数值分析答案第七章

合集下载

应用数值分析[研究报告课程]第07章课后练习答案.doc

应用数值分析[研究报告课程]第07章课后练习答案.doc

应用数值分析[研究报告课程]第07章课后练习答案应用数值分析[研究生课程]课后练习答案第07章第7章练习答案1.尝试证明牛顿-柯特斯求积公式中的求积系数是满足的。

证据:取插值节点,对应的插值基函数是,由插值基函数的性质可知,所以我们可以得到:经过验证。

2.用梯形公式和公式求出积分的近似值,并估计两种方法计算值的最大误差范围。

解决方案:梯形公式的最大误差极限是:公式的最大误差限制为:3.当使用复数公式计算积分时,要求绝对误差极限小于,应采取什么步长?解决方案:从复杂公式的误差极限来看:结果如下:4.推导中点求积公式的证明:取具有高度和长度的矩形代替区间上由轴包围的区域,以获得中点求积公式,并设置一次多项式以满足,容易获得,设置,容易知道有双零点,所以有,记住,然后有三个零点,这是由广义定理知道的,也就是说,它们是可用的,因此有,另一方面,它们由一次多项式已知,因此由于区间上的常数符号,它们可以通过使用积分第二中值定理获得:经过验证。

5.对于变步长方法,事件后误差分析方法被用来解释为什么它可以被用作迭代终止条件。

解决方案:让我们假设精确的积分结果是复数求积公式的误差在上限内几乎没有变化,即两个公式可以比较并且可以得到解,或者,因此,在那个时候,它可以用作迭代终止条件。

6.要计算积分,如果分别使用复数梯形公式和复数公式,请询问至少应划分积分区间的几个相等部分,以确保六位有效数字。

解决方案:复杂梯形公式的误差极限;获得解决方案,即至少将213分成相等的部分;复杂公式的误差限制:溶液被分成至少4等份。

7.用算法计算积分(仅外推两次)。

解决方案:取、并外推如下:所以有8.尝试确定下列求积公式中的待定系数,并指出它们的代数精度。

①。

(2)解决方案:(1)代入求积公式,很容易知道求积公式是准确建立的。

代换能够精确地建立求积公式。

因此,存在可用的替代公式,因此,求积公式被建立、替代,并且求积公式没有被精确地建立。

数值分析原理习题答案

数值分析原理习题答案

数值分析原理习题答案数值分析原理习题答案【篇一:数值分析习题】学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为0.5?10,那么近似数0.003400有几位有效数字?(有效数字的计算)2 ??3.14159?具有4位有效数字的近似值是多少?(有效数字的计算)3 已知a?1.2031,b?0.978是经过四舍五入后得到的近似值,问a?b,a?b有几位有效数字?(有效数字的计算)4 设x?0,x的相对误差为?,求lnx的误差和相对误差?(误差的计算)**5测得某圆柱体高度h的值为h?20cm,底面半径r的值为r?5cm,已知5|h?h*|?0.2cm,|r?r*|?0.1cm,求圆柱体体积v??rh的绝对误差限与相对误差限。

(误差限的计算)6 设x的相对误差为a%,求y?xn的相对误差。

(函数误差的计算)7计算球的体积,为了使体积的相对误差限为1%,问度量半径r时允许的相对误差限为多大?(函数误差的计算)128 设in?e1nxx?edx,求证: 0(1)in?1?nin?1(n?0,1,2?)(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。

(计算方法的比较选择)第二章插值法姓名学号班级习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。

1 已知f(?1)?2,f(1)?1,f(2)?1,求f(x)的拉氏插值多项式。

(拉格朗日插值)2 已知y?x,x0?4,x1?9,用线性插值求7的近似值。

(拉格朗日线性插值)3 若xj(j?0,1,...n)为互异节点,且有lj(x)?试证明(x?x0)(x?x1)?(x?xj?1)(x?xj?1)?(x?xn)(xj?x0)(xj?x1)?(xj?xj?1)(xj?xj?1)?(xj?xn)xlj?0nkjj(拉格朗日插值基函数的性质) (x)?xk(k?0,1,...n)。

最新(完美版)第七章习题答案_数值分析

最新(完美版)第七章习题答案_数值分析

第七章习题解答2、试确定系数a ,b 的值使220[()cos ]ax b x dx p+-ò达到最小解:设220(,)[()cos ]I a b ax b x dx p=+-ò确定a ,b 使(,)I a b 达到最小,必须满足0,0I Ia b ¶¶==¶¶即3222222000022222000012[cos ]0cos 248212[cos ]0cos 82a b ax b x xdx a x dx b xdx xxdx a b ax b x dx a xdx b dx xdx p p p p p p p pp p p p p ììì+=-+-=+=ïïïïïïÞÞíííïïï+=+-=+=ïïïîîîòòòòòòòò解得:0.6644389, 1.1584689a b »-»5、试用Legendre 多项式构造()f x x =在[-1, 3]上的二次最佳平方逼近多项式 解:作变量代换,将区间[-1, 3]变为[-1, 1],令21x t =+,即12x t -=则()()(21)21(11)F t f x f t t t ==+=+-££对()F t 利用Legendre 多项式求其在}{21,,span t t上的最佳平方逼近多项式20()()j j j S t C P t ==å,其中11(,)21()()(0,1,2)(,)2j j j j j P f j C F t P t dt j P P -+===ò20121()=1,()=t,()=(31)2P t P t P t t - 则有:1121012112111212212121215[(21)(21)]24311[(21)(21)]285(31)(31)45[(21)(21)]22264C t dt t dt C t tdt t tdt t t C t dt t dt ---------=--++==--++=--=--++=òòòòòò 01251145()()()()4864S t P t P t P t \=++则()f x 在[-1, 3]上的最佳二次逼近多项式*01222151111451()()()()()()2428264251114511=()((3()1))4826422135+82243512x x x x S t S t S P P P x x x x ----===++--++-+=7、确定一条经过原点的二次曲线,使之拟合下列数据ix123iy0.2 0.5 1.0 1.2并求平方误差2d解:设2012()1,(),()x x x x x j j j ===由题,拟合函数须过原点 则令001122()()()()f x C x C x C x j j j =++,其中00C =,即212()f x C x C x =+ 12000.2110.5,,24 1.039 1.2Y f f æöæöæöç÷ç÷ç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 11122122(,)(,)1436(,)(,)3698G f f f f f f f f æöæö==ç÷ç÷èøèø 12(,) 6.1(,)15.3Y F Y f f æöæö==ç÷ç÷èøèø得法方程GC F = 121436 6.1369815.3C C æöæöæö=ç÷ç÷ç÷èøèøèø解方程得:120.61840.0711C C »»-2()0.61840.0711f x x x \=-误差222121(,) 2.730.6184(,)0.0711(,)0.04559j j j YC Y Y Y df f f ==-=-´+´=å8、已知一组数据ix1 2 3iy3 2 1.5试用拟合函数21()S x a bx =+拟合所给数据解:令2()f x a bx =+ 201()1,()x x x j j ==01()()()f x a x b x j j =+则123113111114,219213y A F y y æöæö÷ç÷çæöç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷èøç÷ç÷ç÷ç÷èøèøT T a A A A F b æö\=ç÷èø,即331422514983a b æöç÷æöæö=ç÷ç÷ç÷ç÷èøèøç÷èø解方程组得0.3095,0.0408a b == 即210.30950.0408()x f x y=+=从而有21()0.30950.0408S x x =+补充题:用插值极小化法求()sin f x x =在[0, 1]上的二次插值多项式2()P x ,并估计误差 解:作变量替换1(1)2x t =+,将[0, 1]变换[-1, 1]取插值点11(21)cos 0,1,2222(1)K K x K n p+=+=+ 0120.933001270.50.0669873x x x ===利用这些点做插值商表i xi y一阶插商 二阶插商0.9330127 0.80341740.5 0.479425 0.74863250.0669873 0.0659372 0.9549092 -0.23818779则:20.9330127()0.80)0.2341740.743818779(0.9330127)(0.5)86325(x P x x x ---=+-同时误差213322()()()22(1)!3!24n n M M M R x f x P x n --+=-£==+其中(3)3max ()M f x = 由于1(1)2x t =+,即21t x =- 则(3)(3)3max (21)max sin (21)8max cos(21)8[0,1]M f x x x x =-=-=-=Î281()243R x \£=。

完整版数值分析第7章答案

完整版数值分析第7章答案

1数值分析第七章第七章非线性方程求根一、重点内容提要(一)问题简介求单变量函数方程f(x)?0(7.1)f(x*)?0x*x*x*为也称为方程的根是指求(7.1).(实数或复数),使得称的根,m f(x)?(x?x*)g(x)f(x)f(x)函数的零点.若可以分解为g(x)g(x)?0x*x*为单称m=1满足时,是方程(7.1)的根.,则当其中m为正整数,g(x)x*x*是方程(7.1)的m称,充分光滑,为m重根.若重根,则有根;当m>1时(m?1)(m)f(x*)?f'(x*)?...?f(x*)?0,f(x*)?0f(x)f(a)f(b)?0,则方程(7.1)在(a,b)[a,b]若上连续且内至少有一个实根,称在[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得.(二)方程求根的几种常用方法1.二分法f(x)f(a)f(b)?0f(x)?0f(x)?0*x在上连续,再设内有根,则设.在(a,b)在[a,b]1x?(a?b)a?a,b?bf(x)f(x)?0000计算和.,若则(a,b)内仅有一个根.令20000a?xb?b[a,b])f(a)f(x?0x*?x;,则令,结束计算;若若得新的有根区间,10,11001a?ab?x0)?(f(a)fx,得新,则令的有根区间0110,0011b?a?(b?a)x?(a?b)[a,b][a,b]?[a,b]f(x)0101111再令计算,.,.同上法得221110101[a,b],如此反复进行出新的有根区间,可得一有根区间套22...?[a,b]?[a,b]?...?[a,b]001?n1?nnn2数值分析第七章11a?x*?b,n?0,1,2,...,b?a?(b?a)?...?(b?a)0n0?1nnn?1nn且. 221lim(b?a)?0,lim x?lim(a?b)?x* nnnnn故2????n??nn1x?(a?b)f(x)?0nnn的近似根,可作为,且有误差估计因此21(b?a)|x?x*|?n1?n(7.2)22.迭代法?(x?)x等价变形为将方程式(7.1) (7.3)??(x*)?)(xf(x*)?0x**xx*的一个不动点为函数.;反之亦然则.若要求称满足?(x)的不动点由式(7.3)产生的不动点迭代关系式(也求方程(7.1)的根等价于求称简单迭代法)为?(x),k?0,1,2...x?(7.4)k1?k?(x),k??x0,1,2...?(x)称为迭代函数.函数如果对任意,由式(7.4)产生的序列??x有极限kk??k则称不动点迭代法(7.4)收敛.kk?1x?x*lim?(x)?C[a,b]满足以下两个条件: 定理7.1(不动点存在性定理)设?(x)??b;x?[a,b]a有1.对任意??(y)|?|x?y|?,y[a,b]|(x)?x 2.存在正常数使对任意, ,都有(7.5)1?L?(x)[a,b]x*.则在上存在惟一的不动点?(x)?C[a,b]满足定理7.2(定理不动点迭代法的全局收敛性定理)设7.1中的两个??x]b,?x[a?(x)并条件,由,(7.4),的不动点式得到的迭代序列则对任意到.收敛k0有误差估计式3数值分析第七章L|x?*|?x||x?x1kkk?(7.6)L1?k L|x?x*|?|x?x|1?kkk L1?(7.7)和??'(xx))(xx**的某,为设在的不动点定理7.3(不动点迭代法的局部收敛性定理)?'(x)|?|1,则迭代法(7.4)局部收敛个邻域连续,且.?(xx?)x*,的根如果迭代误差收敛阶的概念设迭代过程(7.4)收敛于方程e?x?x*k??时成产下列渐近关系式当kk e k?1?C(常数C?0)e(7.8) k则称该迭代过程是p阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.(K)?(x)x*的邻近连续,并定理7.4(收敛阶定理在所求根)对于迭代过程(7.4),如果且(p?1)???(x*)?...?*)?'(x*)?0''(x(p)?(x*)?0(7.9)*x的邻近是收敛的,则该迭代过程在点并有e1)(p?1k?*)x?lim(p!ep??k (7.10)k斯蒂芬森(Steffensen)迭代法当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为??(y?)(x),zy?kkkk2)?x(y kk x?x?kk?1z?2y?x kkk k?0,1,2,...(7.11)4数值分析第七章此法也可写成如下不动点迭代式?(x),kx??0,1,2,...kk?12?)?x(x)(?(x)?x????(x)?2?(x(x))(7.12)?(x)x**x是为式(7.12)中则的不动点7.5(定理斯蒂芬森迭代收敛定理)设,?(x)???1*)''(x)?'(x(x)*x的不动点,存在,的不动点;设则,则斯蒂芬森迭代法是(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(x)k,x?k?0,1,2,...?x k?k1)xf'(其迭代函数为(7.13)k f(x)??(x)?x f'(x)f(x*)?0,f'(x*)?0,f''(x*)?0时牛顿迭代法的收敛速度当,容易证f''(x*)??0*)?''(x 0'(x*)?ff'(x*),由定理,明,7.4知,牛顿迭代法是平方收敛的,且ef''(x*)1?k?lim2*)f'(ex2??k(7.14)k f(x)?0(m?2)*x时,迭代函数的m重顿重根情形的牛迭代法当根是f(x)1??x)?(x?'(x*)?1??0?'(x*)|?1|)xf'(*x.所以牛顿迭代法求处的导数在,且m x*的重数m知道,重根只是线性收敛.若则迭代式f(x)k,k?0,1,2,...??xx?m kk?1)'(xf(7.15)k f(x)??x()f'(x)*x此时迭代式,的单重零点一定是函数,未知时m当.求重根二阶收敛5数值分析第七章?(x)f(x)f'(x)kkk?xx??x?kk?1k?)f''(x)x)]?f(x'(x)[f'(kkkk k?0,1,2,...(7.16)也是二阶收敛的.f(x)k,?k?0,1,2,...x?x k1k?)xf'(如下迭代法简化牛顿法0称为简化牛顿法或平行弦法.牛顿下山法为防止迭代不收敛,可采用牛顿下山法.具体方法见教材.4.弦截法f'(x)xxf(x)在,处的一阶差商来代替,将牛顿迭代法(7.13)中的即可得弦用kkk?1截法f(x)k(xx?x??x)1kk?1k?k f(x)?f(x)(7.17)??x*|:|x??*x内具有二阶连续导数,的邻域在其零点定理7.6假设且对任1kk?)(xfx,x??10f'(x)?0?x?,又初值,,意则当邻域充分小时,有弦截法(7.17)将按阶?1?5?p?1.6182???1?0?*x2的正根收敛到是方程..这里p5.抛物线法(x,f(x)),(x?f(x))两点的直线方程的根近似替弦截法可以理解为用过kk?1kk?1xxx0x)?(fx)?0f(用,过三若的根.已知个近似根,的2kk?1k?(x,f(x)),(x,f(x)),(x,f(x))f(x)?0的根,的抛物线方程的根近似代替2??k?k121k?kkk所得的迭代法称为抛物线法,也称密勒(Muller)法.f(x)f'(x*)?0*x,则抛物线法局部收敛当,在,的邻近有三阶连续导数且收敛阶p?1.839?1.84. 为数值分析第七章二、知识结构图三、常考题型及典型题精解3上有一个实根x*,并用二分法2]在[1,?1?例7-1 证明方程x0?x-6-3,需二分区间[1,2]10.若要求|x-x*|?求这个根,要求|x-x*|?10kk多少次?3在[1,2],则f(1)=-1<0,f(2)=5>0,故方程f(x)=0x?解设f(x)=x1?2在[1,2]时,f'(x)>0,即f(x)=0-1,所以当x?上有根x*.又因f'(x)=3x上有惟一实根x*.用二分法计算结果如表7-1所示.[1,2]7-1表k abxf(x)的符号kkkk+ 2 0 1 1.5- 1.5 1 1 1.25+ 2 1.25 1.51.3751.3125 3 1.251.375 -1.375 1.3438 1.3125 4 +1.312551.3282+1.1341.3125-861.32041.32041.32827-1.32431.32431.32821.3263+87数值分析第七章9 1.3243 1.3282 1.3253 +1.32631-3-3,可以作为x*的近??10此时x=1.3253满足|x-x*|?10?0.97799102似值.1-6?6,只需|x10-x*|?-x*|即可,解得k+1?19.932, 若要求|x?10?kkk+12即只需把[1,2]二分20次就能满足精度要求.x=1,(1)确定有根区间[a,b];(2)构造不动e例7-2 已知函数方程(x-2)点迭代公式使之对任意初始近似x?[a,b],迭代方法均收敛;(3)用所构0?3.|?10造的公式计算根的近似值,要求|x?x1k k?xx因此区间[2,3]0,e解 (1)令f(x)=(x-2)-1>-1,由于f(2)=-1<0,f(3)=e x x)=-1,f(,lim,lim f(x)=+?是方程f(x)=0的一个有根区间.又因f'(x)=(x-1)e???xx???1-1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-?,+?)内f'(1)=-e有且仅有一根x*,即x*?[2,3].x?xx?.由于当?将(x-2)e[2,3].则=1等价变形为x=2+ee(x)=2+,x(2)2??x??<1'(x)|=|-e?e[2,3]x?时2?|(x)?3,|x?[2,3]均收敛.??故不动点迭代法x=2+e x,k=0,1,2,...,对k0k+1x?进行迭代计算,结果如表7-2所示.e(3)取x=2.5,利用x=2+k k+10表7-28数值分析第七章此时x已满足误差要求,即x*?x?2.120094976.44例7?3考虑求解方程2cos x?3x?12?0的迭代公式2 x=4+cos x,k=0,1,2,...k k+13(1)试证:对任意初始近似x?R,该方法收敛;0-3;10-x|?(2)取x=4,求根的近似值x,要求|x k0k+1k+1(3)所给方法的收敛阶是多少?2?(x)=4+cos x,解 (1)由迭代公式知,迭代函数322?(x)的值域介于(4-)与(4+由于)之间,且(??,??).x?3322?'(x)|=|-sin x|??1|33?(x)在(??,??)内存在惟一的故根据定理7.1,7.2知,??收敛于x*.x?x?R,迭代公式得到的序列不动点x*,且对k0(2) 取x=4,迭代计算结果如表7-3所示.0表7-3x*?xx?3.347529903已满足误差要求,即此时55?'(x*)?0.136323129?0,故根据定理7 .4)由于(3知方法是线性收敛的,并e?1k?'(x?*)lim e??k。

数值分析第七章打印版(东南大学)

数值分析第七章打印版(东南大学)

这是一个 n 次多项式, 根据代数基本定理, 它有 n 个根。
λ 是 A 的特征值当且仅当它是其特征多项式的零点。 A 的特征值的个数为 n。
求一个矩阵特征值的问题转化为求其特征多项式的零点。 求相应的特征向量问题转化为求齐次方程组的非零解问题。
李元庆 (版权本人所有)
Introduction to Numerical Analysis Chapter 7: Eigenvalue 2012 Problems 年 5 月 14 日
max a1 x1 + ∑ ai
i =2
李元庆 (版权本人所有)
Introduction to Numerical Analysis Chapter 7: Eigenvalue 2012 Problems 年 5 月 14 日
16 / 21
归一化幂法的收敛性(3)
从而
k →∞
lim uk =
x1 . max(x1 )
Ax = λ x → By = λ y , x = Ty .
李元庆 (版权本人所有)
Introduction to Numerical Analysis Chapter 7: Eigenvalue 2012 Problems 年 5 月 14 日
8 / 21
幂法(Power iteration) (1)
从而当 k 充分大, 有
k vk ≈ a1 λ1 x1 , k +1 vk +1 ≈ a1 λ1 x1 ≈ λ1 vk .
由上式知 vk +1 = Avk ≈ λ1 vk 。该式说明 vk 是 λ1 对应的近似 特征向量, vk 和 vk +1 近似线性相关。 所以
λ1 = lim (vk +1 )i , k →∞ (vk )i

数值分析课后习题与解答

数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析习题解答7

数值分析习题解答7

第七章 非线性方程数值解法 (习 题)2. 为求方程0123=--x x 在5.10=x 附近的一个根,设将方程改写为下列等价形式,并建立相应的迭代公式:(1)2/11x x +=,迭代公式 21/11n n x x +=+(2)231x x +=,迭代公式 3/121)1(n n x x +=+,(3))1/(12-=x x ,迭代公式 2/11)11-=+n n x x ,试分析每一种迭代公式的收敛性,并问哪一种迭代收敛得快?解:取5.10=x 的邻域]6.1,3.1[来考察(1) 2/11)(x x +=ϕ ,333.1/2/2)(<-='x x ϕ1901.0<=,故迭代公式(1)收敛.(2) 312)1()(x x +=ϕ,])1(3/[2)(3/22x x x +='ϕ3/22)]3.11(3/[6.12+⨯<5515.0≈,故迭代公式(2)也收敛。

(3) 2/1)1/(1)(-=x x ϕ ,])1(2/[1)(2/3--='x x ϕ2/3)16.1(2/1->10758287.1>=故迭代公式(3)发散.由于)(0x ϕ'越小,越快地收敛于根α ,故(2)式收敛最快。

□3.设)(x x ϕ=有解α存在,又,1|)(|>'αϕ证明无论如何选取0x ,只要α≠k x ),2,1,0( =k ,简单迭代法)(1k k x x ϕ=+必发散.证明: )()(1αϕϕα-=-+k k x x αξϕ-⋅'=k k x )(k ξ为α与k x 之间的某一点。

由于)(αϕ'1>,k ξ又属于α的近傍,故: 1)(≥'k ξϕ,即αα-≥-+k k x x 1 从而序列{}k x 发散。

□4.设)(x ϕ在],[b a 上连续可微,且1)(0<'≤x ϕ,)(x x ϕ=在],[b a 上有根α,],[0b a x ∈,但α≠0x ,则由)(1n n x x ϕ=+产生的迭代序列}{n x 单调收敛于α.证明:由于1)(0<'≤x ϕ ,迭代法:)(1n n x x ϕ=+ ,对],[0b a x ∈∀收敛,即 α=∞→n n x lim现证单调性:)()(1αϕϕα-=-+n n x x ))((αξϕ-'=n n x 若α>n x ,则有:α>+1n x 且有: αα-<-+n n x x 1 ,即:n n x x <<+1α ,序列{}n x 单调下降。

数值分析习题(含标准答案)

数值分析习题(含标准答案)

]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。

数值分析第二版(丁丽娟)答案

数值分析第二版(丁丽娟)答案
第八章答案
练习: 第一章
答案
练习二 练习三
练习四
1、 什么是幂法?它收敛到矩阵 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反ห้องสมุดไป่ตู้法中,为什么每步都要将迭代向量规范化?
,求差商 (2)
例6 设

Hermite 插值多项式 其误差余项。
,满足
例7已知函数 的取值如下,
x
-1
y
-1
y’
4
,求函数
在区间
上的

。并写出
0
1
3
1
3
31
28
求其三次样条插值函数
,并求出
在 -0.5 和2 的近似值。
练习六
1、解:由
由 10(1)解:
第七章答案 得


0
1
0 0.235294 0.400000 0.4800 0.5
16(3)解: 将
代入得

解得:
对于求积公式 有2次代数精确度。

,将
代入不成立,因此公式具
19(1)解:

代入得

代入得

代入得
因此其代数精确度为2次,不是 Gauss 型求积公式。
21、解:三点公式
16.007498295841852 16.002385008517887
16.002177786576915 16.00069286350589
则开根号得 4.000114446266071 4.000272214059553 4.000086607000640

数值分析作业答案(第7章part2)

数值分析作业答案(第7章part2)

7.2.为求方程0123=--x x 在5.10=x 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。

(1).2/11x x +=,迭代公式21/11k k x x +=+;(2).123+=x x ,迭代公式3211+=+k k x x ; (3).112-=x x ,迭代公式1/11-=+k k x x 。

试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似根。

解 考虑5.10=x 的领域]6.1,3.1[。

(1).当]6.1,3.1[∈x 时,]6.1,3.1[11)(2∈+=xx ϕ,1910.03.122)('33<=≈≤-=L x x ϕ,故迭代2111kk x x +=+在]6.1,3.1[上整体收敛。

(2).当]6.1,3.1[∈x 时,()]6.1,3.1[1)(3/12∈+=x x ϕ,1522.0)3.11(6.132)1(32)('3/223/22<=≈+<+=L x x x ϕ, 故迭代3211+=+k k x x 在]6.1,3.1[上整体收敛。

(3).当]6.1,3.1[∈x 时,11)(-=x x ϕ,1)16.1(21)1(21)('2/3>->--=x x ϕ,故迭代1/11-=+k k x x 发散。

7.4.给定函数)(x f ,设对一切x ,)('x f 存在且M x f m ≤<<)('0,证明对于范围M /20<<λ内的任意定数λ,迭代过程)(1x f x x k k λ-=+均收敛于0)(=x f 的根*x 。

证明 由于0)('>x f ,故)(x f 为单调函数因此方程0)(=x f 的根*x 是唯一的。

迭代函数)()(x f x x λϕ-=,)('1)('x f x λϕ-=。

由M x f m ≤<<)('0及M /20<<λ,得:2)('0<≤≤<M x f m λλλ11)('111<-≤-≤-<-m x f M λλλ故1}1,1max{)('<--=≤M m L x λλϕ因此可得0*0*1*→-≤≤-≤--x x L x x L x x k k k Λ )(∞→k即*lim x x k k =∞→。

数值分析第二版(丁丽娟)答案

数值分析第二版(丁丽娟)答案
第一章答案
第二章答案
第三章答案
0 0.5 0.5 1 1 2.5000
5.0000 5.5000
第四章答案
2 10.5000 19.0000 19.5000
3 42.5000 91.0000 91.5000
4 170.5000 315.0000 315.5000
5 682.5000 1467.0000 1467.5000
第八章答案
练习: 第一章
答案
练习二 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反幂法中,为什么每步都要将迭代向量规范化?
1.32
1.68
2.08
2.52
3.00
解答下列问题 (1)试列出相应的差分表; (2)写出牛顿向前插值公式; (3)用二次牛顿前插公式计算 f(0.225);
例3已知当 x=-1,0,2,3时,对应的函数值为




,求 的四次 Newton 插值多项式。
例4 设 对 n=1,2,3时
,证明:
例5 设 (1)
第一章答案第二章答案第三章答案第四章答案050525000500005500010500019000019500021000000000000000380001950004250009100009150001700000000000000018199999999999999166363636363636371705000315000031550001623809523809523716578947368421051161794871794871796825000146700001467500016058823529411764161208791208791201603825136612021827305000505100005051500016014662756598241160349206349206351601109350237717910922500023483000023483500016003663003663004160074982958418521600238500851788743690500080827000080827500016000915583226515160021777865769151600069286350589则开根号得400011444626607140002722140595534000086607000640对应的特征向量为第五章答案第六章答案2727930204331053600038939418364475947673代入数据得132解

李庆扬-数值分析第五版第5章和第7章习题答案解析

李庆扬-数值分析第五版第5章和第7章习题答案解析

WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。

因此高斯消去法需要选主元,以保证计算的进行和算的准确性。

当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。

计算时一般选择列主元消去法。

2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。

用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。

A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。

3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。

4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。

,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。

5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。

向量范数定义见p53,符合3个运算法则。

正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。

李庆扬-数值分析第五版第5章和第7章习题答案解析

李庆扬-数值分析第五版第5章和第7章习题答案解析
P215
求 的零点就等价于求 的不动点,选择一个初始近似值 ,将它代入 的右端,可求得
,如此反复迭代有

称为迭代函数,如果对任何 ,由 得到的序列
有极限
,则称迭代方程收敛,且 为 的不动点,故称 为不动点迭代法。
5.什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定 的收敛阶
P219
设迭代过程 收敛于 的根 ,如果当 时,迭代误差 满足渐近关系式
4从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。
3.什么是函数 的不动点?如何确定 使它的不动点等价于 的零点
P215.
将方程 改写成等价的形式 ,若要求 满足 ,则 ;反之亦然,称 为函数 的一个不动点。
4.什么是不动点迭代法? 满足什么条件才能保证不动点存在和不动点迭代序列收敛于 的不动点
从而 ,
又当 时,

当 时,

综上所述, 时最小,这时 ,即 。
18、设 ,计算A的条件数
由 可知, ,从而

由 ,

由 ,
可得 ,从而

, ,从而 。
19、证明:如果 是正交矩阵,则
若A是正交阵,则 ,从而 , ,故 , 。
20、设 ,且 为 上矩阵的算子范数,证明:
21、设 ,其中 为非奇异矩阵,证明:
的最大特征值为0.3690
所以2-范数为0.6074
F-范数0.8426
13、求证:
(a) ;
(b) 。
根据定义求证。

14、设 且非奇异,又设 为 上一向量范数,定义 。试证明 是 上向量的一种范数。
根据向量范数的定义来证明:
要求就有正定性,齐次性,三角不等式等性质。

数值分析老师布置题目及“参考答案”(1到8章)

数值分析老师布置题目及“参考答案”(1到8章)

第二章3.给出的数值表X0.40.50.60.70.8lnx-0.916291-0.693147-0.510826-0.356675-0.223144用线性插值及二次插值计算的近似值。

解:由表格知,若采用线性插值法计算即,则若采用二次插值法计算时,7.设且求证:解:令,以此为插值节点,则线性插值多项式为插值余项为8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函数表的步长h应取多少?解:若插值节点为和,则分段二次插值多项式的插值余项为设步长为h,即若截断误差不超过,则9.若,解:根据向前差分算子和中心差分算子的定义进行求解。

12.证明证明:得证。

14.若有个不同实根,证明:证明:有个不同实根且令则而令则得证。

16.求及。

解:若则17.证明两点三次埃尔米特插值余项是解:若,且插值多项式满足条件插值余项为由插值条件可知且可写成其中是关于的待定函数,现把看成上的一个固定点,作函数根据余项性质,有由罗尔定理可知,存在和,使即在上有四个互异零点。

根据罗尔定理,在的两个零点间至少有一个零点,故在内至少有三个互异零点,依此类推,在内至少有一个零点。

记为使又其中依赖于19.求一个次数不高于4次的多项式,使它满足.解:利用埃米尔特插值可得到次数不高于4的多项式设其中,A为待定常数22.求在上分段线性插值函数,并估计误差。

解:在区间上,函数在小区间上分段线性插值函数为误差为23.求在上分段埃尔米特插值,并估计误差。

一阶差商二阶差商三阶差商四阶差商五阶差商0 0.11.000000.99500-0.05000在区间上,令函数在区间上的分段埃尔米特插值函数为误差为又24.给定数据表如下:X j0.250.300.390.450.53Y j0.50000.54770.62450.67080.7280试求三次样条插值,并满足条件:解:由此得矩阵形式的方程组为2 1 M02 M12 M22 M31 2 M4求解此方程组得三次样条表达式为将代入得课外:解:有题意,插值条件为0 0.1 0.2 0.3 0.4 0.5 0.61.00000 0.99500 0.980070.95534 0.921060.877580.82534为使用牛顿插值公式,先构造查分表0.2 0.3 0.4 0.5 0.60.980070.955340.921060.877580.82534-0.14930-0.24730-0.34280-0.43480-0.52240-0.49650-0.49000-0.4775-0.4600-0.438000.021670.041670.058330.07330.050000.041650.03742-0.01670-0.00846第三章4.假设在上连续,求的零次最佳一致逼近多项式?解:在闭区间上连续存在,使取则和是上的2个轮流为“正”、“负”的偏差点。

数值分析第四版习题及答案

数值分析第四版习题及答案

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x b a x b f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x . 11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差. 25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+. 27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x 第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析所有常考例题及详细答案

数值分析所有常考例题及详细答案

数值分析所有常考例题及详细答案第二章线性方程组的直接解法 (2)第三章解线性方程组的迭代法 (4)第五章非线性方程和方程组的数值解法 (7)第六章插值法与数值微分 (11)第七章数据拟合与函数逼近 (16)第八章数值积分 (20)第九章常微分方程的数值解法 (25)第二章 线性方程组的直接解法1、用LU 分解法求如下方程组的解(1)3351359059171⎛⎫⎛⎫ ⎪ ⎪X = ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,(2)3235220330127X ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦解:(1)13351124522133A L U ⎛⎫⎛⎫⎪⎪ ⎪⎪== ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭4(101)(1,1,)339(,,2)22T TTL Y Y UX Y X =⇒=-=⇒=-(2)132332352222012333301271313b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦15521133371311y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⇒=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦ 3235121123321313X X ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=-⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦2121311()21()44254213142541425421310212127127350624r r r r r r +-↔+-⎡⎤⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦→→ 32344254102127210084r r +⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥-⎣⎦→得同解方程组1232334254121272184x x x x x x ⎧⎪++=⎪⎪-+=-⎨⎪⎪-=⎪⎩回代求解得(9,1,6)TX =--②212131112312323111011323231110523523111011323032323122112215747012323r r r r r r +↔+⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎢⎥-⎣⎦→→323252()57231110231110574757470101232323235235193223030023235757r r r r +-↔⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦→→得同解方程组12323323110574701232319322300()5757x x x x x x ⎧⎪-++=⎪⎪++=-⎨⎪⎪++-=⎪⎩回代得(0.212435,0.549222, 1.15544)T X =-4、用Jordan 消去法解矩阵方程,AX B =其中:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=112221111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011001B 解:容易验证0A ≠,故A 可逆,有1X A B -= .因此,写出方程组的增广矩阵,对其进行初等变换得111101111011110122010111101111211100313000263---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦100211002110111101022330013001322⎡⎤⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦121122332X A B -⎡⎤⎢⎥-⎢⎥⎢⎥∴==-⎢⎥⎢⎥⎢⎥-⎣⎦5、用LU 分解法求解如下方程组12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦解:100256210037341004A LU -⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦12312311021193413010,19201,34304(10,1,4)TLy by y y y y y y =⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦==-=-=-==-(1)解得即 123321(2)25610371441,2,3(3,2,1)T Ux yx x x x x x x =-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦====解解得:所以方程组的解为。

数值分析课后习题及答案

数值分析课后习题及答案

数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。

[解]。

3、给出的数值表用线性插值及二次插值计算的近似值。

X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。

若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。

[解]由,可知,,余项为,故。

2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。

[解]由插值余项定理,有,从而。

5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。

[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。

第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。

19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。

又,,,故法方程为,解得。

均方误差为。

27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。

,。

又,,,故法方程为,解得。

故直线运动为。

补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。

[解]电流、电阻与电压之间满足如下关系:。

应用最小二乘原理,求R使得达到最小。

对求导得到:。

令,得到电阻R为。

2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。

[解]令,求x使得达到最小。

对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章
9.已知一组数据:
试用
y =
来拟合这组数据(写出matlab 程)
解:
x=-1:6; y=[10,9,7,5,4,3,0 ,-1];
p=polyfit(x,y,1); a=p(1);c 二exp(p (2));
ax
解:
In y = In c ax

Y = In y,b = In c, X = x
x=0:4; y=[1.5,2.5,3.5,5.0,7.5] ;Y=logy;X=x
p=polyfit(X, Y,1);a=p(1);c=exp(p(2));
试求出3次,4次多项式的曲线拟合,画出计算曲线。

具体步骤:
三次拟合:
x=0:0.25:1.5 ;
y=[1.0000, 1.2840,1.6487 ,2.1170,2.7183, 3.4903, 4.4817 ];
plot(x,y, '* '
p=polyfit(x,y,3)
x1=0:0.1:1.5;
y1=polyval(p,x1);
hold on
plot(x1,y1,''
过程中得出的三次拟合多项式的系数矩阵为p=[ 0.3659 0.2891 1.0642 0.9982] 曲线拟合图:
4.5 .
4 _ 一
3.5■M -
3 .
S&
2.5 - 」
.4
2 _ 」
-I
1.5 - _
■*
1. _ 一
050 0^5 ' 1.5
四次拟合:
x=0:0.25:1.5 ;
y=[1.0000, 1.2840,1.6487 ,2.1170,2.7183, 3.4903, 4.4817 ];
plot(x,y, '* '
p=polyfit(x,y,4)
x1=0:0.1:1.5;
y1=polyval(p,x1);
hold on
plot(x1,y1,''
曲线拟合图:
X 0.0 0.1 0.2 0.3 0.5 0.8 1.0 Y
1.0
0.41
0.50
0.61
0.91
2.02
2.46
试求出3次,4次多项式的曲线拟合,画出计算曲线。

具体步骤: 三次拟合:
x=[0.0 ,0.1 ,0.2 ,0.3 ,0.5, 0.8 ,1.0] y=[1.0 ,0.41 ,0.50 ,0.61 ,0.91,2.02 ,2.46] plot(x,y, '* ' p=polyfit(x,y,3) x1=0:0.01:1; y1=polyval(p,x1); hold on plot(x1,y1,''
过程中得出的三次拟合多项式的系数矩阵为 p=[-6.6221 12.8147 -4.6591 0.9266]
曲线拟合图:
过程中得出的三次拟合多项式的系数矩阵为
1.0001]
p=[0.0912 0.0924 0.5422 0.9922
4.5
4
3.5
3
2.5
2
1.5
1
0 0.5 1 1.5
Figure 1
屜Edit 圻民豪如T<Mlk IMmp
四次拟合:
x=[0.0 ,0.1 ,0.2 ,0.3 ,0.5, 0.8 ,1.0]
y=[1.0 ,0.41 ,0.50 ,0.61 ,0.91,2.02 ,2.46]
plot(x,y, '* '
p=polyfit(x,y,4)
x1=0:0.01:1;
y1=polyval(p,x1);
hold on
plot(x1,y1,''
过程中得出的四次拟合多项式的系数矩阵为p=[2.8853 -12.3348 16.2747 -5.2987 0.9427
]
曲线拟合图:
Q Figuffi II ■白
屜Edfe view XiUfi TfMJh Hdj> 丫。

相关文档
最新文档