高三全册数学教案

合集下载

高三数学教案【优秀7篇】

高三数学教案【优秀7篇】

作为一位兢兢业业的人民教师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

那么问题来了,教案应该怎么写?下面是小编辛苦为大家带来的高三数学教案【优秀7篇】,希望可以启发、帮助到大家。

高三数学教案篇一【教学目标】:(1)知识目标:通过实例,了解简单的逻辑联结词“且”、“或”的含义;(2)过程与方法目标:了解含有逻辑联结词“且”、“或”复合命题的构成形式,以及会对新命题作出真假的'判断;(3)情感与能力目标:在知识学习的基础上,培养学生简单推理的技能。

【教学重点】:通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。

【教学难点】:简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。

【教学过程设计】:教学环节教学活动设计意图情境引入问题:下列三个命题间有什么关系?(1)12能被3整除;(2)12能被4整除;(3)12能被3整除且能被4整除;通过数学实例,认识用用逻辑联结词“且”联结两个命题可以得到一个新命题;知识建构归纳总结:一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作,读作“p且q”。

引导学生通过通过一些数学实例分析,概括出一般特征。

1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。

学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。

2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。

归纳总结:当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。

引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。

高中数学教案高三

高中数学教案高三

高中数学教案高三一、教学目标:1. 熟练掌握高三数学知识点,包括微分、积分、向量、三角函数等。

2. 提升学生的数学解题能力和思维能力,培养数学思维。

3. 培养学生对数学的兴趣和学习动力,为高考打好基础。

二、教学内容:1. 微分:导数的定义、导数的计算、导数的应用。

2. 积分:不定积分、定积分、定积分的应用。

3. 向量:向量的定义、向量的运算、向量的应用。

4. 三角函数:三角函数的定义、三角函数的性质、三角函数的应用。

三、教学重点与难点:1. 教学重点:微分和积分的应用、向量的运算、三角函数的应用。

2. 教学难点:微分和积分的计算方法、复杂向量运算、三角函数的特殊性质。

四、教学方法:1. 讲授法:通过教师讲解、示例分析等方式,让学生掌握基本知识。

2. 实践法:通过练习题、实例题等让学生熟练运用知识点进行解题。

3. 合作学习法:组织学生进行小组合作学习,促进学生之间的交流和合作。

五、教学过程:1. 导入:通过实例引入教学内容,激发学生的兴趣。

2. 讲解:教师进行知识点讲解,引导学生理解。

3. 练习:布置练习题,让学生进行训练。

4. 梳理:总结教学内容,澄清学生的疑惑。

5. 小结:回顾本节课的重点内容,强化学生的记忆。

六、教学评价:1. 学生能够熟练掌握微分、积分、向量、三角函数等知识点。

2. 学生能够运用所学知识解决实际问题。

3. 学生在考试中能够取得较好的成绩。

七、课后作业:1. 完成课后习题,巩固所学知识。

2. 阅读相关数学资料,扩大数学知识面。

八、教学反思:1. 分析学生学习情况,及时调整教学方法。

2. 总结教学经验,不断提升教学水平。

以上就是高中数学高三课程的教学内容和教学方法,希望能够对教师们有所帮助,提高教学效果。

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)高三数学教案设计篇1一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。

请说出角α、β、γ各是多少度?2、象限角的概念:定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

高三数学教案设计篇2一、指导思想今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。

高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。

提高学生的学习能力仍是我们的奋斗目标。

近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

二、注意事项1、高度重视基础知识,基本技能和基本方法的复习。

“基础知识,基本技能和基本方法”是高考复习的重点。

高三数学一轮复习直线与圆锥曲线教案高三全册数学教案

高三数学一轮复习直线与圆锥曲线教案高三全册数学教案

芯衣州星海市涌泉学校第四讲直线与圆锥曲线一、考情分析直线与圆锥曲线的位置关系,是高考考察的重中之重,主要涉及弦长、中点弦、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘〞. 本讲主要是调动学生学习的主动性,注意交代知识的来龙去脉,教给学生解决问题的思路,帮助考生培养分析、抽象和概括等思维才能,掌握形数结合、函数与方程、化归与转化等数学思想,培养良好的个性品质,以及勇于探究、敢于创新的精神,进一步进步学生“应用数学〞的程度.二、知识归纳〔一〕直线与圆锥曲线问题的解决思路“三十二字思路〞:设而不求,求而不设;联立消元,二次判别;韦达,解决问题;遇弦中点,点差优先.〔二〕直线与椭圆()()()2222222222222010y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒+++-=⎨+=>>⎪⎩,显然,2220a k b +≠; 〔1〕当0∆=时,直线与椭圆只有一个公一一共点,属于直线与椭圆相切; 〔2〕当0∆>时,直线与椭圆有两个公一一共点,属于直线与椭圆相交; 〔三〕直线与双曲线()()()22222222222220100y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒-+++=⎨-=>>⎪⎩,, 〔1〕假设2220bak b k a-=⇔=±时,直线平行于双曲线的渐进线,此时, ①当0m =时,直线与渐进线重合,与双曲线无交点;②当0m ≠时,直线与双曲线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设2220bak b k a-≠⇔≠±时,直线不平行于双曲线的渐进线,此时, ①当0∆=时,直线与双曲线只有一个公一一共点,属于直线与双曲线相切; ②当0∆>时,直线与双曲线有两个公一一共点,属于直线与双曲线相交; 〔四〕直线与抛物线()()22222020y kx mk x mk p x m y px p =+⎧⎪⇒+-+=⎨=>⎪⎩, 〔1〕假设0k=时,直线平行于抛物线的对称轴,此时,直线与抛物线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设0k≠时,直线不平行于抛物线的对称轴,此时,①当0∆=时,直线与抛物线只有一个公一一共点,属于直线与抛物线相切; ②当0∆>时,直线与抛物线有两个公一一共点,属于直线与抛物线相交; 三、精典例析例1:曲线22148x y C -=:,定点()10M ,,直线l 经过点()01,,斜率为t ,与曲线C 交于不同的两点A B 、,设AB 的中点为P ,求直线MP 的斜率k 关于t 的函数关系()k f t =.解析:设直线l 的方程为1l ytx =+:,()()()112200,A x y B x y P x y ,,,,,那么:()222212290148y tx t x tx x y =+⎧⎪⇒---=⎨-=⎪⎩, ∴22t≠,2904t ∆>⇔<,且1212002222x x y y tx y t ++===-, ∵()()120022112222tx tx t x y t t +++===--,,∴020212y kx t t ==-+-;故()()223321122222k t t t ⎛⎫⎛⎛⎫=∈-- ⎪ ⎪+-⎝⎝⎭⎝⎭,,,.例2:椭圆()222210x y a b a b+=>>的离心率36=e ,过点()0A b -,和()0B a ,的直线与原点的间隔为23. 〔1〕求椭圆的方程. 〔2〕定点()10E -,,假设直线()20y kx k =+≠与椭圆交于C D 、两点.问:是否存在k 的值,使以CD 为直径的圆过()10E-,点?请说明理由. 解析:〔1〕直线AB 方程为:0bx ay ab --=,那么:22633312c a a ab b a b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪=⎪+⎩ , ∴椭圆方程为1322=+y x . 〔2〕假假设存在这样的k 值,设()()1122Cx y D x y ,,,,那么:()22222131290330y kx k x kx x y =+⎧⇒+++=⎨+-=⎩ , ∴0)31(36)12(22>+-=∆k k ,且1212221291313k x x x x k k +=-=++⋅,,∵()()()2121212122224y y kx kx k x x k x x =++=+++⋅,∴要使以CD 为直径的圆过()10E-,点,当且仅当CE DE ⊥时,那么: 121212121(1)(1)011y y y y x x x x =-⇔+++=++⋅. ∴05))(1(2)1(21212=+++++x x k x x k ,∴67=k,经历证,67=k 时符合题意. 综上,存在67=k ,使得以CD 为直径的圆过()10E -,点.例3:双曲线G 的中心在原点,它的渐近线与圆2210200xy x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于A B 、两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC⋅=.〔1〕求双曲线G 的渐近线的方程; 〔2〕求双曲线G 的方程;〔3〕椭圆S 的中心在原点,它的短轴是G 的实轴.假设S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解析:〔1〕设双曲线G 的渐近线的方程为:y kx =,那么:∵渐近线与圆2210200xy x +-+=12k =⇔=±. 故双曲线G 的渐近线的方程为:12y x =±.〔2〕设双曲线G 的方程为:224xy m -=,那么:()2221438164044y x x x m x y m ⎧=+⎪⇒---=⎨⎪-=⎩, ∴8164 33A B A B mx x x x ++==-,, ∵2PA PB PC ⋅=,P A B C 、、、一一共线且P 在线段AB 上,∴()()()()()()244164320P A B P P C B A A B A B x x x x x x x x x x x x --=-⇔+--=⇔+++=,例4:〔05年卷〕设A B 、是椭圆λ=+223y x 上的两点,点()13N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C D 、两点. 〔1〕确定λ的取值范围,并求直线AB 的方程;〔2〕试判断是否存在这样的λ,使得A B 、、C D 、四点在同一个圆上?并说明理由.解析:〔1〕法1:显然,直线AB 的斜率存在,设直线AB 的方程为(1)3y k x =-+,设1122()()A x y B x y ,,,,那么:22222(1)3(3)2(3)(3)03y k x k x k k x k x y λλ=-+⎧⇒+--+--=⎨+=⎩, ∴224[(3)3(3)]0k k λ∆=+-->,且21212222(3)(3)33k k k x x x x k k λ---+=⋅=++,,∵点()13N,是线段AB 的中点,∴2121(3)312x x k k k k +=⇔-=+⇒=-,直线AB 的方程是: ()3140y x x y -=--⇔+-=.∴12λ>,故λ的取值范围是()12,+∞.法2:设1122()()A x y B x y ,,,,那么:221112121212222233()()()()03x y x x x x y y y y x y λλ⎧+=⎪⇒-++-+=⎨+=⎪⎩, ∴12123()ABx x k y y +=-+;∵点()13N ,是线段AB 的中点,∴121226x x y y +=+=,,∴1AB k =-,直线AB 的方程是()3140y x x y -=--⇔+-=.∵点()13N,在椭圆的内部,∴2231312λ>⨯+=.故λ的取值范围是()12,+∞.〔2〕法1:∵直线CD 垂直平分线段AB ,∴直线CD 的方程为3120y x x y -=-⇔-+=,又设3344()()C x y D x y ,,,,CD 的中点00()M x y ,,那么:2222044403x y x x x y λλ-+=⎧⇒++-=⎨+=⎩, ∴103λ∆>⇔>,且341x x +=-,03400113()2222x x x y x =+=-=+=,,即1322M ⎛⎫- ⎪⎝⎭,.∴34||||CD x x =-=又22240481603x y x x x y λλ+-=⎧⇒-+-=⎨+=⎩,2012λ∆>⇔>,同理可得:12||AB x x =-=∴当12λ>AB CD >⇒<.假设在在12λ>,使得A B 、、C D 、四点一一共圆,那么CD 必为圆的直径,点M 为圆心,点M 到直线AB的间隔为:13|4|d-+-===,∴222229123||||||||22222AB CDMA MB dλλ--==+=+==.故当12>λ时,A B、、C D、四点均在以M为圆心,2||CD为半径的圆上.〔注:上述解法中最后一步也可如下解法获得:∵A B、、C D、一一共圆⇔△ACD为直角三角形,A为直角2||||||AN CN DN⇔=⋅,∴2||222CD CDABd d⎛⎫⎛⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭⎝⎭,∵3912 2222222CD CDd dλλ⎫⎛⎫⎛⎫--+-=-=-=⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭即A、B、C、D四点一一共圆.〕例5:〔05年卷〕如图,设抛物线2C y x=:的焦点为F,动点P在直线20l x y--=:上运动,过P作抛物线C的两条切线PA PB、,且与抛物线C分别相切于A B、两点.〔1〕求△APB的重心G的轨迹方程;〔2〕证明:PFA PFB∠=∠.解析:〔1〕设切点()()()22001101A x xB x x x x≠,,,,那么:切线PA的方程为:20020x x y x--=,切线PB的方程为:21120x x y x--=,联立,解得:P点的坐标为01012x xP x x+⎛⎫⎪⎝⎭,;∴△APB的重心G的坐标为:PPGxxxxx=++=310,2222010*******()43333P P PGy y y x x x x x x x x x yy+++++--====,∴234P G Gy y x=-+,∵点P在直线20l x y--=:上运动,∴从而得到重心G 的轨迹方程为:221(34)20(42)3x y xy x x --+-=⇔=-+.〔2〕法1:∵22010001111114244x x FA x x FP x x FB x x +⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ,, ,, ∴cos ||||FP FA AFP FP FA ⋅∠=201001001201114||||x x x x x x x x FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⎝==; 同理,20110110122211112444cos ||||||1||x x x x x x x x FP FBBFP FP FB FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⋅⎝⎭⎝⎭∠===⎛⎫+;故PFA PFB ∠=∠. 法2:①当100x x =时,由于01x x ≠,不妨设00x =,那么:00y =,∴P 点坐标为102x P ⎛⎫⎪⎝⎭,,那么P 点到直线AF 的间隔为:11||2x d =;而直线BF 的方程212111111114()0444x y x x x x y x x --=⇔--+=,∴P 点到直线BF 的间隔为:22111111221||11|()|()||42124x x x x x x d x -++===+; ∴12d d =,故PFA PFB ∠=∠.②当001≠x x 时,直线AF 的方程:2020********(0)()04044x y x x x x y x x --=-⇔--+=-; 直线BF 的方程:212111111114(0)()04044x y x x x x y x x --=-⇔--+=-; ∴P 点到直线AF 的间隔为:22201010010001120111|()()||)()||24124x x x x x x x x x x x d x +---++-===+, 同理,P 点到直线BF 的间隔:2||012x x d -=, ∴12d d =,故PFA PFB ∠=∠.四、课后反思 .。

高考数学一轮复习 第一章 集合与常用逻辑用语 1 第1讲 集合及其运算教学案-高三全册数学教学案

高考数学一轮复习 第一章 集合与常用逻辑用语 1 第1讲 集合及其运算教学案-高三全册数学教学案

第一章集合与常用逻辑用语知识点最新考纲集合了解集合、元素的含义及其关系.理解集合的表示法.了解集合之间的包含、相等关系.理解全集、空集、子集的含义.会求简单集合间的并集、交集.理解补集的含义并会求补集.命题及其关系、充分条件与必要条件了解原命题和原命题的逆命题、否命题、逆否命题的含义,及其相互之间的关系.理解命题的必要条件、充分条件、充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R表示关系文字语言符号语言记法基本关系子集集合A的所有元素都是集合B的元素x∈A⇒x∈BA⊆B或B⊇A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且存在x0∈B,x0∉AA B或B A 相等集合A,B的元素完全A⊆B,A=B相同B⊆A空集不含任何元素的集合.空集是任何集合A的子集任意x,x∉∅,∅⊆A ∅3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( )(2)若{x2,1}={0,1},则x=0,1.( )(3){x|x≤1}={t|t≤1}.( )(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.( )(5)若A∩B=A∩C,则B=C.( )答案:(1)×(2)×(3)√(4)√(5)×[教材衍化]1.(必修1P12A 组T3改编)若集合P ={x ∈N |x ≤ 2 021},a =22,则( )A .a ∈PB .{a }∈PC .{a }⊆PD .a ∉P解析:选D.因为a =22不是自然数,而集合P 是不大于 2 021的自然数构成的集合,所以a ∉P .故选D.2.(必修1P11例9改编)已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.答案:{x |x 是直角}3.(必修1P44A 组T5改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________.解析:集合A 表示以(0,0)为圆心,1为半径的单位圆,集合B 表示直线y =x ,圆x 2+y 2=1与直线y =x 相交于两点⎝⎛⎭⎪⎪⎫22,22,⎝ ⎛⎭⎪⎪⎫-22,-22,则A ∩B 中有两个元素. 答案:2 [易错纠偏](1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误.1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.解析:因为B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,根据集合元素的互异性可知,m ≠1,所以m =0或3.答案:0或32.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.解析:易得M ={2}.因为M ∩N =N ,所以N ⊆M ,所以N =∅或N =M ,所以a =0或a =12.答案:0或123.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.解析:由已知得A ={x |1<x <3},B ={x |2<x <4},所以A ∩B ={x |2<x <3},A ∪B ={x |1<x <4},(∁R A )∪B ={x |x ≤1或x >2}.答案:(2,3) (1,4) (-∞,1]∪(2,+∞) 集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A .92B .98C .0D .0或98(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素. (2)当a =0时,显然成立; 当a ≠0时,Δ=(-3)2-8a =0, 即a =98.(3)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则ba=-1,所以a =-1,b =1. 所以b -a =2.【答案】 (1)C (2)D (3)2与集合中的元素有关问题的求解步骤1.(2020·温州八校联考)已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( )A .1或-1B .1或3C .-1或3D .1,-1或3解析:选B.因为5∈{1,m +2,m 2+4},所以m +2=5或m 2+4=5,即m =3或m =±1.当m =3时,M ={1,5,13};当m =1时,M ={1,3,5};当m =-1时,不满足互异性.所以m 的值为3或1.2.已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为________.解析:因为32-x ∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.答案:4集合的基本关系(1)(2020·浙江省绿色联盟联考)已知A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},则集合A 可以为( )A .{1,8}B .{2,3}C .{0}D .{9}(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)因为A ⊆B ,A ⊆C ,所以A ⊆{B ∩C }={1,8},故选A.(2)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3.【答案】 (1)A (2)(-∞,3]1.(变条件)在本例(2)中,若A ⊆B ,如何求解?解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3. 所以m 的取值范围为∅.2.(变条件)若将本例(2)中的集合A 改为A ={x |x <-2或x >5},如何求解?解:因为B ⊆A ,所以①当B =∅时,即2m -1<m +1时,m <2,符合题意. ②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.设P ={y |y =-x 2+1,x ∈R },Q ={y |y =2x,x ∈R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R P解析:选C.因为P ={y |y =-x 2+1,x ∈R }={y |y ≤1},Q ={y |y =2x,x ∈R }={y |y >0},所以∁R P ={y |y >1},所以∁R P ⊆Q ,选C.2.(2020·绍兴调研)设A={1,4,2x},B={1,x2},若B⊆A,则x=________.解析:由B⊆A,则x2=4,或x2=2x.当x2=4时,x=±2;当x2=2x时,x=0或x=2.但当x=2时,2x=4,这与集合中元素的互异性相矛盾.故x=-2或x=0.答案:-2或03.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x ∈N},则满足条件A⊆C⊆B的集合C的个数为________.解析:由x2-3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.答案:4集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求参数.角度一求集合间的交、并、补运算(1)(2018·高考浙江卷)已知全集U={1,2,3,4,5},A ={1,3},则∁U A=( )A.∅B.{1,3}C.{2,4,5} D.{1,2,3,4,5}(2)(2019·高考浙江卷)已知全集U={-1,0,1,2,3},集∁U A∩B=( )合A={0,1,2},B={-1,0,1},则()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}(3)(2020·浙江高考模拟)设全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},则A∪B=________,∁U(A∩B)=________.【解析】(1)因为U={1,2,3,4,5},A={1,3},所以∁U A={2,4,5}.故选C.(2)由题意可得∁U A={-1,3},则(∁U A)∩B={-1}.故选A.(3)因为A={x|x2-x-2<0}={x|-1<x<2},B={x|1<x<3},所以A∪B={x|-1<x<3}.又因为A∩B={x|1<x<2},所以∁U(A∩B)={x|x≤1或x≥2}.【答案】(1)C (2)A (3)(-1,3) (-∞,1]∪[2,+∞)角度二已知集合的运算结果求参数(1)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B ={1},则B=( )A.{1,-3} B.{1,0}C.{1,3} D.{1,5}(2)(2020·浙江新高考优化卷)已知A={x|x>1},B={x|x<m}.若A∪B=R,则m的值可以是( )A.-1 B.0C.1 D.2【解析】(1)因为A∩B={1},所以1∈B,所以1-4+m=0,所以m=3.由x2-4x+3=0,解得x=1或x=3.所以B={1,3}.经检验符合题意.故选C.(2)因为A∪B=R,所以m>1.故m的值可以是2,故选D.【答案】(1)C (2)D(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒] 在求出参数后,注意结果的验证(满足互异性).1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( )A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)解析:选B.由于Q={x|x≤-2或x≥2},∁R Q={x|-2<x<2},故得P∪(∁R Q)={x|-2<x≤3}.故选B.2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.解析:因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得m=1×4=4.答案:4核心素养系列1 数学抽象——集合的新定义问题以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.对于E={a1,a2,...,a100}的子集X={ai1,ai2,...,ai k},定义X的“特征数列”为x1,x2,...,x100,其中xi1=xi2=...=xi k =1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于________;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99,E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.【解析】(1)由已知可得子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0,…,0,故其前3项和为2.(2)由已知可得子集P 为{a 1,a 3,…,a 99},子集Q 为{a 1,a 4,a 7,…,a 100},则两个子集的公共元素为a 1到a 100以内项数被6除余1的数对应的项,即a 1,a 7,…,a 97,共17项.【答案】 (1)2 (2)17解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.解析:在数轴上表示出集合M 与N (图略),可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34}, 长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13}, 长度为13-14=112. 综上,M ∩N 的长度的最小值为112. 答案:112[基础题组练]1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B.因为集合A 和集合B 有共同元素2,4,所以A ∩B ={2,4},所以A ∩B 中元素的个数为2.2.(2020·温州十五校联合体联考)已知集合A ={}x |e x≤1,B ={}x |ln x ≤0,则A ∪B =( )A .(-∞,1]B .(0,1]C .[1,e]D .(0,e]解析:选A.因为A ={}x |e x ≤1={}x |x ≤0, B ={}x |ln x ≤0={}x |0<x ≤1,所以A ∪B =(-∞,1],故选A.3.(2020·宁波高考模拟)已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( )A .{2,4,6}B .{1,3,5}C.{0,2,4,6} D.{x∈Z|0≤x≤6}解析:选C.因为全集U=A∪B={x∈Z|0≤x≤6}={0,1,2,3,4,5,6},A∩(∁U B)={1,3,5},所以B={0,2,4,6},故选C.4.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}解析:选B.因为A={1,2,6},B={2,4},所以A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},所以(A∪B)∩C={1,2,4}.故选B.5.(2020·宜春中学、新余一中联考)已知全集为R,集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A.{x|2<x<3} B.{x|-1<x≤0}C.{x|0≤x<6} D.{x|x<-1}解析:选C.由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁R B)∩A,因为∁R B={x|x≥0},所以(∁R B)∩A={x|0≤x<6},故选C.6.已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是( )A.(0,3) B.(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)解析:选B.因为A ∩B 有4个子集,所以A ∩B 中有2个不同的元素,所以a ∈A ,所以a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3),故选B.7.设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =( )A .{1,2,3}B .{4,5,6}C .{6,7,8}D .{4,5,6,7,8} 解析:选B.因为U ={1,2,3,4,5,6,7,8},所以∁U A ={4,5,6,7,8},所以(∁U A )∩B ={4,5,6,7,8}∩{3,4,5,6}={4,5,6}.故选B.8.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}解析:选A.由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去. 9.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117 解析:选B.由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,不与y =3,y =5有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.10.(2020·温州质检)已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞) 解析:选D.因为x 2-3x +2>0,所以x >2或x <1.所以A ={x |x >2或x <1},因为B ={x |x ≤a },所以∁U B ={x |x >a }.因为∁U B ⊆A ,借助数轴可知a ≥2,故选D.11.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________.解析:根据并集的概念,可知{a ,a 2}={4,16},故只能是a =4.答案:412.(2020·宁波效实中学模拟)已知全集U =R ,集合A ={x |-1≤x≤3},集合B={x|log2(x-2)<1},则A∪B=________;A∩(∁U B)=________.解析:log2(x-2)<1⇒0<x-2<2⇒2<x<4⇒B=(2,4),所以A∪B =[-1,4),A∩(∁U B)=[-1,2].答案:[-1,4) [-1,2]13.设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则B =________,A∩(∁R B)=________.解析:当k=-1时,n=-4;当k=0时,n=-1;当k=1时,n=2;当k=2时,n=5.由|x-1|>3,得x-1>3或x-1<-3,即x>4或x<-2,所以B={x|x<-2或x>4},∁R B={x|-2≤x≤4},A∩(∁R B)={-1,2}.答案:{x|x<-2或x>4} {-1,2}14.(2020·浙江省杭州二中高三年级模拟)设全集为R,集合M={x∈R|x2-4x+3>0},集合N={x∈R|2x>4},则M∩N=________;∁R(M∩N)=________.解析:M={x∈R|x2-4x+3>0}={x|x<1或x>3},N={x∈R|2x>4}={x|x>2},所以M∩N=(3,+∞),所以∁R(M∩N)=(-∞,3].答案:(3,+∞)(-∞,3]15.已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m=________,n=________.解析:由x2-4x<0得0<x<4,所以M={x|0<x<4}.又因为N ={x|m<x<5},M∩N={x|3<x<n},所以m=3,n=4.答案:3 416.设全集U={x∈N*|x≤9},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B =________.解析:因为全集U ={1,2,3,4,5,6,7,8,9},由∁U (A ∪B )={1,3},得A ∪B ={2,4,5,6,7,8,9},由A ∩(∁U B )={2,4}知,{2,4}⊆A ,{2,4}⊆∁U B .所以B ={5,6,7,8,9}.答案:{5,6,7,8,9}17.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32; ②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1. 综上,可得a 的取值范围是(-∞,-1].答案:(-∞,-1][综合题组练]1.(2020·金华东阳二中高三调研)已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( )A .A ∪B =RB .A ∪(∁U B )=RC .(∁U A )∪B =RD .A ∩(∁U B )=A 解析:选D.因为A ={x |-4<x <4},B ={x |x >4},所以∁U B ={x |x ≤4},所以A ∩(∁U B )=A ,故选D.2.集合A ={x |y =ln(1-x )},B ={x |x 2-2x -3≤0},全集U =A ∪B ,则∁U (A ∩B )=( )A .{x |x <-1或x ≥1}B .{x |1≤x ≤3或x <-1}C .{x |x ≤-1或x >1}D .{x |1<x ≤3或x ≤-1}解析:选 B.集合A ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},B ={x |x 2-2x -3≤0}={x |(x +1)(x -3)≤0}={x |-1≤x ≤3},所以U =A ∪B ={x |x ≤3},所以A ∩B ={x |-1≤x <1};所以∁U (A ∩B )={x |1≤x ≤3或x <-1}.故选B.3.(2020·浙江新高考联盟联考)已知集合A ={1,2,m },B ={1,m },若B ⊆A ,则m =________,∁A B =________.解析:由题意,当m =2时,A ={1,2,2},B ={1,2},满足B ⊆A ;当m =m ,即m =0或1时,若m =0,则A ={1,2,0},B ={1,0},满足B ⊆A .若m =1,则A ={1,3,1},B ={1,1},不满足集合中元素的互异性,所以m =1舍去.当m =2时,∁A B ={2};当m =0时,∁A B ={2}.答案:0或2 {2}或{2}4.函数g (x )=⎩⎪⎨⎪⎧x ,x ∈P ,-x ,x ∈M ,其中P ,M 为实数集R 的两个非空子集,规定f (P )={y |y =g (x ),x ∈P },f (M )={y |y =g (x ),x ∈M }.给出下列四个命题:①若P ∩M =∅,则f (P )∩f (M )=∅;②若P ∩M ≠∅,则f (P )∩f (M )≠∅;③若P ∪M =R ,则f (P )∪f (M )=R ;④若P ∪M ≠R ,则f (P )∪f (M )≠R .其中命题不正确的有________.解析:①若P ={1},M ={-1},则f (P )={1},f (M )={1},则f (P )∩f (M )≠∅,故①错.②若P ={1,2},M ={1},则f (P )={1,2},f (M )={-1},则f (P )∩f (M )=∅.故②错.③若P ={非负实数},M ={负实数},则f (P )={非负实数},f (M )={正实数},则f (P )∪f (M )≠R ,故③错.④若P ={非负实数},M ={正实数},则f (P )={非负实数},f (M )={负实数},则f (P )∪f (M )=R ,故④错.答案:①②③④5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .解:不等式18<2x <8的解为-3<x <3, 所以B =(-3,3).若x ∈A ∩B ,则⎩⎪⎨⎪⎧x 2-2[x ]=3-3<x <3, 所以[x ]只可能取值-3,-2,-1,0,1,2.若[x ]≤-2,则x 2=3+2[x ]<0,没有实数解;若[x ]=-1,则x 2=1,得x =-1;若[x ]=0,则x 2=3,没有符合条件的解;若[x ]=1,则x 2=5,没有符合条件的解;若[x ]=2,则x 2=7,有一个符合条件的解,x =7. 因此,A ∩B ={}-1,7.6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).。

高考数学第七章立体几何第三节空间点线面之间的位置关系教案高三全册数学教案

高考数学第七章立体几何第三节空间点线面之间的位置关系教案高三全册数学教案

第三节 空间点、线、面之间的位置关系1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.[小题体验]1.(2019·湖州模拟)已知l,m,n为三条不重合的直线,α,β为两个不同的平面,则( )A.若m⊥α,m⊥β,则α∥βB.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αC.若α∩β=l,m⊂α,m⊥l,则m⊥βD.若m∥n,m⊂α,则n∥α解析:选A 由l,m,n为三条不重合的直线,α,β为两个不同的平面知,在A中,若m⊥α,m⊥β,则由面面平行的判定定理得α∥β,故A正确;在B中,若l⊥m,l⊥n,m⊂α,n⊂α,则l与α相交、平行或l⊂α,故B错误;在C中,若α∩β=l,m⊂α,m⊥l,则m与β相交,故C错误;在D中,若m∥n,m⊂α,则n∥α或n⊂α,故D错误.故选A.2.(教材习题改编)设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.答案:③④1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.[小题纠偏]1.(2018·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )A.相交或平行B.相交或异面C.平行或异面 D.相交、平行或异面解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.2.(2019·杭州诊断)设l,m,n表示三条直线,α,β,γ表示三个平面,给出下列四个命题:①若l⊥α,m⊥α,则l∥m;②若m⊂β,n是l在β内的射影,m⊥l,则m⊥n;③若m⊂α,m∥n,则n∥α;④若α⊥γ,β⊥γ,则α∥β.其中真命题有( )A.①②B.①②③C.②③④ D.①③④解析:选A ①可以根据直线与平面垂直的性质定理得出;②可以根据三垂线定理的逆定理得出;对于③,n可以在平面α内,故③不正确;对于④,反例:正方体共顶点的三个平面两两垂直,故④错误.故选A.3.(教材习题改编)下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题的个数为( )A.4 B.3C.2 D.1解析:选D ①中若三点在一条直线上,则不能确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定四个平面;④中这三个公共点可以在这两个平面的交线上.故错误的是①③④,正确的是②.所以正确命题的个数为1.考点一平面的基本性质及应用重点保分型考点——师生共研[典例引领]如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明:(1)如图,连接EF,A1B,CD1.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥CD1,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.[由题悟法]1.点线共面问题证明的2种方法(1)纳入平面法:先确定一个平面,再证有关点、线在此平面内;(2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定平面β,最后证明平面α,β重合.2.证明多线共点问题的2个步骤(1)先证其中两条直线交于一点;(2)再证交点在第三条直线上.证交点在第三条直线上时,第三条直线应为前两条直线所在平面的交线,可以利用公理3证明.[即时应用]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F,求证:E,F,G,H四点必定共线.证明:因为AB∥CD,所以AB,CD确定一个平面β.又因为AB∩α=E,AB⊂β,所以E∈α,E∈β,即E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点,因为两个平面有公共点,它们有且只有一条通过公共点的公共直线,所以E,F,G,H四点必定共线.考点二空间两直线的位置关系重点保分型考点——师生共研[典例引领]如图,在正方体ABCD­A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[由题悟法][即时应用]1.上面例题中正方体ABCD­A1B1C1D1的棱所在直线中与直线AB 是异面直线的有________条.解析:与AB异面的有4条:CC1,DD1,A1D1,B1C1.答案:42.在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填上所有正确答案的序号)解析:图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.答案:②④考点三异面直线所成的角重点保分型考点——师生共研[典例引领](2018·全国卷Ⅱ)在长方体ABCD­A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.22解析:选C 法一:如图,将长方体ABCD ­A 1B 1C 1D 1补成长方体ABCD ­A 2B 2C 2D 2,使AA 1=A 1A 2,易知AD 1∥B 1C 2,所以∠DB 1C 2或其补角为异面直线AD 1与DB 1所成的角.易知B 1C 2=AD 1=2,DB 1=12+12+32=5,DC 2=DC 2+CC 22=12+232=13.在△DB 1C 2中,由余弦定理,得cos ∠DB 1C 2=DB 21+B 1C 22-DC 222DB 1·B 1C 2=5+4-132×5×2=-55, 所以异面直线AD 1与DB 1所成角的余弦值为55. 法二:以A 1为坐标原点建立空间直角坐标系(如图),则A (0,0,3),D 1(0,1,0),D (0,1,3),B 1(1,0,0), 所以AD 1=(0,1,-3),DB 1=(1,-1,-3),所以cos 〈AD 1,DB 1〉=AD 1·DB 1|AD 1|·|DB 1|=0×1+1×-1+-3×-32×5=55.[由题悟法]1.用平移法求异面直线所成的角的3步骤(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.2.有关平移的3种技巧求异面直线所成的角的方法为平移法,平移的方法一般有3种类型:(1)利用图形中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移.计算异面直线所成的角通常放在三角形中进行.[即时应用]如图所示,在正方体ABCD­A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解:(1)连接B1C,AB1,由ABCD­A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)连接BD,在正方体ABCD­A1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.一抓基础,多练小题做到眼疾手快1.(2019·台州一诊)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β解析:选D 由a,b是空间中不同的直线,α,β是不同的平面知,在A中,a∥b,b⊂α,则a∥α或a⊂α,故A错误;在B中,a⊂α,b⊂β,α∥β,则a与b平行或异面,故B错误;在C中,a⊂α,b⊂α,a∥β,b∥β,则α与β相交或平行,故C错误;在D中,α∥β,a⊂α,则由面面平行的性质定理得a∥β,故D正确.故选D.2.(2018·平阳期末)已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线 D.不可能是相交直线解析:选C 由平行直线公理可知,若c∥b,则a∥b,与a,b是异面直线矛盾.所以c与b不可能是平行直线.3.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )A.6 2 B.12C.12 2 D.242解析:选A 如图,已知空间四边形ABCD,设对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的45°角,故S四边形EFGH=3×4·sin 45°=62,故选A.4.如图所示,平行六面体ABCD­A1B1C1D1中,既与AB共面又与CC1共面的棱有________条;与AB异面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.与AB异面的棱有CC1,DD1,B1C1,A1D1,共4条.答案:5 45.如图,在三棱锥A­BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+222-322×2×22=78.答案:78二保高考,全练题型做到高考达标1.(2018·浙江高考)已知平面α,直线m,n满足m⊄α,n ⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A ∵若m⊄α,n⊂α,且m∥n,由线面平行的判定定理知m∥α,但若m⊄α,n⊂α,且m∥α,则m与n有可能异面,∴“m∥n”是“m∥α”的充分不必要条件.2.(2018·宁波模拟)如图,在正方体ABCD­A1B1C1D1中,M,N 分别是BC1,CD1的中点,则下列说法错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行 D.MN与A1B1平行解析:选D 如图,连接C1D,在△C1DB中,MN∥BD,故C正确;因为CC1⊥平面ABCD,所以CC1⊥BD,所以MN与CC1垂直,故A正确;因为AC⊥BD,MN∥BD,所以MN与AC垂直,故B正确;因为A1B1与BD异面,MN∥BD,所以MN与A1B1不可能平行,故D错误.3.(2018·义乌二模)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.若α⊥β,m⊥β,则m∥αB.若平面α内有不共线的三点到平面β的距离相等,则α∥βC.若m⊥α,m⊥n,则n∥αD.若m∥n,n⊥α,则m⊥α解析:选D 由m,n为两条不同的直线,α,β为两个不同的平面知,在A中,若α⊥β,m⊥β,则m∥α或m⊂α,故A错误;在B中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故B错误;在C中,若m⊥α,m⊥n,则n∥α或n⊂α,故C错误;在D中,若m∥n,n⊥α,则由线面垂直的判定定理得m⊥α,故D正确.故选D.4.(2019·湖州模拟)如图,在下列四个正方体ABCD­A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( )解析:选D 如图,在正方体ABCD­A1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,易知多边形EFMN Q G是一个平面图形,且直线BD1与平面EFMN Q G垂直,结合各选项知,选项A、B、C中的平面与这个平面重合,只有选项D中的平面既不与平面EFMN Q G重合,又不与之平行.故选D.5.(2018·宁波九中一模)正三棱柱ABC­A1B1C1中,若AC=2 AA1,则AB1与CA1所成角的大小为( )A.60°B.105°C.75° D.90°解析:选D 取A1C1的中点D,连接AD,B1D(图略),易证B1D⊥A1C,因为tan∠CA1C1·tan∠ADA1=22×2=1,所以A1C⊥AD,又B1D∩AD=D,所以A1C⊥平面AB1D,又AB1⊂平面AB1D,所以A1C ⊥AB1,故AB1与CA1所成角的大小为90°.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.答案:37.(2018·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是_______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c 可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①8.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB 的另一中点D ,连接C 1D ,AD , 因为C 是圆柱下底面弧AB 的中点,所以AD ∥BC ,所以直线AC 1与AD 所成角等于异面直线AC 1与BC所成角,因为C 1是圆柱上底面弧A 1B 1的中点,所以C 1D ⊥圆柱下底面,所以C 1D ⊥AD ,因为圆柱的轴截面ABB 1A 1是正方形,所以C 1D =2AD , 所以直线AC 1与AD 所成角的正切值为2,所以异面直线AC 1与BC 所成角的正切值为 2.答案:29.(2018·舟山模拟)在空间四边形ABCD 中,已知AD =1,BC=3,且AD ⊥BC ,对角线BD =132,AC =32,求AC 和BD 所成的角.解:如图,分别取AD ,CD ,AB ,BD 的中点E ,F ,G ,H ,连接EF ,FH ,HG ,GE ,GF .由三角形的中位线定理知,EF ∥AC ,且EF =34,GE ∥BD ,且GE =134,GE 和EF 所成的锐角(或直角)就是AC 和BD 所成的角.同理,GH ∥AD ,HF ∥BC ,GH =12,HF =32.又AD ⊥BC ,所以∠GHF =90°,所以GF 2=GH 2+HF 2=1.在△EFG 中,GE 2+EF 2=1=GF 2,所以∠GEF =90°,即AC 和BD 所成的角为90°.10.如图所示,在三棱锥P ­ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =90°,AB =2,AC =23,PA =2.求: (1)三棱锥P ­ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23, 故三棱锥P ­ABC 的体积为V =13·S △ABC ·PA =13×23×2=433. (2)如图所示,取PB 的中点E ,连接DE ,AE ,则DE ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD所成的角.在△ADE 中,DE =2,AE =2,AD =2,则cos ∠ADE =DE 2+AD 2-AE 22DE ·AD =22+22-22×2×2=34.即异面直线BC 与AD 所成角的余弦值为34. 三上台阶,自主选做志在冲刺名校 1.(2019·绍兴质检)如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,A 1C 与底面ABCD 所成的角为60°.(1)求四棱锥A 1­ABCD 的体积;(2)求异面直线A 1B 与B 1D 1所成角的余弦值.解:(1)∵在长方体ABCD ­A 1B 1C 1D 1中,AB =BC =2,连接AC ,∴AC =22+22=22,又易知AA 1⊥平面ABCD ,∴∠A 1CA 是A 1C 与底面ABCD 所成的角,即∠A 1CA =60°,∴AA 1=AC ·tan 60°=22×3=26,∵S 正方形ABCD =AB ·BC =2×2=4,∴VA 1­ABCD =13·AA 1·S 正方形ABCD =13×26×4=863. (2)连接BD ,易知BD ∥B 1D 1,∴∠A 1BD 是异面直线A 1B 与B 1D 1所成的角(或所成角的补角).∵BD =22+22=22,A 1D =A 1B =22+262=27,∴cos ∠A 1BD =A 1B 2+BD 2-A 1D 22·A 1B ·BD =28+8-282×27×22=1414, 即异面直线A 1B 与B 1D 1所成角的余弦值是1414. 2.(2018·台州一模)如图所示的圆锥的体积为33π,圆O 的直径AB =2,点C 是AB 的中点,点D 是母线PA 的中点.(1)求该圆锥的侧面积;(2)求异面直线PB 与CD 所成角的大小.解:(1)∵圆锥的体积为33π,圆O 的直径AB =2,圆锥的高为PO ,∴13π×12×PO =33π,解得PO =3,∴PA = 32+12=2,∴该圆锥的侧面积S =πrl =π×1×2=2π.(2)法一:如图,连接DO ,OC .由(1)知,PA =2,OC =r =1.∵点D 是PA 的中点,点O 是AB 的中点,∴DO ∥PB ,且DO =12PB =12PA =1,∴∠CDO 是异面直线PB 与CD 所成的角或其补角.∵PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC ,又点C 是 AB 的中点,∴OC ⊥AB . ∵PO ∩AB =O ,PO ⊂平面PAB ,AB ⊂平面PAB ,∴OC ⊥平面PAB ,又DO ⊂平面PAB ,∴OC ⊥DO ,即∠DOC =90°.在Rt △DOC 中,∵OC =DO =1,∴∠CDO =45°.故异面直线PB 与CD 所成角为45°.法二:连接OC ,易知OC ⊥AB ,又∵PO ⊥平面ABC ,∴PO ,OC ,OB 两两垂直,以O 为坐标原点,OC所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立如图所示的空间直角坐标系.其中A (0,-1,0),P (0,0,3),D ⎝ ⎛⎭⎪⎪⎫0,-12,32,B (0,1,0),C (1,0,0),∴PB =(0,1,-3),CD =⎝⎛⎭⎪⎪⎫-1,-12,32, 设异面直线PB 与CD 所成的角为θ,则cos θ=|PB ·CD ||PB |·|CD |=222=22, ∴θ=45°,∴异面直线PB 与CD 所成角为45°.3.如图所示,三棱柱ABC ­A 1B 1C 1,底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解:(1)法一:如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为侧棱A 1A ⊥底面ABC ,所以侧面A 1ACC 1⊥底面ABC .又因为EC =2FB =2,所以OM ∥FB ∥EC 且OM =12EC =FB , 所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.法二:如图所示,取EC 的中点P ,AC 的中点Q ,连接P Q ,PB ,B Q.因为EC =2FB =2,所以PE 綊BF ,所以P Q ∥AE ,PB ∥EF ,所以P Q ∥平面AFE ,PB ∥平面AEF ,因为PB ∩P Q =P ,PB ,P Q ⊂平面PB Q ,所以平面PB Q ∥平面AEF .又因为B Q ⊂平面PB Q ,所以B Q ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155, 所以BM 与EF 所成的角的余弦值为155.。

人教版高三数学教案5篇

人教版高三数学教案5篇

人教版高三数学教案5篇通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。

使学生善于从现实生活中数学的发现问题,解决问题,数学是每个学生的必修课,好的教师应当做好对应的数学教案。

通过本节学习,学生应当达到对数学理解有所提高,人教版高三数学教案1一、教材分析1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第 3 节,高中数学《函数的单调性》说课稿教案模板是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。

通过对这一节课的学习,可以让学生加深对函数的本质认识。

也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;能力训练目标:培养学生严密的.逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点:形成增(减)函数的形式化定义。

难点。

形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,三、学法倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。

数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。

有关高三数学教学设计(精选5篇)

有关高三数学教学设计(精选5篇)

有关高三数学教学设计(精选5篇)有关高三数学教学设计(精选5篇)作为一名教师,时常需要准备好教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。

写教学设计需要注意哪些格式呢?下面是小编精心整理的有关高三数学教学设计(精选5篇),仅供参考,希望能够帮助到大家。

高三数学教学设计篇1教学目标:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程一、复习二、引入新课1.假言推理假言推理是以假言判断为前提的演绎推理。

假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。

三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。

这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。

可分为纯关系推理和混合关系推理。

纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

高三数学上册教案5篇

高三数学上册教案5篇

高三数学上册教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高三数学上册教案5篇本店铺整理的《高三数学上册教案5篇》希望能够帮助到大家。

最新高三的数学教案大全(9篇)

最新高三的数学教案大全(9篇)

最新高三的数学教案大全(9篇)最新高三的数学教案大全(9篇)高三数学课件怎么写的。

教学设计是老师对每一课时做的特定教学方式的规划,是老师对学生的教育非常看重的一个表现,不是只照着课本去念去学,它包含了老师的心血和希望在里面。

下面小编给大家带来关于最新高三的数学教案大全,希望会对大家的工作与学习有所帮助。

最新高三的数学教案大全精选篇1尊敬的各位专家,评委:上午好!根据新课改的理论标准,我将从教材分析,学情分析,教学目标分析,学法、教法分析,教学过程分析,以及板书设计这六个方面来谈谈我对教材的理解和教学的设计。

一、教材分析地位和作用:《______________________》是北师大版高中数学必修二的第______章“__________”的第________节内容。

本节是在学习了________________________________________之后编排的。

通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学________________________打下基础,所以_________________是本章的重要内容。

此外,《________________________》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。

二、学情分析1、学生已熟悉掌握______2、学生的认知规律,是由整体到局部,具体到抽象发展的。

3、学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力4、学生层次参差不齐,个体差异还比较明显三、教学目标分析根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:1、知识与技能:2、过程与方法:通过___学习,体会__的思想,培养学生提出问题,分析问题,解决问题的能力,提高交流表达能力,提高独立获取知识的能力。

3、情感态度与价值观:培养把握空间图形的能力,欣赏空间图形所反应的数学美(认识数学内容之间的内在联系,加强数形结合的思想,形成正确的数学观)。

高三数学学期教学设计5篇

高三数学学期教学设计5篇

高三数学学期教学设计5篇高三数学学期教学设计1一、指导思想依托20__届取得的辉煌成绩,实现啸中学校发展蓝图,高三数学组必须团结一致,群策群力抓好高三数学复习,备战20__高考,切实落实“关注差异,开发潜能,多元发展”的教学方针。

二、复习要求1.资源共享提升效率统一使用《优化方案》,合理运用书利华网站上的人教版高三复习课件,适当补充其它课件,实现资源共享,提高备课效率。

2.立足单元形成网络作好单元复习,这是一个将数学知识由“点——线——网”的过程,将分散的知识串成面、串成体,形成知识体系的网络化,将问题归类,进行知识迁移和联想、分解与组合,一题多变、一题多解,举一反三,触类旁通。

不仅重视单元内综合,更注重学科内的综合,关注在知识的交会点处设计问题。

3.注重方法培养能力模拟题要定时定量训练,把训练当考试,积累经验、锤炼心理。

选择题的训练立足基础,提高准确性,注重方法灵活性。

填空题的训练注重训练学生准确、严谨、全面、灵活运用知识的能力和基本运算能力,注重书写结果的规范性。

解答题重视审题过程,思维的发生、发展过程。

在问题的分析、思路发展过程中运用数学思想方法进行思维的导向,在思维过程中点明数学思想方法在解题思路发现过程中所起的重点作用。

4.注重学生卷面表达的训练。

高考要获得好分数,除了具有较高的数学功底外,还要避免出现失误失分。

一方面要通过试题训练使学生减少、避免马虎、失误丢分,还要强调学生的书面表达,训练学生答卷时做到字迹工整、格式规范、推证合理、详略适当,做到会的题目不丢分,不会做的题目也争取得部分步骤分。

5.做好试卷评析工作。

学生将常常面临模拟训练,教师的讲评试卷要分析题目考的哪些知识点、需要哪几种能力、体现哪些数学方法,使学生体会出题者意图。

讲评中还要不断转换条件,进行变式训练,达到举一反三,触类旁通的训练,不能只满足于就题论题,要注重探求解题规律,提高点评的质量和效益。

三、强化训练1.不依靠题海取胜,注重题目的质量和处理水平当训练的题目达到一定的数量后,决定复习效果的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。

普通高中高三数学教案5篇

普通高中高三数学教案5篇

普通高中高三数学教案5篇作为一名无私奉献的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。

那么教案应该怎么写才合适呢?以下是小编整理的普通高中高三数学教案,仅供参考,大家一起来看看吧。

普通高中高三数学教案1一、教学过程1.复习。

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=_3的反函数。

2.新课。

先让学生用几何画板画出y=_3的图象,学生纷纷动手,很快画出了函数的图象。

有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):教师在画出上述图象的学生中选定'生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=_3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

(学生展开讨论,但找不出原因。

)师:我们请生1再给大家演示一下,大家帮他找找原因。

(生1将他的制作过程重新重复了一次。

)生3:问题出在他选择的次序不对。

师:哪个次序?生3:作点B前,选择_A和_A3为B的坐标时,他先选择_A3,后选择_A,作出来的点的坐标为(_A3,_A),而不是(_A,_A3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按_A、_A3的次序选择,果然得到函数y=_3的图象。

)师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=_3的反函数y=的图象呢?(学生再次陷入思考,一会儿有学生举手。

)师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=_3上的点B(_,y)的横坐标_与纵坐标y交换,而y=_3的反函数也正好是将_与y交换。

师:完全正确。

下面我们进一步研究y=_3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?(多数学生回答可由y=_3的图象得到y=的图象,于是教师进一步追问。

)师:怎么由y=_3的图象得到y=的图象?生5:将y=_3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

新课标人教版高三数学第一轮复习全套教学案

新课标人教版高三数学第一轮复习全套教学案

新课标人教版高三数学第一轮复习全套教学案引言本教学案旨在帮助高三学生进行数学第一轮复,以应对新课标人教版高考数学考试。

以下是教学案的详细内容。

目标1. 复并巩固高三数学的核心知识点。

2. 提供高质量的练题和解析,以帮助学生熟悉考试形式和题型,提高解题能力。

3. 培养学生的数学思维和分析能力,以便他们能够在考试中灵活应用知识。

教学内容教学内容主要包括以下部分:1. 数系与代数- 实数与复数- 集合与命题- 数列与数列极限- 等差数列与等比数列2. 函数与方程- 函数与方程基本概念- 一次函数与二次函数- 指数与对数- 三角函数与三角方程3. 解析几何与向量- 平面与空间几何- 二次曲线与常平面- 直线与平面的位置关系- 向量与向量运算4. 概率与统计- 随机事件与概率- 离散型随机变量与连续型随机变量- 统计与抽样调查- 相关与回归分析教学方法为了最有效地进行数学复,我们将采用以下教学方法:1. 系统性研究:按照教学内容的顺序进行研究,逐步巩固知识点。

2. 理论与实践相结合:注重理论知识的讲解,并提供大量的练题和解析,以帮助学生巩固理论知识并提高解题能力。

3. 互动教学:鼓励学生积极参与课堂讨论和提问,激发学生的研究兴趣和数学思维。

4. 小组合作研究:安排学生进行小组合作研究,提倡彼此讨论和合作解题,培养学生的团队合作精神和交流能力。

教学评估为了评估学生的研究效果和掌握程度,我们将采用以下评估方法:1. 阶段性测试:安排定期的阶段性测试,检验学生对各个知识点的理解和掌握情况。

2. 作业批改:及时批改学生的作业,给予针对性的指导和建议。

3. 课堂互动评估:评估学生在课堂上的积极参与程度和表现。

4. 模拟考试:进行模拟考试,让学生体验真实考试环境,以便他们熟悉考试形式和提高应试能力。

结语通过本教学案的实施,相信学生们在第一轮数学复习中将取得良好的成绩。

希望学生们能够认真学习、勤于练习,并与老师和同学们积极合作,共同进步。

高三年级数学教案3篇(高三数学教案)

高三年级数学教案3篇(高三数学教案)

高三年级数学教案3篇(高三数学教案)下面是我分享的高三年级数学教案3篇(高三数学教案),欢迎参阅。

高三年级数学教案1一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

(2)能力目标:提高学生分析问题、解决问题的能力。

(3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。

(三)教学过程教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。

使学生的综合能力得到提高。

教学过程分如下几个环节:教学过程课堂引入1、定理推导2、证明定理3、总结定理4、归纳小结5、反馈练习6、课堂总结、布置作业具体教学过程如下:(1)课堂引入:正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?(2)定理的推导。

首先提出问题:RtΔABC中可建立哪些边角关系?目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:①引导学生从SinA、SinB的表达式中发现联系。

②继续引导学生观察特点,有A边A角,B边B角;③接着引导:能用C边C角表示吗?④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。

这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。

第二步证明定理:①用向量方法证明定理:学生不易想到,设计如下:问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破实践:师生共同完成锐角三角形中定理证明独立:学生独立完成在钝角三角形中的证明总结定理:师生共同对定理进行总结,再认识。

高三复习数学教案5篇

高三复习数学教案5篇

高三复习数学教案5篇作为一名无私奉献的老师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。

那么教案应该怎么写才合适呢?以下是小编整理的高三复习数学教案,仅供参考,大家一起来看看吧。

高三复习数学教案1教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一.基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.二.问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

一.小结:1.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。

利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.三.作业:P80闯关训练高三复习数学教案2排列教学目标(1)正确理解排列的意义。

能利用树形图写出简单问题的所有排列;(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

高三数学教案大全七篇

高三数学教案大全七篇

高三数学教案大全七篇高三数学教案大全七篇高三数学教案都有哪些?数学命题的正确性是无法借助可重复的实验、观测或测量来检验的,就像自然科学,比如物理、化学,其目的是研究自然现象。

而是可以通过严密的逻辑推理直接证明。

下面是小编为大家带来的高三数学教案大全七篇,希望大家能够喜欢!高三数学教案大全精选篇1教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

普通高中高三数学教案

普通高中高三数学教案

普通高中高三数学教案**课型:练习与讨论****时间:1课时****教学目标:**1. 复习高三数学的重点知识点;2. 提高学生的数学解题能力;3. 培养学生的分析和推理能力。

**教学重点:**1. 复习高三数学的重点知识点;2. 解题方法和策略的讨论。

**教学难点:**1. 运用所学知识解决复杂问题;2. 多种解题方法的比较与分析。

**教学内容:**1. 复习高三数学的重点知识点,包括函数、导数、极限等;2. 练习并讨论教材中相关的练习题,重点讲解解题方法和策略。

**教学过程:**1. 复习:老师通过简洁明了的讲解,快速复习本次课程涉及的数学知识点;2. 练习:学生进行课前准备的练习题,老师和同学一起进行讨论、答疑;3. 分享:学生分享解题方法,老师引导学生比较、分析不同解题方法的优缺点;4. 总结:老师进行总结和梳理,强化学生对知识点的理解。

**教学方法:**1. 讲授与讨论相结合;2. 学生互动,探究学习;3. 启发式教学方法;4. 组织学生积极参与,发挥个人潜力。

**教学评价与反思:**1. 通过课后作业评价学生对知识点的掌握程度;2. 思考教学方法的有效性,及时调整教学策略。

**作业布置:**完成课堂练习,并思考不同解题方法的优缺点,做到知识灵活运用。

**板书设计:**- 教学目标- 教学重点- 教学难点- 教学内容- 教学过程- 教学方法**展示资料:**1. 教学课件2. 相关课本练习题**注:此高三数学教案范本仅供参考,实际教学中应根据教学进度、学生特点等因素进行灵活调整。

**。

高三全册数学教案【可直接使用】.doc

高三全册数学教案【可直接使用】.doc

课题 §2.1数列的概念与简单表示法 课型新授课课时2备课时间教学目 标知识与技能了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n 项和与n a 的关系过程与方法 经历数列知识的感受及理解运用的过程。

情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

重点 根据数列的递推公式写出数列的前几项难点理解递推公式与通项公式的关系教学方法教学过程Ⅰ.课题导入[复习引入] 数列及有关定义 Ⅱ.讲授新课 数列的表示方法1、 通项公式法:如果数列{}n a 的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

2、 图象法3、 递推公式法知识都来源于实践,最后还要应用于生活用其来解决一些实际问题. 观察钢管堆放示意图,寻其规律,建立数学模型. 模型一:自上而下:第1层钢管数为4;即:1↔4=1+3 第2层钢管数为5;即:2↔5=2+3 第3层钢管数为6;即:3↔6=3+3 第4层钢管数为7;即:4↔7=4+3 第5层钢管数为8;即:5↔8=5+3 第6层钢管数为9;即:6↔9=6+3 第7层钢管数为10;即:7↔10=7+3若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。

让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。

即41=a ;114512+=+==a a ;115623+=+==a a 依此类推:11+=-n n a a (2≤n ≤7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。

递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 递推公式也是给出数列的一种方法。

高三数学教案范本(实用版)

高三数学教案范本(实用版)

高三数学教案范本(实用版)教师们为了提高教学质量,都会提前做好教学方案,然后帮助学生能多学一些知识。

下面是由编辑为大家整理的“高三数学教案范本(实用版)”,仅供参考,欢迎大家阅读本文。

高三数学教案范本(一)一、内容和内容解析本节课是xxx大版高中数学必修x中第x章第x节的内容。

主要是二元均值不等式。

它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。

就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。

二、教学目标和目标解析教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。

在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。

学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。

高三数学教案

高三数学教案

高三数学教案高三数学教案高三是学生们备战高考的关键一年,数学作为高考的一门必考科目,对于学生来说尤为重要。

为了帮助高三学生更好地掌握数学知识和应试技巧,下面我将为大家介绍一份高三数学教案。

第一部分:复习与巩固在高三的数学教学中,复习与巩固是非常重要的一环。

在这个阶段,教师可以根据学生的学习情况,安排一些复习与巩固的练习,以帮助学生回顾和巩固已学的知识点。

1. 预习课堂:在每一章节的开始,教师可以先进行预习课堂,引导学生通过观察问题、猜测规律等方式,主动探索新知识,激发学生的学习兴趣和主动性。

2. 梳理知识框架:在复习与巩固阶段,教师可以帮助学生梳理知识框架,将各个知识点之间的联系和依赖关系呈现出来,帮助学生形成系统的知识结构。

3. 强化训练:通过一些典型例题和习题,教师可以帮助学生巩固知识点,培养解题能力。

同时,可以设置一些拓展题,激发学生的思维,培养学生的创新能力。

第二部分:答疑与解惑在高三数学教学中,学生常常会遇到一些难以理解的知识点和难题。

因此,答疑与解惑环节也是非常重要的一部分。

1. 针对性答疑:教师可以根据学生的问题和困惑,有针对性地进行答疑解惑。

通过解答学生的问题,帮助他们理解和掌握知识点。

2. 错题分析:教师可以选取一些典型的错题,引导学生分析错题的原因,并给出正确的解题思路。

通过分析错题,帮助学生找到解题的关键和规律。

3. 解题技巧分享:教师可以分享一些解题技巧和方法,帮助学生更好地应对各种类型的数学题目。

同时,也可以鼓励学生互相交流,分享自己的解题经验和心得。

第三部分:应试技巧培养高考是学生们最终的目标,因此,在高三的数学教学中,应试技巧的培养也是非常重要的一环。

1. 高考真题训练:教师可以选取一些高考真题,进行训练和模拟考试。

通过解析真题,帮助学生熟悉高考题型和考试要求,提高应试能力。

2. 时间管理:教师可以指导学生合理安排时间,掌握解题的节奏。

通过训练和练习,帮助学生提高解题速度和应试效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 §2.1数列的概念与简单表示法 课型新授课课时2备课时间教学目 标知识与技能了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n 项和与n a 的关系过程与方法 经历数列知识的感受及理解运用的过程。

情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。

重点 根据数列的递推公式写出数列的前几项难点理解递推公式与通项公式的关系教学方法教学过程Ⅰ.课题导入[复习引入] 数列及有关定义 Ⅱ.讲授新课 数列的表示方法1、 通项公式法:如果数列{}n a 的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

2、 图象法3、 递推公式法知识都来源于实践,最后还要应用于生活用其来解决一些实际问题. 观察钢管堆放示意图,寻其规律,建立数学模型. 模型一:自上而下:第1层钢管数为4;即:1↔4=1+3 第2层钢管数为5;即:2↔5=2+3 第3层钢管数为6;即:3↔6=3+3 第4层钢管数为7;即:4↔7=4+3 第5层钢管数为8;即:5↔8=5+3 第6层钢管数为9;即:6↔9=6+3 第7层钢管数为10;即:7↔10=7+3若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。

让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。

即41=a ;114512+=+==a a ;115623+=+==a a依此类推:11+=-n n a a (2≤n ≤7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。

递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 递推公式也是给出数列的一种方法。

如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为:)83(,5,32121≤≤+===--n a a a a a n n n数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用 表示第一项,……,用表示第项,依次写出成为4、列表法.简记为.例3 设数列{}n a 满足11111(1).nn a a n a -=⎧⎪⎨=+>⎪⎩写出这个数列的前五项。

例4已知21=a ,n n a a 21=+ 写出前5项,并猜想n a .Ⅲ.课堂练习课本P36练习2[补充练习]1.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式 (1) 1a =0, 1+n a =n a +(2n -1) (n ∈N); (2) 1a =1, 1+n a =22+n na a (n ∈N);(3) 1a =3, 1+n a =3n a -2 (n ∈N).Ⅳ.课时小结本节课学习了以下内容:1.递推公式及其用法;2.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.Ⅴ.课后作业习题2。

1A 组的第4、6题 教学反思课题§2.3等差数列的前n 项和 课型 新授课 课时 2 备课时间教学目 标 知识与技能进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的最值;过程与方法经历公式应用的过程 情感态度与价值观 通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。

重点熟练掌握等差数列的求和公式 难点 灵活应用求和公式解决问题教学方法教学过程●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等差数列的前n 项和公式1:2)(1n n a a n S += 2.等差数列的前n 项和公式2:2)1(1d n n na S n -+= Ⅱ.讲授新课探究:——课本P51的探究活动 结论:一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?由2n S pn qn r =++,得11S a p q r ==++当2n ≥时1n n n a S S -=-=22()[(1)(1)]pn qn r p n q n r ++--+-+=2()pn p q -+1[2()][2(1)()]n n d a a pn p q p n p q -∴=-=-+---+=2p对等差数列的前n 项和公式2:2)1(1d n n na S n -+=可化成式子: n )2d a (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式 [范例讲解]等差数列前项和的最值问题课本P51的例4 解略课题 3.2一元二次不等式及其解法第1课时 课型新授课课时备课时间教学目 标知识与技能理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;过程与方法经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法情感态度与价值观激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

重点 从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。

难点理解二次函数、一元二次方程与一元二次不等式解集的关系教学方法 教学过程1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250x x -< (1)2.讲授新课1)一元二次不等式的定义象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250x x -<的解集怎样求不等式(1)的解集呢? 探究:(1)二次方程的根与二次函数的零点的关系:二次方程的根就是二次函数的零点。

(2)观察图象,获得解集画出二次函数25y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即250x x ->;当0<x<5时,函数图象位于x 轴下方,此时,y<0,即250x x -<;所以,不等式250x x -<的解集是{}|05x x <<,从而解决了本节开始时提出的问题。

3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:220,(0)0,(0)ax bx c a ax bx c a ++>>++<>或一般地,怎样确定一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集呢? 组织讨论,总结讨论结果:(l )抛物线 =y c bx ax ++2(a> 0)与 x 轴的相关位置,分为三种情况,这可以由一元二次方程 c bx ax ++2=0的判别式ac b 42-=∆三种取值情况(Δ> 0,Δ=0,Δ<0)来确定.因此,要分二种情况讨论 (2)a<0可以转化为a>0分Δ>O ,Δ=0,Δ<0三种情况,得到一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x x x <<∅∅[范例讲解]例2 (课本第87页)求不等式01442>+-x x 的解集. 解:因为210144,0212===+-=∆x x x x 的解是方程.教学过程1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系 2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+ 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +> 移项整理得:2971100x x +->显然 0>V ,方程2971100x x +-=有两个实数根,即1288.94,79.94x x ≈-≈。

所以不等式的解集为{}|88.94,79.94x x x <->或在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:22220y x x =-+若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x 辆摩托车,根据题意,我们得到222206000x x -+>移项整理,得211030000x x -+<因为1000=>V ,所以方程211030000x x -+=有两个实数根1250,60x x ==由二次函数的图象,得不等式的解为:50<x<60因为x 只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51—59辆之间时,这家工厂能够获得6000元以上的收益。

相关文档
最新文档