即 3 4 53 4 5
从这两个式子, 你又能发现什么 规律呢?
三个数相乘,先把前两个数相乘,或者先把后 两个数相乘,积相等。教学来自件数学 七年级上册 青岛版
第3章 有理数的运算
3.2 有理数的乘法与除法
3.2 有理数的乘法与除法(1)
1、在汛期,如果黄河水 位每天上升2厘米,那么3
6 天后的水位比今天高还是 低?高(或低)多少? 注:水位上升记为正,下 降记为负,今天记为0, 今天之前记为负,今天之 后记为正。比今天的水位 高记为正,比今天的水位 低记为负。
6
今天高还是低?高(或低)
多少?
0×(-3)
=0
6、如果水位每天下降2厘 米,那么0天后的水位比 今天高还是低?高(或低) 多少? (-2)× 0 =0
今天水位
(+2)×(+3)=+6 (+2)×(-3)=-6 (-2)×(+3)=-6 (-2)×(-3)=+6
0×(-3)= 0 (-2)× 0= 0 观察上面的算式, 积的符号与因数的符号之间有什么关系? 积的绝对值与因数的绝对值之间又有什么关系?
7 5
+ +
3.6
4 9
1.4.1有理数的乘法运算律(教案)2022秋七年级上册初一数学人教版(安徽)
1.理论介绍:首先,我们要了解有理数乘法的基本概念。有理数乘法是指将两个或多个有理数相乘的运算。它是数学运算的基础,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算2米长、3米宽的矩形面积,我们可以使用乘法运算得出答案。
3.重点难点解析:在讲授过程中,我会特别强调乘法交换律、结合律和分配律这两个重点。对于难点部分,比如负数乘法,我会通过举例和比较来帮助大家理解。
三、教学难点与重点
1.教学重点
(1)有理数乘法运算律的掌握:包括乘法交换律、结合律和分配律在有理数乘法中的应用。
-乘法交换律:a×b = b×a,强调乘法运算中因数位置互换不改变结果;
-乘法结合律:(a×b)×c = a×(b×c),强调在连续进行乘法运算时,因数结合方式不影响结果;
-乘法分配律:a×(b+c) = a×b + a×c,强调乘法运算在分配到加法运算中的每个加数时,结果不变。
1.4.1有理数的乘法运算律(教案)2022秋七年级上册初一数学人教版(安徽)
一、教学内容
本节课选自2022秋七年级上册初一数学人教版(安徽)第1章《有理数》第4节“有理数的乘法”,着重讲解1.4.1有理数的乘法运算律。内容包括:
1.掌握有理数乘法运算律,并能运用其简便计算;
2.理解并掌握乘法交换律、结合律和分配律在有理数乘法中的应用;
其次,关于教学难点和重点的把握,我在课堂上特别强调了乘法交换律、结合律和分配律,并通过举例进行解释。但从学生的反馈来看,部分同学对这些运算律的理解仍存在困难。为此,我计划在下一节课中,增加一些针对性的练习,让学生在实际操作中进一步掌握这些运算律。
此外,课堂上的实践活动和小组讨论环节,我发现学生们积极参与,课堂氛围较为活跃。但在小组讨论过程中,部分学生表现出依赖性,自己的想法和观点不够明确。为了培养学生的独立思考能力,我将在今后的教学中,加强对学生的引导,鼓励他们提出自己的观点,并学会倾听他人的意见。
人教版数学七年级上册第一章有理数有理数的乘法
1.4.1 有理数的乘法
栏目索引
3.(独家原创试题)我们用有理数的运算研究下面的问题.规定:水位上升 为正,水位下降为负.如果水位每天下降4 cm,那么5天后的水位变化用算 式表示正确的是 ( ) A.(+4)×(+5) B.(+4)×(-5) C.(-4)×(+5) D.(-4)×(-5)
答案 C 根据“水位每天的变化情况×天数”列出算式即可.故选C.
(3)0×(-2 019)=0.
(4)(-3.25)× 123
=- 3.25
2 13
=- 143
2 13
=- 1 .
2
1.4.1 有理数的乘法
栏目索引
温馨提示 运用乘法法则计算时,先确定积的符号,再确定积的绝对值, 然后进行计算.为了便于运算,是带分数的因数先将其化为假分数再运 算.
12
6
正解
-24× 172
5 6
1
=-24× 7 -(-24)× 5-(-24)×1=-14+20+24=30.
12
6
栏目索引
1.4.1 有理数的乘法
栏目索引
错因分析 错解一运用分配律把括号前面的数乘进括号内时,忽略了24 前面的负号,导致错误;错解二运用分配律把括号前面的数乘进括号内
栏目索引
1.4.1 有理数的乘法
栏目索引
知识点二 有理数的倒数
5.(2018江苏常州中考)-3的倒数是 ( )
A.-3 B.3 C.- 1 D. 1
3
3
答案 C 乘积为1的两个数互为倒数,因为-3与- 1 的乘积为1,所以-3的
2021秋七年级数学上册1、4有理数的乘除法第3课时有理数的乘法运算律习题新人教版
课1题. 2 有 理 数 的 乘 除 法 第43 课 时 有 理 数 的 乘 法 运 算 律
习题链接
温馨提示:点击 进入讲评
1C 2C 3 4B
5C 6B 7A 8
答案呈现
9
1 在算式变形:1.25×-34×(-8)=1.25×(-8)×-34中, 运用了( C )
A.分配律
B.乘法交换律和分配律
【点拨】 利用分配律最易出现的两种错误是Leabharlann 乘和计算过程中出现符号错误.
8 【中考•河北】
如图,请你参考老师的讲解,用运算律简便计算: (1)999×(-15);
解:原式=(1 000-1)×(-15) =-15 000+15 =-14 985.
(2)999×11845+999×-15-999×1835. 解:原式=999×[11845+(-15)-1835] =999×100
6 【2019·贺州】计算1×13+3×15+5×17+7×19+…+37×139
的结果是( B )
A.1397
B.1399
C.3379
D.3389
【点拨】 原式=12×(1-13+13-15+15-17+17-19+…+317-319)
=12×1-319
=1399.
7 【原创题】用分配律计算(-3)×4-13+1的过程正确的 是( A ) A.(-3)×4+(-3)×-13+(-3)×1 B.(-3)×4+(-3)×-13 C.(-3)×(-4)-(-3)×-13+(-3)×1 D.(-3)×4+3×-13+(-3)×1
4 在计算152-79+23×(-36)时,可以避免通分的运算 律是( B ) A.加法交换律 B.分配律 C.乘法交换律 D.加法结合律
1.4.1 第3课时 有理数的乘法运算律
1.4 有理数的乘除法
4 5 解:(1)(-7)×- × 3 14 5 4 =(-7)× ×- 14 3 5 4 - - = × 2 3
7 5 3 7 (2) - + - ×36 9 6 4 18
am+bm+cm 解法二: 乘法的分配律是(a+b+c)m=________________ . 根
据乘法的分配律先做三个乘法,后做加减法.具体步骤如下: 1 1 1 12 12 12 原式= ×______+ ×______- ×______( 乘法分配律的应 4 6 2 用)
3+2-6 =______________( 计算三个乘法)
1.4 有理数的乘除法
3.分配律:有理数乘法中,一个数同两个数的和相乘,等于 把这个数分别同这两个数相乘,再把积________ 相加 ,即a(b+c)
ab+ac . =__________
[点拨] 分配律是乘法对加法的分配律,加数的个数可以不限 于两个.一个数除以多个数的和不能用分配律.
1.4 有理数的乘除法
2 2 1 5 (2)(-13)× -0.34× + ×(-13)- ×0.34. 3 7 3 7
[解析] (1)直接计算比较麻烦,观察发现三个乘积式中都有 2 - 这个因数,因此可反用乘法分配律简化计算.(2)观察式 3 子可发现第一、三个乘积式中都有-13 这个因数,第二、四 个乘积式中都有 0.34 这个因数, 所以可分别反用乘法分配律 简化计算.
1.4 有理数的乘除法
2 解:(1)原式=- ×(15-16-20) 3 2 =- ×(-21)=14. 3 2 1 2 5 (2)原式=(-13)× + ×(-13)-0.34× - ×0.34 3 3 7 7 2 1 2 5 =(-13)×( + )-0.34×( + ) 3 3 7 7 =-13-0.34 =-13.34.
人教版七年级数学上册课件第3课时 有理数的乘法运算律
预习反 馈
2.计算:(-3) 5 ( 9) ( 1 ) (8) (1)
65
4
解:-9
3.计算:
(1)(- 3) (8 4 14);
4
3 15
(2)19 18 (15). 19
解:(1)-4 3 ,(2)-299 4 .
10
19
名校讲 坛
例1 在算式每一步后面填上这一步应用的运算律: [(8×4)×125-5]×25 =[(4×8)×125-5]×25(乘法交换律) =[4×(8×125)-5]×25(乘法结合律) =4 000×25-5×25(乘法分配律) =99 875.
D(. 16 2 2) 3 7 16
(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).
解:(1) 10.(2) 19 .(3)250. 21
课堂小 结
1.有理数乘法交换律. 2.有理数乘法结合律. 3.有理数乘法分配律.
A.(3+0.96)×(-99) B.(4-0.04)×(-99)
C.3.96×(-100+1)
D.3.96×(-90-9)
3.对于算式2 018×(-8)+(-2 018)×(-18),逆用分配律写成积的形式是( C )
A.2 018×(-8-18)
B.-2 018×(-8-18)
C.2 018×(-8+18)
D.-2 018×(-8+18)
巩固训 练
4.计算13 5 3 ,最简便的方法是( D ) 7 16
A(. 13+ 5) 3 B(. 14- 2) 3
7 16
7 16
C(. 10+3 5) 3 7 16
5.计算:
(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;
七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题课件新版新
易错点 利用分配律计算时,漏乘或弄错符号
9.计算:|-12|×
1 3
1
3 4
1 12
1
6
.
1
解:原式=12×3
3
+12×(-1)+12×4
+12×
1 12
1
+12×6
=4-12+9-1+2
=2.
10.下列计算(-55)×99+(-44)×99-99正确的是( C ) A.原式=99×(-55-44)=-9801 B.原式=99×(-55-44+1)=-9702 C.原式=99×(-55-44-1)=-9900 D.原式=99×(-55-44-99)=-19 602
解:原式=6.868×(-5-12+17)
=0.
知识点二 有理数乘法运算律的应用 8.建设某场馆时需烧制半径分别为0.24 m,0.37 m,0.39 m的三个圆形钢 筋环,问需要多少钢筋?(π取3.14) 解:需要钢筋2π×0.24+2π×0.37+2π×0.39=2π×(0.24+0.37+0.39)=2π= 6.28(m). 答:需要6.28 m钢筋.
7.用简便方法计算:
(1)
7
6
15
6
71 5; Nhomakorabea解:原式=
7
6
6
7
15
1 5
=1×(-3)
=-3.
(2)
1
3 8
2
1 3
0.75
×(-24);
解:原式= 11 24 7 24 3 24
8
3
4
=-33+56-18
=5.
(3)6.868×(-5)+6.868×(-12)+17×6.868.
七年级数学上册《有理数乘法的运算律》优秀教学案例
3.培养学生勇于面对困难、敢于挑战的精神,使他们具备克服困难、解决问题的信心。
4.引导学生认识到数学在生活中的重要作用,提高他们的数学素养,为将来的学习和工作打下坚实基础。
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。通过有针对性的教学策略,激发学生的学习兴趣,帮助他们掌握有理数乘法的运算规律,提高数学素养,为未来的学习生活奠定基础。
(五)作业小结
为了巩固本节课所学知识,我会布置以下作业:
1.完成课本上的练习题,运用有理数乘法运算律进行计算。
2.结合生活实际,设计一道运用有理数乘法解决的实际问题,并与同学分享。
3.总结本节课的学习心得,反思自己在学习过程中的优点和不足。
五、案例亮点
1.生活情境的巧妙融入
本教学案例的最大亮点之一是将生活情境与数学知识紧密结合。通过创设购物打折、温度变化等实际问题,让学生在解决具体问题的过程中,自然而然地运用有理数乘法运算。这种设计既激发了学生的学习兴趣,又使他们认识到数学知识在生活中的广泛应用,增强了数学学习的实用性。
2.设计多样化的教学活动,如小组讨论、案例分析等,让学生在实践中掌握有理数乘法的运算方法。
3.运用问题驱动的教学方法,激发学生的求知欲,培养他们主动探究、积极思考的学习习惯。
4.结合生活实际,让学生感受数学知识的实用价值,提高他们将数学知识应用于解决实际问题的能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,激发他们对数学知识的热爱和兴趣。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握有理数乘法的运算律,我将创设贴近生活的教学情境,让学生在具体的情境中感受数学知识的应用。例如,通过设计购物打折、温度变化等实际问题,让学生在解决问题的过程中运用有理数乘法运算。这样的情境创设能激发学生的学习兴趣,使他们更加投入地进行数学学习。
七年级数学《有理数的乘法运算律》图文详解PPT
知识点 1 多个有理数相乘
1.计算: (1)1×2×3×4=____; (2)(-1)×2×3×4=____; (3)(-1)×(-2)×3×4=____; (4)(-1)×(-2)×(-3)×4=____; (5)(-1)×(-2)×(-3)×(-4)=____.
知1-讲
知1-讲
2.通过上面的计算,填写下表:
2 3
= 4.
知2-讲
总结
知2-讲
多个有理数相乘时,通常运用乘法交换律或乘法结 合律把能约分的项先结合,使计算简便.
知2-练
1 计算:(1)(-2)×5×(-0.25);(2)100×15×(-0.01);
(3)
1 2
2 3
3 4
.
解:(1)原式=[(-2)×5]×(-0.25)=-10×(-0.25)=2.5.
6
知2-讲
解:(1)
原式=
1 2
24
1 6
24
3 8
24
5 12
24
=12 4 9 10
=7;
(2)
原式=
7
5 6
6
5 12
5 7 12
=7 5 12
6
= 94.
总结
知2-讲
乘法对加法的分配律是一个恒等变形的过程,因此, 我们在运用的过程中,不但要会正用,还要会逆用.
知识点 2 有理数的乘法运算律
知2-讲
计算:
(1)(-4)×8=______,
8×(-4) =______;
(-5)×(-7)=______, (-7)×(-5)=______ .
(2)[(-3)×2]×(-5)=______,(-3)×[2×(-5) ]=______,
有理数的乘除法(教师版)2021-2022学年七年级数学上册同步精品讲义(华师大版)
第7讲有理数的乘除法目标导航1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2.理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培养观察、分析、归纳及运算能力.知识精讲知识点01 有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.【微点拨】: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.【微点拨】:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c =a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.【微点拨】:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd =d(ac)b .一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad .(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”. 【即学即练1】1.算式(﹣121)×(﹣341)×32之值为何?( ) A .41 B . 1211 C . 411D .413【思路】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可 【答案】D . 【解析】 解:原式=23×413×32=413 . 【总结】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘. 2. 计算(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭; (2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案】几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零. (1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-;(2)(1-2)(2-3)(3-4)…(19-20)19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘;(3)(-5)×(-8.1)×3.14×0=0.【总结】几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.3.运用简便方法计算:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭(2)(-0.25)×0.5×(-100)×4(3)111 (5)323(6)3333 -⨯+⨯+-⨯【思路】 (1)根据题目特点,可以把51056-折成51056--,再运用乘法分配律进行计算.(2)运用乘法结合律,把第1、4个因式结合在一起.(3)逆用乘法分配律:ab+ac=a(b+c).【答案】解:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭5105(12)6⎛⎫=--⨯+⎪⎝⎭510512126=-⨯-⨯(分配律)1260101270=--=-(2)(-0.25)×0.5×(-100)×4=(-4×0.25)×[0.5×(-100)] (交换律)=-1×(-50)=50(结合律)(3)111(5)323(6)3333-⨯+⨯+-⨯11[(5)2(6)]39333⎛⎫=-++-⨯=-⨯+⎪⎝⎭(逆用乘法的分配律)27330=--=-【总结】首先要观察几个因数之间的关系和特点.适当运用“凑整法”进行交换和结合.知识点02 有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.【微点拨】:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是12-,-2和12-是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b ab b÷=≠. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 【微点拨】:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些. (2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 【即学即练2】1.计算:(1)(-32)÷(-8) (2)112(1)36÷-【答案】 (1)(-32)÷(-8)=+(32÷8)= 4 ……用法则二进行计算.(2)117776212363637⎛⎫⎛⎫⎛⎫÷-=÷-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……用法则一进行计算. 【总结】(1)乘法、除法的符号法则是一致的,两数相乘除,同号得正,异号得负;(2)除法的两个法则是一致的,应学会灵活选择. 2.计算:(1) 1.25(0.375)-÷- 【答案】原式535810()()48433=+÷=+⨯=知识点03 有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果. 【知识拓展3】 1.计算:(﹣2)×33121⨯⎪⎭⎫⎝⎛-÷ 【思路】原式利用除法法则变形,约分即可得到结果. 【答案】解:原式=2×21×3×3 =9.【总结】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键. 2.计算:(-9)÷(-4)÷(-2)【答案】 (-9)÷(-4)÷(-2)=-9÷4÷2=1199428-⨯⨯=-3.计算:(1)14410(2)893-÷⨯÷- (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】 (1)14410(2)893-÷⨯÷-194181941243108432843216⎛⎫=-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭ (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3511717435⎛⎫⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 351171174354⎛⎫=-⨯⨯⨯=-⎪⎝⎭知识点04 有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【知识拓展4】 1.计算(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭; (2)111351226412⎛⎫⎛⎫-÷-+-+ ⎪ ⎪⎝⎭⎝⎭【答案】(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭1135(12)26412⎛⎫=-+-+⨯- ⎪⎝⎭1135(12)(12)(12)(12)26412⎛⎫=-⨯-+⨯--⨯-+⨯- ⎪⎝⎭=6-2+9-5=8(2)法1:原式=16295181121()()121212121288-+-+⎛⎫⎛⎫-÷=-÷-=⨯= ⎪ ⎪⎝⎭⎝⎭法2:由(1)知:1135182641212⎛⎫⎛⎫-+-+÷-= ⎪ ⎪⎝⎭⎝⎭,所以16295112128-+-+⎛⎫⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭ 【总结】除法没有分配律,在进行有理数的除法运算时,若除数是和的形式,一般先算括号内的,然后再进行除法运算,也可以仿照方法2利用倒数关系巧妙解决. 2.75318 1.456 3.9569618⎛⎫-+⨯-⨯+⨯⎪⎝⎭【答案】 原式()753181818 1.456 3.9569618⎛⎫=⨯-⨯+⨯+-⨯+⨯ ⎪⎝⎭(14153)( 1.45 3.95)6=-++-+⨯2 2.5617=+⨯=知识点05 利用有理数的加减乘除,解决实际问题气象统计资料表明,高度每增加1000米,气温就降低6℃.如果现在地面的气温是27℃,那么8000米的高空的气温大约是多少?【思路】解决此题的关键是明确高度变化与气温变化的关系.由于“高度每增加1000米,气温就降低6℃”,8000米的高空比地面高度增加8000米,因此气温降低6×8=48℃,由此便可求出高空的气温. 【答案】 解:80002762748211000-⨯=-=-(℃) 因此8000米的高空的气温大约是-21℃.【总结】本题是生活实际中的问题,关键是读懂题意,弄清各数量之间的关系,再列出正确的算式.考法01 有理数的乘法运算1.计算:(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭; (2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案】几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-;(2)(1-2)(2-3)(3-4)…(19-20)19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘;(3)(-5)×(-8.1)×3.14×0=0.能力拓展【总结】几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.但注意第一个负因数可以不用括号,但是后面的负因子必须加括号. 2.简便计算:(1)(﹣48)×0.125+48×()4548811⨯-+ (2)(1814395+-)×(﹣36) 【思路】(1)利用乘法的分配律先提取48,再进行计算即可得出答案;(2)运用乘法分配律进行计算即. 【答案】解:(1)(﹣48)×0.125+48×()4548811⨯-+ =48×(﹣81+811﹣810) =48×0 =0; (2)(1814395+-)×(﹣36) =﹣20+27﹣2 =5.【总结】此题考查了有理数的乘法,用到的知识点是乘法的分配律,解题的关键是运用乘法分配律进行计算.3.用简便方法计算: (1)2215130.34(13)0.343737-⨯-⨯+⨯--⨯; (2) 3.1435.2 6.28(23.3) 1.5736.4-⨯+⨯--⨯. 【答案】(1)原式2125(13)(13)0.340.343377⎡⎤⎡⎤⎛⎫⎛⎫=-⨯+-⨯+⨯-+⨯- ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦2125(13)0.343377⎡⎤⎡⎤⎛⎫⎛⎫=-⨯++⨯-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦(13)10.34(1)130.3413.34=-⨯+⨯-=--=-.(2) 3.1435.2 6.28(23.3) 1.5736.4-⨯+⨯--⨯=(-3.14)×35.2+(-3.14)×2×23.3+(-3.14)×18.2 =-3.14×(35.2+46.6+18.2)=-3.14×100 =-314.考法02 有理数的除法运算1.计算: 17(49)2(3)33⎛⎫-÷-÷÷- ⎪⎝⎭【思路】对于乘除混合运算,首先由负数的个数确定结果的符号,同时应将小数化成分数,带分数化成假分数,算式化成连乘积的形式,再进行约分.但要注意除法没有分配律. 【答案】解:17(49)2(3)33⎛⎫-÷-÷÷- ⎪⎝⎭ 331(49)773⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭331493773⎛⎫=-⨯⨯⨯=- ⎪⎝⎭【总结】进行乘除混合运算时,往往先将除法转化为乘法,再确定积的符号,最后求出结果. 3.计算:111(3)(2)(1)335-÷-÷- 【答案】原式103525()()()37621=-⨯-⨯-=-题组A 基础过关练1.﹣3的倒数为( ) A .﹣31 B . 31C . 3D . ﹣3【答案】A .2.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③32×(﹣49)÷(﹣1)=23;④(﹣4)÷21×(﹣2)=16.其中正确的个数( ) A .4个 B .3个 C .2个 D .1个 【答案】C【解析】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;分层提分③32×(﹣49)÷(﹣1)=23,故原题计算正确; ④(﹣4)÷21×(﹣2)=16,故原题计算正确,正确的计算有2个, 故选:C .3. 下列说法错误的是( )A.一个数与1相乘仍得这个数.B.互为相反数(除0外)的两个数的商为-1. C .一个数与-1相乘得这个数的相反数. D.互为倒数的两个数的商为1. 【答案】D【解析】D 错误,因为互为倒数的两个数的积是1,而不是商. 4.两个数之和为负,商为负,则这两个数应是 ( )A .同为负数B .同为正数C .一正一负且正数的绝对值较大D .一正一负且负数的绝对值较大 【答案】D【解析】商为负,说明两数异号;和为负,说明负数的绝对值较大. 5.计算:1(2)(2)2⎛⎫-÷-⨯- ⎪⎝⎭的结果是( ) A .-8 B .8 C .-2 D .2 【答案】A【解析】1(2)(2)(2)(2)(2)82⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪⎝⎭6. 在算式4|35|--中的所在位置,填入下列哪种运算符号,计算出来的值最小( ).A .+B .-C .×D .÷ 【答案】C【解析】填入“+”时,算式4-|-3+5|=4-2=2;填入“-”时,算式4-|-3-5|=4-8=-4;填入“×”时,算式4-|-3×5|=4-15=-11;填入“÷”时,4-|-3÷5|=324355-=.因此,填入“×”时,计算出来的值最小.7. 下列计算:①0-(-5)=-5;②(3)(9)12-+-=-;③293342⎛⎫⨯-=- ⎪⎝⎭;④(36)(9)4-÷-=-;⑤若(2)3x =-⨯,则x 的倒数是6.其中正确的个数是( ). A .1 B .2 C .3 D .4 【答案】B【解析】②③正确.0-(-5)=5;(-36)÷(-9)=4.题组B 能力提升练1.21-的倒数是( ) A .﹣2 B . 2C . 21D . 21-【答案】A.2. 若|x-1|+|y+2|+|z-3|=0,则(x+1)(y-2)(z+3)的值为( ). A .48 B .-48 C .0 D .xyz 【答案】B【解析】由|x-1|+|y+2|+|z-3|=0可求得x =1,y =-2,z =3, 所以(x+1)(y-2)(z+3)=2×(-4)×6=-48.3.已知a <0,-1<b <0,则a ,ab ,ab 2由小到大的排列顺序是( ). A .a <ab <ab 2B .ab 2<ab <a C .a <ab 2<ab D .ab <a <ab 2【答案】C【解析】利用特殊值法,取a =-2,b =12-,则ab =-2×12⎛⎫- ⎪⎝⎭1=,212ab =-,易比较得到. 4. 若“!”是一种数学运算符号,并且1!=1,2!=2×1!,3!=3×2×1,4!=4×3×2×1,……,则100!98!的值是为( )A .5040B .99!C .9900D .2! 【答案】C【解析】这类问题需根据题中所给的运算法则计算即可.100!=100×99×98×…×2×1,98 !=98×97×…×2×1,故原式=100×99=99005.下列计算:①0-(-5)=-5;②(3)(9)12-+-=-;③293342⎛⎫⨯-=- ⎪⎝⎭;④(36)(9)4-÷-=-;⑤若(2)3x =-⨯,则x 的倒数是6.其中正确的个数是( ). A .1 B .2 C .3 D .4【答案】B【解析】②③正确.6.(﹣6)×(﹣31)= . 【答案】2.【解析】(﹣6)×(﹣31)=2. 7.若0,0a b ab +<>,则a 0,b 0,a b 0. 【答案】<,<,>【解析】由0ab >可得:,a b 同号,又0a b +<,所以,a b 同负,进而可得:这两个数的商应为正数.8. 若|a|=5,b =-2,且a ÷b >0,则a+b =________.【答案】-7【解析】由|a|=5,知a =±5.而ab >0,说明a 、b 是同号,而b =-2<0,所以a =-5,所以a+b =(-5)+(-2)=-7.9.在-2,3,4,-5这四个数中,任取两个数相乘所得积最大的是 ,所得的商最小是【答案】12;-2【解析】选择3和4相乘所得的积最大,选择4和-2,并且4除以-2所得的商最小.10.如果6个不等于0的数相乘得积为负数,则在这6个乘数中,正的乘数有 个.【答案】1,3,5【解析】积为负数,说明其中负因子的个数为奇数个,因为共有偶数个因子,所以正因子的个数也为奇数个,所以为:1,3,511.如果0,0ac bc b><,那么a 0. 【答案】< 【解析】由0bc <可得:,b c 异号,又bc 与c b 同号,所以0,c b <而0,ac b >所以0a < 14. (1)3x x →-→+→输入输出是一个简单的数值运算程序,当输入-1时,则输出的数值____.【答案】4【解析】(-1)×(-1)+3=4题组C 培优拔尖练15.已知||4x =,1||2y =,且0xy <,则x y 的值是________. 【答案】-8【解析】因为|x|=4,所以x =4或-4.同理,12y =或12-.又因为0xy <,所以x 、y 异号.所以8x y=-. 16.如果0y x <<,则化简x xy x xy += . 【答案】0【解析】0,1x x x >=;0,0,1xy x y xy><=-,所以和为0. 17. 已知,则____________. 【答案】-118.计算:(1)(-0.125)×(-18)×(-8)×0×(-1)(2)113(24)348⎛⎫-+⨯- ⎪⎝⎭ (3)(-6)×45+(-6)×55(4)11(15)13632⎛⎫-÷--⨯⎪⎝⎭ 【解析】(1)(-0.125)×(-18)×(-8)×0×(-1)=0(2)113(24)86911348⎛⎫-+⨯-=-+-=- ⎪⎝⎭(3)(-6)×45+(-6)×55=(-6)×(45+55)=-600(4)原式25(15)66⎛⎫=-÷-⨯ ⎪⎝⎭= 63(15)621255⎛⎫=-⨯-⨯= ⎪⎝⎭ 19.计算:(1)计算:117313()(48)126424-+-⨯- (2)11(370)0.2524.5(25%)542⎛⎫⎛⎫-⨯-+⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭(3)15(3)3(811)236⎛⎫-÷-÷---⨯ ⎪⎝⎭(4)(-9)÷(-4)÷(-2) (5))200411)(120031()151)(411)(131)(211(--⋯---- (6)2004×20032003-2003×20042004【解析】(1)117313()(48)126424-+-⨯-117313(48)(48)(48)(48)126424=⨯--⨯-+⨯--⨯- 445636262=-+-+= (2)因为10.2525%4==.从而加数中都含有14,所以逆用乘法分配律,可使运算简便. 原式1111137024.54424=⨯+⨯+⨯11137024.524⎛⎫=++⨯ ⎪⎝⎭14001004=⨯= (3)原式=6183-33+3(3)296555⨯⨯--⨯=-++= (4)原式=-9÷4÷2=1199428-⨯⨯=- (5) 原式=20042003)20032002()54(43)32(21⨯-⨯⋯⨯-⨯⨯-⨯=-200420032003200254433221⨯⨯⋯⨯⨯⨯⨯=-20041 (6)原式= 2004×2003×10001-2003×2004×10001=0.20.已知:a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()||cd a b m m m ++-的结果是多少? 【解析】由题意得a+b =0,cd =1,m =1或m =-1.当m =1时,原式101|1|01=+⨯-=;当m =-1时,原式10(1)|1|21=+⨯---=--. 综合可知:()||cd a b m m m++-的结果是0或-2.21.计算6÷(﹣3121+),方方同学的计算过程如下,原式316216÷+⎪⎭⎫ ⎝⎛-÷﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【解析】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣63+62) =6÷(﹣61) =6×(﹣6)=﹣36.22.已知:a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()||cd a b m m m ++- 的结果是多少? 【解析】由题意得a+b =0,cd =1,m =1或m =-1.当m =1时,原式101|1|01=+⨯-=;当m =-1时,原式10(1)|1|21=+⨯---=--. 综合可知:()||cd a b m m m++-的结果是0或-2.。
2.5 有理数的乘法与除法(第3课时 有理数的除法)(课件)七年级数学上册(苏科版2024)
= -2
1
7
= -2
1
(14) 7 (14)
7
新知探究
仿照上面的算式,填空:
(1)(-10)÷2=(-10)×
(2)24÷(-8)=24×
(3)(-12)÷(-4)=(-12)×
(4)0÷(-2)=0 ×
你有什么发现吗?
能归纳出有理数的
除法法则吗?
概念归纳
一般地,可以得到有理数除法法则:
+ b 的值是
±1 .
点拨:因为| a |=3,| b |=4,且 <0,所以 a =
3, b =-4或 a =-3, b =4.所以 a + b =-1或1.
12. 计算:
(2)(-24)÷
(1)-8+(-15)÷(-5);
解:原式=-8+3
(3)5-3÷2× -|-2|÷
−
;
解:原式=5-3× × -2×(-2)
(-4)记作(-4)②,那么计算9×(-3)④的结果为(
A. 1
C.
B. 3
A )
D.
10. [2024 宿迁宿城区期中]从-5,-3,-1,2,4中任取2
个数,所得积的最大值记为 a ,所得商的最小值记为
b ,则 的值为
-
.
11. [2024
江阴期中]若| a |=3,| b |=4,且 <0,则 a
=8 .
;
=-144.
−
解:原式=-24÷
人教版数学七年级上册有理数乘法相关运算律完美课件
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
强化练习 计算:
(1) (85)(25)(4) 解: (85)(25)(4)
8525485254
=85100=8500
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
分配律: a(bc)__ a_ b_ _ a_ c__
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
演讲完毕,谢谢观看!
14
(80 1 ) (7) 80 7 1 7
14
14
560 1 559.5 2
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
课堂小结
乘法交换律:ab__b _a __ 乘法结合律: (ab)c__ a_ ( _ b c_)__
教学反思
•
1.有感情地朗读课文,体会作者对海 底世界 的喜爱 之情, 激发学 生热爱 大自然 、探索 自然奥 秘的兴 趣。
•
2.引导学生凭借生动形象的语言文字 ,了解 海底是 个景色 奇异、 物产丰 富的世 界。
•
3.在品读文字中,继续巩固总分的构 段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。
人教版数学七年级上册1.4.1.2有理数 乘法相 关运算 律课件
人教版七数上 有理数的乘法运算律 课件
3.计算:
(1)(-19) (98) 0 (25)
解: (-19) (98) 0 (25) 0
3.计算:
(2) 0.2
0.4
2
1 2
1
5
0.2
0.4
5 2
1 5
0.2
0.4
5
2
1
5
0.08 1 0.04 2
乘法交换律:ab ___b_a____
(3) 3(4)(5) (4) 3(4)(5)
60
60
三个数相乘,先把前两个数相乘,或者 先把后两个数相乘,积相等. 乘法结合律:(ab)c __a_(_b_c_)____
问题2 阅读,并思考:
53 (7) 5(4) 20
5 3 5(7) 15 35 20
分配律: a(b c) __a_b__a_c__
课后作业
1、完成教材本课时对应习题; 2、完成同步练习册本课时的习题。
4.利用分配律可以得到-2×6+3×6=(-2+3) ×6,如果用a表示任意一个数,那么利用分 配律可以得到-2a+3a等于什么?类似地: 2ab-5ab又等于什么呢?
解:-2a+3a=(-2+3)a;
2ab-5ab=(2-5)ab.
课堂小结
乘法交换律:ab __b_a__ 乘法结合律: (ab)c __a_(_bc_)__
2 12
6 12
12=
1 12
12=
1
例 用两种方法计算:
1 4
1 6
1 2
12
解法2:
1 4
1 6
1 2
12
= 1 12 1 12 1 12=3 2 6= 1
4
最新人教版七年级数学上册精品课件1.4有理数的乘除法(第3课时)
• 第四级 • 第五级
用字母表示为 a b a 1 (b 0) b
2019/8/30
7
单击此处编母版标题样式
•
单利击用此上处面编的辑除母法版法文则本计样算式下列各题:
(• 1第)二-5级4 (-9);(2)-27 3;
(3)• 0第•三(第级四-级7); (4)-24 (-6).
值相除. • 第五级
0除以任何一个不等于0的数,都得0
二、有理数除法化为有理数乘法以后,可以利
用有理数乘法的运算律简化运算
单击此处编母版标题样式
• 单击三此、处乘编除辑混母合版运文算本往样往式先将除法化为乘法, 然后• 第确•二定第级三积级的符号,最后求出结果(乘除混合运 算按从左•到第右四• 级第的五级顺序进行计算)
(2)
• 第三级7
2.5 5 ( 1) 84
• 第四级
解:(1)原式• 第五1级25
5
5
7
(2)原式 5 8 1
254
(125 5 ) 1
1
75
125 1 5 1 5 75
25 1 25 1
7
7
单击此处编母版标题样式
方法归纳
• 第五级
思考:从上面我们能发现商的符号有什么规律?
2019/8/30
8
单击此处编母版标题样式
有理数除法法则(二) • 单击此处编辑母版文本样式 两数•相第除二,级 同号得正,异号得负,并把绝对值相除. 0除以任• 何第•三一第级四个级不等于0的数,都得0
• 第五级
单击此处编母版标题样式
思考: • 单击到此现处在编为辑止母我版们文有本了样两式个除法法则,那么两 个法• 第则二是级不是都可以用于解决两数相除呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校县定都市金山库镇敦煌钟中心学校
教师龙去燕燕
班级活跃1班
1.4.1 有理数的乘法
第3课时有理数的乘法运算律
一、导学
1.课题导入:
在小学的数学学习中,学习乘法的交换律、结合律与分配律,那么学习了有理数后,这些运算律是否仍然适用呢?这就是这节课我们要研究的内容.
2.学习目标:
(1)知识与技能
使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便.
(2)过程与方法
通过对问题的探索,培养观察、分析和概括的能力.
(3)情感态度
能面对数学活动中的困难,有学好数学的自信心.
3.学习重、难点:
重点:乘法的运算律.
难点:灵活运用运算律进行计算.
4.自学指导:
(1)自学内容:教材第32页“练习”以下到教材第33页的内容. (2)自学时间:7分钟.
(3)自学要求:认真阅读课文,体验运算律在计算中有什么作用. (4)自学参考提纲:
①乘法交换律是:两个数相乘,交换因数的位置,积相等,写成数学式子为ab=ba,举两个数(至少有一个是负数)验证乘法交换律.
3×(-4)=(-4)×3=-12
②乘法结合律是:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等,写成数学式子为(ab)c=a(bc),举三个数(至少有一个数是负数)验证乘法结合律.
[3×(-4)×5]=3×[(-4)×5]=-60
③分配律是:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,写成数学式子为a(b+c)=ab+ac,举三个数(至少有一个数是负数)验证分配律.
3×(-4+5)=3×(-4)+3×5=3
④例4中,比较两种解法,他们在运算顺序上有什么区别?解法1、2运用了什么运算律?哪种解法更简便?
解法1先算加减法,再算乘法;解法2先算乘法,再算加减法;运用了乘法分配律;第二种更简便.
⑤下列式子的书写是否正确.
a×b×c ab·2 m×(m+n)
三个式子的书写均不正确.
二、自学
同学们可结合自学指导进行自学.
三、助学
1.师助生:
(1)明了学情:深入学生中了解学生自学中存在的问题.
(2)差异指导:指导困难的学生,并引导小组讨论.
2.生助生:学生相互帮助解决自学中的疑难问题.
四、强化
1.解题要领:①观察算式;②看是否可以进行简便运算;③运算顺序.
2.代数式的书写要求:①数与字母相乘;②字母与字母相乘.
3.计算:
(1)(-85)×(-25)×(-4)
(2)(-7
8)×15×(-11
7
)
(3)(9
10-1
15
)×(-30)
(4)(-6
5)×(-2
3
)+(-6
5
)×(+17
3
)
解:(1)-8500;(2)15;(3)-25;(4)-6.
五、评价
1.学生的自我评价(围绕三维目标):交流本节课学习中的得与失.
2.教师对学生的评价:
(1)表现性评价:对本节课学习过程中的积极表现与不足进行总结. (2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
本节课主要学习乘法运算律在有理数乘法中的运用,教学时要强调在学习过程中自主探究,合作交流,让学生在学习过程中体会自主探究,合作交流的乐趣,形成主动探索问题的习惯.
一、基础巩固(60分)
1.(10分)计算(-10001
5
)×(5-10)的值为(D)
A.1000
B.1001
C.4999
D.5001
2.(10分)下列计算(-55)×99+(-44)×99-99正确的是(C)
A.原式=99×(-55-44)=-9801
B.原式=99×(-55-44+1)=-9702
C.原式=99×(-55-44-1)=-9900
D.原式=99×(-55-44-99)=-19602
3.(40分)计算.
(1)(-19)×(-98)×0×(-25)(2)(-0.2)×(-0.4)×(-21
2)×(-1
5
)
(3)15×(-5
6)×14
5
×(-11
4
)
(4)(-100)×(-4)×(-1)×0.25
解:(1)0;(2)0.04;(3)225
8
;(4)-100
二、综合应用(30分)
4.(30分)计算.
(1)4×(-96)×0.25×(-1
48
)
(2)(8-11
3-0.04)×(-3
4
)
(3)(+331
3
)×(-2.5)×(-7)×(+4)×(-0.3)
(4)7913
14
×(-7)
(5)(-14)×2
3-3.14×(-2
7
)+(-1
3
)×14+5
7
×3.14
解:(1)2;(2)-4.97;(3)-700;(4)-1119
2
;(5)-10.86
三、拓展延伸(10分)
5.(10分)利用分配律可以得到-2×6+3×6=(-2+3)×6,如果用a表示任意一个数,那么利用分配律可以得到-2a+3a等于什么?类似地:2ab-5ab又等于什么呢?
解:-2a+3a=(-2+3)a;2ab-5ab=(2-5)ab.。