排列组合 二项式定理总结(含知识点,试题和答案)
35:排列组合和二项式定理高三复习数学知识点总结(全)
排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
2024年排列组合二项式定理概率基础知识点+思维导图练习
思维导图——排列、组合、二项式定理、概率知识点默写——排列、组合与二项式定理*1、分类加法计数原理:*2、分步乘法计数原理:3、排列数mn A 的含义:4、计算:m n A =*5、在m n A 中,若m n <,这样的排列叫作;若m n =,这样的排列叫作;6、阶乘!n =;nn A =;规定,0!=;7、组合数mn C 的含义:8、计算:m n C ==;9、组合数的性质(1)m n C =;(2)1m m n n C C -+=;(3)0121n nn n n n n C C C C C -+++++=.10、(1)对于*n N ∈,()na b +=.该公式所表示的定理叫作,右边的多项式叫作()na b +的;展开式共有项数为项.(2)二项展开式的通项1r T +=,表示第项.(3)二项展开式中的二项式系数为;项的系数是指.11、(1)对称性:与首末两端的两项的二项式系数相等,即(0,1,2,,)r n rn n C C r n -==(2)二项式系数最大的项在中间.当幂指数n 为偶数时,最大的二项式系数为,最大二项式系数为第项;当n 为奇数时,最大的二项式系数为,最大的二项式系数为第项.(3)二项式系数之和为.二项展开式中,各奇数项的二项式系数之和与各偶数项的二项式系数之和相等,即:==.12、若7270127(1)x a a x a x a x -=++++ ,令,得0127a a a a ++++=.一、特殊元素特殊位置优先1、由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?二、相邻元素捆绑法2、7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?三、不相邻问题插空法3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则所有节目共有多少种出场顺序?四、定序问题倍缩法、空位法、插入法4、7人排队,其中甲乙丙3人顺序一定共有多少种不同的排法?五、排列组合混合问题先选后排法5、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同装法?六、元素相同问题隔板法6、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?七、平均分组问题除法策略7、有6本不同的书,平均分成3堆,每堆2本,共有多少种分法?八、合理分类与分步策略8、在一次演唱会上共有10名演员,其中8人能够唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少种选派方法?九、构造模型策略9、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?。
排列组合、二项式定理(附答案)
排列组合、二项式定理(附答案)第六章:排列组合与二项式定理一、考纲要求:1.掌握加法原理和乘法原理,能够用这两个原理解决简单的问题。
2.理解排列和组合的意义,掌握排列数和组合数的计算公式以及组合数的性质,并能够用它们解决简单的问题。
3.掌握二项式定理和二项式系数的性质,并能够用它们计算和论证简单的问题。
二、知识结构:加法原理和乘法原理排列和组合排列数和组合数的公式和应用二项式定理和二项式系数的性质和应用三、知识点、能力点提示:1.加法原理和乘法原理是排列组合的基础,掌握这两个原理为处理排列和组合中的问题提供了理论根据。
2.排列和排列数公式是中学代数中的独特内容,研究对象和研究方法与前面掌握的知识不同,解题方法比较灵活。
历届高考主要考查排列的应用题,通常是选择题或填空题。
3.组合和组合数公式是历届高考中常出现的题型,主要考查排列组合的应用题,通常是选择题或填空题。
组合数有两个性质:对称性和递推关系。
4.二项式定理和二项式系数的性质是高中数学中的重要内容,主要考查计算和论证方面的问题,通常是选择题或证明题。
3a4的值为(。
)A.4B.6C.8D.10解:根据二项式定理,展开(2x+3)的四次方可得:2x+3)4= C412x)4+ C422x)3(3)+ C432x)2(3)2+ C442x)(3)3+ C453)416x4+96x3+216x2+216x+81将(2x+3)表示成a+a1x+a2x+a3x+a4x的形式,可得:a+a1x+a2x+a3x+a4x= C4a4+ C41a3x+ C42a2x2+ C43ax3+ C44x416a4+96a3x+216a2x2+216ax3+81x4 由此可得:a+a2a3a4C4a4+ C42a2+ C43a+ C4416a4+216a2+81又因为(2x+3)的系数为1,所以a=2,代入上式可得:a+a2a3a416(2)4+216(2)2+81=8故选C.例21:有两排座位,第一排有3个座位,第二排有5个座位,8名学生入座(每人一个座位),则不同座法的总数是多少?解:对于8个人的任意一个排列均可“按先前排从左到右再后排从左到右”的次序入座,所以应有$P_8$种不同的入座法。
排列组合和二项式定理测试卷及答案(4套)(已上传)
排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
排列组合及二项式定理试题和答案
排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果()n x x x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是 A .6810C xB .5710C xxC .468C xD .6811C xx6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于 A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为 A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139(2),()()x a a x a x a x a a a a a a -=+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案二、填空题:19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答).22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分): 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案 DBCBBDCBABBADDBCBD提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
第10讲 知识点及例题讲解:排列、组合和二项式定理
A CB D第10讲 排列、组合和二项式定理知识点及例题讲解1.排列数mn A 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N .1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。
如:轻松练一练1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为(答:3)2)满足2886x x A A -<的x =(答:8)2)组合数公式()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =如:轻松练一练已知16m n mn m n C C A +++=,求 n ,m 的值(答:m =n =2)3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. 2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合 如:轻松练一练1)将5封信投入3个邮筒,不同的投法共有 种(答:53)2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70) 3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23)4)72的正约数(包括1和72)共有 个(答:12)5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90)6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480)7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9)8)f 是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同映射共有 个(答:7)9)满足}4,3,2,1{=C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置) 如:轻松练一练1)某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_____种(答:300)2)某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0. 千位、百位上都能取0. 这样设计出来的密码共有_______种(答:100)3)用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_______个(答:156)4)某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_____(答:6)5)四个不同的小球全部放入编号为1、2、3、4的四个盒中。
专题A24排列组合与二项式定理(含答案解析)-2021届新高考数学一轮复习知识点总结与题型归纳
第24讲排列组合与二项式定理考点一排列与组合(一)基本计数原理1.加法原理分类计数原理:做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N= m1+m2+⋯+m n种不同的方法.又称加法原理.2.乘法原理分步计数原理:做一件事,完成它需要分成n个子步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同方法,……,做第n个步骤有m n种不同的方法.那么完成这件事共有N=m1×m2×⋯×m n种不同的方法.又称乘法原理.3.加法原理与乘法原理的综合运用运用:如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.(二)排列与组合1.排列定义:一般地,从n 个不同的元素中任取m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A n m 表示.排列数公式:A n m =n(n −1)(n −2)⋯(n −m +1),m ,n ∈N +,并且m ≤n .全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用n!表示.规定:0!=1.2.组合定义:一般地,从n 个不同元素中,任意取出m(m ≤n)个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C n m 表示.组合数公式:C n m =n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,m,n ∈N +,并且m ≤n .组合数的两个性质: ①C n m =C n n−m ;②C n+1m =C n m +C n m−1.(规定C n 0=1)3.排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法。
排列组合与二项式定理知识点精选全文完整版
可编辑修改精选全文完整版排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。
排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。
全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.…除以88的余数是()A.-1B.-87C.1D.87【答案】C【解析】根据题意,由于…=(1-90)10=8910=(88+1)10,展开式可知展开式的最后一项不能被88整除,可知答案为C.【考点】二项式定理点评:主要是考查了二项式定理的逆用,属于基础题。
2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.30种B.24种C.12种D.6种【答案】B【解析】第一步:从4门课程中选1门相同有种选法;第二步:让甲从剩下的3门中再选1门,选法有种;第三步:再让乙从剩下的2门中选1门,选法有种,所以所求的选法有。
故选B。
【考点】分步乘法计数原理点评:分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……,做第n步有种不同的方法.那么完成这件事共有种不同的方法.3.如图,小圆圈表示网络的结点,结点之间的箭头表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现从结点A向结点G传递信息,信息可以分开沿不同的路线同时传递。
则单位时间内传递的最大信息量为()A.31B.6C.10D.14【答案】B【解析】信息传递,可有三条路线,每条路线上通过的信息量均为2 ,所以,单位时间内传递的最大信息量为6 ,选B。
【考点】本题主要考查阅读理解能力,分类讨论思想。
点评:简单题,看似复杂,实际上,关键是理解题意,看各条“路线”上,传递信息的最大值之和。
4.由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).【答案】48【解析】由题意先排个位,从1,5两个数中随便取一个有,然后再用剩余的四个数字排前面四个位置有,∴由分步原理可知由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个【考点】本题考查了排列组合的综合运用点评:熟练掌握排列组合的综合运用是解决此类问题的关键,属基础题5.设为奇数,则除以9的余数为.【答案】【解析】∵,∴除以9的余数为7【考点】本题考查了二项式定理的运用点评:对于余数问题一般是把式子拆开,然后利用二项式定理展开求余数,属基础题6.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有种.(用数学作答)【答案】50【解析】解:由题意知本题是一个分类计数问题,∵每项活动最多安排4人,∴可以有三种安排方法,即(4,2)(3,3)(2,4)当安排4,2时,需要选出4个人参加共有=15,当安排3,3,时,共有=20种结果,当安排2,4时,共有=15种结果,∴根据分类计数原理知共有15+20+15=50种结果,故答案为:50【考点】分类计数问题点评:本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.的展开式中,的系数是()A.B.C.297D.207【答案】D【解析】由题意可知,的系数即为【考点】本小题主要考查二项展开式的应用.点评:解决二项式问题一般离不开展开式的通项公式,要灵活应用.8.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1∕70”.根据这位负责人的话可以推断出参加面试的人数为()A.21B.35C.42D.70【答案】A【解析】设参加面试的人数为n,由题意可知,解得n=21.【考点】本小题主要考查排列组合在实际问题中的应用.点评:准确理解题意,准确计算是解决此类问题的关键.9.(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.【答案】(Ⅰ)10 (Ⅱ)【解析】(Ⅰ)…… 2分(舍去).………… 5分(Ⅱ) 展开式的第项是,,………… 10分故展开式中的常数项是.……… 12分10.甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做实验,并用回归分析方法分析求得相关系数r与残差平方和m如下表:则哪位同学的实验结果体现A、B两变量有更强的线性相关性()A、甲B、乙C、丙D、丁【答案】D【解析】解:在验证两个变量之间的线性相关关系中,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大,残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现A、B两变量有更强的线性相关性,故选D.11.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【答案】B【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有 =60种.故选B.12.平面上有相异10个点,每两点连线可确定的直线的条数是每三点为顶点所确定的三角形个数的,若无任意四点共线,则这10个点的连线中有且只有三点共线的直线的条数为__________条.【答案】3【解析】【考点】排列、组合及简单计数问题。
排列组合和二项式定理
9-2排列组合和二项式定理1、的展开式中项的系数是( )A.B.C.D.【答案】B【解析】略2、已知的展开式中的系数是()A.B.C.D.【答案】A【解析】解:=(1-x)4(1-x)4的展开式的通项为T r+1=C4r(-x)r=(-1)r C4r x r令r=1得展开式中x的系数为-4故选项为A.3、设若的最小值为()A.8 B.4 C.1 D.【答案】B【解析】略4、2011年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码。
公司规定:凡卡号的后四位数带数字“6”或“8”的一律作为“金兔卡”,享受一定的优惠政策,则这组号码中“金兔卡”的个数为()A.2000 B.4096 C.8320 D.5904【答案】D【解析】本题考查排列与组合.首先考虑非金兔卡的个数,即末四位中既无8又无6的卡的个数为,所以金兔卡的个数为帮故正确答案为D.5、已知,则的值为()A.1 B.2 C.4 D.不确定【答案】B【解析】解1:做为选择题从选择支入手也很好.(由,求出值,再值代入检验)解2:得,.6、如图,用四种不同的颜色给图中的六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有(...)A.288种B.264种C.240种D.168种【答案】B【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。
B,D,E,F用四种颜色,则有种涂色方法;B,D,E,F用三种颜色,则有种涂色方法;B,D,E,F用两种颜色,则有种涂色方法;所以共有24+192+48=264种不同的涂色方法。
7、在的展开式中的的系数是()、、、、【答案】B【解析】本题考查二项式定理.由二项式定理得的展开式的通项为,因为则的展开式的通项为,令得,的展开式中项的系数为;的展开式的通项为,令,则,的展开式的项的系数为.所以在的展开式中的的系数是。
高中数学排列组合及二项式定理知识点及练习
摆列组合及二项式定理【基本知识点】1. 分类计数和分步计数原理的观点2.摆列的观点:从n 个不同元素中,任取m(m n )个元素(这里的被取元素各不同样)按照一.定.的.顺.序.排成一列,叫做从n 个不同元素中拿出m 个元素的一.个.排.列.3.摆列数的定义:从n 个不同元素中,任取m (m n )个元素的全部摆列的个数叫做从n个元素中拿出m 元素的摆列数,用符号mA 表示nm4.摆列数公式:A n(n 1)(n 2)L (n m 1) (m,n N ,m n)n5.阶乘:n!表示正整数1 到n 的连乘积,叫做n 的阶乘规定0! 1.6.摆列数的另一个计算公式:mA =nn! (n m)!7.组合观点:从n 个不同元素中拿出m m n 个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合8.组合数的观点:从n 个不同元素中拿出m m n 个元素的全部组合的个数,叫做从n 个不同元素中拿出m 个元素的组.合.数..用符号mC 表示.n9.组合数公式:mA n(n 1)(n 2)L (n m 1)m nCn mA m!m或 C m nm!(n!n m)!(n, m N ,且m n)10.组合数的性质1:m n m 0C n C .规定:C 1 ;n n11.组合数的性质2:mCn 1 =m m 1C +C Cn nn n n0+C1+⋯ +C n=20+C1+⋯ +C n=2n12. 二项式睁开公式: (a+b) n=C0a n+C1a n-1 b+⋯ +C k a n-k b k+⋯ +C n bnn n n n13.二项式系数的性质:n(a b) 睁开式的二项式系数是C ,n1C ,n2C ,⋯,nnC .nrC 能够当作以r为自变量的函数nf (r ) ,定义域是{0,1,2, L ,n} ,(1)对称性.与首末两头“等距离”的两个二项式系数相等(∵m n mC C ).n nn(2)增减性与最大值:当n是偶数时,中间一项C 2 获得最大值;当n是奇数时,中间两项nn 1 n 12 C ,n2C 获得最大值.n(3)各二项式系数和:∵n 1 r r n(1 x) 1 C x L C x L x ,n n令x 1,则n 0 1 2 r n2 C C C L C L Cn n n n n【常有考点】一、可重复的摆列求幂法:重复摆列问题要划分两类元素:一类能够重复,另一类不可以重复,把不可以重复的元素看作“客”,能重复的元素看作“店”,则经过“住店法”可顺利解题,在这种问题使用住店办理的策略中,重点是在正确判断哪个底数,哪个是指数(1)有 4 名学生报名参加数学、物理、化学比赛,每人限报一科,有多少种不同的报名方法?(2)有 4 名学生参加抢夺数学、物理、化学比赛冠军,有多少种不同的结果?(3)将 3 封不同的信投入 4 个不同的邮筒,则有多少种不同投法?【分析】:(1)43 (2)34 (3)4 3二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看作一个大元素参加排列.(4)A, B,C, D, E 五人并排站成一排,假如A, B 一定相邻且B 在A的右侧,那么不同的排法种数有【分析】:把A,B视为一人,且B 固定在A的右侧,则此题相当于4 人的全摆列,4A4 24种(5)3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两头, 3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360B. 188C. 216D. 96【分析】:间接法 6 位同学站成一排, 3 位女生中有且只有两位女生相邻的排法有,2 2 2 2C A A A =432 种3 24 2此中男生甲站两头的有 1 2 2 2 2A C A A A =144 ,切合条件的排法故共有 2882 3 2 3 2三.相离问题插空法:元素相离(即不相邻)问题,可先把无地点要求的几个元素全摆列,再把规定的相离的几个元素插入上述几个元素的空位和两头 . (6)七人并排站成一行,假如甲乙两个一定不相邻,那么不同的排法种数是【分析】:除甲乙外,其他 5 个摆列数为 5A 种,再用甲乙去插 6 个空位有52A 种,不同的排6法种数是 5 2A5 A6 3600 种(7)书架上某层有 6 本书,新买3 本插进去,要保持原有 6 本书的次序,有种不同的插法(详细数字作答)【分析】: 1 1 1A A A =5047 8 9(8)马路上有编号为1,2,3⋯, 9 九只路灯,现要关掉此中的三盏,但不可以关掉相邻的二盏或三盏,也不可以关掉两头的两盏,求知足条件的关灯方案有多少种?【分析】:把此问题看作一个排对模型,在 6盏亮灯的 5 个缝隙中插入 3盏不亮的灯 3C 种方5 法, 所以知足条件的关灯方案有 10 种.四.元素剖析法(地点剖析法):某个或几个元素要排在指定地点,可先排这个或几个元素;再排其他的元素。
2020届中职数学对口升学复习第十部分《排列组合二项式定理》基础知识点归纳及山西历年真题汇编
n( ( ( 第十部分排列组合二项式定理【知识点 1】两个计数原理1.分类计数原理:完成一件事有 n 类办法,在第 1 类办法中有 m 1 种不同方法,在第 2 类办法中有 m 2 种不同方法...... ,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有 N=m 1+m 2+...+m n 种不同的方法 .(加法原理)2.分步计数原理:完成一件事需要分为 n 个步骤,做第 1 步有 m 1 种不同方法,做第 2 步有 m 2 种不同的方法 ... 做第 n 步有 m n 种没同的方法,那么完成这件事共有 N=m 1 ⨯ m 2 ⨯ ... ⨯ m n 种不同的方法 .(乘法原理)【知识点 2】排列与排列数1.排列的定义(1)元素:问题中所选取的对象.(2)排列:从 n 个不同元素中,任取 m (m ≤ n ) 个元素,按时一定的顺序排成一列,叫作从 n 个不同元素中取出 m 个元素的一个排列.(3)选排列:如果 m<n ,这样的排列叫作选排列. (4)全排列:如果 m=n ,这样的排列叫作全排列.2.排列数:从 n 个不同元素中取出 m (m ≤ n ) 个元素的所有排列的个数,叫作从n 个不同元素中取出 m 个元素的排列数,记作 A m .【注意】:排列是结果,排列数是排列的个数。
【知识点 3】排列数公式1.选排列计数公式:A m = n g n- 1)g n - 2)g ⋅⋅⋅ g n - m + 1),其中m , n ∈ N *,且m ≤ n (m 个元素相乘) n2.全排列计数公式:A n = n ⨯ (n - 1)⨯ (n - 2)g ⋅⋅⋅ g 3 ⨯ 2 ⨯1 = n !n自然数1~n的连乘积叫作n的阶乘,用n!表示,即A n=n!.n【注意】:①0!=1;②A0=1;A1=n;A n=n!;n n n【知识点4】组合及组合数的定义1.组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫作从n个不同元素中取出m个元素的一个组合.【注意】:排列与顺序有关,而组合与顺序无关;2.组合数的定义:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫作从n个不同元素中取出m个元素的组合数,用符号C m表示.n【注意】:组合是把取出的元素合并成一组;组合数是所有不同组合的个数,它是一个数.【知识点5】组合数的计数公式与性质1.组合数公式:C m= n A mnA mm=n(n-1)(n-2)⋅⋅⋅(n-m+1)m!(n,m∈N*,且m≤n);C m=nn!m!(n-m)!【注意】:C0=C n=1;C1=n .n n n2.组合数性质:(1)C m=C n-m(2)C m=C m+C m-1.n n n+1n n【知识点6】二项式定理1.二项式定理:一般地,(a+b)n=C0a n b0+C1a n-1b1+⋅⋅⋅+C m a n-m b m+⋅⋅⋅+C n a0b n(n∈N*)n n n n这个公式所表示的规律叫作二项式定理.右边的多项式叫作(a+b)n的二项展开式,其中Cm(m=0,1,2,⋅⋅⋅,n)叫作二项式系n数;式中的Cm a n-m b m 叫作二项式的通项.n2.二项展开式的通项公式:Tm+1 3.二项展开式的性质:(1)展开式共有n+1项;=C m a n-m b m.(二项展开式的第m+1项) n(2)a的指数从n逐渐减到0,b的指数从0逐渐增到n,展开式中的每一项a和b的指数和都为n(3)二项式系数依次为C0,C1,⋅⋅⋅C n,第r项与倒数第r项的系数相等;n n n(4)若二项式的幂指数是偶数2n,那么二项式展开式有(2n+1)项(奇数项),且中间一项的二项式系数最大,如果二项式的幂指数是奇数2n-1,那么展开式有2n项(偶数项),且中间两项的二项式系数相等且最大。
高考排列组合及二项式定理知识总结与例题讲解(5分)
解:假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为
题型七:含有三项变两项;
例:求当 的展开式中 的一次项的系数?
解法①: , ,当且仅当 时, 的展开式中才有x的一次项,此时 ,所以 得一次项为
它的系数为 。
解法②:
故展开式中含 的项为 ,故展开式中 的系数为240.
2、 2、
2、4n
3、 的展开式中的有理项是展开式的第项
3、3,9,15,21
4、(2x-1)5展开式中各项系数绝对值之和是
4、(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为35
5、求(1+x+x2)(1-x)10展开式中x4的系数
5、 ,要得到含x4的项,必须第一个因式中的1与(1-x)9展开式中的项 作积,第一个因式中的-x3与(1-x)9展开式中的项 作积,故x4的系数是
解:设 展开式中各项系数依次设为
,则有 ①, ,则有 ②
将①-②得:
有题意得, , 。
练:若 的展开式中,所有的奇数项的系数和为 ,求它的中间项。
解: , ,解得
所以中间两个项分别为 , ,
题型六:最大系数,最大项;
例:已知 ,若展开式中第 项,第 项与第 项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?
练:求式子 的常数项?
解: ,设第 项为常数项,则 ,得 , , .
题型八:两个二项式相乘;
例:
解:
.
练:
解:
.
练:
解:
题型九:奇数项的系数和与偶数项的系数和;
例:
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。
【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。
2.设,则的值为【答案】-2.【解析】根据题意,由于,则令x=-1,则可知等式左边为-2,故可知=-2,因此答案为-2.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
3.已知二项式的展开式中第四项为常数项,则等于A.9B.6C.5D.3【答案】C【解析】根据题意,由于二项式的展开式中第四项为常数项,那么其通项公式为,故答案为5,选C.【考点】二项式定理点评:主要是考查了二项式定理中展开式的通项公式的运用,属于基础题。
4.已知,则 .【答案】66【解析】根据题意,由于,故可知,故可知答案为66.【考点】组合数公式点评:主要是考查了组合数性质的运用,属于基础题。
5.已知离散型随机变量的分布列如下表.若,,则,.【答案】【解析】由分布列性质可得,【考点】分布列期望方差点评:在分布列中各概率之和为1,借助于分布列结合期望方差公式可计算这两个量6.已知()能被整除,则实数的值为【答案】【解析】根据题意,由于,根据二项式定理展开式可知,那么由于()能被整除,且被11除的余数为2,那么可知2+a能被11整除,可知a==9,故答案为9.【考点】二项式定理的运用点评:主要是考查了二项式定理来解决整除问题的运用,属于基础题。
7. ( -)6的二项展开式中的常数项为_____.(用数字作答)【答案】-160【解析】由二项式定理得通项得,,取得常数项。
故选D。
【考点】二项式定理点评:在两项式定理中,通项是最重要的知识点,解决此类题目,必然用到它。
8. 4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有A.36种B.72种C.81种D.144种【答案】D【解析】由题意可知4人选择了4条线路中的3条,不同的游览情况共有种【考点】排列组合点评:求解本题按照先分组后分配的思路求解9.已知,则二项式展开式中的系数为_________.【答案】10【解析】,展开的通项为,令,系数为【考点】定积分与二项式定理点评:定积分,其中,二项式的展开式第项是10.若N,且则()A.81B.16C. 8D.1【答案】A【解析】根据题意,由于,可知n=4,那么当x=-1时可知等式左边为 ,那么右边表示的为81,故答案为81,选A 【考点】二项式定理点评:主要是考查了二项式定理以及系数和的求解,属于基础题。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.已知的展开式前三项中的的系数成等差数列.(1)求展开式中所有的的有理项;(2)求展开式中系数最大的项.【答案】(1)第1项和第5项和第9项。
(2),【解析】(1)根据题意,由于的展开式前三项中的的系数成等差数列.,故可知n=8则可知有理项为,,(2)系数最大项,【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
2.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是A.168B.96C.72D.144【答案】D【解析】本题可以采用‘挡板法”来解题,任选三个插入挡板把数分成四组,把两个连续的空未插入挡板出现三个数字相连的情况去掉,把分成的四部分在四个位置上排列,得到结果解:∵要把6张票分给4个人,∴要把票分成四份,∵1,2,3,4,5,6之间有五个空,任选三个插入挡板把数分成四组共有C53种结果,其中如果有两个连续的空未插入挡板,则出现三个数字相连,共有4种情况要排除掉(具体为第一、二;第二、三;第三、四;第四、五空隙未插挡板),把分成的四部分在四个位置上排列,∴有(C53-4)×A44=144,故选D.【考点】排列组合问题点评:本题是一个限制条件比较多的问题,是一个实际问题,排列组合问题在实际问题中的应用,在计算时要求做到兼顾所有的条件,先排约束条件多的元素,做到不重不漏,注意实际问题本身的限制条件3.已知,求(1)的值。
(2)的值。
(3)的值。
【答案】(1)1093(2)(3)【解析】解:令①令②(①--②)得(①+②)得即展开式中各项系数和。
=【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
4.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为()A.B.C.D.【答案】D【解析】首先从5名男运动员中选2人有种方法,从5名女运动员中选2人有种方法,将4人按照男女混双分成2组有种方法,所以不同的选法共有种【考点】排列组合点评:此类题目的求解一般按照先选择后排列的方法分步完成5.甲、乙等5人站成一排,其中甲、乙不相邻的不同排法共有()A.144种B.72种C.36 种D.12种【答案】B【解析】根据题意,由于甲、乙等5人站成一排,所有的情况有 ,而对于甲、乙相邻的情况有,那么可知不相邻的情况有-=72,选B.【考点】排列与组合点评:本题主要考查排列与组合及两个基本原理,求出甲、乙两人恰好相邻的方法数为A22•A44,是解题的关键.6.教育局组织直属学校的老师去新疆地区支教,现甲学校有2名男老师和3名女老师愿意去支教,乙学校有3名男老师和3名女老师愿意去支教,由于名额有限,教育局决定从甲学校选2人去支教,乙学校选1人去支教,若被选去支教的3名老师中必须有男老师,则乙学校被选去支教的老师是女老师的概率为【答案】【解析】根据题意,由于被选去支教的3名老师中必须有男老师,那么从甲学校选2人去支教,乙学校选1人去支教所有的情况有 ,而对于选去支教的3名老师中必须有男老师,则乙学校被选去支教的老师是女老师的情况有,那么可知其概率为,故答案为【考点】排列组合点评:本题考查排列组合知识,考查学生分析解决问题的能力,属于中档题.7.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()A.42B.30C.20D.12【答案】A【解析】原定的5个节目之间有6个位。
排列组合二项式定理知识点以及典型例题总结排列组合二项式定理知识点
排列组合二项式定理知识点以及典型例题总结考纲要求:1.知道分类计数原理与分步计数原理的区别,会用两个原理分析和解决一些简单的问题2.知道排列和组合的区别和联系,记住排列数和组合数公式,能用它们解决一些简单的应3.知道一些组合数性质的应用.4.了解二项式定理及其展开式5.记住二项式展开式的通项公式,并能够运用它求展开式中指定的项6.了解二项式系数的性质,能够利用二项式展开式的通项公式求出展开式中二项式系数最大的项.7.了解二项式的展开式中二项式系数与项的系数的区别知识点一:计数原理1.分类加法计数原理如果完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.两个基本计数原理的区别:分类计数原理——每一类办法都能把事单独完成;分步计数原理——缺少任何一个步骤都无法把事完成.2.分步乘法计数原理如果完成一件事,需分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1·m2·…·m n种不同的方法.知识点二:排列1.排列的定义:一般地,从n个不同的元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫作从n个不同元素中取出m 个元素的一个排列.如果m <n ,这样的排列叫作选排列.如果m =n ,这样的排列叫作全排列.2. 排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫作从n 个不同元素中取出m 个元素的排列数,用符号P mn 表示.3. 排列数的公式: (1) P m n =n ·(n -1)·(n -2)·…·(n -m +1);(2) P m n =()!!n n m -; 规定:0!=1.知识点三:组合1.组合的定义:一般地,从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示.3. 组合数公式: (1)()()()121P C P !m mn n m n n n n n m m ---+==(2)()!C !!m n n m n m =-(n ,m ∈N +,且m ≤n ) 4. 组合数性质:(1) C =C m n m n n -;(2) 111C +C C mm m n n n +++=知识点四:二项式定理1. 二项式定理(a +b )n =011222C C C C C n n n m n m nn n n n n n a a b a b a b b ---++++++, n ∈N +其中C m n (m =0,1,2,…,n )叫做二项式系数;T m +1=C m n m m n a b -叫做二项式展开式的通项公式.2. 二项式系数的性质:(1)每一行的两端都是1,其余每一个数都是它“肩上”两个数的和;(2)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C C r n r n n -=(3)如果二项式的幂指数n 是偶数,那么中间一项即第12n +项的系数最大;如果二项式的幂指数n 是奇数,那么中间两项即第12n +项和第32n +项的二项式系数相等且最大; (4)(a +b )n 的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ; (5)(a +b )n 的二项展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和,都等12n -,024C C C +n n n ++135C +C C n n n =++12n -=.题型一 分类加法计数原理例1 一个盒子里有4个不同的红球,3个不同的黄球和5个不同的蓝球.从盒子中任取一个球,有多少种不同的取法?分析:盒子中取出一个球就可以完成任务,所以考察分类加法计数原理.解答:从盒子中任取一个球,共有三类方案:第一类方案,从4个不同的红球中任取一球,有4种方法;第二类方案,从3个不同的黄球中任取一球,有3种方法;第三类方案,从5个不同的蓝球中任取一球,有5种方法.所以,选一个班担任升旗任务的方法共有:12+10+10=32(种)题型二分步乘法计数原理例2 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中取红球、黄球和蓝球各一个,有多少种不同的取法?分析:盒子中各取出一个球需要分三步,所以考察分步乘法计数原理.解答:完成这件事需要分三步.第一步,从4个不同的红球中任取一球,有4种方法;第二步,从3个不同的黄球中任取一球,有3种方法;第三步,从5个不同的蓝球中任取一球,有5种方法.由分步乘法计数原理,从盒子中取红球、黄球和蓝球各一个共有⨯⨯435=60种不同的取法.例3 邮政大厅有4个邮筒,现将三封信逐一投入邮筒,共有多少种投法?分析:三封信逐一投入邮筒分成三个步骤,每个步骤投一封信,分别均有4种方法.解答:应用分步计数原理,投法共有44464⨯⨯=种.题型三分类分步混合运算例4 一个盒子里有4个不同的红球,7个不同的黄球和5个不同的蓝球.从盒子中任取2个颜色不同的球,有多少种不同的取法?分析分类计数原理与分步计数原理混合使用的问题,一般要“先分类,后分步”.解答:可按所选两球的颜色分为如下3类.第1类:红球、黄球各一个,有4×7=28种选法;第2类:红球、蓝球各一个,有4×5=20种选法;第3类:黄球、蓝球各一个,有7×5=35种选法.根据分类计数原理,不同的选法种数为N =28+20+35=83(种).知识点二 排列题型一 排列数公式的运用例5 已知221P P n n +-=10,则n 的值为( ). A .4 B .5 C .6 D .7解答:由221P P n n +-=10,得(n +1)n -n (n -1)=10,解得n =5.故选B .题型二 排列的运用例6 小华准备从7本世界名著中任选3本,分别送给甲、乙、丙3位同学,每人1本,共有多少种选法?分析 选出3本不同的书,分别送给甲乙丙3位同学,书的不同排序,结果是不同的.因此选法的种数是从7个不同元素中取出3个元素的排列数.解答:不同的送法的种数是 37P 765210=⨯⨯=.即共有210种不同送法.题型三 某元素一定在某位置例7 4名男生和3名女生排成一排照相,分别按下列要求,求各有多少种不同的排法.(1)男生甲一定在中间位置;(2)男生甲不在中间位置.分析 本题是有限制条件的排列问题,若有特殊元素优先考虑特殊元素,若有特殊位置,优先考虑特殊位置.(1)分两步完成:第一步,男生站在中间位置,有一种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有661P 720⨯=种排法.(2)分两步完成:第一步,男生不在中间位置,有5种排法;第二步,排其他的元素,共有66P 种排法.所以,男生甲一定在中间位置共有665P 3600⨯=种排法. 题型四 某几个元素相邻例8 4名男生和3名女生排成一排照相,同学甲、乙相邻有多少种排法?分析:解决“相邻”问题采用的是“捆绑法”解答:第一步,把甲、乙看成一个元素,与其他5人共6个元素进行全排列;第二步,甲、乙二人进行全排列.即6262P P =720×2=1440(种).题型五 某几个元素不相邻例9 4名男生和3名女生排成一排照相,同学甲、乙不相邻有多少种排法?分析:解决“不相邻”问题采用的是“插空法”.解答:第一步,把甲、乙之外的5名同学进行全排列;第二步,在5名同学之间或两端共6个空中插入甲、乙两名同学.即5256P P =120×30=3600(种). 例10 4名男生和3名女生排成一排照相,男女同学相间排列,有多少种排法? 分析:“相间”是特殊的“不相邻”问题解答:第一步,男生全排列,有44P 种排法;第二步,女生全排列,有33P 种排法;第三步,相间插入有2中插入方法.即男女同学相间排列,有4343P P 2576⨯=种种排法.题型六 数字的排列问题例11 用数字0,1,2,3,4组成没有重复数字的三位数,求:(1)组成的三位数的个数;(2)组成的三位数中偶数的个数;分析:对数字进行排列时,如果数字中含有0,应区别对待.因为0作为特殊元素,不能在首位出现.解答:(1)应采用特殊位置优先法.因为0不能为首位(百位),所以首位的排法有14P 种,其他两位是从剩余的4个数字中选2个的一个排列,有24P 种,所以共有1244P P =48(种).(2)由于0的存在,应分两类:第一类个位是0,有24P 个;第二类,个位不是0,先确定个位,从2,4中选一个,有12P 种,再确定首位,有13P 种,剩余的一位是从3个数中选1个,有13P 种.所以共有21114233P P P P +=30(种). 知识点三 组合题型一 组合的应用例12 学校组织一项活动,要从5名男同学,3名女同学中选4名.共有多少种选法? 分析: 从5名男同学,3名女同学中选4名, 选出的4名同学任务是一样的,因此选法的种数是从8个不同元素中取出4个元素的组合数. 解答:不同的选法种数是488765C 704321⨯⨯⨯==⨯⨯⨯种. 题型二 一定包含或一定不包含某元素例13 学校组织一项活动,要从5名男同学,3名女同学中选4名.(1)若甲同学必须去,有多少种选法?(2)若甲同学一定不去,有多少种选法?分析:若甲同学必须去,再从其他7人中选3人即可.解答:(1)共有37765C 321⨯⨯=⨯⨯=35种选法. 分析:若甲同学一定不去,从其他7人中选4人即可.解答:(2)共有47C 35=种选法.题型三 至多、至少问题例14 学校组织一项活动,要从5名男同学,3名女同学中选4名.若男生甲、女生乙至少有一个被选中,有多少种选法?分析:至多、至少问题从正面解,一般情况先分类,再求解.当从正面求解困难时,可从对立面求解.解答:方法一 男生甲、女生乙至少有一个被选中,分成两类:第一类 男生甲、女生乙只有一个人被选中,有1326C C 260120=⨯=种选法; 第二类 男生甲、女生乙都被选中,有2226C C 21530=⨯=种选法.所以,男生甲、女生乙至少有一个被选中,共有120+30=150种不同的选法.题型四 组合数性质的的相关计算例15 若44511C C C n n n --=+,求n .分析:考察组合数的性质111C +C C m m m n nn +++=;C =C m n m n n-. 解答:45511C +C =C ,n n n --∴45C =C ,n n∴n =4+5=9.题型四 排列、组合混合应用例16 从6名男生和5名女生中选出3名男生和2名女生排成一行,有多少种不同排法? 分析:可以首先将男生选出,再将女生选出,然后对选出的5名学生排序.解 不同排法的总数为32565565454C C P 543212400032121⨯⨯⨯⋅⋅=⨯⨯⨯⨯⨯⨯=⨯⨯⨯(种). 知识点四 二项式定理题型一 求二项式展开式的指定项例17 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中第4项. 分析:.二项式103x x ⎛⎫- ⎪⎝⎭的展开式第4项,则n 的值为10,m 的值为3,可直接用二项式的通项T m +1=C m n m m n a b -求解.解答:T 4=T 3+1=337103C x x ⎛⎫- ⎪⎝⎭=-3240x 4, ∴第4项是-3240x 4.. 例18 求二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项. 分析:二项式103x x ⎛⎫- ⎪⎝⎭的展开式中含x 6的项,则n 的值为10,m 的值未知.此类问题应先写出二项式的通项,结合条件“含x 6的项”确定出m 的值.从而求出含x 6的项.解答: ∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 令10-2m =6,得m =2.∴含x 6的项为T 3=T 2+1=(-3)2210C x 6=405x 6. 例19 在二项式103x x ⎛⎫- ⎪⎝⎭的展开式,求: (1)常数项;(2)二项式系数最大的项.分析:(1)求常数项,因为不知道m 的值,要根据“常数项”之一条件确定m 的值.所以,与例18过程相似;(2)可计算出第10162+=项为二项式系数最大的项,其实就是求第6项,所以与例17过程相似.解答:(1)∵T m +1=()1010210103C 3C m m m mm m x x x --⎛⎫-=- ⎪⎝⎭, 10-2m =0,即m =5.∴展开式的第6项是常数项,即T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. (2)∵n =10,∴展开式有11项,中间一项的二项式系数最大,中间一项为第6项. ∴T 6=T 5+1=5555510103C =(3)C x x ⎛⎫-- ⎪⎝⎭=-61236. 题型二 求二项式展开式的某一项系数与某一项的二项式系数.例20 求92)x -(的二项展开式中6x 的系数和该项的二项式系数. 分析:二项展开式中某项的的系数与这一项二项式系数是两个不同的概念. 某项的系数是除字母外的所有数乘积的结果,某项的二项式系数是该项的组合数,和其他无关. 解答: 92)x -(的展开式的通项公式为99199C (2)C (1)2m m m m m m m m T x x --+=-=-⋅⋅ 由9-m =6,得m =3.即二项展开式中含6x 的项为第4项.故这一项的系数是3339987C (1)2(8)672321⨯⨯⨯-⨯=⨯-=-⨯⨯.该项的二项式系数为39987C 84321⨯⨯==⨯⨯. 题型三 二项式各项系数和与二项式系数和例21 在(1-x )5的二项展开式中,各项系数和为____________;所有项的二项式系数之和为____________.分析:在二项式中令式子中的字母为1,可得各项系数和;所有项的二项式系数之和为2n ,即012C C C ++C ++C m n n n n n n ++=2n ,故所有项的二项式系数之和只和n 有关.解答:在(1-x )5中,令x =1,可得各项系数和为0.(1-x )5的二项式系数之和为25=32.。
排列组合、二项式定理(附答案)
第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解 决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题. 二、知识结构⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧二项式定理组合数应用组合数组合排列数应用排列数排列加法原理、乘法原理 排列组合综合应用⎭⎬⎫三、知识点、能力点提示 (一)加法原理、乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的 报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查 排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P 12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P 13;在首末两位数排定后,中间3个位数的排法有P 33,得P 13P 33P 12=36(个) 由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个 数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对 应3种填法,因此共有填法为3P 13=9(种).(三)组合、组合数公式、组合数的两个性质 说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电 视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台 的取法有C 24·C 15种根据加法原理可得总的取法有C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有38C ×C 15×C 24×C 22=12345123678⨯⨯⨯⨯⨯⨯⨯⨯×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等, 题型主要为选择题或填空题.例6 在(x-3)10的展开式中,x 6的系数是( )A.-27C 610B.27C 410C.-9C 610D.9C 410解 设(x-3)10的展开式中第γ+1项含x 6,因Tγ+1=Cγ10x10-γ(-3)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(-3)4=9C 410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中的x 2的 系数等于 解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为xx x x x x 65)1()1()1(1])1(1)[1(-+-=-+-++在(x-1)6中含x 3的项是C 36x 3(-1)3=-20x 3,因此展开式中x 2的系数是-2 0.(五)综合例题赏析例8 若(2x+3)4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( )A.1B.-1C.0D.2 解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P 22=2种,分护士方法有C 24=6种,所以共有6×2=12种不同 的分配方法。
排列组合二项式定理含答案
排列组合二项式定理1. 的展开式中常数项是 ( ) A 、42 B 、—14 C 、 14 D 、—42 C【解析】解:37371772173(7)72277677(2(2)(2(1)()2(1)721062214r r rr rrr rrr r rrx T C x C xx C xr r T C -+------==-=-∴-=∴=∴=⨯= 的通项公式2.将3个不同的小球放入4个盒子中,则不同放法种数有 () A .81 B .12 C .14 D .64 2.D 【解析】试题分析:将3个不同的小球放入4个盒子中有3464=,故选B 考点:本题考查了分步原理的运用点评:熟练掌握分步原理的概念及运算是解决此类问题的关键,属基础题 3.已知n x x)1(-的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于() A .15 B .—15 C .20 D .—20 3.A 【解析】 由已知,n x x)1(-的展开式中只有第四项的二项式系数最大,可得6=n ,又展开式通项为6236216161)1()()(---+-=-=r rr r r r r xC x x C T ,令0623=-r,则4=r ,所以展开式中的常数项为464)1(C -,即15.4.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻,不同的排法共有( )A .1440种B .960种C .720种D .480种 .A【解析】试题分析:根据题意,由于要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,,2位老人相邻,在可知先捆绑其两个老人,有22A =2,然后作为整体与其余的对象来排列可知37(2x -得到为66A =720,那么根据分步乘法计数原理可知答案为1440,故答案为A 。
5.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种(B )18种(C )36种(D )54种 【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.6.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法共有 ( ) A .210种 B .126种 C .70种 D .35种 C【解析】解:因为某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的方法就是从7个位置上选择3个位置,共有37C ,然后与剩下的4个位置排列有22A ,共有37C 22A =70 7.若(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则|a 0|+|a 1|+|a 2|+|a 3|+|a 4|的值为()A.1B.16C.81D.41 C8.若521()1x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( ) A .1 B .8C .-1或-9 D .1或9D【解析】本题考查二项式定理,二项式展开式,多项式的乘法.222()2,x a x ax a +=++二项式51(1)x-展开式通项为5155511()(1)(1)r r r r r r r T C C x x -+-=-=-;令52r -=得3,r =则334522110(1);T C x x=-=-令51r -=得4,r =则445515(1);T C x x=-=令得5,r =则5565(1)1;T C =--所以251()(1)x a x +-展开式的常数项是2222105()2(1)10101x ax a a a x x⋅-+⋅+⋅-=-+-=-,即21090a a -+=,解得19.a =或故选 D9.某校准备召开高中毕业生代表会,把6个代表名额分配给高三年级的3个班,每班至少一个名额,不同的分配方案共有( ) A.64种B.20种C.18种D.10种【解析】方法一,把6个名额看成6个0,用2块隔板将其分隔到3处,显然,隔板的插法就对应一种分配方案,共有25C =10种分配方案.方法二,分两步,先将3个名额分给每个班,有一种方法;再将剩下的3个名额分三种情况分配,第一种情况,只给一个班,有13C 种方法,第二种情况,给每个班各一个名额有1种方法,第三种情况给2个班,有23C ·2=6种方法.因此共有1×(13C +1+23C ×2)=10种分配方案.10.从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选派放法共有( ) A.96种B.180种C.240种D.280种 C11.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同 场馆服务,不同的分配方案有种(用数字作答).【答案】 1080【解析】考查概率、平均分组分配问题等知识,重点考查化归转化和应用知识的意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学重点-排列组合二项定理学 科:数 学 任课教师: 授课时间: 年 月 日考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑷排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==⑶两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C 11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式 nn n n n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C②常用的证明组合等式方法例.i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-.②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /. ⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818CC C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,432y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .x 24⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
先C 后A 策略,排列k k r k r n r r A C C --;组合r k r n r r C C --.ii. 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定某r 个元素都不包含在内。
先C 后A 策略,排列k k k r n A C -;组合k r n C -.iii 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r 个元素中的s 个元素。
先C 后A 策略,排列k k s k r n s r A C C --;组合s k r n s r C C --.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略. 2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为r r A A /(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以k kA . 例:10人分成三组,各组元素个数为2、4、4,其分法种数为1575/224448210=A C C C .若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为44222224262819110/A A C C C C C C ⋅ ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为m mA A ⋅ 例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:335538210A C C C ⋅⋅⋅种. 若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有334538210A C C C ⋅种 ③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为m mr r A A A ⋅/. 例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为33224448210A A C C C ⋅④非均匀不编号分组:将n 个不同元素分成不编号的m 组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为1m n C A =21m m -n C …k m )m ...m (m -n 1-k 21C +++例:10人分成三组,每组人数分别为2、3、5,其分法种数为25205538210=C C C 若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为126003729110=C C C .五、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k kk k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把nn c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n rn C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为qp q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为rq p q r n r nc b a C C -.其系数为rr q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!.2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分n n n n n a C a C a C +++ 3322很小,可以忽略不计。