自己整理的简支梁挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
简支梁计算公式总汇
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
扰度计算公式(全)讲解学习
扰度计算公式(全)讲解学习扰度计算公式(全)简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。
简支梁最大挠度计算公式
梁的刚度条件:
][υυ≤ (5.11)
式中 υ——由荷载标准值(不考虑荷载分项系数和动力系数)产生的最大挠度;
][υ——梁的容许挠度值,对某些常用的受弯构件,规范根据实践经验规定的容
许挠度值][υ见附表2.1。
梁的挠度可按材料力学和结构力学的方法计算,也可由结构静力计算手册取用。
受多个集中荷载的梁(如吊车梁、楼盖主梁等),其挠度精确计算较为复杂,但与产生相同最大弯矩的均布荷载作用下的挠度接近。
于是,可采用下列近似公式验算梁的挠度:
对等截面简支梁:
l
EI
l M EI
l l q EI
l
q l x
k x
k x
k ][10848
53845
2
3
υυ
≤
≈
⋅⋅
=
=
(5.12)
对变截面简支梁:
l
I I I EI
l M l x
x x x
k ][)25
31(101υυ
≤
-+
=
(5.13)
式中 k q ——均布线荷载标准值;
k
M
——荷载标准值产生的最大弯矩;
x I ——跨中毛截面惯性矩; 1x I ——支座附近毛截面惯性矩;
l ——梁的长度;
E ——梁截面弹性模量。
计算梁的挠度v 值时,取用的荷载标准值应与附表2.1规定的容许挠度值][υ 相对应。
例如,对吊车梁,挠度υ 应按自重和起重量最大的一台吊车计算;对楼盖或工作平台梁,应分别验算全部荷载产生挠度和仅有可变荷载产生挠度。
简支梁挠度计算公式
简支梁挠度计算公式简支梁挠度计算公式在工程学中是非常重要的一个公式,它可以用来计算简支梁在受力后的挠度。
简支梁是一种常见的结构形式,在建筑和桥梁等领域都有广泛的应用。
简支梁挠度计算公式可以用来确定简支梁在受力后的弯曲程度,这对于工程设计和结构分析来说是非常关键的。
简支梁的挠度计算涉及到诸多因素,包括梁的长度、截面形状、受力情况等等。
下面我们将介绍一种常用的简支梁挠度计算公式。
假设我们有一根长度为L的简支梁,在梁的一端施加一个集中力F。
我们想要计算梁在受力后的挠度,即梁的弯曲程度。
根据弹性力学理论,我们可以使用以下公式来计算简支梁的挠度:δ = (F * L^3) / (48 * E * I)其中,δ代表简支梁的挠度,F代表施加在梁上的力,L代表梁的长度,E代表梁的弹性模量,I代表梁的截面惯性矩。
这个公式通过将梁的长度、弹性模量和截面惯性矩等参数综合考虑,来计算梁的挠度。
通过这个公式,我们可以得到梁在受力后的弯曲程度,从而对梁的结构进行分析和设计。
在实际工程中,简支梁挠度计算公式可以帮助工程师确定梁的结构是否满足设计要求。
通过计算梁的挠度,我们可以了解梁在受力后的变形情况,从而判断梁的结构是否稳定、安全。
如果梁的挠度超过了设计要求,就需要采取相应的措施来加强梁的结构,以确保其安全可靠。
除了以上介绍的简支梁挠度计算公式外,还有其他一些公式和方法可以用来计算梁的挠度。
例如,可以使用不同的边界条件和受力情况,来推导出不同的挠度计算公式。
在实际应用中,工程师需要根据具体情况选择合适的公式和方法来进行计算。
简支梁挠度计算公式对于工程设计和结构分析来说是非常重要的。
通过计算梁的挠度,我们可以了解梁的弯曲程度,从而判断梁的结构是否稳定、安全。
工程师在进行梁的设计和分析时,需要运用适当的公式和方法,来计算梁的挠度,并根据计算结果进行相应的结构设计。
这样可以确保梁的结构安全可靠,满足设计要求。
梁挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
自己整理的简支梁挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
挠度计算公式-挠度公式表
简支梁在各种荷载作用下跨中最大挠度计算公式均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
(完整word版)梁挠度计算公式
(完整word版)梁挠度计算公式(完整word版)梁挠度计算公式简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m)。
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2。
I 为钢的截面惯矩,可在型钢表中查得(mm^4)。
跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI)。
式中: Ymax 为梁跨中的最大挠度(mm)。
p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6。
81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6。
33pl^3/(384EI)。
式中:Ymax 为梁跨中的最大挠度(mm)。
p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2。
I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI)。
;Ymax =1pl^3/(3EI)。
q 为均布线荷载标准值(kn/m)。
;p 为各个集中荷载标准值之和(kn).。
挠度计算公式
挠度计算公式部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑挠度计算公式默认分类2009-08-20 12:46 阅读2447 评论1字号:大大中中小小简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI>.式中: Ymax 为梁跨中的最大挠度(mm>.q 为均布线荷载标准值(kn/m>.E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4>.跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI>=1pl^3/(48EI>.式中: Ymax 为梁跨中的最大挠度(mm>.p 为各个集中荷载标准值之和(kn>.E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4>.跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI>.式中: Ymax 为梁跨中的最大挠度(mm>.p 为各个集中荷载标准值之和(kn>.E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4>.跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI>.式中: Ymax 为梁跨中的最大挠度(mm>.p 为各个集中荷载标准值之和(kn>.E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4>.悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI>. 。
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最年夜挠度计算公式之阿布丰王创作一、均布荷载下的最年夜挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最年夜挠度(mm).q为均布线荷载标准值(kn/m).E为钢的弹性模量,对工程用结构钢,E = 2100000 N/mm^2.I为钢的截面惯矩,可在型钢表中查得(mm^4).二、跨中一个集中荷载下的最年夜挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最年夜挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).三、跨间等间距安插两个相等的集中荷载下的最年夜挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最年夜挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).四:跨间等间距安插三个相等的集中荷载下的最年夜挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最年夜挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最年夜挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).其中:q 为均布线荷载标准值(kn/m).p 为各个集中荷载标准值之和(kn).你可以根据最年夜挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
简支梁挠度计算公式
简支梁挠度计算公式简支梁就是承载两端竖向荷载,而不提供扭矩的支撑结构。
体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力。
简支梁受力简单,为力学简化模型。
将简支梁体加长并越过支点就成为外伸梁,简支梁支座的铰接是固定铰支座、滑动铰支座的。
只有两端支撑在柱子上的梁,主要承受正弯矩,一般为静定结构。
概述延伸简支梁只是梁的简化模型的一种,还有悬臂梁。
悬臂梁为一端固定约束,另一端无约束。
基数级跨中弯距Mka:Mka= (Md+Mf) × VZ/VJ+ΔMs/VJ -MsMka= (Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25 = 21279.736(kN·m)计算各加载级下跨中弯距:Mk= (k(Mz+Md+Mh+Mf) -Mz) × VZ/VJ+ΔMs/VJ -MsMk=(k(Mz+Md+Mh+Mf) -Mz)×1.017/1.0319 +△Ms/1.0319―Ms=(k (31459.38+17364.38+24164.75+0)-31459.38)×1.017/1.0319+4468.475/1.0319-164.25=71934.601×k-26839.0389(kN·m)计算静活载级系数:Kb = [Mh/(1+μ) +Mz+Md+Mf]/(Mh+Mz+Md+Mf)Kb= [24164.75/1.127+31459.38+17364.38+0]/ (24164.75+31459.38+17364.38+0)=0.963计算基数级荷载值:Pka=Mka/α=21279.736/54.75=388.671(kN)计算各荷载下理论挠度值:f = 2 P [ L+2 (L/2-Χ1)(3L-4(L/2-Χ1)) +2 (L/2-Χ2)(3L-4(L/2-Χ2)) ] / 48EI/1000=0.01156P。
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式简支梁在各种荷载作用下跨中最大挠度计算公式均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
简支梁计算公式总汇
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = ^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = ^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
材料力学挠度计算公式
材料力学挠度计算公式材料力学是研究物体在外力作用下的变形和破坏规律的学科。
在工程实践中,我们经常需要计算材料的挠度,以便设计和分析结构的性能。
挠度是描述材料在外力作用下产生的弯曲变形程度的物理量,对于工程结构的稳定性和安全性具有重要意义。
在本文中,我们将介绍材料力学中常用的挠度计算公式,帮助读者更好地理解和应用这一知识。
在材料力学中,挠度的计算通常涉及到梁的弯曲理论。
对于简支梁和悬臂梁,其挠度计算公式可以分别表示为:简支梁的挠度计算公式为:\[ \delta = \frac{5qL^4}{384EI} \]其中,δ为梁的挠度,q为单位长度上的集中力或均布载荷,L为梁的长度,E 为弹性模量,I为截面惯性矩。
悬臂梁的挠度计算公式为:\[ \delta = \frac{FL^3}{3EI} \]其中,δ为梁的挠度,F为悬臂端点的集中力,L为梁的长度,E为弹性模量,I为截面惯性矩。
除了简支梁和悬臂梁外,我们还需要了解其他类型梁的挠度计算公式。
例如,对于悬臂梁上的集中力作用点处的挠度计算公式为:\[ \delta = \frac{FL^2}{6EI} \]对于两端固支梁的挠度计算公式为:\[ \delta = \frac{FL^3}{48EI} \]这些挠度计算公式在工程实践中具有广泛的应用,能够帮助工程师和设计师准确地预测和分析结构的变形情况,从而指导工程设计和施工。
在实际工程中,我们还需要考虑材料的非线性和几何非线性对挠度的影响。
对于这种情况,我们需要采用有限元分析等更为复杂的方法来进行挠度的计算。
在这里,我们不再详细介绍这些方法,但需要强调的是,在实际工程中,我们需要根据具体情况选择合适的挠度计算方法,以确保计算结果的准确性和可靠性。
总之,材料力学中的挠度计算是工程实践中的重要内容,它直接关系到结构的稳定性和安全性。
通过了解和掌握挠度计算公式,我们能够更好地理解结构的变形规律,为工程设计和分析提供有力的支持。
扰度计算公式(全)
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。
简支梁挠度计算公式
简支梁挠度计算公式均布荷载作用下工字梁的最大挠度在梁跨中间,其计算公式如下: Ymax = 5 ql ^ 4 / (384 ej)。
地点:ymax是中间的最大挠度梁的跨度(CM)Q为均匀线荷载(kg / cm)E为工字梁弹性模量,对于工程结构钢,E = 2100000 kg / cm ^ 2 J为工字梁截面惯性矩,可在型钢表(cm ^ 4)中求得也可转换为kn;以m为单位ra=rb=p/2mc=mmax=pl/4fc=fmax=pl^3/48eiθa=θb=pl^2/16ei符号意义及单位p——集中载荷,n;q——均布载荷,n;r——支座反力,作用方向向上者为正,n;m——弯矩,使截面上部受压,下部受拉者为正,nm;q——剪力,对邻近截面所产生的力矩沿顺时针方向者为正,n;f——挠度,向下变位者为正,mm;θ——转角,顺时针方向旋转者为正,°;e——弹性模量,gpa;i——截面的轴惯性矩,m^4;ξ=x/l,ζ=x'/l,α=a/l,β=b/l,γ=c/l简支梁就是承载两端竖向荷载,而不提供扭矩的支撑结构。
体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力。
简支梁受力简单,为力学简化模型。
将简支梁体加长并越过支点就成为外伸梁,简支梁支座的铰接是固定铰支座、滑动铰支座的基数级跨中弯距Mka:Mka= (Md+Mf) ×VZ/VJ+ΔMs/VJ -MsMka= (Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25 = 21279.736(kN·m)计算各加载级下跨中弯距:Mk= (k(Mz+Md+Mh+Mf) -Mz) ×VZ/VJ+ΔMs/VJ -MsMk=(k(Mz+Md+Mh+Mf) -Mz)×1.017/1.0319 +△Ms/1.0319―Ms=(k (31459.38+17364.38+24164.75+0)-31459.38)×1.017/1.0319+4468.475/1.0319-164.25=71934.601×k-26839.0389(kN·m)计算静活载级系数:Kb = [Mh/(1+μ) +Mz+Md+Mf]/(Mh+Mz+Md+Mf)Kb= [24164.75/1.127+31459.38+17364.38+0]/ (24164.75+31459.38+17364.38+0)=0.963计算基数级荷载值:Pka=Mka/α=21279.736/54.75=388.671(kN)计算各荷载下理论挠度值:f = 2 P [ L+2 (L/2-Χ1)(3L-4(L/2-Χ1)) +2 (L/2-Χ2)(3L-4(L/2-Χ2)) ] / 48EI/1000=0.01156P。
自-简支梁上分段均布载荷挠度计算公式推导
对于材料力学中,在挠曲线微分方程里给了大部分常用的挠曲线公式。
这是二个对其的补充,一般在钢结构设计计算中使用较多。
这里先提取荷载与结构静力计算表里结果。
一、9式推导:1、支座反力Fa=qb/2=Fb2、 分段求挠曲线AC 段为M1,CD 段为M2,DB 段为M 3。
1A M F x =,221()2A M F x q x a =--,3()2A b M F x qb x a =--- 由挠曲线积分式EIw Mxdx Cx D =-++⎰⎰求得:31116A x EIw F C x D =-++ 34222()624A x q EIw F x a C x D =-+-++ 33333()662A x qb b EIw F x a C x D =-+--++ 求解这三个微分方程,有六个未知量。
3、 边界条件由梁变形后是光滑曲线得出边界条件有铰支处挠度为010|0x EIw ==,→D1=03|0x l EIw == →C 3→33234848ql qb C=- C、D 点处的挠度和转角相等, 12||x a x a EIw EIw === →D2=0''12||x a x a EIw EIw === →C1=C223||x a b x a b EIw EIw =+=+= →433()4824qb qb D a b =-+ ''23||x a b x a b EIw EIw =+=+= →32324qb C C += 6个未知量,6个方程,解出系数即可。
4、 求最大挠度最大挠度发生在CD 段,对E IW 求导,在零点处挠度最大(或由对称性直接代入L/2)332max32(84)384qbl b b w l l =+- 二、10式推导借由上面例子,推导出未知系数22222(44)24qba a b C l EI l l=-- 在M 弯矩最大处X 距代入即可,222422max 2()[(44)4]24qba a b x x a w l x EI l l l ba -=---+。
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式一、均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q为均布线荷载标准值(kn/m).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I为钢的截面惯矩,可在型钢表中查得(mm^4).二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).三、跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).四:跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).其中:q为均布线荷载标准值(kn/m).p为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
挠度计算公式
挠度计算公式默认分类 2009-08-20 12:46 阅读2447 评论1字号:大中小简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简支梁在各种荷载作用下跨中最大挠度计算公式
均布荷载下的最大挠度在梁的跨中,其计算公式:
Ymax = 5ql^4/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
q 为均布线荷载标准值(kn/m).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:
Ymax = 8pl^3/(384EI)=1pl^3/(48EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:
Ymax = 6.33pl^3/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:
Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).
q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).
你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件
进行反算,看能满足的上部荷载要求!。