全等三角形的判定证明题sss、sas

合集下载

全等三角形的判定证明题sss、sas讲课教案

全等三角形的判定证明题sss、sas讲课教案

全等三角形的判定证明题s s s、s a s全等三角形的判定训练题(SSS、SAS)判定定理1:简单的表示为:SSS数学语言:在△ABC和△A'B'C'中AC=A'C'(已知)BC=B'C'(已知)AB=A'B'(已知)∴△ABC≌△A'B'C'(SSS)1、若AB=CD,AC=DB,可以判定哪两个三角形全等?请证明。

2、△ABC中,AB=AC,AD是BC边上的中线,∠B与∠C有什么关系?请证明。

3、点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,则AB和DE有怎样的位置关系?请证明。

C4、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?5、如图,AC=DF,BC=EF,AD=BE,∠BAC=80o,∠F=60o,求∠ABC6、如图,AC=AD,BC=BD,∠1=35o,∠2=65o,求∠C精品资料7、如图,△ABC 中,AD=AE , BE=CD ,AB=AC ,说明△ABD ≌△ACE判定定理2: 简单的表示为:SAS 数学语言:在△ABC 和△A 'B 'C ' 中 AB=A 'B ' (已知) ∠B=∠B ' (已知) BC=B 'C '(已知) ∴△ABC ≌△A 'B 'C '(SSS )8、如图,已知AC ,BD 相交于O ,AO=DO ,BO=CO ,证明:∠A=∠D9.如图,AE 是,BAC 的平分线 AB=AC.证明 △ABD ≌△ACDC10、已知:如图,AB=AC,AD=AE,求证:BE=CD.11、如图,已知:点D、E在BC上,且BD=CE,AD=AE,∠1=∠2,求证:△ADB≌△AEC12、如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,求证: BE=DCDABQCPADBEC13、 如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE 的关系。

第四讲 全等三角形及判定(SSS、SAS)

第四讲  全等三角形及判定(SSS、SAS)

A
D
B
E
C
3、如图△ ABD ≌ △CDB,若AB=4,AD=5,BD=6,
则BC=
,CD=
A

D
B
C
如图,已知△ AOC ≌ △BOD,求证:AC∥BD
三角形全等的判定(SSS)
3.在△ABC 与△A'B'C'中,若AB=A'B',
BC=B'C',AC=A`C`,∠A=∠A', ∠B=∠B', ∠C=∠C',那 么△ABC 与△A'B'C'全等吗? 具备三条边对应相等,三个角对应相等的两个三角形全等 A A'
(1)一个条件
一边 一角 一边一角 两角 两边
(2)两个条件
三角
(3)三个条件 三边 两边一角 两角一边
先任意画出一个△ABC,再画一个△ A`B`C`,使 A`B`= AB ,B`C` =BC,C` A`= CA,把画好的△ A`B`C` 剪下,放到出的△ABC上,它们全等吗? 画法: 画一个△ A`B`C`,使A`B`= AB ,B`C` =BC,C` A`= CA 1.画线段B`C` =BC; 2.分别以B`,C`为圆心,以线段AB ,AC为半径画弧, 两弧交于点 A`; 3.连接线段 A`B`= A`C`.
全等三角形的对应边相等; 全等三角形的对应角相等;
1、观察上图中的全等三角形应表示为: △ ABC ≌ △ DEF 。 2、根椐全等三角形的定义我们知道了对应边、对应角的关系?请
完成下面填空:
∵ △ ABC ≌ △ DEF(已知) ∴AB = DE,BC = EF,AC ∠A
= ∠D,∠B

全等三角形及判定SSS、SAS

全等三角形及判定SSS、SAS

第一讲全等三角形及其判定一、全等三角形①能够__________的两个图形叫做全等形。

②能够_______的两个三角形叫做全等三角形。

③经过__________、___________、__________等变换前后的三角形全等。

④全等三角形对应边________、对应角__________。

1、已知△ABC≌△DEF,∠A=85゜,∠B=60゜,AB=8,EH=5.求∠DFE的度数及DH的长。

2、如图,已知△ABC≌△CDA,则下列结论:①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.其中正确的是()A.①B. ②C. ①②D. ①②③3、如图,在Rt△ABC中,∠ACB=90゜,∠A=50゜,将其折叠,使点A落在边CB上A′处,折痕为CD.求∠A′DB的度数。

4、如图,△ACE≌△DBF,AE=DF,CE=BF,AD=10,BC=2.(1)求证:AB=CD;(2)求AC的长度;(3)若∠A=40゜,∠E=80゜,求∠DBF的度数。

5、如图,将三角形纸片ABC沿BD折叠,点A落在边BC上的点E处,将纸片沿DE折叠,点C恰好落在点B处。

(1)写出图中所有相等的线段;(2)求证:DE⊥BC;(3)求∠C的度数。

二、三角形全等的判定[SSS、SAS]三边_________的两个三角形全等,简写成___________或____________。

有两边和它们的_________分别相等的两个三角形全等,简写成____________或___________。

有两边及其中一边的对角对应相等的两个三角形_________全等。

(填“一定”或“不一定”)1、如图,AB=AC,BD=CD,求证:∠1=∠2.2、如图,已知AE=AD,AB=AC,EC=DB,下列结论:①∠C=∠B;②∠D=∠E;③∠EAD=∠BAC;④∠B=∠E.其中错误的是()A.①②B.②③C.③④D.④3、如图,AC=EF,BC=DE,AD=BF,求证:AC∥EF.4、如图,AB=DC,AC=DB。

12全等三角形判定一SSS,SAS提高巩固练习

12全等三角形判定一SSS,SAS提高巩固练习

全等三角形判定一(SSS SAS (提高)【巩固练习】-、选择题1.如图,已知 AB= AC, D为BC的中点,结论:①④厶ABC是等边三角形.其中正确的是()F分别是AD和AD延长线上的点,且DE DF ,连接BF、CE,下列说法:①CE BF :②ABD和ACD的面积相等;③BF//CE;④ BDF也CDE,其中正确的有()•3.AD ABC中BC边上的中线,若AB= 2, AC = 4,贝U AD的范围是()4.(2015?杭州模拟)用直尺和圆规作已知角的平分线的示意图如下,则说明/ CADM DAB5.根据下列条件能唯一画出△ABC的是()A.AB= 3, BC= 4, AC= 8B.AB = 4, BC= 3,M A= 30°C.AB= 5, AC= 6,M A= 45°D. M A= 30°,/ B= 60°,/ C= 90 °6.( 2016?洛阳模拟)已知:如图,在长方形ABCD中,AB=4 , AD=6 .延长BC到点E,使CE=2,连接DE ,动点P从点B出发,以每秒2个单位的速度沿 BC - CD - DA向终点A 运动,设点P的运A.①② B. ②③ C. ①②③ D. ③④AD丄 BC ② AD平分/ BAC ③/ B=Z C;2 •如图,AD是ABC的中线,E、B.2 个C.3 个D.4 个A .AD V 6 B. AD > 2 C.2 V ADV 6 D.1 V ADV 3C. ASAD. AASA.1个SAS动时间为t秒,当t的值为()秒时,△ ABP和厶DCE全等.如图,△ ABC 是三边均不等的三角形, 使所作的三角形与△ ABC 全等,这样的三角形最多可以画△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条件(只需填写一个即可)12. 把两根钢条AA', BB'的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)A . 1B . 1 或 3C . 1 或 7 D.二、填空题如图,AB= CD AC= DB,Z ABD= 25° 7. ,/ AOB= 82° ,则/ DCB=DE= BC,以D E 为两个顶点画位置不同的三角形,个•C Dr(2016?微山县二模)如图,四边形 9. 使厶 ABC ◎△ CDA .ABCD 中,/ 1 = / 2,请你补充一个条件8.B» ED,若/ ABC= 54°,则/ E=10. (2014春?鹤岗校级期末)如图:在如图,若测得 AB= 5厘米,则槽宽为 厘米.三、解答题13. (2014秋?天津期末)如图在 △ ABE 中,已知 AB=AE , AD=AC , /仁/ 2 .求证:△ ABC 也△ AED .14. 如图, B= C, BD = CE, CD = BF.1求证:EDF = 90 - - A 215. 已知:如图,BE CF 是厶ABC 的高,且 BP= AC, CQ= AB, 求证:API AQ.【答案与解析】 一.选择题1.【答案】C【解析】由SSS 证全等可得①②③是正确的2.【答案】D;3.【答案】D;【解析】用倍长中线法;4.【答案】A;【解析】解:从角平分线的作法得出,△ AFD与厶AED的三边全部相等,则厶 AFD^A AED故选A.5.【答案】C;【解析】A不能构成三角形,B没有SSA定理,D没有AAA定理.6.【答案】C;【解析】解:因为 AB=CD,若/ ABP= / DCE=90 ° BP=CE=2,根据SAS证得△ ABP◎△ DCE,由题意得:BP=2t=2,所以 t=1 ,因为 AB=CD,若/ BAP= / DCE=90 ° AP=CE=2,根据 SAS 证得△ BAP◎△ DCE,由题意得:AP=16 - 2t=2,解得t=7 .所以,当t的值为1或7秒时.△ ABP和厶DCE全等. 故选C.二.填空题7.【答案】66°;82【解析】可由 SSS证明厶AB3A DCB / OBC=Z OCB^ —41,所以/ DCB=/ ABG= 25°+ 41 °= 66 °8.【答案】4;【解析】在DE的两侧可以各画2个.9.【答案】AD=BC ;【解析】由题意知,已知条件是△ABC与厶CDA对应角/ 1 = / 2、公共边AC=CA,所以根据全等三角形的判定定理SAS来证△ ABC ◎△ CDA时,需要添加的条件是 AD=BC.10. 【答BC=ED 或/ A= / F.11. 【答27;【解可证△ ADB^A CDB^A CDE.12. 【答5;_ -解答题13. 【解证明:•••/仁/ 2,••• / 1 + / DAC= / 2+ / DAC ,••• / BAC= / EAD ,在厶ABC和厶AED中,\ ZBAC=ZEAD ,I AC=AB•••△ ABC ◎△ AED ( SAS).14.【解析】证明:在厶 ABC中,/ B=Z C,1•••/ B = 90/ A2在厶 DBF和△ ECD中BD CEB CBF CD•••△ DBF^A ECD( SAS•••/ BFD=Z CDE1 •••/ EDM 180°—/ BD1/ CDE= 180° -(Z BDF^Z BFD) =Z B = 90 —/ A .215.【解析】证明:T BEX AC CF丄AB(已知)•Z ACF+Z BAC= 90°,/ ABE^Z BAC= 90°,(三角形内角和定理)/ ACF=Z ABE(等式性质)在厶ACQ^n^ PBA中CQ ABACF ABPAC BP• △ ACQ^ PBA( SAS•Z Q=Z BAP (全等三角形对应角相等)•/ CFX AB (已知)•Z Q+Z QAF= 90°,(垂直定义)•Z BAP+Z QAF= 90°,(等量代换)•AP丄AQ.(垂直定义)。

全等三角形的性质和判定(SSS、SAS)02

全等三角形的性质和判定(SSS、SAS)02

全等三角形的性质和判定(SSS、SAS)学生/课程初二-数学年级初二学科数学授课教师日期时段核心内容全等三角形的性质和判定(SSS、SAS)课型一对一/一对N教学目标1.掌握全等三角形的性质,能识别全等三角形中的对应边、对应角;2.掌握并判定全等三角形,能利用三角形的全等证明一些性质。

重、难点重点:掌握并应用全等三角形的性质;掌握并判定全等三角形;难点:能利用三角形的全等证明一些性质.课首沟通由老师自行填写知识导图课首小测1.如图,△OAD≌△OBC且∠O=70°,∠D=∠C=25°,下列结论①OD=OC,②BC=OD,③BD=AC正确的是.2.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.3.如图:点C,D在AB上,且AC=BD,AE=FB,DE=FC.求证:△ADE≌△BCF.4.如图,E、C、D三点在一条直线上,AE=AC,AD=AB,∠EAC=∠DAB.求证:△EAD≌△CAB.导学一:全等三角形的概念和性质知识点讲解 1:全等三角形的概念1.观察下列每组中的两个图形,你发现它们的形状,大小,你能举出一些类似的生活实例吗?由此,你得到上述图形的共同特征是:、完全相同;放在一起能够.能够的两个图形叫做全等形.2.类似地,可以得出,能够的两个叫做全等三角形.3.把两个全等的三角形重合到一起,重合的顶点叫做,重合的边叫做,重合的角叫做.4.△ABC和△DEF全等,记作△ABC≌△DEF.这里符号“≌”表示全等,读作“全等于”.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.【参考答案】1.相同,相等;2.完全重合,三角形;3.对应点,对应边,对应角。

例 1. (1)如图1,把△ABC沿直线BC平移,得到△DEF,△ABC△DEF,点A与点D,点与点,点与点是对应顶点;AB和DE,和,和是对应边;∠A和∠D,和,和是对应角.(2)如图2,把△ABC沿直线BC翻折180°,得到△DBC,可得△ABC△DBC.AC的对应边是,BC的对应边是,∠A的对应角是,∠ACB的对应角是.(3)如图3,把△ABC绕点A旋转,得到△ADE,可得△ABC≌△.点A的对应点是点,DE是的对应边,AE是的对应边,∠BAC和∠是对应角,∠E是∠的对应角.例 2. [单选题] 下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个B.3个C.2个D.1个我爱展示1. 如图,△EFG≌△NMH,在△EFG中,FG是最长的边,在△NMH中,MH是最长的边,∠F和∠M是对应角,且EF=2.4cm,FH=1.9cm,HM=3.5cm.写出对应相等的边及对应相等的角;知识点讲解 2:全等三角形的性质1.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.例 1. 如图,若△ABC≌△CDE,∠B和∠D是对应角,BC和DE是对应边.(1)按要求填空:①点A和点是对应点,点和点E是对应点;②AB的对应边是,AC的对应边是;③∠A的对应角是,∠ACB的对应角是.(2)求证:∠B=∠ACD.例 2. 如图,已知△ABC≌△DEF,AF=5cm.(1)求CD的长.(2)AB与DE平行吗?为什么?解:(1)∵△ABC≌△DEF(已知),∴AC=DF(),∴AC﹣FC=DF﹣FC(等式性质)即 =∵AF=5cm∴ =5cm(2)∵△ABC≌△DEF(已知)∴∠A=()∴AB∥()例 3. 如图,点D,E在BC上,且△ABE≌△ACD.求证:(1)BD=CE;(2)∠BAD=∠CAE.我爱展示1.如图所示,已知△ABC≌△EDC,点D、C、A在同一直线上,∠E=∠A=30°,∠D=50°,则∠BCE=.2.如图,△ABC≌△DEF,求证:(1)AD=BE;(2)AC∥DF.3.如图,D是BC上一点,AB=AD,BC=DE.△ABC≌△ADE,求证:∠CDE=∠BAD.导学二:全等三角形的判定知识点讲解 1:三角形全等的条件(一)“SSS”三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)证明格式:在△ABC和△DEF中,∴≌().【参考答案】DE;EF;DF;△ABC;△DEF;SSS例 1. 如图,点E,F在BC上,BE=CF,AB=DC,AF=DE.求证:∠A=∠D.证明:∵BE=CF(已知)∴BE+=CF+(等式的性质1)即=CE(等量代换)在△ABF和△DCE中∴△ABF≌△DCE()∴∠A=∠D()我爱展示1.如图,中,,现想利用证三角形全等证明,若证明三角形全等所用的公理是公理,则途中所添加的辅助线应是.2.如图,CE=DE,EA=EB,CA=DB。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。

120°B。

125° C.127° D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是()A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OC D。

∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF。

请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形()A。

3 B。

4 C.5 D。

62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件()D CBA A 。

∠1=∠2B 。

∠B=∠C C 。

∠D=∠ED 。

∠BAE=∠CAD 3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B 。

AD ∥BC C 。

∠A=∠C D 。

∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B 。

(完整版)全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

(完整版)全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

全等三角形的性质与判定(SSS 、SAS 、ASA 、AAS )练习题1. 如图,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C=2. 如图,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=1题图 2题图 3题图 4题图3. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO=4. 如图,△ABC ≌△ADE,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠DEF=5. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,求DE 的长.6. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC,垂足分别是E 、F ,连接EF,交AD 于G ,试判断AD 与EF的关系,并证明你的结论。

7. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。

8. 如图,AD=BD,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?E F C D BEGB E FEF C AB A'B'BCD D B'AHE9. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延长线上,CG=AB,求证:AG ⊥AF10. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB,连结AD 、AG.试判断AD 与AG 的关系如何?并证明之。

12.2 三角形全等的判定(2课时SSS、SAS)同步提优练习2021-2022学年八年级上册

12.2   三角形全等的判定(2课时SSS、SAS)同步提优练习2021-2022学年八年级上册

12.2 第1课时三角形全等的判定(一)(SSS)命题点 1 利用“SSS”判定两个三角形全等1.下列条件中,能作出唯一三角形的是()A.已知两边B.已知两角C.已知一边一角D.已知三边2.在如所示的三角形中,与所示的△ABC全等的是()3.如,在△ABC中,AB=AC,BE=CE,直接使用“SSS”可判定()A.△ABD≌△ACDB.△ABE≌△EDCC.△ABE≌△ACED.△BED≌△CED4.如,AB=DB,BC=BE,要使△AEB≌△DCB,可以添加的条件是()A.AB=BCB.AC=DCC.AE=DCD.AE=DB5.如,已知AB=6,AC=9,DC=6,要使△ABD≌△DCA,还需添加的条件是()A.DA=5B.DA=6C.DB=9D.DB=66.如,点B,E,C,F在同一直线上,AB=DE,AC=DF,BE=CF.求证:△ABC≌△DEF.7.如,点B,E,F,C在同一条直线上,AB=DC,AE=DF,CE=BF.求证:(1)△ABE≌△DCF;(2)AE∥DF.8.如,已知AB=AC,AD=AE,BD=CE,且点B,D,E在同一条直线上.求证:∠3=∠1+∠2.命题点 2 利用“SSS”解决实际问题9.工人师傅常用角尺平分一个任意角,具体做法如下:如,已知∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点C 的射线OC便是∠AOB的平分线.在证明△MOC≌△NOC时运用的判定方法是.命题点 3 利用“SSS”作图10.佳佳想在纸上作∠A1O1B1等于已知的∠AOB,步骤有:①画射线O1M;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以点B1为圆心,以CD长为半径画弧,与已画出的弧交于点A1,作射线O1A1;④以点O1为圆心,以OC长为半径画弧,交O1M于点B1.在上述的步骤中,作∠A1O1B1的正确顺序应为()A.①④②③B.②③④①C.②①④③D.①③④②11.已知:线段a,b(如0).求作:△ABC,使AB=a,BC=b,AC=2a.(尺规作图,不写作法,保留作图痕迹)12.如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2 cm,BC=5 cm,如1,量得第四根木条DC=5 cm,判断此时∠B与∠D是否相等,并说明理由;(2)若固定一根木条AB不动,AB=2 cm,量得木条DC=5 cm,如果木条AD,BC的长度不变,当点D 移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,木条AC,AD,CD 能构成周长为30 cm的三角形,求出木条AD,BC的长度.1第2课时三角形全等的判定(二)(SAS)命题点利用“SAS”判定两个三角形全等1.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.BC=7,AB=3,∠B=45°D.∠C=90°,AB=42.如,a,b,c分别表示△ABC的三边长,则3中的三角形与△ABC一定全等的是()3.如,AC和BD相交于点O.若OA=OD,则用“SAS”证明△AOB≌△DOC还需添加的条件是()A.AB=DCB.OB=OCC.∠C=∠DD.∠A=∠D解题突破(3题):△AOB和△DOC中隐含着一对对顶角.4.如,已知AB=AD,∠1=∠2=50°,∠D=100°,那么∠ACB的度数为()A.30°B.40°C.50°D.60°5.如,已知点A,D,B,E在同一条直线上,且AD=BE,AC=DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF的是()A.BC=EFB.AC∥DFC.∠C=∠FD.∠BAC=∠EDF6.如所示,AC,BD相交于点O,且AO=CO,BO=DO,则图中全等的三角形有()A.4对B.3对C.2对D.1对7.已知:如,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位长度的速度沿BC-CD-DA向终点A运动.设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.8.如9,已知点A,B的坐标分别为(2,0),(2,4),P是直角坐标系中与点O不重合的一点,若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为.9.如,在平面直角坐标系中,已知点A(2,0),B(0,3),C(0,2).(1)请直接写出OB的长度:OB= ;(2)若点D在x轴上,且点D的坐标为(-3,0),求证:△AOB≌△COD.10.如1①,已知AE=CF,∠DAF=∠BCE,AD=CB.(1)△ADF与△CBE全等吗?请说明理由;(2)如果将△BEC沿CA方向平行移动,可得如图②③④所示的三个图,若题目中的条件不变,(1)中的结论仍成立吗?请选择一个图形进行证明.11.如,在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.12.(1)如①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,求证:EF=BE+DF;(2)如图②,将(1)中的条件“∠B=∠D=90°”改为“∠B+∠D=180°”,其他条件都不变,(1)中的结论是否仍然成立?(不必给出证明过程)(3)如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边BC,CD延长线上的点,且∠BAD,请直接写出EF,BE,DF三者之间的数量关系.∠EAF=12典题讲评与答案详析1.D2.C3.C [解析] 因为AB=AC ,BE=CE ,AE=AE ,所以△ABE ≌△ACE (SSS).4.C [解析] △AEB 和△DCB 已经满足两边对应相等,再添加第三边也对应相等,即可利用“SSS ”判定△AEB 和△DCB 全等.5.C [解析] △ABD 与△DCA 中已经满足AD=DA ,AB=DC=6,即两边对应相等,只需添加第三边对应相等,即AC=DB=9,就可以得到△ABD 和△DCA 全等.6.证明:∵BE=CF ,∴BE+EC=CF+EC , 即BC=EF.在△ABC 和△DEF 中,{AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF (SSS).7.证明:(1)∵CE=BF ,∴CE-EF=BF-EF ,即CF=BE.在△ABE 与△DCF 中,{AB =DC ,AE =DF ,BE =CF ,∴△ABE ≌△DCF (SSS).(2)由(1)知△ABE ≌△DCF ,∴∠AEB=∠DFC.∴∠AEF=∠DFE. ∴AE ∥DF.8.证明:在△ABD 和△ACE 中,{AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS). ∴∠BAD=∠1,∠ABD=∠2. ∵∠3是△ABD 的外角, ∴∠3=∠BAD+∠ABD. ∴∠3=∠1+∠2.9.SSS 10.C11.解:如图所示:△ABC 即为所求. 12.解:(1)相等. 理由:连接AC.在△ACB 和△ACD 中,{AC =AC ,AB =AD ,BC =DC ,∴△ACB ≌△ACD. ∴∠B=∠D.(2)设AD=x cm,BC=y cm .若点C ,D 都在BA 的延长线上,且点C 在点D 的右侧,则{x +2=y +5,x +(y +2)+5=30,解得{x =13,y =10.此时当点C 移到AB 的延长线上时,AC=12 cm,AD=13 cm,DC=5 cm,可以构成三角形. 若点C ,D 都在BA 的延长线上,且点C 在点D 的左侧,则{y =x +5+2,x +(y +2)+5=30,解得{x =8,y =15.此时当点C 移到AB 的延长线上时,AC=17 cm,DC=5 cm,AD=8 cm .∵8+5<17,不能构成三角形,∴不合题意,舍去.综上可得,AD=13 cm,BC=10 cm .典题讲评与答案详析1.C2.B3.B4.A [解析] 在△ADC 和△ABC 中,{AD =AB ,∠2=∠1,AC =AC ,∴△ADC ≌△ABC (SAS).∴∠D=∠B=100°.∵∠1=∠2=50°,∴∠ACB=180°-∠1-∠B=30°.5.C [解析] ∵AD=BE ,∴AD+DB=BE+DBk ,即AB=DE.又∵AC=DF ,若BC=EF ,则△ABC ≌△DEF (SSS),故选项A 不符合题意;若AC ∥DF ,则∠BAC=∠EDF ,∴△ABC ≌△DEF (SAS),故选项B 不符合题意;若∠C=∠F ,则无法判定△ABC ≌△DEF ,故选项C 符合题意;若∠BAC=∠EDF ,则△ABC ≌△DEF (SAS),故选项D 不符合题意.故选C .6.A [解析] 由“SAS ”可得到△ABO 与△CDO 全等,△AOD 与△COB 全等,在此基础上还可得到△ABD 与△CDB 全等,△ACD 和△CAB 全等.7.1或7 [解析] 当点P 在BC 边上运动时,因为AB=DC ,∠ABP=∠DCE=90°.若BP=CE=2,则根据“SAS ”可证得△ABP ≌△DCE.由题意得BP=2t=2,所以t=1.当点P 运动到AD 边上时,因为AB=CD ,∠BAP=∠DCE=90°.若AP=CE=2,则根据“SAS ”可证得△BAP ≌△DCE ,由题意得AP=16-2t=2,解得t=7.综上,当t 的值为1或7时,△ABP 和△DCE 全等.8.(0,4)或(4,0)或(4,4)9.解:(1)3(2)证明:∵点A (2,0),B (0,3),C (0,2),D (-3,0),∴OC=OA=2,OB=OD=3.在△AOB 和△COD 中,{OA =OC ,∠AOB =∠COD =90°,OB =OD ,∴△AOB ≌△COD (SAS).10.解:(1)全等.理由:∵AE=CF ,∴AE-EF=CF-EF ,即AF=CE.在△ADF 和△CBE 中,{AF =CE ,∠DAF =∠BCE ,AD =CB ,∴△ADF ≌△CBE.(2)仍成立.如选择题图②证明:∵AE=CF ,∴AE+EF=CF+EF ,即AF=CE.在△ADF 和△CBE 中,{AF =CE ,∠DAF =∠BCE ,AD =CB ,∴△ADF ≌△CBE.11.证明:在△ABF 和△ACE 中,{AB =AC ,∠A =∠A ,AF =AE ,∴△ABF ≌△ACE.∴BF=CE.∵AB=AC ,AE=AF ,∴BE=CF.在△EBC 和△FCB 中,{BE =CF ,BC =CB ,CE =BF ,∴△EBC ≌△FCB.12.解:(1)证明:如图,延长EB 到点G ,使BG=DF ,连接AG. ∵∠ABC=90°,∴∠ABG=90°.在△ABG 和△ADF 中,{AB =AD ,∠ABG =∠D =90°,BG =DF ,∴△ABG ≌△ADF.∴AG=AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=12∠BAD=∠EAF ,即∠EAG=∠EAF.在△AEG 和△AEF 中,{AE =AE ,∠EAG =∠EAF ,AG =AF ,∴△AEG ≌△AEF.∴EG=EF.∵EG=BE+BG ,∴EF=BE+DF.(2)结论EF=BE+DF 仍然成立.(3)EF=BE-DF.。

12.2三角形全等的判定(一)(SSS、SAS)(原卷版)

12.2三角形全等的判定(一)(SSS、SAS)(原卷版)

八年级上册数学《第十二章 全等三角形》1.2.2 三角形全等的判定(一)“边边边”与“边角边”◆利用“SSS ”判定两个三角形全等文字语言:三边分别相等的两个三角形全等,简写为“边边边”或“SSS”.几何语言:在△ABC 和△DEF 中,AB =DE BC =EF CA =FD∴△ABC ≌△DEF (SSS).◆利用“SAS ”判定两个三角形全等1、文字语言:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.2、几何语言:在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF∴△ABC ≌△DEF (SSS).3、方法:(1)已知两边,可以找“夹角”;(2)已知一角和这角的一夹边,可找这角的另一夹边【注意】1. 有两边和其中一边的对角对应相等的两个三角形不一定全等.2. 说明两三角形全等所需的条件应按对应边的顺序书写.3. 结论中所出现的边必须在所证明的两个三角形中.【例题1】如图,△ABC 中,AB =AC ,EB =EC ,则由“SSS ”可以判定( )A.△ABE≌△ACE B.△ABD≌△ACDC.△BDE≌△CDE D.以上答案都不对【变式1-1】如图,在△ACE和△BDF中,AE=BF,CE=DF,要利用“SSS”证明△ACE≌△BDF,需添加的一个条件可以是( )A.AB=BC B.DC=BC C.AB=CD D.以上都不对【变式1-2】下列四个三角形中,与图中的△ABC全等的是( )A.B.C .D .【变式1-3】如图,已知点A 、D 、B 、F 在一条直线上,AC =EF ,AD =FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是( )A .AC ∥EFB .∠E =∠C C .∠ABC =∠FDED .AB =DF【变式1-4】如图,已知∠1=∠2,若用“SAS ”证明△BDA ≌△ACB ,还需加上条件( )A .AD =BCB .BD =AC C .∠D =∠C D .OA =OB【例题2】如图,已知点B ,C ,D ,E 在同一直线上,且AB =AE ,AC =AD ,BD =CE .求证:△ABC ≌△AED.【变式2-1】(2023•云南)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.【变式2-2】如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.【变式2-3】(2023•永善县三模)如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.【例题3】11.(2018秋•庆云县校级月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 .【变式3-1】小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C '为圆心,CD 长为半径画弧,与第(2)步中所画的弧相交于点D ′;(4)过点D '画射线O ′B ′,则∠A ′O ′B ′=∠AOB .小聪作法正确的理由是( )A .由SSS 可得△O ′C ′D′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBB .由SAS 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBC .由ASA 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBD .由“等边对等角”可得∠A ′O ′B ′=∠AOB【变式3-2】(2023春•白银期中)已知∠AOB ,点C 是OB 边上的一点.用尺规作图画出经过点C 与OA 平行的直线.【变式3-3】如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧,再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连接AD 、CD ,若∠B =56°,则∠ADC 的大小为 度.【例题4】(2023•官渡区一模)如图,点A ,B ,C ,D 在同一直线上,AF =DE ,∠A =∠D ,AC =DB .求证:△ABF ≌△DCE.【变式4-1】(2023•从化区二模)为了制作燕子风筝,燕子风筝的骨架图如图所示,AB=AE,AC=AD,∠BAD=∠EAC,证明:△ABC≌△AED.【变式4-2】(2023•祥云县模拟)已知:如图,点F、C在线段BE上,AB=DE,∠B=∠E,BF=EC,求证:△ABC≌△DEF.【变式4-3】(2023•乾安县四模)已知:如图,BA=BD,BE=BC,∠ABD=∠CBE,求证:△ABE≌△DBC.【变式4-4】(2023•宁江区二模)如图,△ABC 中,D 是BC 延长线上一点,满足CD =AB ,过点C 作CE ∥AB 且CE =BC ,连接DE 并延长,分别交AC 、AB 于点F 、G ,求证:△ABC ≌△DCE .【变式4-5】(2023•五华区校级模拟)如图,已知AB ∥DE ,AB =DE ,AF =DC .求证:△ABC ≌△DEF .【例题5】如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,∠B =∠C ,若BE =4,则CD =  .【变式5-1】(2022春•成华区期末)如图,在等腰△ABC 中,∠ACB =90°,点D 是AC 的中点,过点A 作直线BD 的垂线交BC 的延长线于点E ,若BC =4,则CE 的长为 .【变式5-2】茗茗用同种材料制成的金属框架如图所示,已知∠B =∠E ,AB =DE ,BF =EC ,其中△ABC 的周长为24cm ,CF =3cm ,则制成整个金属框架所需这种材料的长度为 cm .【变式5-3】(2023•青海一模)在△ABC 中,D 是BC 边的中点,若AB =9,AC =5,则△ABC 的中线AD 长的取值范围是( )A .5<AD <9B .4<AD <9C .2<AD <14D .2<AD <7【例题6】如图,已知OA =OB ,OC =OD ,∠O =50°,∠D=35°,则∠OBC =( )A.95°B.120°C.50°D.105°【变式6-1】(2022春•福山区期中)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=76°,求∠BAC的度数.【变式6-2】(2023春•青羊区期末)如图在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=40°,求∠DEC的度数.【变式6-3】(2022秋•湟中区校级期末)如图,在△ABC中,D为AB上一点,E为AC中点,连接DE 并延长至点F,使得EF=ED,连CF.(1)求证:CF∥AB(2)若∠ABC=50°,连接BE,BE平分∠ABC,AC平分∠BCF,求∠A的度数.【例题7】(2022秋•甘井子区校级月考)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BF =CE,试判断AB和DE的关系,并说明理由.【变式7-1】(2023春•罗湖区校级期末)已知:如图,点A、F、C、D在同一直线上,AF=DC,AB=DE,AB∥DE,连接BC,BF,CE.求证:(1)△ABC≌△DEF;(2)BC∥EF.【变式7-2】(2023春•萍乡期末)如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE 有什么关系?写出你的猜想并说明理由.【变式7-3】如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【例题8】如图,AC =DC ,BC =EC ,请你添加一个适当的条件: ,使得△ABC ≌△DEC .【变式8-1】如图,已知在△ABC 和△DEF 中,∠B =∠E ,BF =CE ,点B 、F 、C 、E 在同一条直线上,若使△ABC ≌△DEF ,则还需添加的一个条件是 (只填一个即可).【变式8-2】如图,AB =AE ,AC=AD,要使△ABC ≌△AED ,应添加一个条件是 .【变式8-3】问题:如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB =DE ,若 .求证:△ABC ≌△DEF .在①AC =DF ,②∠ABC =∠DEF ,③BE =CF 这三个条件中选择其中两个,补充在上面的问题中,并完成解答.【例题9】(2022春•包头期末)如图,已知点A ,C 在线段BD 两侧,AB =AD ,CB =CD ,线段AC ,BD 相交A 于点O .下列结论:①∠ABC =∠ADC ;②AC ⊥BD ;③AC 平分∠BAD ;④OB =OD .其中正确的是  (填写所有正确结论的序号).【变式9-1】(2023•禅城区校级一模)如图,已知AB=AC,AD=AE,∠BAC=∠DAE,且B、D、E三点共线,(1)证明:△ABD≌△ACE;(2)证明:∠3=∠1+∠2.【变式9-2】(2022春•沙坪坝区校级期中)如图,点C在线段AB上,AD∥BE,AC=BE,AD=BC,CF 平分∠DCE.求证:△DCF≌△ECF【变式9-3】(2023春•浦东新区校级期末)如图,已知AB=AE,AC=AD,∠BAD=∠EAC,AD∥BC.(1)△ADE与△ACB是否全等?说明理由;(2)如果∠B=30°,∠D=40°,求∠BAE的度数.【变式9-4】(2022秋•自流井区校级期末)如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2,AD、BC相交于点F.(1)求证:∠B=∠D;(2)若AB∥DE,AE=3,DE=4,求△ACF的周长.【变式9-5】如图,AD=CB,E、F是AC上两动点,且有DE=BF.(1)若点E、F运动至如图(1)所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若点E、F运动至如图(2)所示的位置,仍有AF=CE,则△ADE≌△CBF还成立吗?为什么?(3)若点E、F不重合,则AD和CB平行吗?请说明理由.。

1.5.1 全等三角形的判定:SSS和SAS(原卷版)

1.5.1 全等三角形的判定:SSS和SAS(原卷版)

1.5.1 全等三角形的判定:SSS和SAS考查题型一三角形的稳定性1.“停课不停学,学习不延期”、居家网课期问,元元将一平板保护套展开放置在水平桌面上,如图所示,平板能保持平稳,这是运用了()A.三角形内角和等于180°B.两点之间,线段最短C.三角形具有稳定性D.三角形的一个外角等于与它不相邻的两个内角之和2.如图,空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用了三角形的()A.全等性B.灵活性C.稳定性D.对称性考查题型二用“SSS”判定三角形全等3.如图,已知AB=DC,若用定理SSS证明△ABC≌△DCB,则需要添加的条件是()A.OA=OD B.AC=DB C.OB=OC D.BC=CB4.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.SAS5.如图,已知AB=CD,AD=BC,O为AC上任意一点,过O点作一条直线分别交BA,DC的延长线于点F,E.求证:∠E=∠F.6.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.考查题型三用“SAS”判定三角形全等7.如图,在3×3的方格图中,每个小方格的边长都为1,则∠ACB的度数为()A.89°B.90°C.91°D.92°8.如图,点B在CD上,OB=OD,AB=CD,∠OBA=∠D;(1)求证:△ABO≌△CDO;(2)当AO∥CD,∠BOD=30°,求∠A的度数.考查题型四线段垂直平分线的性质9.如图,△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=50°,∠ABD=26°,则∠ACF的度数为( )A.66°B.52°C.46°D.42°10.如图,在ΔABC中,AD⊥BC垂足为点D,EF垂直平分AC,交BC于点E,交AC于点F,连接AE,若BD= DE,ΔABC的周长为16,AF=3,则DC的长为()A.4B.5C.6D.711.如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=5,则△CMN的周长为______;(2)若∠MFN=70°,求∠MCN的度数.A.4B.3 14.如图,点E、F在BD上,且()A.BE=DF B.△AEB≌15.如图,已知AB=AC,ADA.50°B16.如图,在四边形ABCD17.如图,在△ABC中,AB>PB―PC(填“>”、“<”或“=18.如图,在△ABC中,一点G,使GC=AB,连结19.如图,在△ABC中,AB=AC ACE,∠AEC=110°,则∠BDC的度数为20.如图,在ΔABC连接BD交AC于点(1)求证:ΔBAD≌ΔCAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.21.如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE 并延长,分别交AC,AB于点F,G.(1)求证:△ABC≅△DCE;(2)若BD=12,AB=2CE,求BC的长度.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,点C在DE上.(1)求证:△ABD≌△ACE.(2)若∠BDA=35°,则∠BDE=______°.。

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )D CBA A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?AABD C EO12 3AFDOBEC【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。

全等三角形 用 SSS、SAS判断三角形全等练习题

全等三角形  用 SSS、SAS判断三角形全等练习题

全等三角形:1、能够‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗的两个图形叫全等形。

2、能够‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗的两个三角形叫全等三角形,重合的‗‗‗叫对应顶点,重合的边叫‗‗‗‗‗‗‗‗,重合的角叫‗‗‗‗‗‗‗‗。

3、全等三角形的‗‗‗‗‗‗‗‗相等,对应角‗‗‗‗‗‗‗‗。

4、经过平移、翻折、旋转后的图形与原图形‗‗‗‗‗‗‗。

5、如图所示,△ABC与△DEF全等,可记作△ABC‗‗‗‗‗△DEF,其中点A与点‗‗‗‗‗是对应顶点,∠B与‗‗‗‗‗是对应角,AC与‗‗‗‗‗是对应边。

6、如图,已知△ABD≌△ECF,则相等的边有‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗;相等的角有‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

7、已知△ABC≌△EDF,则对应边为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗,对应角为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

8、已知:如图,△ABD与△CDB全等,∠ABD=∠CDB,写出其对应边和对应角。

9、如图所示,△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,∠E=50°,AC=2cm,求∠D的度数及DF的长。

10、如图,△AEC≌△ADB,点E和点D是对应顶点。

(1)写出它们的对应边和对应角;(2)若∠A=50°,∠ABD=39°,且∠1=∠2,求∠1的度数。

11、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DF相交于点F,求∠DFB的度数。

12、如图所示,A,D,E三点在同一直线上,且△BAD≌△ACE。

试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?1、三边分别‗‗‗‗的两个三角形全等,可以简写成‗‗‗‗‗‗‗或‗‗‗‗‗‗‗。

全等三角形的判定(SSS与SAS)(精选精练)(专项练习)(教师版)24-2025学年八年级数学上册

全等三角形的判定(SSS与SAS)(精选精练)(专项练习)(教师版)24-2025学年八年级数学上册

专题12.4全等三角形的判定(SSS 与SAS)(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24八年级上·河南信阳·期末)如图,AB AC =,BD CD =,35BAD ∠=︒,120ADB ∠=︒,则C ∠的度数为()A .25︒B .30︒C .35︒D .55︒2.(23-24八年级上·广西百色·期末)如图,O 为AC 的中点,若要利用“SAS ”来判定△≌△AOB COD ,则应补充的一个条件是()A .A C ∠=∠B .AB CD =C .B C ∠=∠D .OB OD=3.(22-23九年级上·重庆大渡口·期末)如图,在正方形ABCD 中,点E F ,分别在边CD BC ,上,且DE CF =,连接AE DF ,,DG 平分ADF ∠交AB 于点G .若70AED ∠=︒,则AGD ∠的度数为()A .50︒B .55︒C .60︒D .65︒4.(2024·陕西咸阳·三模)如图,在ABC 中,D 为边BC 的中点,1AB =,2AD =,延长AD 至点E ,使得DE AD =,则AC 长度可以是()A .4B .5C .6D .75.(17-18八年级上·辽宁营口·阶段练习)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF CE ,.则下列说法:①CE BF =;②ABD △和ACD 面积相等;③BF CE ∥;④BDF CDE △△≌.其中正确的有()A .4个B .3个C .2个D .1个6.(23-24八年级上·安徽安庆·期末)如图,已知方格纸中是4个相同的正方形,则1∠与2∠的和为()A .80︒B .90︒C .100︒D .110︒7.(23-24八年级上·湖北孝感·期中)如图,已知48AOB ∠=︒,点C 为射线OB 上一点,用尺规按如下步骤作图:①以点O 为圆心,以任意长为半径作弧,交OA 于点D ,交OB 于点E ;②以点C 为圆心,以OD 长为半径作弧,交OC 于点F ;③以点F 为圆心,以DE 长为半径作弧,交前面的弧于点G ;④连接CG 并延长交OA 于点H .则AHC ∠的度数为()A .24︒B .42︒C .48︒D .96︒8.(23-24八年级上·山东德州·阶段练习)如图,平面上有ACD 与BCE ,其中AD 与BE 相交于P 点,如图,若AC BC AD BECD CE ===,,,55ACE ∠=︒,155BCD ∠=︒,则BPD ∠的度数为()A .110︒B .125︒C .130︒D .155︒9.(23-24七年级下·山西太原·阶段练习)如图1,两个大小不同的三角板叠放在一起,图2是由它得到的抽象几何图形,已知AB AC =,AE AD =,90CAB DAE ∠=∠=︒,且点B ,C ,E 在同一条直线上,10cm BC =,4cm CE =,连接DC .现有一只壁虎以2cm/s 的速度沿B C D --的路线爬行,则壁虎爬到点D 所用的时间为()A .10sB .11sC .12sD .13s10.(21-22八年级上·云南昭通·期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法:①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=.其中正确的有()A .1个B .5个C .3个D .4个二、填空题(本大题共8小题,每小题4分,共32分)11.(23-24八年级上·江苏南京·期末)如图,已知12∠=∠,要用“SAS ”判定ABD ACD △≌△,则需要补充的一个条件为.12.(23-24八年级上·河北保定·期末)如图,在ABC 与ADE V 中,E 在BC 边上,AD AB =,AE AC =,DE BC =,若125∠=︒,则DAB ∠=.13.(23-24八年级上·吉林松原·期中)如图,为了测量A 、B 两点之间的距离,在地面上找到一点C ,使90ACB ∠=︒,然后在BC 的延长线上确定点D ,使BC CD =,那么只要测量出AD 的长度就得到A 、B 两点之间的距离,其中ABC ADC △△≌的依据是.14.(23-24八年级上·重庆江津·期中)如图,BE BA =,DE AB ∥,DE BC =,若3825BAC E ∠=︒∠=︒,,则BDE ∠=.15.(23-24八年级上·江苏泰州·期中)如图,在ABC 中,点D 、E 分别在AC 、BC 上,AD DE =,AB BE =,80A ∠=︒,则DEC ∠=︒.16.(23-24八年级上·河南洛阳·期中)如图,在长方形ABCD 中,20cm AB =,点E 在边AD 上,且12cm AE =.动点P 在边AB 上,从点A 出发以4cm/s 的速度向点B 运动,同时,点Q 在边BC 上,以cm/s v 的速度由点B 向点C 运动,若在运动过程中存在EAP 与PBQ 全等的时刻,则v 的值为.17.(23-24八年级上·山东菏泽·阶段练习)已知,如图,在ABC 中,点D 是AB 上一点,CD 平分ACB ∠,2A ADC ∠=∠,6BD =,4AC =,则BC 的长为.18.(23-24九年级下·江苏泰州·阶段练习)如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若BAE x ∠=︒,则EAC ∠的度数为.(用含x 的代数式表示).三、解答题(本大题共6小题,共58分)19.(8分)(23-24八年级上·陕西商洛·阶段练习)如图,在ABF △和DCE △中,,,AB DC AF DE BE CF ===,且点,,,B E F C 在同一条直线上.求证:B C ∠=∠.20.(8分)(23-24八年级上·江苏泰州·期中)如图,点B F C E 、、、在一条直线上,AB DE =,,,AC DF BF CE AD ==交BE 于点O .(1)求证:B E ∠=∠;(2)求证:,AD BE 互相平分.21.(10分)(23-24八年级上·天津宁河·期中)如图,已知AD AB AC AE DAB CAE ==∠=∠,,,连接DC BE ,.(1)求证:BAE DAC ≌;(2)若13520CAD D ∠=︒∠=︒,,求E ∠的度数.22.(10分)(23-24七年级下·陕西西安·阶段练习)如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F 使得EF ED =,连CF .(1)求证:CF AB ∥;(2)若50ABC ∠=︒,连接BE ,CA 平分BCF ∠,求A ∠的度数.23.(10分)(23-24七年级下·陕西西安·阶段练习)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一动点,连接AD ,以AD 为边在直线AD 的右侧作等腰三角形ADE ,DAE BAC ∠=∠,AD AE =,连接CE .(1)如图1,当点D 在边BC 上时,请探究BC ,CD ,CE 之间的数量关系.(2)如图2,当点D 在BC 的延长线上时,(1)中BC ,CD ,CE 之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请你写出新的结论,并说明理由.24.(12分)(23-24七年级下·陕西咸阳·阶段练习)如图,在ABC 中,AD 是BC 边上的中线,分别以AB ,AC 为直角边作直角ABE 和ACF △,其中AB AE =,90BAE ∠=︒,AC AF =,90CAF =︒∠,连接EF ,延长AD 至点G ,使DG AD =,连接BG .【初步探索】(1)试说明:AC BG ∥;【衍生拓展】(2)探究EF 和AD 之间的数量关系,并说明理由.参考答案:1.A【分析】本题主要考查了全等三角形的性质,正确判断对应角,对应边是解决本题的关键.在ABD △中,根据三角形内角和定理求得B ∠,根据全等三角形的对应角相等即可解决.【详解】解:在ABD △中,18025B BAD ADB ∠=︒-∠-∠=︒,∵AB AC =,BD CD =,AD AD =,∴()SSS ABD ACD ≌,∴25C B ∠=∠=︒.故选:A .2.D【分析】本题主要考查了添加一个条件,使得用“SAS ”来判定△≌△AOB COD ,根据已知条件得出OA OC =,AOB COD ∠=∠,故只需要OB OD =即可使用SAS 证明△≌△AOB COD .【详解】解:∵O 为AC 的中点,∴OA OC =,∵AOB COD ∠=∠,∴当添加OB OD =时,()SAS AOB COD ≌△△.故选:D .3.B【分析】可以先证明ADE DCF ≌,则70ADF ∠=︒,利用角平分线可得35ADG ∠=︒,再利用直角三角形的两锐角互余解题即可.【详解】解:∵正方形ABCD∴90AD DC ADC C DAG AD BC ∠∠∠====︒ ,,,在ADE 和DCF 中,AD DC ADE C DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF≌∴70AED DFC ADF ∠∠∠===︒∵DG 平分ADF∠∴1352ADG ADF ∠∠==︒∴9055ADG ADG ∠∠=︒-=︒故选B .【点睛】本题考查正方形的性质,全等三角形的性质和判定,掌握全等三角形的判定方法是解题的关键.4.A【分析】本题考查了全等三角形的判定与性质,三角形三边关系;证明ABD ECD ≌,得1CE AB ==,在AEC △中由三边不等关系确定AC 的取值范围,根据范围即可完成求解.【详解】解:D 为边BC 的中点,BD CD ∴=;在ABD △与BCD △中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,ABD ECD ∴ ≌,1CE AB ∴==;AE CE AC AE CE -<<+ ,4AE AD DE =+=,35AC ∴<<,故AC 可以为4,故选:A .5.D【分析】本题主要考查了全等三角形的判定与性质、等底等高的三角形的面积相等、平行线的判定等知识点,熟练掌握三角形全等的判定方法并准确识图是解题的关键.根据三角形中线的定义可得BD CD =,然后利用“SAS ”证明BDF V 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠=∠,再根据内错角相等,两直线平行可得BF CE ∥,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF V 和CDE 中,BD CD BDF CDE DE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌ ,故④正确;∴CE BF F CED =∠=∠,,故①正确,∴BF CE ∥,故③正确;∵BD CD =,点A 到BD CD 、的距离相等,∴ABD △和ACD 面积相等,故②正确,综上所述,正确的是①②③④,共4个.故选:D .6.B【分析】本题考查了全等三角形的判定与性质,互余.解题的关键在于对知识的熟练掌握与灵活运用.如图,证明()SAS ABC DFE ≌,则1BAC ∠=∠,由290BAC ∠+∠=︒,可得1290∠+∠=︒,然后作答即可.【详解】解:如图,∵BC ED =,90BCA DEF ∠=∠=︒,AC FE =,∴()SAS ABC DFE ≌,∴1BAC ∠=∠,∵290BAC ∠+∠=︒,∴1290∠+∠=︒,故选:B .7.D【分析】本题考查尺规基本作图-作一角等于已知角,三角形全等的判定和性质,三角形外角的性质,根据作图,由全等三角形的判定定理SSS 可以推知DOE GCF ≌,得到GCF DOE ∠=∠,即48ACO AOB ∠=∠=︒,再利用三角形外角性质求解即可.【详解】解:由作图可知,在DOE 与GCF 中,OD CG DE GF OE CF =⎧⎪=⎨⎪=⎩,则()SSS DOE GCF ≌.∴GCF DOE ∠=∠,即48ACO AOB ∠=∠=︒,∴484896AHC AOB ACO ∠=∠+∠=︒+︒=︒.故选:D .8.C【分析】易证≌ACD BCE V V ,由全等三角形的性质可知:A B ∠=∠,再根据已知条件和四边形的内角和为360︒,即可求出BPD ∠的度数.【详解】解:在ACD 和BCE 中,AC BC CD CE AD BE =⎧⎪=⎨⎪=⎩,∴()SSS ACD BCE ≌,∴BCE ACD ∠=∠,∴BCA ECD ∠=∠,∵55ACE ∠=︒,155BCD ∠=︒,∴100BCA ECD ︒∠+∠=,∴50BCA ECD ︒∠=∠=,∵55ACE ∠=︒,∴105ACD ∠=︒∴75A D ︒∠+∠=,∴75B D ∠+∠=︒,∵155BCD ∠=︒,∴36075155130BPD ︒︒︒︒∠=--=,故选:C .【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出75B D ∠+∠=︒.9.C【分析】先根据等腰直角三角形的性质可以得出ABE ACD ≌,属于手拉手型全等,所以()10414cm CD BE ==+=,最后根据时间=路程÷速度即可解答.本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【详解】解:BAC EAD ∠=∠ ,BAC CAE EAD CAE ∴∠+∠=∠+∠,BAE CAD ∴∠=∠,在ABE 与ACD 中,AB AC BAE CAD AD AE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABE ACD ∴ ≌,10414(cm)CD BE BC CE ∴==+=+=,则()101424cm BC CD +=+= 壁虎以2cm/s 的速度B 处往D 处爬,24212()t s ∴=÷=.故选:C .10.B【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.11.BD CD=【分析】本题主要考查对全等三角形的判定的理解和掌握,根据用“SAS ”判定ABD ACD △≌△,已知12∠=∠及公共边AD ,添加的条件是BD CD =.【详解】解:添加的条件是BD CD =,理由是:在ABD △与ACD 中,11AD AD BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ACD ≌,故答案为:BD CD =.12.25︒/25度【分析】本题主要考查了全等三角形的性质与判定,三角形内角和定理,证明()SSS ABC ADE ≌得到AED C ∠=∠,再根据三角形内角和定理和平角的定义可得2125∠=∠=︒.【详解】解:∵AD AB =,AE AC =,DE BC =,∴()SSS ABC ADE ≌,∴AED C ∠=∠,∵11802C AEC AEC AED ∠++=︒=++∠∠∠∠∠,∴2125∠=∠=︒,故答案为:25︒.13.SAS /边角边【分析】本题考查了全等三角形的判定,根据SAS 即可证明ACB ACD ≌ 是解题的关键.【详解】解:AC BD ^ ,90ACB ACD ∴∠=∠=︒,在ACB △和ACD 中,AC AC ACB ACD BC CD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACB ACD \≌ ,故答案为:SAS .14.117︒/117度【分析】本题考查了全等三角形的判定及其性质等知识,根据平行线的性质得出∠=∠ABC BED ,进而利用SAS 证明ABC 和EBD △全等,利用全等三角形的性质解答即可.【详解】解:∵DE AB ∥,ABC BED ∴∠=∠,在ABC 和EBD △中,BA BE ABC BED BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC EBD ∴ ≌,38BAC EBD ∴∠=∠=︒,1801803825117BDE EBD E ∴∠=︒-∠-∠=︒-︒-︒=︒,故答案为:117︒.15.100【分析】本题考查了三角形全等的判定与性质,熟练掌握三角形全等的判定方法是解题关键.先证出EBD ABD △≌△,再根据全等三角形的性质可得80BED A ∠=∠=︒,由此即可得.【详解】解:在EBD △和ABD △中,ED AD BE BA BD BD =⎧⎪=⎨⎪=⎩,()SSS EBD ABD ∴ ≌,80BED A ∴∠=∠=︒,180100DEC BED ∴∠=︒-∠=︒,故答案为:100.16.4或245【分析】本题主要考查三角形全等的判定.设运动s t ,则4 cm AP t =,()204cm BP AB AP t =-=-, cm BQ vt =,由于在长方形ABCD 中,90A B ∠=∠=︒,因此①当AE BP =,AP BQ =时,()SAS AEP BPQ ≌,②当AE BQ =,AP BP =时,()SAS AEP BQP ≌,代入即可求解v 的值.【详解】设运动s t ,则4 cm AP t =,()204cm BP AB AP t =-=-, cm BQ vt =,∵在长方形ABCD 中,90A B ∠=∠=︒,∴①当AE BP =,AP BQ =,即12204t =-,4t vt =时,()SAS AEP BPQ ≌,解得:2t =,4v =或当AE BQ =,AP BP =,即12vt =,4204t t =-时,()SAS AEP BQP ≌,解得:52t =,245v =.综上所述,v 的值为4或245.故答案为:4或24517.10【分析】本题考查了全等三角形的判定与性质,解决本题的关键是证明ACD ECD ≌△△,在BC 边上取点E ,使EC AC =,连接DE ,证明ACD ECD ≌△△,再根据已知条件证得6BD BE ==,即可得解.【详解】解:如图,在BC 边上取点E ,使EC AC =,连接DE ,∵CD 平分ACB ∠,∴ACD ECD ∠=∠,∵CD CD =,∴()SAS ACD ECD ≌,∴4AC CE ==,ADC EDC ∠=∠,∵22A ADC ADE ADC EDC ADC ∠=∠∠=∠+∠=∠,,∴A ADE DEC ∠=∠=∠,∴BDE BED ∠=∠,∴6BD BE ==,∴6410BC BE CE =+=+=.故答案为:10.18.1802x-【分析】本题主要考查了全等三角形的判定与性质,角平分线的性质,利用SAS 证明ABC ADC △△≌得D DCA B BCA ∠+∠=∠+∠,根据三角形的外角定理推出B BCA CAE ∠+∠=∠,进而根据三角形内角和定理即可求解,解题的关键是利用SAS 证明ABC ADC △△≌.【详解】解:∵AC 平分DCB ∠,∴BCA DCA ∠=∠,在ABC 和ADC △中,CB CD BCA DCA CA CA =⎧⎪∠=∠⎨⎪=⎩∴ABC ADC △△≌,∴B D ∠=∠,∴B BCA D DCA ∠+∠=∠+∠,∵EAC D DCA ∠=∠+∠,∴B BCA EAC ∠+∠=∠,∵180180B BCA BAC BAE EAC ∠+∠=︒-∠=︒-∠-∠,∴180CAE BAE EAC ∠=︒-∠-∠,∵BAE x ∠=︒,∴1802x EAC -⎛⎫∠=︒ ⎪⎝⎭,故答案为:1802x -.19.见解析【分析】由BE CF =可得BF CE =,然后利用SSS 证明ABF DCE ≌即可证明结论.【详解】解:∵BE CF =,∴BE EF EF FC +=+,即BF CE =,在ABF 和DCE 中AB CD AF DE BF CE =⎧⎪=⎨⎪=⎩,∴ABF DCE ≌,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.20.(1)见解析(2)见解析【分析】本题考查了全等三角形的判定与性质,解题的关键是:(1)利用SSS 证明ABC DEF ≌△△,然后根据全等三角形的性质即可得证;(2)利用AAS 证明ABO DEO △△≌,然后根据全等三角形的性质即可得证.【详解】(1)证明:∵BF CE =,∴BC EF =,在ABC 和DEF 中AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴()SSS ABC DEF ≌,∴B E ∠=∠;(2)证明:在ABO 和DEO 中B E AOB DOE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABO DEO ≌,∴AO DO =,=BO EO ,即AD ,BE 互相平分.21.(1)见解析(2)25E ∠=︒【分析】本题主要考查了全等三角形的判定与性质;(1)根据题意由DAB BAC CAE BAC ∠+∠=∠+∠,可得DAC BAE ∠=∠,即可求证;(2)由()SAS BAE DAC ≌,可得E C ∠=∠,再由内角和为180︒即可求解.【详解】(1)证明:∵DAB CAE ∠=∠,∴DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,又∵AD AB AC AE ==,,∴()SAS BAE DAC ≌;(2)∵()SAS BAE DAC ≌,∴E C ∠=∠,∵13520CAD D ∠=︒∠=︒,,∴1801801352025C CAD D ∠=︒-∠-∠=︒-︒-︒=︒,∴25E C ∠=∠=︒.22.(1)见详解(2)65︒【分析】本题考查了全等三角形的性质和判定、平行线的性质和判定、三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.(1)求出AED CEF ≌,根据全等三角形的性质得出A ACF ∠=∠,根据平行线的判定得出即可;(2)根据(1)求出A ACB ∠=∠,根据三角形内角和定理求出即可.【详解】(1)证明:∵E 为AC 中点,AE CE ∴=,在AED △和CEF △中AE CE AED CEF DE EF =⎧⎪∠=∠⎨⎪=⎩,()AED CEF SAS ∴ ≌,A ACF ∴∠=∠,∴CF AB ∥;(2)解:∵AC 平分BCF ∠,ACB ACF ∴∠=∠,A ACF ∠=∠ ,A ACB ∴∠=∠,180,50A ABC ACB ABC ∠+∠+∠=︒∠=︒ ,18050652A ︒-︒∴∠==︒,65A ∴∠=︒.23.(1)CE CD BC+=(2)不成立.CE CD BC-=【分析】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定方法是解本题的关键.(1)证明BAD CAE ∠=∠.再证明()SAS BAD CAE ≌△△,可得CE BD =,再进一步可得结论;(2)证明BAD CAE ∠=∠.再证明()SAS BAD CAE ≌△△,可得CE BD =,再进一步可得结论;【详解】(1)解:∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAD CAE ∠=∠.在BAD 与CAE V 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BAD CAE ≌△△,∴CE BD =,∴CE CD BD CD BC +=+=.(2)不成立.CE CD BC -=.理由:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠.在BAD 与CAE V 中,,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴△≌△,∴CE BD =,∴CE CD BD CD BC -=-=.24.(1)见解析(2)2EF AD =,理由见解析【分析】本题考查了全等三角形的判定和性质、平行线的判定和性质,熟练掌握知识点、推理证明是解题的关键.(1)根据AD 是边BC 的中线,得出BD CD =,利用SAS 证明GDB ADC ≌,得出DBG ACD Ð=Ð,根据“内错角相等,两直线平行”,即可证明AC BG ∥;(2)由(1)得AC BG ∥,GDB ADC ≌,得出180BAC ABG ∠+∠=︒,BG AC =,推出BG AF =,ABG EAF ∠=∠,利用SAS 证明ABG EAF ≌,得出AG EF =,根据DG AD =,AG DG AD =+,得出2AG AD =,即可证明2EF AD =.【详解】解:(1)∵AD 是边BC 的中线,∴BD CD =,在GDB △和ADC △中,DG AD GDB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS GDB ADC ≌,∴DBG ACD Ð=Ð,∴AC BG ∥;(2)2EF AD =,理由如下,∵由(1)得AC BG ∥,GDB ADC ≌,∴180BAC ABG ∠+∠=︒,BG AC =,∵AC AF =,∴BG AF =,∵3603609090180BAC EAF BAE CAF Ð+Ð=°-Ð-Ð=°-°-°=°,∴ABG EAF ∠=∠,在ABG 和EAF △中,AB AE ABG EAF BG AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABG EAF ≌,∴AG EF =,∵DG AD =,AG DG AD =+,∴2AG AD =,∴2EF AD =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定训练题(SSS 、SAS)
判定定理1: 简单的表示为:SSS 数学语言:在△ABC 和△A 'B 'C ' 中 AC=A 'C ' (已知)
BC=B 'C ' (已知)
AB=A 'B ' (已知) ∴△ABC ≌△A 'B 'C '
(SSS )
1、若AB=CD,AC=DB ,可以判定哪两个三角形全等?请证明。

2、△ABC 中,AB=AC ,AD 是BC 边上的中线,∠B 与∠C 有什么关系?请证明。

3、点B 、E 、C 、F 在同一条直线上,AB=DE ,AC=DF ,BE=CF ,则AB 和DE 有怎样的位置关系?请证明。

A
C
4、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?
5、如图,AC=DF,BC=EF,AD=BE,∠BAC=80o,∠F=60o,求∠ABC
6、如图,AC=AD,BC=BD,∠1=35o,∠2=65o,求∠C
7、如图,△ABC中,AD=AE,BE=CD,AB=AC,说明△ABD≌△ACE
判定定理2:简单的表示为:SAS 数学语言:在△ABC和△A'B'C'中
AB=A'B'(已知)
∠B=∠B'(已知)
BC=B'C'(已知)
∴△ABC≌△A'B'C'(SSS)
8、如图,已知AC,BD相交于O,AO=DO,BO=CO,证明:∠A=∠D 9.如图,AE是,
BAC的平分线
AB=AC.证明△ABD≌△ACD
10、已知:如图,AB=AC,AD=AE,求证:BE=CD.
B C
A
B C
A
B
D
E 1
2
A
D
B
E
C
11、 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,求证:△ADB ≌△AEC
12、 如图,已知AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE ,求证: BE=DC
13、 如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE 的关系。

14、 如图:已知AC ,BD 相交于O ,OA=OB ,OC=OD.证明:△ABC ≌△BAD
D A
B
Q
C
P
E
A
D。

相关文档
最新文档