回归分析法(一元线性回归)
回归分析法计算公式
回归分析法计算公式
回归分析法是统计分析中很重要的一个分析方法,它可以有效地帮助我们从一组数据中提取信息,用于建立特定问题的模型。
本文旨在介绍回归分析法的计算公式,并介绍其应用。
一、回归分析法的计算公式
回归分析法的计算公式主要是求解一元线性回归模型的最小二
乘法(Least Squares)估计量。
一元线性回归模型的估计量可以表示为:
Y=bX+a
其中Y是被解释变量,X是解释变量,a和b是需要求解的参数。
其求解最小二乘估计量的计算公式分别是:
a=(∑(x-x)(y-y))/(∑(x-x)^2)
b=∑(y-y)/∑(x-x)^2
式中x和y分别代表X和Y的均值,∑表示所有数据集上的累加之和。
二、回归分析法的应用
回归分析法的应用十分广泛,由于它能够比较有效地建立模型,因此在多领域都得到了广泛的应用。
例如,经济学家常将回归分析法应用于研究经济变量之间的关系,而市场营销人员则将其用于研究和预测消费者对产品的反应等。
此外,社会科学研究者也经常会用回归分析法来研究社会现象。
三、结论
从上文可以看出,回归分析法是一种用于求解最小二乘估计量的统计分析方法,此外,它也在多领域得到广泛的应用。
因此,为了熟练掌握回归分析法,需要不断练习使用,以扩大其应用领域,发挥其价值。
一元线性回归分析
C=α+βy + µ
其中, µ是随机误差项。 是随机误差项。 其中, 是随机误差项 根据该方程, 的值, 根据该方程,每给定一个收入 y 的值,消 并不是唯一确定的, 费C并不是唯一确定的,而是有许多值, 并不是唯一确定的 而是有许多值, 他们的概率分布与µ的概率分布相同 的概率分布相同。 他们的概率分布与 的概率分布相同。 线性回归模型的特征: 线性回归模型的特征: 有随机误差项! 有随机误差项!
21
说
明
一、严格地说,只有通过了线性关系的检验,才 严格地说,只有通过了线性关系的检验, 能进行回归参数显著性的检验。 能进行回归参数显著性的检验。 有些教科书在介绍回归参数的检验时没有考虑线 性关系的检验,这是不正确的。 性关系的检验,这是不正确的。因为当变量之间 的关系没有通过线性检验时, 的关系没有通过线性检验时,进行回归参数显著 性的检验是没有意义的。 性的检验是没有意义的。 在一元线性回归分析中, 二、在一元线性回归分析中,即只有一个解释变 量时,这两种检验是统一的。 量时,这两种检验是统一的。但在多元回归分析 这两种检验的意义是不同的。 中,这两种检验的意义是不同的。 为了说明该问题, 为了说明该问题,我们在本章中依然把两种检验 分开论述。 分开论述。
13
为了达到上述目的, 为了达到上述目的,我们直观上会采 用以下准则: 用以下准则: 选择这样的SRF,使得: 选择这样的 ,使得:
残差和∑ ε i = ∑ ( yi − yi )尽可能小! ˆ
但这个直观上的准则是否是一个很好 的准则呢?我们通过以下图示说明: 的准则呢?我们通过以下图示说明:
14
12
ˆx i + ε i yi = α + β ˆ ˆ 即:y i = y i + ε i ˆ ∴ ε i = yi − yi
回归分析法
1
§5-1 一元线性回归
一、什么叫回归分析
(一)两种不同类型的变量关系、函数与相关
简单的说,回归分析就是一种处理变量与变量之间关系的 数学方法。 例:自由落体运动中,物体下落的距离S与所需时间t之间,有 如下关系
S
1 2 gt 2
(0 t T )
2
变量S的值随t而定,这就是说,如果t给了固定值, 那么S的值就完全确定了 这种关系就是所谓的函数关系或确定性关系
(二)相关系数检验法
由U ( yi y ) U [(a bxi ) (a b x )]2
2 i=1 N i=1 N ^ _ N _
b ( xi x) 2
2 i=1
_
代入 Lyy [( yi yi ) ( yi y )]2整理后可得
i=1
23
相关系数临界值表 n-2 0.05
1 2 3 4 5 6 7 8 9 10
0.01
1.000 0.990 0.959 0.917 0.874 0.834 0.798 0.765 0.735 0.708
n-2 0.05
11 12 13 14 15 16 17 18 19 20
0.01
0.684 0.661 0.641 0.623 0.606 0.590 0.575 0.561 0.549 0.537
6
设y* a bx是平面上的一条任意直线,(xi , yi )(i 1,2, ..., N )是变量x,y的一组观测数据。 那么,对于每一个xi,在直线y* a bx上确可以确定一 个yi a bxi的值,yi 与xi处实际观测值yi的差: yi yi yi (a bx) 就刻画了yi与直线偏离度
一元线性回归分析
回归分析(一元)一、实验目的掌握回归分析的步骤及操作。
二、相关理论知识1.回归分析的步骤: 首先,进行相关分析。
具体应先从定性角度分析变量之间有无相关关系;若存在相关关系,在借助散点图,相关系数等方式,进一步确定相关关系的类型及相关程度,为建立回归模型提供依据。
接下来,以相关分析为基础,进行回归分析。
2.流程框架3.一元线性回归模型的基本形式为:i i i X Y μββ++=10 n i ,,2,1 =4.参数估计方法:最小二乘法最小二乘法通过使残差项的平方和最小来估计参数0β和1β。
即∑2i e 最小。
求出0β、1β的估计值为:21)())((i i i i i i X X Y Y X X -∑--∑=∧β,i i X Y 10∧∧-=ββ三、实验内容及要求1、实验内容:(1)散点图、相关系数; (2)参数估计及结果解读; 2、实验要求:掌握相关分析及回归分析的操作及结果解读四、操作指导(一)相关分析 1.散点图绘制利用我国1978年——2001年国内生产总值和最终消费支出的数据。
经济学的理论可以证明,国内生产总值和最终消费支出之间存在关联。
在此基础上,绘制散点图。
第一步,同时选中x ,y 两个序列,点击右键,选择open 级联菜单as group 。
(注意:在选中两个序列时,先选择哪个,打开组后哪个就在前面,作图时默认它就是横轴的变量)第二步,在group窗口,点击view下拉菜单,选择graph——scatter,点确定。
见图1图1表明两者具有很强的线性相关关系。
2.简单相关系数的计算在group窗口选择view下拉菜单中的covariance analysis,将correlation选中,同时将covariance复选框中的√去掉。
然后确定,即可得x和y的简单相关系数矩阵,见图2:图2结果显示x和y之间的简单相关系数为0.999373,两者之间存在高度正线性相关关系。
可建立一元线性回归模型。
一元回归分析
一元回归分析
一元回归分析是统计学中一个重要的研究方法,是探讨一个或多个特征对一个变量的影响程度的有效工具。
即对一个变量(称为因变量)的变化,由另一变量(称为自变量)决定的这种关系强度的大小,分析方法就是一元回归分析。
回归的最基本形式是一元线性回归,也就是说,自变量和因变量之间的关系是一条直线。
一元回归分析中的最重要的因素是多元线性回归模型,也被称为最小二乘法。
其核心思想是寻找一条能够最好地拟合给定数据的直线,以评估每一条直线的拟合错误率为目标函数,通过最小二乘法求解最优化模型,来获得其参数估计值。
最后,一元回归分析也有诊断检验来测试模型的有效性。
诊断检验包括残差检验、正态性检验、相关性检验和自相关性检验等,这些检验可以帮助检查模型是否满足预先设定的假设,因此可以确定模型的可靠性。
从上面可以看出,一元回归分析是一种重要的统计学研究方法,它不仅可以用来研究一个或多个特征对因变量的影响程度,而且还可以通过诊断检验来测试模型的有效性。
因此,它应用广泛,可以为不同领域的研究者提供有价值的结果,如社会、医学、经济和心理等。
实际的应用中,除了研究因变量的影响,还可以使用回归分析来预测未来的值,同时可以采用回归模型来识别与所研究的变量关联的模式和关系。
此外,一般会使用协方差分析识别两个变量之间的关系,这可以使用线性回归模型来完成,即计算变量之间的协方差和相关系
数来评估两个变量之间的强弱程度。
总之,一元回归分析是一种有效的统计分析工具,其主要用途是研究一个或多个特征对一个变量的影响程度,进而识别出两个变量之间的关系,并利用诊断检验来测试模型的有效性,它的应用非常广泛,可用于社会、医学、经济和心理等许多领域。
线性回归分析
2
效果是好的, 在 水平下, 已解释方差(Y的变化中已经解 释的部分)明显大于未解释方差(Y的变化中尚未解释的部 分).
8. F与 R2的关系
F 统计量与R2的统计量的关系, 可以从下式的推演中看到:
F
ˆ y / y e / y
2
2
2 2
n k n k R2 k 1 k 1 1 R2
Y 1 2 X u
ˆ ˆ 其中 1 , 2 为1, 2 的估计值, 则 Y 的计算值Ŷ, 可以
用下式表达:
ˆ ˆ ˆ Y 1 2 X
ˆ ˆ 所要求出待估参数 1 , 2, 要使 Y 与其计算值Ŷ之间 的“误差平方和”最小. 即: 使得
ˆ ˆ ˆ Q (Y Y ) e i2 (Yi 1 2 X i ) 2
2. 普通最小二乘法估计式
在模型中, 代入样本观测值之后, 可得
Y1 1 X 12 X 1k u1 1 2 k Y 1 X X u n n2 nk n
有可能不成立, 以后讨论不成立时如何处理). (5) ui 服从 N(0, 2u )分布; (6) E(Xiuj)=0, 对Xi 的性质有两种解释: a. Xi 视为随机变量, 但与uj无关, 所以(6)成立. b. Xi 视为确定型变量, 所以(6)也成立.
3. 普通最小二乘法 (OLS)
设线性回归模型
2. 高斯基本假设
对于线性回归模型
Yi 1 2 X i ui i =1,2, …,n, n为样本容量.
高斯基本假设如下: (1) ui 为随机变量 ( 本假设成立, 因为我们研究就是不 确定关系). (2) E(ui) =0, 随机干扰项的期望值等于零(本假设成立, 如果其均值不是零, 可以把它并入到 1 中). (3) Var(ui) =2u , 随机干扰项的方差等于常数(本假设 有可能不成立, 以后讨论不成立时如何处理). (4) E(uiuj)=0 (ij) 随机干扰项协方差等于零(本假设
一元线性回归分析
一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
一元线性回归分析PPT课件
拟合程度评价
拟合程度是指样本观测值聚集在样本回归线周围的紧
密程度. ( Y t Y ) ( Y ˆ t Y ) ( Y t Y ˆ t)
n
n
n
(Y t Y )2 (Y ˆt Y )2 (Y t Y ˆ)2
t 1
t 1
t 1
n
(Yt Y)2 :总离差平方和,记为SST;
t1
n
第8页/共40页
例
食品序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
求和
脂肪Xt 4 6 6 8 19 11 12 12 26 21 11 16 14 9 9 5
热量Yt 110 120 120 164 430 192 175 236 429 318 249 281 160 147 210 120
第1页/共40页
回归分析的分类
一个自变量
一元回归
回归分析
两个及以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
第2页/共40页
一元线性回归模型
(一)总体回归函数
Yt=0+1Xt+ut
ut是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
(ˆ1t(n2)Sˆ1)
2
第15页/共40页
回归分析的Excel实现
“工具”->“数据分析”->“回归”
第16页/共40页
ˆ 0
S ˆ 0
ˆ 1
S ˆ 1
(ˆ0t(n2)Sˆ0)
2
(ˆ1t(n2)Sˆ1)
2
第17页/共40页
一元线性回归分析
(2) Cov( ut us ) 0, ( t , s 1,2,3,
, n; t s )
Y
由上知: E (Yt ) 0 1 X t
Yt
E(Yt )= 0+1 X t
。 ut
。 。 。
。 X
参数0和1的点估计
X1 Y1 X 2 …… Y2 …… Xt Yt
…… ……
或控制另一个特定变量的取值,并给出这种预测或控制的 精确程度;
回归分析的分类
回归分析
一个自变量
两个及以上自变量
一元回归
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
一元线性回归模型
(一)总体回归函数 Yt= 0+ 1 X t+ut ut 是随机误差项,又称随机干扰项,它是一个特殊的 随机变量,反映未列入方程式的其他各种因素对Y的 影响。
n n ˆ ˆ n 1 X t Yt 0 t 1 t 1 n n n 2 ˆ ˆ X X 0 t 1 t X tYt t 1 t 1 t 1
ˆ 1
n X tYt X t Yt
t 1 t 1 t 1
Xn Yn
最小二乘法: 通过使得残差平方和 (各样本点与拟合直 线的纵向距离的平方 和)为最小来估计回 归系数的一种方法。
ˆ ˆX ˆ Y t 0 1 t
残差平方和: ˆ ˆ X )2 ˆ )2 (Y Q et2 (Yt Y t 0 1 t t
(二)样本回归函数 ˆ ˆ X (t 1,2,3, , n) ˆ Y t 0 1 t ˆ 称为残差,与总体的误差项u 对应,n为样 e Y Y
t t t t
一元线性回归
一元线性回归
一、回归分析的基本思想 二、一元线性回归的数学模型 三、可化为一元线性回归的问题 四、小结
一、回归分析的基本思想
确定性关系 变量之间的关系 相 关 关 系
S πr 2
身高和体重
确定性关系 相关关系
相关关系的特征是:变量之间的关系很难用一 种精确的方法表示出来.
确定性关系和相关关系的联系
n
xi x
2 ( x x ) j j 1 n
var( y ) i
2
2
2 ( x x ) j j 1 n
1 xi x ˆ 0 y 1 x ( x ) yi n lxx
1 xi x ˆ Var ( 0 ) x lxx n
由于存在测量误差等原因,确定性关系在实际 问题中往往通过相关关系表示出来;另一方面,当对 事物内部规律了解得更加深刻时,相关关系也有可 能转化为确定性关系. 回归分析——处理变量之间的相关关系的一 种数学方法,它是最常用的数理统计方法.
回 归 分 析
线性回归分析
非线性回归分析
一元线性回归分析
多元线性回归分析 β1 = Nhomakorabea(x
i=1 n
n
i
x )( yi y ) ,
2 ( x x ) i i=1
β0 = y β1 x,
1 n 1 n 其中 x xi , y yi . n i 1 n i 1
记
l xx = ( xi x )2 ,
i=1
n
l yy = ( yi y )2 ,
2 x x x 2 2 i ˆ ˆ ˆ cov(y , 1 ) x cov(1 , 1 ) x nlxx l xx l xx
线性回归分析
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy
❖
两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。
一元线性回归分析和多元线性回归分析
一元线性回归分析和多元线性回归分析一元线性回归分析1.简单介绍当只有一个自变量时,称为一元回归分析(研究因变量y 和自变量x 之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量y 和自变量1x ,2x ,…,n x 之间的相关关系)。
如果回归分析所得到的回归方程关于未知参数是线性的,则称为线性回归分析;否则,称为非线性回归分析。
在实际预测中,某些非线性关系也可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、应用最广的方法。
这里讨论线性回归分析法。
2.回归分析法的基本步骤回归分析法的基本步骤如下: (1) 搜集数据。
根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。
由于回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确性都直接影响到回归分析的结果。
(2) 设定回归方程。
以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表现出来的规律,选择适当的数学模型,设定回归方程。
设定回归方程是回归分析法的关键,选择最优模型进行回归方程的设定是运用回归分析法进行预测的基础。
(3) 确定回归系数。
将已知数据代入设定的回归方程,并用最小二乘法原则计算出回归系数,确定回归方程。
这一步的工作量较大。
(4) 进行相关性检验。
相关性检验是指对已确定的回归方程能够代表自变量与因变量之间相关关系的可靠性进行检验。
一般有R 检验、t 检验和F 检验三种方法。
(5) 进行预测,并确定置信区间。
通过相关性检验后,我们就可以利用已确定的回归方程进行预测。
因为回归方程本质上是对实际数据的一种近似描述,所以在进行单点预测的同时,我们也需要给出该单点预测值的置信区间,使预测结果更加完善。
3. 一元线性回归分析的数学模型用一元线性回归方程来描述i x 和i y 之间的关系,即i i i x a a y ∆++=10 (i =1,2,…,n )(2-1)式中,i x 和i y 分别是自变量x 和因变量y 的第i 观测值,0a 和1a 是回归系数,n 是观测点的个数,i ∆为对应于y 的第i 观测值i y 的随机误差。
一元线性回归公式
一元线性回归公式一元线性回归(SimpleLinearRegression)是一种简单的回归分析方法,用于研究两个定量变量之间的关系。
一元线性回归是指一个定量变量Y和一个自变量X之间的线性回归模型,它有一个参数β,用来表示X对Y的影响程度。
一元线性回归的公式如下:Y =0 +1X其中,β0表示Y的偏移量或均值,是X=0时Y的值;β1表示X对Y的影响程度,是X的系数。
一元线性回归的原理是通过拟合一条线来求解X和Y的关系,并计算出X对Y的影响程度。
通常,我们需要用到两个原则:最小二乘法(Least Squares)和最大似然估计(Maximum Likelihood)。
最小二乘法是一种优化方法,其目标是最小化残差的平方和。
残差是Y实际值与拟合模型计算值的差,残差的平方和就是拟合的均方差(Mean Squared Error,MSE)。
因此,最小二乘法的目标是最小化拟合均方差。
最大似然估计是一种概率模型估计方法,其目标是最大化模型似然函数。
似然函数是模型参数取某一特定值时,样本出现的概率,因此,最大似然估计的目标是最大化似然函数。
一元线性回归公式的应用非常广泛,可用于检测两个变量之间的因果关系,或者对比不同变量对另一变量的影响程度,或者预测变量值。
比如,在多重回归中,可以用一元线性回归来研究某一变量的影响程度;在财务分析中,可以用它来预测股票价格;在销售分析中,可以用它来预测某一产品的销售量;在投资分析中,可以利用它来估计投资回报率;在决策分析中,可以利用它来估计某一政策的收益;以及在其他应用中也可以利用它来预测变量值。
此外,一元线性回归还可以用于检验变量之间的关系,比如,用相关分析来检验两个变量之间的关系或使用显著性检验来检验X对Y 的影响是否有效。
对于一元线性回归而言,可以通过以下步骤来建模:首先,分析变量间的关系,看看X是否和Y有线性关系;其次,计算拟合系数β1和β0;最后,检验拟合模型的精度。
一元线性回归分析
第二节 一元线性回归分析回归是分析变量之间关系类型的方法,按照变量之间的关系,回归分析分为:线性回归分析和非线性回归分析。
本节研究的是线性回归,即如何通过统计模型反映两个变量之间的线性依存关系。
回归分析的主要内容:1. 从样本数据出发,确定变量之间的数学关系式;2. 估计回归模型参数;3. 对确定的关系式进行各种统计检验,并从影响某一特定变量的诸多变量中找出影响显著的变量。
一、一元线性回归模型:一元线性模型是指两个变量x 、y 之间的直线因果关系。
(一)理论回归模型:εββ++=x y 10理论回归模型中的参数是未知的,但是在观察中我们通常用样本观察值),(i i y x 估计参数值10,ββ,通常用10,b b 分别表示10,ββ的估计值,即称回归估计模型:x b b y10ˆ+= 二、模型参数估计:用最小二乘法估计10,b b :⎪⎩⎪⎨⎧-=--=∑∑∑∑∑xb y b x x n y x xy n b 10221)( 三.回归系数的含义(2)回归方程中的两个回归系数,其中b0为回归直线的启动值,在相关图上变现为x=0时,纵轴上的一个点,称为y 截距;b1是回归直线的斜率,它是自变量(x )每变动一个单位量时,因变量(y )的平均变化量。
(3)回归系数b1的取值有正负号。
如果b1为正值,则表示两个变量为正相关关系,如果b1为负值,则表示两个变量为负相关关系。
四.回归方程的评价与检验:当我们得到一个实际问题的经验回归方程后,还不能马上就进行分析与预测等应用,在应用之前还需要运用统计方法对回归方程进行评价与检验。
进行评价与检验主要是基于以下理由:第一,在利用样本数据估计回归模型时,首先是假设变量y 与x 之间存在着线性关系,但这种假设是否存在需要进行检验;第二,估计的回归方程是否真正描述了变量y 与x 之间的统计规律性,y 的变化是否通过模型中的解释变量去解释需要进行检验等。
一般进行检验的内容有:1.经济意义的检验:利用相关的经济学原理及我们所积累的丰富的经验,对所估计的回归方程的回归系数进行分析与判断,看其能否得到合理的解释。
一元线性回归的基本步骤
一元线性回归的基本步骤一元线性回归分析的基本步骤如下:•1、散点图判断变量关系(简单线性);2、求相关系数及线性验证;3、求回归系数,建立回归方程;4、回归方程检验;5、参数的区间估计;6、预测;•••请点击输入图片描述•一、什么是回归分析法“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。
此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。
清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。
只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。
因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。
进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
二、回归分析的目的回归分析的目的大致可分为两种:第一,“预测”。
预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。
y=a0+b1x1+b2x2+…+bkxk+误差(方程A)把方程A叫做(多元)回归方程或者(多元)回归模型。
a0是y截距,b1,b2,…,bk是回归系数。
当k=l时,只有1个说明变量,叫做一元回归方程。
根据最小平方法求解最小误差平方和,非求出y截距和回归系数。
若求解回归方程.分别代入x1,x2,…xk的数值,预测y的值。
第二,“因子分析”。
因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。
希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I等知识。
根据最小平方法,使用Excel求解y=a+bx中的a和b。
简单线性相关(一元线性回归分析)
第十三讲简单线性相关(一元线性回归分析)对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。
回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。
如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。
一、一元线性回归模型及其对变量的要求(一)一元线性回归模型1、一元线性回归模型示例两个变量之间的真实关系一般可以用以下方程来表示:Y=A+BX+方程中的 A 、B 是待定的常数,称为模型系数,是残差,是以X预测Y 产生的误差。
两个变量之间拟合的直线是:y a bxy 是y的拟合值或预测值,它是在X 条件下 Y 条件均值的估计a 、b 是回归直线的系数,是总体真实直线距,当自变量的值为0 时,因变量的值。
A、B 的估计值, a 即 constant 是截b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。
可以对回归方程进行标准化,得到标准回归方程:y x为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位( Z XjXj),因变量 Y 的标准差的平均变化。
S j由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y 的重要性。
(二)对变量的要求:回归分析的假定条件回归分析对变量的要求是:自变量可以是随机变量,也可以是非随机变量。
自变量 X 值的测量可以认为是没有误差的,或者说误差可以忽略不计。
回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。
(三)数据要求模型中要求一个因变量,一个或多个自变量(一元时为 1 个自变量)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析法摘要:略。
关键词:回归分析、回归模型、相关性检验、置信区间。
回归分析的起源:回归分析起源.doc回归分析定义:利用数据统计原理,对大量统计数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程(函数表达式),并加以外推,用于预测今后的因变量的变化的分析方法。
分类:1.根据因变量和自变量的个数来分类:一元回归分析;多元回归分析;2. 根据因变量和自变量的函数表达式来分类:线性回归分析;非线性回归分析;几点说明:1.通常情况下,线性回归分析是回归分析法中最基本的方法,当遇到非线性回归分析时,可以借助数学手段将其化为线性回归;因此,主要研究线性回归问题,一点线性回归问题得到解决,非线性回归也就迎刃而解了,例如,取对数使得乘法变成加法等;当然,有些非线性回归也可以直接进行,如多项式回归等;2.在社会经济现象中,很难确定因变量和自变量之间的关系,它们大多是随机性的,只有通过大量统计观察才能找出其中的规律。
随机分析是利用统计学原理来描述随机变量相关关系的一种方法;3.由回归分析法的定义知道,回归分析可以简单的理解为信息分析与预测。
信息即统计数据,分析即对信息进行数学处理,预测就是加以外推,也就是适当扩大已有自变量取值范围,并承认该回归方程在该扩大的定义域内成立,然后就可以在该定义域上取值进行“未来预测”。
当然,还可以对回归方程进行有效控制;4.相关关系可以分为确定关系和不确定关系。
但是不论是确定关系或者不确定关系,只要有相关关系,都可以选择一适当的数学关系式,用以说明一个或几个变量变动时,另一变量或几个变量平均变动的情况。
回归分析主要解决的问题: 回归分析主要解决方面的问题;1. 确定变量之间是否存在相关关系,若存在,则找出数学表达式;2. 根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
回归模型:回归分析步骤:1. 根据自变量与因变量的现有数据以及关系,初步设定回归方程;2. 求出合理的回归系数;3. 进行相关性检验,确定相关系数;4. 在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间; 回归分析的有效性和注意事项:有效性:用回归分析法进行预测首先要对各个自变量做出预测。
若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用;注意事项:为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件正相关负相关线性相关非线性相关正相关负相关完全相关不相关相关关系线性回归非线性回归一元回归线性回归非线性回归多元回归回归模型从定量方面计算或改进定性判断。
回归分析中的几个常用概念:实际值:实际观测到的研究对象特征数据值;理论值:根据实际值我们可以得到一条倾向线,用数学方法拟合这条曲线,可以得到数学模型,根据这个数学模型计算出来的、与实际值相对应的值,称为理论值;预测值:实际上也是根据数学模型计算出来的理论值,但它是与未来对应的理论值。
表示符号:实际值,用i y 表示;理论值,用ˆi y表示;预测值,用0y 表示。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Unary Linear Regression++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++一元线性回归,就是只涉及一个自变量的回归;自变量和因变量之间的关系是线性关系的回归;因变量与自变量之间的关系用一条线性方程来表示的回归。
方法步骤: 1. 确定回归模型:由于我们研究的是一元线性回归,因此其回归模型可表示为:01y x ββε=++; 其中,y 是因变量;x 是自变量;ε是误差项;0β和1β称为模型参数(回归系数)。
2. 求出回归系数:这里的回归系数的求解,就要用一定的方法,使得该系数应用于该方程是“合理的”。
最常用的一种方法就是最小二乘估计法。
最小二乘法是测量工作和科学实验中最常用的一种数据处理方法,其基本原理是,根据实验观测得到的自变量x 和因变量y 之间的一组对应关系,找出一个给定类型的函数()y f x =,使得它所取的值12(),(),f x f x ……,()n f x 与观测值 12,,y y …,n y 在某种尺度下最接近,即在各点处的偏差的平方和达到最小,即220111ˆˆˆ()()nnii ii i i yyyx ββ==-=--=∑∑最小。
这种方法求的的0ˆβ和1ˆβ将使得拟合直线01ˆˆy x ββ=+中的y 和x 之间的关系与实际数据的误差比其他任何直线都小。
根据最小二乘法的要求,可以推导.doc 得到最小二乘法的计算公式:1111221101ˆˆˆnn n i i i i i i i n n i i i i n x y x y n x x y xβββ=====⎧⎛⎫⎛⎫-⎪⎪ ⎪⎝⎭⎝⎭⎪=⎪⎨⎛⎫- ⎪⎪⎝⎭⎪=-⎪⎩∑∑∑∑∑ 其中,1111,nniii i x x y y n n ====∑∑;相关性检验:对于若干组具体数据(,)i i x y 都可算出回归系数01ˆˆ,ββ,从而得到回归方程。
至于y 与x 之间是否真有如回归模型所描述的关系,或者说用所得的回归模型去拟合实际数据是否有足够好的近似,并没有得到判明。
因此,必须对回归模型描述实际数据的近似程度,也即对所得的回归模型的可信程度进行检验,称为相关性检验。
相关系数是衡量一组测量数据,i i x y 线性相关程度的参量,其定义为:))((2222y y x x y x xy r ---=,或者22221111[][]i i i innnni i i i i i i i n x y x y r n x x n y y ====-=--∑∑∑∑∑∑∑r 值在0<|r |≤1中。
|r |越接近于1,,x y 之间线性好;r 为正,直线斜率为正,称为正相关;r 为负,直线斜率为负,称为负相关。
|r |接近于0,则测量数据点分散或,i i x y 之间为非线性。
不论测量数据好坏都能求出01ˆˆββ和,所以我们必须有一种判断测量数据好坏的方法,用来判断什么样的测量数据不宜拟合,判断的方法是|r |<0r 时,测量数据是非线性的.0r 称为相关系数的起码值,与测量次数n 有关,如下表:相关系数起码值0rn0rn0rnr3 1.000 9 0.798 15 0.6414 0.990 10 0.765 16 0.623 5 0.959 11 0.735 17 0.606 6 0.917 12 0.708 18 0.590 7 0.874 13 0.684 19 0.575 8 0.834 14 0.661 20 0.561在进行一元线性回归之前应先求出r 值,再与0r 比较,若|r |> 0r ,则x y 和具有线性关系,可求回归直线;否则反之。
置信区间的确定:当确定相关性后,就可以对置信区间.doc 进行确定,就可以结合实际情况,确定事物未来的状况了。
回归分析的最主要的应用就在于“预测”,而预测是不是准确的,就得有一个衡量的工具。
它就是置信区间。
或者从另外一方面来说,回归方程是由数理统计得出的,它反映的是实际数据的统计规律,所以,根据回归方程所得的预测值0y 只是对应于0x 的单点预测估计值,预测值应该有一个置信区间。
这样来看,计算置信区间就是很有必要的。
置信区间:221ˆ()2nii i yyS n =-=-∑,其中2S 是2σ的无偏估计量.doc ,2S 称为剩余方差,S 称为剩余标准差。
[注:该表达式的自由度为2n -是因为有2个限制变量i i x y 和]故对于给定的0x ,y 值的概率为0.95的置信区间是:00( 1.96, 1.96)y S y S -+。
点击参看置信区间的确定.doc 内容。
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Example++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++实验数据如下表: 城镇居民家庭人均可支配收入 城市人均住宅面积城镇居民家庭人均可支配收入 城市人均住宅面积343.4 6.7 4838.9 17.0 477.6 7.2 5160.3 17.8 739.1 10.0 5425.1 18.7 1373.9 13.5 5854.0 19.4 1510.2 13.7 6280.0 20.3 1700.6 14.2 6859.6 20.8 2026.6 14.8 7702.8 22.8 2577.4 15.2 8472.2 23.7 3496.2 15.7 9421.6 25.0 4283.0 16.310493.026.1步骤一:先画出散点图,进行观察: 程序如下: >> clf>> x=[343.4 477.6 739.1 1373.9 1510.2 1700.6 2026.6 2577.4 3496.2 4283.0 4838.9 5160.3 5425.1 5854.0 6280.0 6859.6 7702.8 8472.2 9421.6 0493.0];y=[6.7 7.2 10.0 13.5 13.7 14.2 14.8 15.2 15.7 16.3 17.0 17.8 18.7 19.4 20.3 20.8 22.8 23.7 25.0 26.1]; plot(x,y ,'x')>> xlabel('城镇居民家庭人均可支配收入') ylabel('城市人均住宅面积') 在MATALB 中的运行结果:可以看到,除了个别点除外,基本上所有的点都分布在一条直线的附近。
而且自变量只有一个,因此可以假设其回归模型为:01y x ββε=++;步骤二:求出回归系数,过程根据最小而乘法的公式计算;计算公式为:1111221101ˆˆˆnn n i i i i i i i n n i i i i n x y x y n x x y xβββ=====⎧⎛⎫⎛⎫-⎪⎪ ⎪⎝⎭⎝⎭⎪=⎪⎨⎛⎫- ⎪⎪⎝⎭⎪=-⎪⎩∑∑∑∑∑其中,1111,nniii i x x y y n n ====∑∑;编程:>> [n1,n2]=size(x); lxx=0; lxy=0 for k=1:n2lxx=lxx+(x(k)-mean(x))^2lxy=lxy+(x(k)-mean(x))*(y(k)-mean(y)) end b=lxy/lxxa=mean(y)-b*mean(x) 在MATLAB 中的运行结果:求得1ˆβ=0.0017 0ˆβ =9.4866, 故:y =9.4866+0.0017x 为所求。