直流电动机开环调速MATLAB系统仿真(DOC)
直流电机双闭环调速系统MATLAB仿真
题目:直流电机双闭环调速系统姓名:学号:专业班级:电气工程及其自动化指导教师:一、直流电机双闭环调速系统模块功能图1直流电机双闭环调速系统框图图2直流电机双闭环提速系统原理图如图1为直流电机速度、电流双闭环调速系统框图,图2为直流电机速度、电流双闭环调速系统原理图。
该调速系统包括两个反馈控制闭环,内环为电流控制环,外环为速度控制环。
速度调节器与电流调节器均为PI调节器,可以实现直流电机转速的静态无差调节与快速动态响应。
以图2所示由硬件构成的双闭环调速系统为例,介绍该系统的工作原理。
直流电机给定速度信号ug与反馈速度信号ufn进行比较,形成速度输入信号Δun=ug-ufn,进入速度PI调节器ST,其输出信号为电流给定信号un,与电流反馈信号ufi进行比较,得到电流PI调节器LT的输入信号Δui=un-ufi,输出信号uk 作为触发器CF的移相电压,从而控制整流桥的移相角a,进而控制直流电机的电枢电压U d、电枢电流I d以及输出转矩T。
如图3为MATLAB中直流电机速度、电流双闭环调速系统的Simulink仿真模型。
接下来对该模型各个模块的功能进行描述。
图3双闭环调速系统Simulink仿真模型1、速度给定模块图1如图4所示为速度给定模块,为一阶跃信号,由表1的模块参数表可知速度给定信号的阶跃时间Step time为0.8s,阶跃信号初始值Initial value为120rad/s,稳定值Final value为160rad/s。
该模块的功能为产生一个阶跃的速度给定信号wef输入到速度调节器中。
表12、速度调节器图5图5为速度调节器模块,是一个PI调节器,输入信号为速度给定信号wef 与速度反馈信号wm,输出信号Iref作为电流调节器的电流给定信号。
通表2的模块参数表可知该PI调节器的比例系数kp=1.6,积分系数ki=16,最大输出限幅值Current limit为30A。
该模块的功能为通过对电机速度的闭环控制输出电流调节器的给定信号Iref。
直流电动机开环调速系统仿真
直流电动机开环调速系统仿真随着电动机在工业、交通等领域的广泛应用,开发一种高效可靠的电动机控制系统对于提高整个工业的精度和效率至关重要。
其中,直流电动机开环调速系统是电动机控制系统中的一种基础环节,其使得直流电动机能够以合适的速度运行,完成工作任务。
一、调速系统的基本原理1. 直流电动机的基本结构与原理直流电动机由定子、转子、刷子、通电电源四个基本部分组成,其中,定子上包覆绕组,绕组所带的电流受到直流电源的控制,与转子上的永磁体受到的作用力相互作用,产生电动力和电磁力,从而使转子旋转。
2. 直流电动机的调速根据直流电动机的转矩-速度特性曲线可知,直流电动机的转速与电极数、电流和电磁力等因素密切相关。
因此,通过控制直流电动机的电流大小,可以达到调节直流电动机转速的目的。
直流电动机开环调速系统主要由电动机本体、电流传感器、减速器以及驱动器等基本组成部分组成。
其中,电流传感器用于检测电动机电流的大小,而驱动器则输出一定的电压或电流,控制直流电动机的运行。
二、仿真实现1. 基本仿真模型基于MATLAB/Simulink软件建立的直流电动机开环调速系统仿真模型主要由瞬时电压、转速检测、控制逻辑、直流电机、直流电阻负载以及电流检测等组成,实时进行电磁转矩的计算,最终得到直流电机的运动状态,从而实现调速功能。
2. 仿真分析通过此仿真模型,我们可以得到直流电动机的运行状态,理解不同负载下的转矩-转速特性曲线以及电流在不同转速下的变化,从而通过调节电流、电压等参数,以达到理想的调速效果。
三、结论直流电动机的开环调速系统是一个重要的电动机控制系统组成部分,其能够有效地提高电动机的自动控制能力,大大提升了直流电动机的工作效率和精度。
本文通过介绍直流电动机调速系统的基本原理和仿真实现,为电动机控制系统研究和开发提供了参考和借鉴,对推动整个行业智能化和自动化发展具有重要意义。
《MATLAB工程应用》---晶闸管开环直流调速系统仿真实验
《MATLAB工程应用》
晶闸管开环直流调速系统仿真
一、选题背景
本课程是在《电机学》《单片机》等课程上,独立设计的一门综合实验课程。
课程主要目的是培养学生分析问题,解决问题能力,提高学生自主学习,分工协作以及课程设计报告撰写水平。
二、方案论证(设计理念)
设计一个晶闸管直流调速系统仿真模型,通过改变触发器移相控制信号来调节晶闸管的触发角,而从获得可调的直流电压,以该直流输出为直流电机供电。
要求完成仿真模型图和仿真波形图,其中波形图包括直流电机的转速波形,电枢电流波形,转矩波形,改变触发角后的转速波形。
三、过程论述
直流电动机电枢由晶闸管整流电路经平波电抗器供电,通过改变触发器移相控制信号调节晶闸管的控制角,从而获得可调的直流电压,以实现直流电动机的调速。
移相控制信号,在实际调速时,给定信号是在一定范围内变化的,可通过仿真实践,确定给定信号允许的变化范围。
图1:构建的simulink仿真结构图
图2:参数设置
图3:波形
五、课程设计总结
仿真可得到闸管直流调速系统的输出波形。
电机转速波形,电枢电流波形,二者变化基本一致。
若将触发角改为30°,则转速波形发生明显改变,转速提高,这是因为直流电压增大的原因。
经过这段时间队MATLAB的学习,学会了对知识的汇总与运用,能够熟练使用相关软件,收获较大。
电力拖动自动控制系统Matlab仿真实验报告
电力拖动自动控制系统Matlab仿真实验报告实验一单闭环转速反馈控制直流调速系统一.【实验目的】1. 加深对比例积分控制的无静差直流调速系统的理解;2. 研究反馈控制环节对系统的影响和作用 .二.【实验步骤和内容】1. 仿真模型的建立:打开模型编辑窗口,复制相关模块,修改模块参数,模块连接。
2. 仿真模型的运行;仿真过程的启动,仿真参数的设置 .转速负反馈闭环调速系统 :直流电动机:额定电压U N=220V,额定电流I dN =55A,额定转速n N=1000r/min电动机电动势系数C e=0.192V.min/r, 假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s =0.00167s,电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数T1 =0.00167s,电力拖动系统机电时间常数Tm=0.075s,转速反馈系数α=0.01V.min/r对应额定转速时的给定电压U n∗ =10V 比例积分控制的直流调速系统的仿真框图如图 5-1 所示。
图 5-1 比例积分控制的直流调速系统的仿真框图图 5-2 开环比例控制直流调速系统仿真模型图图 5-3 开环空载启动转速曲线图图 5-4 开环空载启动电流曲线图图 5-5 闭环比例控制直流调速系统仿真模型图在比例控制直流调速系统中,分别设置闭环系统开环放大系数 k=0.56 , 2.5, 30 ,观察转速曲线图,随着 K 值的增加,稳态速降减小,但当 K 值大于临界值时,系统将发生震荡并失去稳定,所以 K 值的设定要小于临界值。
当电机空载启动稳定运行后,加负载时转速下降到另一状态下运行,电流上升也随之上升。
图 5-6 k=0.56 转速曲线图图 5-7 k=0.56 电流曲线图图 5-8 k= 2.5 转速曲线图图 5-9 k= 30 转速曲线图图 5-10 闭环比例积分控制直流调速系统仿真模型图图 5-11 PI 控制转速 n 曲线图图 5-12 PI 控制电流曲线图在闭环比例积分( PI )控制下,可以实现对系统无静差调节,即, 提高了系统的稳定性。
直流电动机开环调速MATLAB系统仿真
东北石油大学MATLAB电气应用训练2013年 3 月 8日MATLAB电气应用训练任务书课程 MATLAB电气应用训练题目直流电动机开环调速系统仿真专业电气信息工程及其自动化姓名赵建学号 110603120121主要内容:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。
分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善基本要求:1.设计直流电动机开环调速系统2.运用MATLAB软件进行仿真3.通过仿真软件得出波形图参考文献:[1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007.[2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000.[3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006.[4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006.完成期限 2013.2.25——2013.3.8指导教师李宏玉任爽2013年 2 月25 日目录1课题背景 (1)2直流电动机开环调速系统仿真的原理 (2)3仿真过程 (5)3.1仿真原理图 (5)3.2仿真结果 (9)4仿真分析 (12)5总结 (13)参考文献 (14)1课题背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
利用Matlab仿真平台设计双闭环直流调速系统
1 设计任务及要求1、已知条件:某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电动机:220V 、136A 、1460r/min ,Ce=0.132 min/r , 允许过载倍数1.5 。
闸管放大系数:Ks=40 。
电枢回路电阻:R 0.5 。
o时间常数:T1=0.03s ,Tm=0.18s 。
电流反馈系数:0.05V/A( 10V/1.5I nom )转速反馈系数:0.007Vmin /r( 10V /n nom)2 、技术要求:稳态指标:无静差;动态指标:电流超调量i 5% ;空载起动到额定转速时的转速超调量n% 10% 。
3 、设计要求:①简述单闭环直流调速系统的基本构成和工作原理。
②分析所设计系统的静态性能指标和动态性能指标。
③根据动态性能指标设计校正装置。
④设计出系统的Simulink 仿真模型,验证所设计系统的性能。
⑤给出所设计系统的性能指标:上升时间t r 、超调量p% 、调节时间t s 、最大启动电流Idmax 、稳态误差e ss 。
2 系统的基本结构和工作原理许多生产机械,由于加工和运行的要求,使电动机经常处于起动、制动、反转的过渡过程中,因此起动和制动过程的时间在很大程度上决定了生产机械的生产效率。
为缩短这一部分时间,仅采用PI调节器的转速负反馈单闭环调速系统,其性能还不很令人满意。
双闭环直流调速系统是由电流和转速两个调节器进行综合调节,可获得良好的静、动态性能(两个调节器均采用PI调节器),由于调整系统的主要参量为转速,故将转速环作为主环放在外面,电流环作为副环放在里面,这样可以抑制电网电压扰动对转速的影响。
双闭环直流调速系统较单闭环相比具有动态响应快、抗干扰能力强等优点,具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
具有单闭环不能比拟的优势。
双闭环调速系统的结构示意图如下图1:双闭环调速系统结构原理图如下图2 :渊电源输出*" ---3Hj图2 双闭环调速系统结构原理图触发电踣匸桥-功放rIF1 Io"电源H+II个柠3系统的静态性能和动态性能指标3.1系统的静态性能指标为了分析双闭环调速系统,必须先绘出它的稳态结构框图。
基于Matlab的双闭环直流调速系统设计及仿真1
基于Matlab的双闭环直流调速系统设计及仿真宋友志摘要:本文介绍了基于工程设计方法对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理,详细分析了系统的起动过程及参数设计,运用Simulink 进行直流电动机双闭环调速系统的数学建模和系统仿真。
最后显示控制系统模型以及仿真结果并加以分析。
关键词:转速环;电流环;调节器;SimulinkDesignation and Simulation of Double Loop DC Motor Control SystemBased on MatlabAbstract:This paper introduces a design method of DC system based on engineering, according to its working principle,analyzing the dynamic process and the parameters designation detailedly,modeling and simulating were carried out to the dual closed-loop control system of the direct current motor by using Simulink.In the end,analyzing the simulation results.Key words:loop of revolution rate;loop of current;regulator;Simulink一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
单闭环直流调速系统的设计与Matlab仿真(一)资料
课题:一、单闭环直流调速系统的设计与Matlab 仿真(一)作者: 学号: 专业: 班级: 指导教师:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。
通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型,然后用此理论去设计一个实际的调速系统。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以Matlab为工具,以求简明直观而方便快捷的设计过程。
摘要:Matlab 开环闭环负反馈静差稳定性V-M 系统摘要 (2)一、 ..................................................... 设计任务 41、 ...................................................... 已知条件42、设计要求 (4)二、 ..................................................... 方案设计 51、 ...................................................... 系统原理 52、 ........................................................ 控制结构图 6三、 ..................................................... 参数计算7四、 ....................................................... PI调节器的设计.. (9)五、 ................................................ 系统稳定性分析11六、 ......................................................... 小结12七、 ..................................................... 参考文献13一、设计任务1、已知条件已知一晶闸管-直流电机单闭环调速系统(V-M系统)的结果如图所示。
晶闸管-直流电动机开环调速仿真
《计算机仿真及应用B》答卷题目名称:晶闸管-直流电动机开环调速系统仿真班级:电气本科一班学号: 201240220102 姓名:付超勇指导教师:陈学珍命题说明:此门课程主要考核学生的实际动手能力,掌握用MATLAB建立系统仿真模型的方法,为了对每个学生进行考核,一人一题,雷同率不能超过50%,由学生自己确定题目。
要满足以下几点要求:1、详细描述所做题目的工作原理及所用电机参数;2、直流电机参数要有计算步骤;3、画出仿真原理图,子系统要一一展开;4、仿真结果分析;5、用A4纸打印,在规定时间内交上来。
成绩评定标准:1.原理描述清楚得20分。
2.仿真原理图正确得30分。
3.子系统展开得20分。
4、仿真结果正确及有分析得30分。
实验名称晶闸管-直流电动机开环调速1.1仿真原理图图1-1 直流开环调速系统电气原理图1-2 直流电动机开环调速系统结构图1.2仿真参数明细根据实验原理图在MATLAB软件环境下查找器件、连线,接成入上图所示的线路图。
仿真具体步骤1)所用元器件及其参数设置A)三相交流电源A、B、C首先从Simpowersystes 中的Electrical sources 电源模块组中选取一个交流电压源模块 AC Voltage Source,再用复制的方法得到三相电源的另两个电压源模块,用 Format(格式设定)菜单中 Rotate block(Ctrl +R)将模块水平放置,并点击模块标题名称,将模块标签分别改为“Ua”、“ Ub”、“ Uc”,然后从连接器模块 Connectors 中选取“Ground (output)”元件,按下图进行连接。
(1)Ua(2)Ub(3)Uc图1-4 三相电源参数设置设置三相电压都为220V,两两之间相位差为120,分别为0、-120、-240。
a)6-Pulse Generator同步脉冲触发器包括同步电源和 6 脉冲触发器两部分。
6 脉冲触发器从Simpowersystes中选取 Extra Libray 中的 Contral Blocks 中取获得。
单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》
单闭环直流调速系统的仿真研究【基于MATLAB软件的仿真】《论文》1引言调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。
电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。
1.1直流调速系统的概述由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。
就目前来看,直流调速系统仍然是自动调速系统的主要形式。
在我国许多工业部门,如海洋钻探、纺织、轧钢、矿山、采掘、金属加工、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。
而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
随着GTO晶闸管、GTR、P-MOSFET、IGBT和MCT等全控型功率器件的问世,这些有自断能力的器件逐步取代了原来普通晶闸管系统所必须的换向电路,简化了电路的结构,提高了效率和工作频率,降低了噪声,缩小了电力电子装置的体积和重量。
谐波成分大、功率因素差的相控变流器逐步被斩波器或脉冲宽度调制器所代替,明显的扩大了电动机控制的调速范围,提高了调速精度,改善了快速性、效率和功率因素。
PWM电源终将取代晶闸管相控式可控功率电源,成为电源的主流。
随着信息、控制与系统学科以及电力电子的发展,电力拖动系统获得了迅猛发展,从旋转交流机组到水银整流器静止交流装置、晶闸管整流装置,再到众多集成电力模块。
目前完全数字化的控制装置已成功应用于生产,以微机作为控制系统的核心部件,并具有控制、检测、监视、故障诊断及故障处理等多功能电气传动系统正处在形成和不断完善之中。
1.2本章小结本章介绍了直流调速系统的研究前景及其优点。
基于Matlab的直流电动机双闭环调速系统的仿真研究
的转速 反馈 信号 的差值 输入 到速 度调节 器 A R中 , S 其 输 出作 为 内环 电流 环 的给定用来 控制 电枢 电流 和 转矩 T, 而实现 转 速调 节 。AS 输 出 与 电流 反馈 从 R
实验一开环直流调速系统仿真
实验一开环直流调速系统仿真
一、实验目的
1.熟悉MATLAB中的sinulink仿真的Powersystem库的元器件;
2.掌握直流电动机的模型;
3.掌握开环直流调速系统的原理及仿真。
二、实验原理
1. 直流电动机的数字模型及模块
SimPowersystem/machine/DC machine
2. 开环直流调速系统
三、实验内容
基本数据如下:
电动机:150kW,1000r/min, 700A,0.05Ω;Ld=2mH, Rd=0.08; Ce=0.185,Cm=0.18; Tm=0.8s;Tl=0.025s
三相全控桥整流:Ks=23;Ts=0.0017;
Ce=0.185,Cm=0.18; Tm=0.8s;Tl=0.025s
四、实验步骤
1.根据原理和内容搭建电路模型;
2.设置各元器件的参数;
3.设置仿真参数:仿真时间设为0——1s;计算方法为ode15或ode23tb。
4.仿真实现。
元器件清单:
五、实验报告
1. 绘制仿真电路图及输出波形图(波形要求的白底);
2.分析开环调速系统的特性,负载变化时速度如何变化;。
开环直流调速系统的动态建模与仿真.
开环直流调速系统的动态建模与仿真学院:电气与控制工程学院班级:学号:姓名:设计题目:开环直流调速系统的动态建模与仿真设计目的:1.掌握开环直流调速系统的建模方法2.熟悉MATLAB/Simulink的使用方法MATLAB的概述:MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB是目前国际上最流行,应用最广泛的科学与工程计算软件,它由MATLAB语言,MATLAB工作环境,MATLAB图像处理系统,MATLAB数据函数库,MATLAB应用程序接口五大部分组成的集数值计算,图形处理,程序开发为一体的功能强大的系统.它应用于自动控制,数学计算,信号分析,计算机技术,图像信号处理,财务分析,航天工业,汽车工业,生物医学工程,语音处理和雷达工程等各行业,也是国内高校和研究部门进行许多科学研究的重要工具。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多。
MATLAB是以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的需求。
与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。
双闭环直流电动机调速系统设计及MATLAB仿真
双闭环直流电动机调速系统设计及M A T L A B仿真(共21页)-本页仅作为预览文档封面,使用时请删除本页-目录1、引言..................................................错误!未定义书签。
二、初始条件:...........................................错误!未定义书签。
三、设计要求:...........................................错误!未定义书签。
四、设计基本思路.........................................错误!未定义书签。
五、系统原理框图.........................................错误!未定义书签。
六、双闭环调速系统的动态结构图...........................错误!未定义书签。
七、参数计算.............................................错误!未定义书签。
1. 有关参数的计算 ...................................错误!未定义书签。
2. 电流环的设计 .....................................错误!未定义书签。
3. 转速环的设计 .....................................错误!未定义书签。
七、双闭环直流不可逆调速系统线路图.......................错误!未定义书签。
1.系统主电路图 ......................................错误!未定义书签。
2.触发电路 ..........................................错误!未定义书签。
3.控制电路 ..........................................错误!未定义书签。
根据MATLAB的直流电机双闭环调速系统的设计与仿真
《机电控制系统分析与设计》课程大作业之一 基于MATLAB 的直流电机双闭环调速系统的设计与仿真1 计算电流和转速反馈系数β=U im ∗I dm =10V 4A =1.25Ωα=U nm ∗n =10500=0.02V ∙min/r2 按工程设计法,详细写出电流环的动态校正过程和设计结果根据设计的一般原则“先内环后外环”,从内环开始,逐步向外扩展。
在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。
电流调节器设计分为以下几个步骤:a 电流环结构图的简化 1) 忽略反电动势的动态影响在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即 E ≈0。
这时,电流环如下图所示。
2) 等效成单位负反馈系统如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成U *i (s ) /β ,则电流环便等效成单位负反馈系统。
3) 小惯性环节近似处理由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为T ∑i = T s + T oi 简化的近似条件为电流环结构图最终简化成图。
ois ci 131T T ≤ωb 电流调节器结构的选择 1) 典型系统的选择:从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。
从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统 2) 电流调节器选择电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI型的电流调节器,其传递函数可以写成K i — 电流调节器的比例系数; τi — 电流调节器的超前时间常数3) 校正后电流环的结构和特性为了让调节器零点与控制对象的大时间常数极点对消,选择则电流环的动态结构图便成为图a 所示的典型形式,其中ss K s W i i i ACR )1()(ττ+=msT l 8i ==τRK K K i s i I τβ=a) 动态结构图:b) 开环对数幅频特性c. 电流调节器的参数计算电流调节器的参数有:K i 和 τi , 其中 τi 已选定,剩下的只有比例系数 K i , 可根据所需要的动态性能指标选取。
MATLAB直流调速系统仿真
MATLAB仿真技术大作业直流调速系统仿真1、电机开环特性计算PWM脉冲占空比:D=V O/Vd=420/600=70%画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=1708A 负载时的稳态电枢电流:I a=143.2A 空载时转速:n=4200rpm 负载时的转速:n=3896rpm2、转速闭环控制设置比例-积分环节,k P=0.01,k I=0.01,k D=0画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=2425A 负载时的稳态电枢电流:I a=141.6A 3、改善电机起动特性用斜坡函数加限幅(ramp--saturation)代替转速指令:斜坡斜率设为8400,限幅设为4200。
画出转速的波形、电机电枢电流的波形:电机起动时的最大电流:I max=619.7A4、简化降压斩波器降压斩波器只使用一只IGBT和一只二极管时,再次进行仿真。
画出电机电枢电流的波形与第3问的波形进行比较:与第3问的波形进行比较:t=0.3s时,I a(3)=379.3A I a(4)=379.3At=0.8s时,I a(3)=-8.92A I a(4)=-0.02107At=1.5s时,I a(3)= 143.4A I a(4)=143.8A通过对比,可知三段波形的数值几乎无差别或差别非常小可忽略不计;但波形显示在t=0.5s 左右时第四问波形的纹波值比第三问波形的纹波值小。
因为器件替换后,各部分的功能并未发生变化,电路的正常工作状态并未受到影响,因此用不同的降压斩波器波形几乎无差别。
纹波的区别可能是因为二极管与带反并联二极管的IGBT、不带反并联二极管的IGBT与带反并联二极管的IGBT结构上的区别所导致。
开环直流调速系统的仿真
共 阴 极 组 —— 阴 极连接在一起的 3 个晶闸管( VT1 , VT3,VT5)
导通顺序:
VT1-VT2
-VT3- VT4
-VT5-VT6
图 三相桥式全控整流电路原理图
共阳极组 —— 阳 极连接在一起的 3个晶闸管(VT4, VT6,VT2)
带电阻负载
时,各晶闸 管均在自然换相点处换 相,各自然换相点既是 相电压的交点,同时也 是线电压的交点。 输出整流电压ud为 这两个相电压相减,是 线电压中最大的一个, 因此输出整流电压ud波 形为线电压在正半周期 的包络线。
开环直流调速系统的仿真
直流调速系统控制方案 根据电动机的转速表达式:
ud id Rd n Ce
可以看出,直流电动机调节转速有以下三种 方法: (1)调节电枢电压调速; (2)改变电动机励磁调速; (3)改变电枢回路电阻调速。
晶闸管直流调速系统电器原理图
晶管触发与整流装置动态结构图
三相桥式全控整流电路
调节Un*→改变移相角α→改变U d→ n改变 在仿真中,直流电动机励磁由直流电源直接供电。触 发器的控制角通过移相控制环节,移相控制模块的输入是 移相控制信号Uc,输出是控制角,移相控制信号Uc由常数 模块设定。
开环直流调速系统的仿真模型
基于电气原理图的直流电动机
电动机模型位于SimPowerSystems工具箱下machines库中的DC machines 和DiscreteDC machines分别是直流电动机和离散直流 电动机模型
Field resistance and inductanceRf (ohms) 和Lf(H): 励磁回路电阻和电感
Field-armature mutual inductanceLaf (H): 电枢与励磁回路互感; Total inertia J (kg.m^2) :电机转动惯量(kg.m^2) ; Viscous friction coefficient Bm (N.m.s):粘滞摩擦系数(N.m.s); Coulomb friction torque Tf (N.m): 静摩擦转矩(N.m); Initial speed (rad/s):初始速度。
《MATLAB工程应用》转速单闭环直流调速系统仿真
《MATLAB工程应用》转速单闭环直流调速系统仿真一、选题背景晶闸管开环直流调速系统启动电流大,转速随负载变化而变化,负载越大,转速降落越大,因此,无法在负载变动时保持转速的稳定,影响生产。
为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(单闭环或双闭环)。
对调速指标要求不高的场合,采用单闭环系统;对调速指标要求高的场合,采用双闭环系统。
按反馈的方式不同,可分为转速反馈、电流反馈、电压反馈。
在单闭环系统中,般采用转速反馈。
二、原理分析转速单闭环直流调速系统原理如图 1 转速单闭环直流调速系统原理图所示。
图 1 转速单闭环直流调速系统原理图中将反映转速变化的电压信号作为反馈信号,经过速度变换后接到电流调节器的输入端,与给定的电压U;相比较经放大后,得到移相控制电压信号Uc,用作控制整流桥的触发电路,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变整流桥的输出电压,这就构成了速度负反馈闭环系统。
图 1 转速单闭环直流调速系统原理图该系统在电机负载增加时,转速n将下降,转速反馈U n减小,导致转速的偏差ΔU n。
将增大(ΔU n=U n∗−U n),U C增加,并经移相触发器使整流器输出电压U增加,电枢电流1。
也就增加了,从而使电动机电磁转矩增加,转速n也随之升高,补偿了负载增加造成的转速降。
在MATLAB仿真中,通常省略AD采样中的变换环节,直接用测量模块得到实际物理量。
三、过程论述利用Simulink建立有静差的转速单闭环直流调速系统仿真模型。
该系统由给定信号、速度调节器、晶闸管整流桥、平波电抗器、直流电动机、速度反馈等部分组成。
与开环直流调速系统相比,二者的主电路就基本相同,系统的差别主要在控制电路上。
图 2 有静差的转速单闭环直流调速系统仿真模型图 2 有静差的转速单闭环直流调速系统仿真模型中的二极管桥模块参数设置如图 3 二极管参数设置。
在整流桥后面并一个二极管桥,主要是为了加快电动机的减速过程,同时避免在整流桥输出端出现负电压而使波形畸变。
实验四转速、电流反馈控制直流调速系统仿真(word文档)
实验四转速、电流反响控制直流调速系统的仿真一、实验目的熟练使用 MATLAB 下的 SIMULINK软件进行系统仿真。
学会用 MATLAB 下的 SIMULINK 软件建立转速、电流反响控制的直流调速系统的仿真模型和进行仿真实验的方法。
二、实验器材PC 机一台, MATLAB 软件三、实验参数采用转速、电流反响控制的直流调速系统,依照要求分别进行仿真实验,输出直流电动机的电枢电流I d和转速n 的响应数据,绘制出它们的响应曲线,并对实验数据进行解析,给出相应的结论。
转速、电流反响控制的直流调速系统中各环节的参数以下:直流电动机:额定电压 U N = 220 V,额定电流 I dN =136 A,额定转速 n N = 1460r/min,电动机电势系数C e= 0.132 V· min/r ,赞同过载倍数λ=1.5 。
晶闸管整流装置的放大系数K s = 40。
电枢回路总电阻 R =0.5Ω,电枢回路电磁时间常数T l = 0.03s,电力拖动系统机电时间常数 T m = 0.18 s,整流装置滞后时间常数Ts=0.0017s,电流滤波时间常数T oi=0.002s。
电流反响系数β=0.05V/A (≈10V/1.5I N)。
四、实验内容1、电流环的仿真。
参照教材P90 中相关内容建立采用比率积分控制的带限幅的电流环仿真模型,设置好各环节的参数。
140 2 0.5-K-0.002s+1 0.0017s+1 0.03s+1 0.18sStep Transfer Fcn Gain Saturation Transfer Fcn1 Transfer Fcn2 Transfer Fcn31-K-sGain1 Integrator0.050.002s+1Transfer Fcn4 Scope图 1 电流环的仿真模型2、依照表 1 中的数据分别改变电流环中比率积分控制器的比率系数K p和积分系数K i,观察电流环输出电枢电流I d的响应曲线,记录电枢电流I d的超调量、响应时间、稳态值等参数,可否存在静差?解析原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北石油大学MATLAB电气应用训练2013年 3 月 8日MATLAB电气应用训练任务书课程 MATLAB电气应用训练题目直流电动机开环调速系统仿真专业电气信息工程及其自动化姓名赵建学号 110603120121主要内容:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。
分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善基本要求:1.设计直流电动机开环调速系统2.运用MATLAB软件进行仿真3.通过仿真软件得出波形图参考文献:[1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007.[2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000.[3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006.[4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006.完成期限 2013.2.25——2013.3.8指导教师李宏玉任爽2013年 2 月25 日目录1课题背景 (1)2直流电动机开环调速系统仿真的原理 (2)3仿真过程 (5)3.1仿真原理图 (5)3.2仿真结果 (9)4仿真分析 (12)5总结 (13)参考文献 (14)1课题背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。
晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。
尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。
长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。
以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。
因此产生了各种仿真算法和仿真软件。
由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。
MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。
它有效的解决了以上仿真技术中的问题。
在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。
另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。
Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。
Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。
传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。
随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。
由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始使用直流调速系统。
它的发展过程是这样的:由最早的旋转变流机组控制发展为放大机、磁放大器控制;再进一步,用静止的晶闸管变流装置和模拟控制器实现直流调速;再后来,用可控整流和大功率晶体管组成的PWM 控制电路实现数字化的直流调速,使系统快速性、可控性、经济性不断提高。
调速性能的不断提高,使直流调速系统的应用非常广泛。
2直流电动机开环调速系统仿真的原理直流电动机电枢由三相晶闸管整流电路经平波电抗器L 供电,并通过改变触发器移相控制信号Uc 调节晶闸管的控制角,从而改变整流器的输出电压实现直流电动机的调速。
该系统的仿真模型如图1-1 所示。
在仿真中为了简化模型,省略了整流变压器和同步变压器,整流器和触发同步使用同一交流电源,直流电动机励磁由直流电源直接供。
任何一台需要控制转速的设备,其生产工艺对调速性能都有一定的要求。
例如,最高转速与最低转速之间的范围,是有级调速还是无级调速,在稳态运行时允许转速波动的大小,从正转运行变到反转运行的时间间隔,突加或突减负载时允许的转速波动,运行停止时要求的定位精度等等。
归纳起来,对于调速系统转速控制的要求有以下三个方面:(1) 调速。
在一定的最高转速和最低转速范围内,分档地(有级)或平滑地(无级)调节转速。
(2) 稳速。
以一定的精度在所需转速上稳定运行,在各种干扰下不允许有过大的转速波动,以确保产品质量。
(3) 加、减速。
频繁起、制动的设备要求加、减速尽量快,以提高生产率;不宜经受剧烈速度变化的机械则要求起、制动尽量平稳。
为了进行定量的分析,可以针对前两项要求定义两个调速指标,叫做“调速范围”和“静差率”。
这两个指标合称调速系统的稳态性能指标。
(1) 调速范围生产机械要求电动机提供的最高转速m ax n 和最低转速m in n 之比叫做调速范围,用字母D 表示,即m inm ax n n D ( 1 ) 其中,m ax n 和m in n 一般都指电动机额定负载时的最高和最低转速,对于少数负载很轻的机械,例如精密磨床,也可用实际负载时的最高和最低转速。
(2) 静差率当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降落N n ∆,与理想空载转速0n 之比,称作静差率s ,即0n n s N ∆=( 2 )或用百分数表示%1000⨯∆=n n s N ( 3 ) 显然,静差率是用来衡量调速系统在负载变化时转速的稳定度的。
它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定度就越高。
然而静差率与机械特性硬度又是有区别的。
一般变压调速系统在不同转速下的机械特性是互相平行的,对于同样硬度的特性,理想空载转速越低时,静差率越大,转速的相对稳定度也就越差。
由此可见,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。
在调速过程中,若额定速降相同,则转速越低时,静差率越大。
如果低速时的静差率能满足设计要求,则高速时的静差率就更能满足要求了。
因此,调速系统的静差率指标应以最低速进所能达到的数值为准。
(3) 直流变压调速系统中调速范围、静差率和额定速降之间的关系在直流电动机变压调速系统中,一般以电动机的额定转速N n 作为最高转速,若额定负载下的转速降落为N n ∆,则按照上面分析的结果,该系统的静差率应该是最低速时的静差率,即N N N n n n n n s ∆+∆=∆=min min 0 ( 4 ) 于是,最低转速为()s n s n s n n N N N ∆-=∆-∆=1min ( 5 ) 而调速范围为minmin max n n n n D N ==( 6 ) 将上面的m in n 式代入,得()s n s n D N N -∆=1 ( 7 ) 式(7)表示变压调速系统的调速范围、静差率和额定速降之间所应满足的关系。
对于同一个调速系统,N n ∆值一定,由式(7)可见,如果对静差率要求越严,即要求s 值越小时,系统能够允许的调速范围也越小。
图 1 直流开环调速系统电气原理3仿真过程3.1仿真原理图图2 直流电动机开环调速系统结构图根据实验原理图在MATLAB软件环境下查找器件、连线,接成入上图所示的线路图。
1)仿真具体步骤a、点击图标,打开MATLAB软件,在工具栏里根据提示点击,点击MATLAB ,打开一个对话框,点击里的new model,创建一个新文件。
b、点击工具栏的,打开元器件库查找新的元器件。
C、原件库如下图所示图3 原件库2)所用元器件及其参数设置a)三相交流电源A、B、C图4 三相电源参数设置设置三相电压都为220V,两两之间相位差为120,分别为0、-120、-240。
b)6-Pulse Generator图5 6-Pulse Generatorc)Universal Bridge普通的桥电路起着过载保护作用,防止电流过大烧坏电机。
图6 Universal Bridged) DC Machine(直流电动机)直流电动机的运行特性主要有两条:一条是工作特性,另一条是机械特性,即转速-转矩特性。
分析表明,运行性能因励磁方式不同而有很大差异。
F+和F-是直流电机励磁绕组的连接端,A+和A-是电机电枢绕组的联结端,TL 是电机负载转矩的输入端。
m端用于输出电机的内部变量和状态,在该端可以输出电机转速、电枢电流、励磁电流和电磁转矩四项参数。
修改参数电枢电阻和电感(Armature resistance and inductance)为[0.210.0021],励磁电阻和电感(Field resistance and inductance)为[146.70],励磁和电枢互感(Field-armature mutual inductance)为0.84,转动惯量(Total inertia)为0.572,粘滞摩擦系数(Viscous friction coefficient)为0.01,库仑摩擦转矩(Coulomb friction torque)为1.9,初始角速度(initial speed)为0.1。
图7直流电机设置e)放大器,设置放大系数。
图8放大器设置f)阶跃信号图9阶跃信号设置3.2仿真结果由以上原理图绘制,参数设置,以及波形调试得出以下仿真结果,其波形图如下所示:以下波形分别为转速n,电枢电流Ia,励磁电流If,转矩Ta)转速n图10 转矩n波形图b)电枢电流Ia图11电枢电流波形图C)励磁电流If图12励磁电流波形图d)输出电压ud图13输出电压波形图e)RSM输出电压ud1图14 RSM输出电压波形图f)转矩T图15 转矩波形图4仿真分析从上图仿真的波形可以看出,此仿真非常接近于理论分析的波形。
U就可以改变电动机的转晶闸管-电动机系统就是开环调速系统,调节控制电压c速。
如果负载的生产工艺对运行时的静差率要求不高,这样的开环调速系统都能实现一定范围内的无级调速。