线性代数第二章矩阵及其运算

合集下载

线性代数-矩阵及其运算习题

线性代数-矩阵及其运算习题


D−1 = X 11
X 21
n阶矩阵(i, j = 1,2),
X 12 ,其中 X ij 均为 X 22
D

D−1
=
A C
0 ⋅ X 11 B X 21
X 12 X 22
=
A X 11
A X 12
C X 11 + B X 21 C X 12 + B X 22
= E 0 (E是n阶单位阵) 0 E
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
一、矩阵的运算
例1 计算
n − 1 − 1
n −1
n n−1
n n
− 1 2 n
−1 n
−1
−1
−1
n

1
n
n
n n n×n

n − 1 − 1 − 1 2
n −1
n n−1

n 1
n n
n
+ B,证明A可逆 ,并求其逆 .
三、(6分) 设n阶实方阵A ≠ O,且 A∗ = AT ,证明A 可逆. 四、(8分)解下列矩阵方程.

X = A−1 B X = BA−1 X = A−1C B−1
三、矩阵的分块运算
例5 设A, B都是n阶可逆矩阵,证明D = A 0 C B
必为可逆矩阵 , 并求D的逆矩阵 .
证 因为det D = det A ⋅ det B ≠ 0( A, B均可逆,
det A ≠ 0,det B ≠ 0),所以D为可逆矩阵.
其中k是正整数. Ak Al = Ak + l , ( Ak )l = Akl ,

线性代数 矩阵及其运算

线性代数 矩阵及其运算

A22 ...
... ...
An 2 ...
A1n A2n ... Ann
称矩阵A的伴随矩阵,记为A*
精选版课件ppt
27
伴 随 矩 阵 有 如 下 重 要 性 质 : AA*A*A(detA)E
矩阵运算举例
例 例 1 8 设 A123T, B11 21 3, CAB ,
求 Cn
精选版课件ppt
例4
如:A 11
11
B
1 1
11
AB O
BA
2 2
22
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
精选版课件ppt
18
例5 设
A1 1
2 1
1 1,
求AB与BA
1 2 B1 1
2 3

3 0 3
1 3 AB2 6
BA0 3 0 1 7 1
定理2.1 若矩阵A的第i行是零行,则乘积 AB的第i行
a..i.1
... ...
a..is.n......
... bnjs
... ...
cij
精选版课件ppt
14
例2 计算
2 1
1 8 10
1 3
4 01 3
2 4
051 9
2 5 22 15
精选版课件ppt
15
例3. 非齐次线性方程组的矩阵表示
a11x1 a12x2 a1nxn b1
a21x1
关于矩阵乘法的注意事项: (1)矩阵 A 与矩阵 B 做乘法必须是左矩阵的列数与右
矩阵的行数相等; (2)矩阵的乘法中,必须注意矩阵相乘的顺序,AB是
A左乘B的乘积,BA是A右乘B的乘积;

线性代数第二章矩阵及其运算2-3PPT课件

线性代数第二章矩阵及其运算2-3PPT课件
例如,设实数k=2,矩阵A=[1 2; 3 4],则kA=[2 4; 6 8]。
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

第二章 矩阵及其运算2.1 目的要求1.理解矩阵的概念;2.了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质; 3.掌握矩阵的线性运算, 乘法, 转置及其运算规则;4.理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆; 5.了解分块矩阵的概念, 了解分块矩阵的运算法则.2.2重要公式和结论1.对于任意方阵A , 总有 E A =A A =AA **,如果0≠A , 即A 为可逆矩阵, 则有 *1A AA1=−或1*A A A −=; 2.数乘以方阵的关系 , TTk k A A =)(111)(−−=A A kk , A A n k k =, A A 11=−;3.矩阵乘法的关系T T T A B (AB)=, , 111A B (AB)−−−=BA AB =;,()22T TA)(A =()2112A )(A−−=,22A A =;4.若A 、均为可逆矩阵, 则; ; B 10B A 0−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=−−0AB 011⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B 00A B 00A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B 0CB A A B 0C A ;; ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B 0A BC 0A 5.已知A 为一个n 阶可逆矩阵, 则有)2(≥n 1n *AA −=;6.已知A 为一个阶矩阵,则n A A nk k =,1−=n nk k A A *,()1)1(*−−=n n n kk AA ;7.已知A 为一个n 阶可逆矩阵, 则有)3(≥n A AA 2**)(−=n .2.3典型例题例2.1计算:(1) (2) .⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(()n n b b a a L M 11⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛解 (1) =;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(∑==+n k k k n n b a b a b a 111L (2) . ()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n n n n n n n b a b a b a b a b a b a b a b a b a b b a a L M M M L L L M 21222121211111例2.2 设 为三阶矩阵, 且已知)(j i a =A a =A , *A 为A 的伴随矩阵又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211na na na ma ma ma la la la B , 求 *BA 解 由于 CA B =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211333231232221131211000000a a a a a a a a a n m l na na na ma ma ma la la la 其中, ,故⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n m l 000000C ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛====an am al a 000000C E A C CAA BA **.例2.3 设, , 求的关系, 使⎟⎟⎠⎞⎜⎜⎝⎛=3421A ⎟⎟⎠⎞⎜⎜⎝⎛=y x 21B y x 与A 与是可交换的. B 解 要使A , 可交换, 即B BA AB =又⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y x y x y x 3464214213421AB ⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y y x x y x 3442324342121BA 故的充要条件是 , 得到 BA AB =⎪⎪⎩⎪⎪⎨⎧+=++=++=++=+yy y x x y x x 343442643221441−=y x .例2.4 设n ×=1)21,0,,0,21(L C , , ,计算C C E A T −=C 2C E B T +=AB .解: C)C C)(E C (E AB TT +−=C CC 2C C C C 2C E T T T T −−+= )C (CC 2C C C E TTT−+=C C 212C C E T T ××−+=E = 故 E AB =.例2.5 设. , 求⎟⎟⎠⎞⎜⎜⎝⎛=5423A 1−A解 由于075423≠==A , 故A 是可逆的,又, 故⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛=342522122111*A A A A A ⎟⎟⎠⎞⎜⎜⎝⎛−−==−3425711*1A A A . 例2.6 设阶矩阵n A 的伴随矩阵为*A , 是常数, 试证 k ()*A A 1*−=n k k . 证明 把看作一个整体, 根据A k E A AA *=, 有 ()E A A A )()(*k k k =,由于A 是可逆的,则也是可逆的,故)(A k ()*11111*1)()(A A A A A A A A −−−−−==×==n n n k k kk k k k . 证毕例2.7 设, ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2111021100210001A *A 为A 的伴随矩阵, 求. **)(A 解 由于 082111021100210001≠==A , 故A 是可逆的, *A 是可逆;根据E A AA *=, 有 E A )(A A ****=,方程左右两边同时左乘以A ,得 E A A )(A AA ****=, 即 A A A)(A ***1=, 又 1n *A A −=, A 是4阶矩阵,故 10001200()6411201112−⎛⎞⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎝⎠n 22**A AA AA . 例2.8 设A , 是n 阶方阵, 若B AB E −可逆, 试证 BA E −也可逆 .证明 由于A AB)AB)(E B(E E BA E 1−−−−=−A AB)BAB)(E (B E 1−−−−=A AB)BA)B(E (E E 1−−−−=移项得到E A AB)BA)B(E (E BA)(E 1=−−+−−即E A)AB)B(E BA)(E (E 1=−−−−根据可逆矩阵的定义, BA E −可逆, 并且.证毕A AB)B(E E BA)(E 11−−−+=−例2.9 设, 求.⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−=00010000200010L L MM M MLL n n n A 1−nA 解 对矩阵分块, , 其中 n A ⎟⎟⎠⎞⎜⎜⎝⎛=0CB 0A n )(n =C , , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=100020001n L M M M L L B 故1(1n=−C , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=−)1(10002100011n L M M M LLB, 根据分块矩阵的逆矩阵公式⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=−−−−0B C 00C B 0A 1111n⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎝⎛−=0)1(100021000011000n n LM M M M L L L . 例2.10 设阶方阵 , , 求, 使n ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100001010A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=021102341B X B AX =. 解 由于01100001010≠−==A , 故A 是可逆的; 并且 ;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000010101A 方程左右两边同时左乘以1−A 得到⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−021341102021102341100001010B A X 1.例2.11 设,求, 使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=134030201A X X A E AX 2+=+.解 对方程移项得 E A X AX 2−=−, 根据矩阵乘法分配律得E A E)X (A 2−=−由于 016034020200≠−==−E A , 故E A −可逆.方程左右两边同时左乘以, 得(1−−E A )()()E)(A E A E)(A E A E)(A X 121+−−=−−=−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=234040202E)(A例2.12 设, 求. 其中E BA)B X(E TT1=−−X , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000110001100011A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2000120031204312B 解 根据乘法转置公式得 TTT(AB)A B =T T 1T T1A)(B A)]B [B(E BA)B (E −=−=−−−又 011234012300120001)(≠==−TA B , 故可逆, 对方程 右乘以[, 得到 . T )(A B −E A)X(B T=−]1)(−−T A B []⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−12100121001200011T A)(B X例2.13 设A 的伴随矩阵, 求, 使. ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A B 3E BA ABA 11+=−−解 根据, 得到 3E BA ABA 11+=−−()3E BA E A 1=−−故 皆是可逆的, 并且A E,A −()()()1111A E A A E AB −−−−−=−=33[]1111)A (E E))(A (A −−−−−=−=33又由1n *AA −=, 8*=A , , 故 4=n 2=A ,1*1*11)A E ()A (E )A (E B −−−−⎥⎦⎤⎢⎣⎡−=−=−=22132133 11*1*60300101001000016)2(6)2(213−−−⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−=−=⎥⎦⎤⎢⎣⎡−=A E A E B . ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=1030060600600006例2.14 设阶矩阵n A 的伴随矩阵为*A , 试证(1) 若0=A , 则0*=A ; (2) 1*−=n AA ; (3) 1)1(*)(−−=n n n kk AA .证明 (1 ) 根据0=A 得到0A =与0A ≠两种情况,① 当0A =时, 则, 显然0A *=0*=A ;② 当0A ≠时, 利用反证法, 不妨反设0*≠A ,则可逆, 即存在*A 1*−A , 又由于E A AA *=,0=A ,得到0)(A 0)(A A A 1*1*=⋅==−−, 这与矛盾.假设0A ≠0*≠A 不成立.故综合①②得到若0=A , 则0*=A .(2 ) 分0=A 和0≠A 两种情况,① 当0=A 时, 由(1)得到0*=A , 显然有1*−=n AA .② 当0≠A 时, 则A 可逆, 由E A AA *=引入行列式得到n*A A A =, 从而1n *AA −=.(3 ) 根据(2 )中1n *AA −=得到1)1(11*)()()(−−−−===n n n n n n k k k k AA A A .例2.15 设A , 均为阶方阵, B n 2=A , 3−=B , 求1*B)(A −2.解1*n1*1*1*B A B A B)(A B)(A −−−−⎟⎠⎞⎜⎝⎛===212122, 又根据E BB1=−, 得到1=−1B B , 即BB 11=−, 以及1−=n A A *,所以6131)2(212121−=⎟⎠⎞⎜⎝⎛−××⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛=−−−n n1*n1*B A B)(A例2.16 设5阶矩阵A , 且2=A , 求A A −. 解 由于2=A , ()()6423225−=×−=−=−=−A A AA A 5.例2.17 设A , 均为3阶矩阵, B 2=A , 21=B , 求()*AB . 解()()122122=⎟⎠⎞⎜⎝⎛====−−1313*****ABA B A B AB . 例2.18 设阶矩阵n A , 有E A m=, 若A 中每个元素用其对应的代数余子式代替, 得到矩阵, 求.ij a ij A B mB 解 依题意, 得 , (其中T *)(A B =*A 为A 的伴随矩阵),由E A m=, 得到1=m A ,即A 是可逆的,故 1ΤΤ1Τ1Τ*)(ΑΑ)(ΑΑ)ΑΑ()(ΑΒ−−−====,又由, 得111A B (AB)−−−=T T T A B (AB)=()()222112)(,)(T T A A A A ==−−,所以 ()()11)()(−−=T m mTA A , 故()()E A A AB===−−11)()(Tm T m mm.例2.19 设⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=21232321A , 且E A 6=, 求11A 解 由 E A 6=, 得E A12=, 即E AA 11=, 故⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=−212323211A A 11. 例2.20 设, )5,4,3,2,1(=A ⎟⎠⎞⎜⎝⎛=51,41,31,21,1B , 又B A X T =, 求n X 解 由X XX XnL =B)(A B)B)(A(A T TTL =()()()B BA BA BA A T T T T L =又因为,故 5=T BA ⎟⎠⎞⎜⎝⎛⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==−−514131211543215511n n n B A X T ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=−145352555413424534312335242321251413121151n . 例2.21 设, 满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100000001B ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=112012001P PB AP =,求A , 9A .解.由于01112012001≠−=−=P , 故是可逆的,且,P ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=−1140120011P 由题意, , ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==−1140120011000000011120120011PBPA ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001又 A PBP P PB PBP PBPA 119119====−−−−L ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001.例2.22 设, 求⎟⎟⎠⎞⎜⎜⎝⎛=101λA nA . 解 由于 ,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==1021101101λλλAA A 2⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==10311011021λλλA A A 23不妨假设结论,下用归纳法证明. 当⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA 2=k 时,显然成立, 不妨设时也成立, 即, 则当1−=n k ⎟⎟⎠⎞⎜⎜⎝⎛−=−10)1(11λn n An k =时⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−10110110)1(1λλλn n A A A 1n n ,故结论成立, 即. ⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA2.4 独立作业2.4.1 基础练习1.设阶矩阵, 且n )(ij a =A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n λλO 1D )(j i j i ≠≠λλ则=AD (A )()ij i a λ ; (B )()j ij a λ; (C )()ij i a 1+λ ; (D )以上都不对. 2.设A 、均为阶矩阵,下列命题正确的是 B n(A )0B 0A 0AB ==⇒=或; (B )0B 0A 0AB ≠≠⇔≠且; (C )00==⇒=B A 0AB 或; (D )00≠≠⇔≠B A 0AB 且. 3.设阶矩阵满足, 则有 n E ABC =(A ) (B )E ACB =E CBA = (C )E BAC = (D )E BCA =4.设,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=120001430A =A k(A ) (B ) (C )311k −311k k 11− (D ) k 115.下列命题正确的是 (A )若A 是阶方阵,且n 0A ≠,则A 可逆; (B )若A 、是阶可逆方阵,则B n B A +也可逆; (C )若A 是不可逆方阵,则必有0A =; (D )若A 是阶方阵,则n A 可逆⇔TA 可逆.6.已知,,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=210413121A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=121312410B ()T AB 7.设,,则⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=0111,300121A A ⎟⎟⎠⎞⎜⎜⎝⎛=21A 00A A =−1A8.已知,则 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=300041003A =−−1)(2E A9.设矩阵满足,其中B 9E 3B A AB 2−=−E 为三阶单位矩阵,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=400020101A , 则 =B10.已知,满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=200012021B A B AB =−,则=A 11.设,,求矩阵,使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=311201A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=041012B X B X A =+23成立.12.设,计算⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=141021001A ()()()2181644A A E A E A E +−−−−T .13.设,,求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000210032101321B ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=1000210002101021C A , 使成立.T T 1C B)A C(2E =−−14.设矩阵,,,⎟⎟⎠⎞⎜⎜⎝⎛=3152P ⎟⎟⎠⎞⎜⎜⎝⎛−=1001B ⎟⎟⎠⎞⎜⎜⎝⎛−−=2153Q PBQ A =, 试计算QP 和nA .15.设(k 为正整数),(1)试证 ;0A k =1k 1A A E A)(E −−+++=−L (2)求. 1)4(−−E)(A 2.4.2提高练习1.设A 为阶矩阵,且有n A A 2=,则结论正确的是________________ (A)(B) 0A =E A = (C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2=2.已知,,且⎟⎟⎠⎞⎜⎜⎝⎛=22211211a a a a A ⎟⎟⎠⎞⎜⎜⎝⎛=y a x a 2111B 1,1==B A ,则=+B A (A) 2; (B) 3; (C) 4; (D) 5.3.设 ,是两个阶方阵,则)(ij a =A )(ij b =B n AB 的第行是 i (A ) 的各行的线性组合,组合系数是B A 的第行各元素; i (B ) A 的各行的线性组合,组合系数是的第行各元素; B i (C ) 的各列的线性组合,组合系数是B A 的第行各元素; i (D ) 的各行的线性组合,组合系数是B A 的第列各元素. i 4.设A 、、C 为可逆矩阵,则B ()=−1T ACB(A ) ; (B ) ;()1−−−C A B11T 11T A C B −−(C ) ( D ) ()1T 11B CA −−−()11T1A C B−−−.5.设A 为阶矩阵,为其伴随矩阵,则n *A =*A k (A ) A n k (B) nk A (C)1−n n k A(D)nn kA1−6.设三阶矩阵A 的行列式3=A ,则=−−*123A A7.设阶矩阵n A 的行列式5=A ,则()=−1*5A8.已知 则⎟⎟⎠⎞⎜⎜⎝⎛−=θθθθcos sin sin cos A =−1A 9.设阶矩阵n A 、、C ,且B E CA BC AB ===,则 =++222C B A10.设A 、是四阶矩阵,且B 2=A ,21=B ,则()=*AB11.设三阶矩阵A 、Β满足关系式,BA 6A BA A 1+=−⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=710004100031A ,求 B 12.设 B A B A AX AXB 22+−+=,求.其中,X⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=100110111A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200020102B 13.设A 、均为阶方阵,若B n AB B A =+,求()1−−E A .14.设, ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=211021001A *A 为A 的伴随矩阵, 求.1*)(−A第二章 参考答案与提示2.4.1 基础练习1.( B ) 提示 AD 表示A 的第i 行与D 的第列j 相乘得到()j ij a λ. 2.(C )提示 0000==⇒=⇒=⇒=B A B A A 0AB 或B . 3.(D )提示 A 、、C 可逆,等式左乘以B 1−A ,右乘以A . 4.(A )提示 3311k k k −==A A .5.(D )提示 由于A 可逆⇔00≠⇔≠T A A ⇔TA 可逆.6., ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=15419102935121312410210413121AB ()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=1541910293511995103425TAB . 7.⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=−−−110100000310000112111A 00A A.8.,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000210012E A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000212100121E A . 9. , ,E B A AB 293−=−E A B AB 293−=−)333E E)(A (A E)B (A +−=−由于021*********≠=−−=−E A ,故E)A 3(−是可逆的,.⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=7000501043E)(A B 10.A B AB =− , ,B E)A(B =−04100002020≠=−=−E B ,E B −是可逆的,⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−=−200012102111000021021020********E)B(B A .11.()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=−=91461121321A B X .12.()()()21T A A E A E A E +−−−−81644()()()A E A)E (A E A E 1T−−−−=−4444()()A E A E T−−=44()24A E −=324182==.13.左乘以C ,,由于 E B)A C (T=−20110002100321043212≠==−B C ,故 是可逆的,(. B C −2()()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−=−−−1210012100120001222C 1T T1B)C (B)C (B)A 14.,即、互为逆矩阵, ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−=100131522153QP P Q ()()()()BQ QP QP B QP PB PBQ A nn L ==Q PB n =,由于,故.)(-L ,2,1,122===k k kBB E B⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−−==为奇数为偶数n n 1162011A E A n 15.(1)由于()1k AA E A)(E −+++−L )A A (A )AA (E n 21k +++−+++=−L LE A E n =−=, 故 ,1k 1A A E A)(E −−+++=−L (2)()111A)(E A))(E (E))(A (−−−−−=−−=−4144()1k A A E −+++−=L 41. 2.4.2提高练习 1.(D )提示:,若0E)A(A A A2=−⇔=A 可逆,则E A =,E A 2=.2.(C )提示:,⎟⎟⎠⎞⎜⎜⎝⎛++=+y a ax a a 2221121122B A 422221112221121122211211=⎟⎟⎠⎞⎜⎜⎝⎛+=++=+y a x a a a a a y a a x a a B A . 3.(A )提示:乘积AB 的第行是i A 的第行与的列的乘积. i B n ,,1L 4.(D )提示:()()()()()()1−−−−−−−===A C B AC B B AC ACB1T 111T 1T 1T .5.(C )提示:1**−==n nn k k k AA A .6.()()()9313133232333111*1−=×−=−=−=−=−−−−−AA A A A A A .7.()n n n n211*1*1*5151151)(515−−−−==⎟⎠⎞⎜⎝⎛==A AA A. 8.⎟⎟⎠⎞⎜⎜⎝⎛−==−θθθθcos sin sin cos 1*1A A A . 9.由于E CA BC AB ===,故 ,2A A(BC)A ABCA E ===2B B(CA)B BCAB E ===,,2C C(AB)C CABC E ===所以 .E CB A 2223=++10.()()11=====−3341*)B A (AB ABABAB AB AB .11.由于,,右乘以得BA A BA A 1+=−6A E)BA (A 16=−−1−A E E)B (A16=−−又可逆.故A)(E −16−−−=E)(A B1⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=6100031000216. 12.方程整理得B E)A)(B A(X =−−由于0≠A ,0≠−E B ,故A 、E B −是可逆的,且⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=−1001102111A ,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000101011E B 所以11E)B(B A A X −−−=− ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=200220522100010101200020102100110211故 . ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=300330613X 13.由于AB B A =+B AB A −=⇒()B E A A −=⇒(但是B 不一定可逆,不能同时右乘以1−B)()()B E A E E A −=+−⇒()()E E B E A =−−⇒,故 ()E)(B E A 1−=−−.14.由于0421102101≠==A , 故A 是可逆的, *A 是可逆的; 根据E A AA *=, 有 E )(A A **=−1方程左右两边同时左乘以A 得,AE )(A AA **=−1即 A A )(A *11=−, 故 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−2110210014111A A )(A *.。

《线性代数》课件-第二章 矩阵及其运算

《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:

线性代数第二章矩阵及其运算第二节矩阵的运算

线性代数第二章矩阵及其运算第二节矩阵的运算
k 1
p
则称矩阵 C 为矩阵 A 与矩阵 B 的乘积, 记作
C = AB.
注意:
只有当第一个矩阵(左矩阵)的列数等于第
二个矩阵(右矩阵)的行数时,两个矩阵才能相乘.
例 利用下列模型计算两个矩阵的乘积.
矩阵乘法模型之:A2 2 B2 2
23 2 1 -9 15 -197
矩阵乘积模型之: A2 3 B3 3
例设 例 设
A A0 0
1 1

0
0 1 , 1 ,
这一步很关键 也很巧妙!
计算 A2, A3, An (n>3). 计算 A2, A3, An (n>3).
解 设
A = E + B,
0 1 0 其中 E 为三阶单位矩阵, B 0 0 1 , 0 0 0
设 设 2 5 3 2 2 5 3 2 9 5 1 0 , B 4 5 , C 9 5 . A A 1 0 , B 4 5 , C 4 3. 4 3 3 7 3 9 3 7 3 9 (1) 问三个矩阵中哪些能进行加法运算, 并求 (1) 问三个矩阵中哪些能进行加法运算, 并求
的乘积 AB 及 BA.
解 由定义有
法模型之:A2 2 24 2 2 B2 AB
2 4
4 16 1 2 3 6 8 1 -9 15 -197 0 4 2 4 2 -4 BA 5 -13 -7 0 3 6 1 2
清 空
32 , 16 0 . 0

线性代数(复旦大学出版社)第二章 矩阵

线性代数(复旦大学出版社)第二章   矩阵

第二章矩阵第一节矩阵的概念1、分类:行矩阵:只有一行的矩阵列矩阵:只有一列的矩阵零矩阵O:元素全为零的矩阵单位阵E:主对角线上元素为1,其他元素为0的方阵数量阵(纯量阵):λE对角阵:不在主对角线上的元素都为0的方阵上(下)三角阵:主对角线上以下(上)的元素全为0的方阵2、两矩阵同型:两个矩阵行数且列数都相等两矩阵相等:两矩阵同型,且对应元素相等。

记做A=B。

3、不同型的零矩阵是不相等的第二节矩阵的运算设A,B,C为m×n矩阵,λ, μ为数一、加法:只有同型矩阵才能进行加法运算(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+O=A二、减法:A-B=A+(-B) -B称为B的负矩阵三、乘法:1、只有当第一个矩阵(左矩阵)的列数等于第二个矩阵(行矩阵)的行数时,两个矩阵才能相乘。

简记为:(m×s)(s×n)=(m×n)例: A为2×3矩阵,B为3×2矩阵,则AB=C为2×2矩阵2、数与矩阵:(1)(λμ)A=λ(μA)=μ(λA)(2)(λ+μ)A=λA+μA(3)λ(A+B)=λA+λ B(4)1*A=A, (-1)*A=-A矩阵与矩阵:(1)结合律:(AB)C=A(BC)(2)分配律:A(B+C)=AB+AC(B+C)A=BA+CA(3)λ(AB)=(λA)B=A(λB)(4)EA=AE=A(5)A k A l=A k+l(6)(A k)l=A kl3、矩阵乘法不满足交换律,即(AB)C≠(AC)B另外:(1)一般有AB≠BA (A与B可交换时,等式成立)(2)AB=O,不能推出A=O或B=O(3)AB=AC,A≠O,不能推出B=C(4)(AB)k≠A k B k(A与B可交换时,等式成立)4、可交换的:对于两个n阶方阵A,B,有AB=BA,则称A与B是可交换的。

纯量阵与任意同行方阵都是可交换的。

第二章矩阵及其运算

第二章矩阵及其运算

数乘矩阵与数乘行 列式的区别所在!!
23
第二章 矩阵及其运算
3 1 2 0 A= 1 5 7 9
2 4 6 8
7 5 2 4 B= 5 1 9 7
3 2 1 6
求满足关系式 A+2X=B 的矩阵 X (3A—2B) 三、矩阵的乘法
定义 3:设 A=( aij ) ms B =( bij ) sn 则乘积 AB=C=( cij ) mn
线性代数教案
课题
教学内容 教学目标 教学重点
第二章 矩阵及其运算 §2.1 矩阵 §2.2 矩阵的运算
矩阵的概念; 矩阵的运算;
明确矩阵概念的形成; 掌握矩阵的加法、数与矩阵的乘法、矩阵与矩阵的乘法; 会求矩阵的转置、方阵的行列式、共轭矩阵;
掌握矩阵定义及运算法则
教学难点 矩阵乘法
教学内容、 安排
矩阵:matrix 矩阵运算:matrix operations 矩阵的加法:matrix addition 数与矩阵相乘:scalar muctiplication 转置矩阵:transposd matrix
A
的乘积。即
kA=
k
aij
=

ka21
kam1
ka12 ka22
kam2
ka1n
ka2n


kamn

用数乘以 矩阵中 的每一个元素
由定义可知 –A=(-1) A
A – B = A+(-B) 数乘矩阵满足以下的运算律 1、结合律:(kl)A=k(lA)=l(kA) 2、交换律:kA=Ak 3、分配律:k(A+ B)=kA+kB 例1、 设
教学手段、
措施

线性代数第二章 矩阵代数 S2矩阵的代数运算

线性代数第二章 矩阵代数 S2矩阵的代数运算

(1) h( A) f ( A) g( A), s( A) f ( A)g( A).
(2) f ( A)g( A) g( A) f ( A).
24
4、n阶矩阵乘积的行列式
方阵对应着行列式,于是有如下定理:
定理:若 A,B是n阶方阵,则 |AB| = |A| |B|.
(此定理可以推广到有限个同阶矩阵的情况)
或 Al .
la11
lA
Al
la21
la12
la22
la1n
la2n
.
lam1 lam1 lamn
特别的,lE 称为数量矩阵.
6
2、线性运算的运算性质
矩阵的加(减)法和数乘统称为矩阵的线性 运算,这些运算都归结为数(元)的加法与乘法.
运算性质
设A, B为同型矩阵,l, m为数,则 ➢ l(A + B) = l A + l B ➢ (l + m)A = l A+ m A ➢ l (m A) = (lm) A
0 bn2
bnn
29
a11 a12 a21 a22
A 0 an1 an2 E B 1 0
0 1
a1n c11 c12
c1n
a2n
c21
Cc22
c2n
ann cn1 cn2
cnn
0 00
0
0 00
0
00
1 0 0
0
AC
E 0
再利用拉普拉斯定 理按后n行展开
E (1)[(n1)(n2) 2n](12 n) C
(2) 由AB=O不能得出A、B至少有一个零矩阵.
如前面的A, B矩阵
A 1 1 ≠O, B 1 1 ≠ O,

线性代数第二章矩阵及其运算2-3

线性代数第二章矩阵及其运算2-3

二、逆矩阵的概念
定义 7 设 A是 n 阶方阵,若存在 n 阶方
阵B,使得 AB=BA=E (3) 则称矩阵 A 可逆,且称 B 是 A 的逆矩阵,记作 B=A-1.
如果不存在满足(3)的矩阵 B,则称矩阵
A 是不可逆的.
现在的问题是,矩阵 A 满足什么条件时可逆? 可逆方阵的逆阵是否唯一,如何求逆阵?可逆 矩阵有什么性质?这是本节要讨论的问题.
A A 2E O,
2
4 移项 得 A 1 1 分解因式 得
2 1 2
3 2 A 2E, A AB A 2 B, 求 B. 0 , AB A 2 B, 求 B. 3
A( 得 解 已知方程变形A E) 2E,
例 3 设 n 阶矩阵 A, B, A + B 均可逆, 证明
练习: 设n阶方阵A满足A2+2A-4E=0,则必有( A) A=E C) A-E可逆 B)A=-3E D) A+3E不可逆 )
解答:因为A与E是可交换的,依题意可得: A2+2A-4E=0 A2+2A-3E=E (A-E)(A+3E)=E, 根据逆矩阵的定义,(A-E)与(A+3E)互逆。故选C
伴随矩阵法.
练习: A,B均为n(n≥3)阶方阵,且AB=0,则A与B( A) 均为零矩阵 C) 至少有一个奇异阵 B) 至少有一个零矩阵 D) 均为奇异阵 )
解答:可以等式两边同取行列式 AB=0 |AB|=0 |A||B|=0,故选C
练习: A,B,C为同阶方阵,A可逆,则下列命题正确的是( A) 若AB=0,则B=0 C) 若AB=CB,则A=C 解答:可以等式两边同乘A-1 AB=0 A-1AB = A-10 EB=0,故选A B)若BA=BC,则A=C D) 若BC=0,则B=0或C=0 )

线性代数第二章,矩阵及其运算

线性代数第二章,矩阵及其运算

a1n b1
a2n
b2
L L
amn bm
§2 矩阵的运算
一、加法
设 A (ai j )mn , B (bi j )mn 都是m n 矩阵,则加法定义为
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
显然,
AB B A
a22
L
L L L
am1 am2 L
a1n
a11 a21 L
a2n
,记
AT
a12
a22
L
L
L L L
amn
a1n an2 L
则称
AT
A

的转置矩阵。
am1
am 2
L
amn
显然,
① ( AT )T A ,② ( A B)T AT BT ,③( A)T AT ,④( AB)T BT AT
2. 即使 Amn , Bnm ,则Amn Bnm 是m 阶方阵,而Bnm Amn 是n 阶方阵;
3. 如 果 A , B
都 是n






2
A
1
4
2

B
2
3
4
6
,则
16
AB
8
32 16
,而BA
0 0
0
0

AB BA
综上所述,一般
(即矩阵乘法不满足交换率)。
但是下列性质显然成立:
三、乘法
乘法运算比较复杂,首先看一个例子
设变量t1, t2 到变量 x1, x2 , x3 的线性变换为

(优选)线性代数第二章矩阵及其运算

(优选)线性代数第二章矩阵及其运算

A) A=E
B)A=-3E
C) A-E可逆 D) A+3E不可逆
解答:因为A与E是可交换的,依题意可得:
A2+2A-4E=0 A2+2A-3E=E (A-E)(A+3E)=E, 根据逆矩阵的定义,(A-E)与(A+3E)互逆。故选C
四、可逆矩阵的性质
设 A, B, Ai , (i = 1, 2, …, m), 为 n 阶可逆方阵, k 为非零常数,则
(6) (Am)-1 = (A-1)m , m 为正整数.
证明 我们证只明证(我3们)只和证((43))和(4)
(3) (AB()(3B-)1A-(1A) B=)A(B(B-1BA-1)A=-1A=(ABEBA-1)-1A=-1A=AA-1EA-1 =
= E.
= E.
(4) AT((A4-1)T)=A(AT(-1AA-1))TT==((EA)-T1A=)TE,= (E)T = E,
练习:

A
1
3
2 4
,
则A*=
, A-1=

解答:
A*
4 3
2
1
,
A1
1 2
4 3
2 1
2 3 2
1
1
,
2
例 11 用伴随矩阵法求下列矩阵的逆阵
2 2 3 (1) A1 1 1 0
3 1 2
1 2 3 (2) A2 1 2 1
5 2 3
1 3 1 4
项式,A 为 n 阶矩阵,记
(A) = a0 E + a1 A + … + am A m ,
所以 (AT所)-1以= (A(-1A)T).-1 = (A-1)T .

线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算

ann 0
0
5. 形如 下面两个矩阵 的方阵称为下三角矩阵(lower triangular matrix).
a11 0 a21 a22
an1
an2
0 0
0
0
ann
an1
0 a1n
a2n1
a2n
ann1 ann
6. 若方阵 A (aij )n 中 aij a ji , 则称为对称矩阵 (symmetric matrix). 即
一、线性方程组
定义1 设有 n 个未知数 m 个方程的线性方
程组
a11 x1 a12 x2 L a1n xn b1 ,
a21 x1 a22 x2 L LLL
a2n xn L
b2 ,
am1 x1 am2 x2 L amn xn bm .
(1)
其中aij 表示第i个方程第j个未知数的系数(coefficient), bi 是第i个方程的常数项(constant),i=1,2,…,m, j =1,2,…, n.
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
L
L
L
L
称为单位阵(unit
matrix),
记作 En . 0 0 L 1
4. 形如 下面两个矩阵 的方阵称为上三角矩阵(upper triangular matrix).
a11a12 0 a22
0 0
a1n
a2n
ann
a11 a1n1 a1n
a21
a2n1
0
a11 a12 L a1n

第二章 矩阵及其运算 《工程数学线性代数》课件PPT

第二章  矩阵及其运算  《工程数学线性代数》课件PPT

0
x
§2 矩阵的运算
例 某工厂生产四种货物,它在上半年和下半年向三家商店 发送货物的数量可用数表表示:
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34
其中aij 表示上半年工厂向第 i 家 商店发送第 j 种货物的数量.
c11 c12 c13 c14 c21 c22 c23 c24 c31 c32 c33 c34
行数不等于列数 共有m×n个元素 本质上就是一个数表
det(aij )
(aij )mn
三、特殊的矩阵
1. 行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 An.
2. 只有一行的矩阵 A (a1, a2 ,L , an ) 称为行矩阵(或行向量) .
a1
只有一列的矩阵
B
a2
M
称为列矩阵(或列向量)
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
( )A A A (A B) A B
备 注
矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
a31 a32 a33 a31 a32 a33 a31 a32 a33
a12 a22
a13 a23
a14 a24

线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算$1.矩阵定义1 由m*n个数a_{ij}(i=1,2,3...,n)排成的m行n列的数表称为m行n列矩阵,简称mn矩阵。

为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示,记作这mn个数称为矩阵A的元素,简称为元,数位于矩阵A的第i行第j列,称为矩阵A的(i,j)元。

以数. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明者外,都指实矩阵。

行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

n阶矩阵A也记作An。

只有一行的矩阵 . 只有一列的矩阵称为列矩阵,又称列向量。

两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。

如果那么就称矩阵A与矩阵B相等,记作 A=B 元素都为零的矩阵称为零矩阵,记作O。

注意不同型的零矩阵是不同的。

矩阵的应用非常广泛,下面仅举几例。

例1工厂三个商店发送四种产品的数量可列成矩阵其中这四种产品的单价及单件重量也可列成矩阵其中。

例2一般的,若干个点之间的单向通道都可以用这样的矩阵表示。

例3n个变量x_1,x_2,...,x_n与m个变量y_1,y_2,...,y_m之间的关系式表示一个从变量给定了线性变换(2),它的系数所构成的矩阵(称为系数矩阵)也就确定。

反之,如果给出一个矩阵作为线性变换的系数矩阵,则线性变换也就确定。

在这个意义上,线性变换和矩阵之间存在着一一对应的关系。

例如线性变换叫做恒等变换,它对应的一个n阶方阵叫做n阶单位矩阵,简称单位阵。

这个方阵的特点是:从左上角到右下角的直线(叫做(主)对角线上的元素都是1,其他元素都是0.即单位阵E的(i,j)元为)又如线性变换对应n阶方阵这个方阵的特点是:不在对角线上的元素都是0.这种方阵为对角矩阵,简称对角阵。

对角阵也记作$2.矩阵的运算一、矩阵的加法定义2 设有两个m*n矩阵A=(a_{ij})和B={b_{ij}},那么矩阵A和B的和记作A+B,规定为应该注意,只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。

同济大学线性代数课件__第二章 矩阵及其运算

同济大学线性代数课件__第二章 矩阵及其运算

j
)
元素。
4
同型矩阵:两个矩阵的行数相等、列数也相等。
矩阵相等:设矩阵A与B是同型矩阵,
A(a ) , B (b )
ij
ij
若 a b ( i, j 1,2,,n)
ij ij
则称矩阵 A与 B相等,记作 A B.
x 0
1 y
48
3 0
1 2
4z x 3, y 2, z 8
5
一些特殊的矩阵 零矩阵(Zero Matrix):
第二章 矩阵及其 运算
1
§1 矩 阵
2x1 x2 x3 x4 2
4
x1 x1
x2 6x2
2x3 2x3
x4 2x4
4 4
3x1 6x2 9x3 7 x4 9
2 1 1 1 2
1 1 2 1 4
4 3
6 6
2 9
2 7
4 9
线性方程组与矩阵的对应关系
2
定义1 由m n 个数 aij (i 1,2,, m; j 1,2,, n) 排成的m行n列的数表,
那末矩阵 A与B 的和记作A+B,规定为
a11 b11
A
B
a b
21
21
a12 b12
a b
22
22
a1n b1n
a 2n
b 2n
a m1
b m1
a b
m2
m2
a mn
b mn
14
注意:只有当两个矩阵是同型矩阵时, 才能进行加法运算.
12 3 5 1 8 9 1 9 0 6 5 4 3 6 8 3 2 1 12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4. 3 3 6 2 8 1 6 8 9

线性代数知识点总结第二章

线性代数知识点总结第二章

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

线性代数矩阵的运算

线性代数矩阵的运算
为方阵A的k次多项式.
§2 矩阵的运算(续7) 四、矩阵的转置
用A=[aij]m×n的第i行(列)作矩阵的第i列(行),i=1,2,...m. 所得矩阵称为A的转置矩阵,记作AT.如
运算律
1 0 T
2 3
5
3
1 0
2 5
3 3
4 8
4
8
1 ) (AT)T=A;
2 ) (A+B)T=AT+BT;
2)
列矩阵:
b2 ...
bm
3) 零矩阵:
0 ... 0 Omn ... ... ...
0 ... 0 mn
4) n阶方阵:An=[aij]n×n
5) 对角阵:1 0 ... 0
0
2
...
0
n ... ... ... ...
0
0
...
n
diag(1, 2 ,..., n )
例2 计算下列乘法:
4 1 0
1
1) 2
0 1
3 0
1
2
1
2
1
1 0 3
3 1 4
9 9
2 9
1 11
一般,AB≠BA
3
2)
1
1
2 2/3
4
2 1 3 4 2 1
1/ 3
2
1 4 / 3 1/ 3
0
1 1 1 8 1 10
1
3) 1 1 22 =[5]
3
1
1 1 2
4) 21 1 2 2 2 4
1 24
2 5
3
6
2 8
4 10
6
12
运算律 1)结合律: (kl)A=k(lA)=l(kA)

线性代数教案 第二章 矩阵及其运算

线性代数教案 第二章 矩阵及其运算

12m m mna a a 矩阵。

为了表示它是一个整体,总是加一个括号将它界起来,并通常用大写字母表示它。

记做12m m mn a a a ⎥⎦12m m mn a a a a ⎛⎪⎭。

切记不允许使用111212122212n n m m mna a a a a a a a a =A 。

矩阵的横向称行,纵向称列。

矩阵中的每个数称为元素,所有元素都是实数的矩阵称为实矩阵,所有元素都是复数的矩阵称为复矩阵。

本课中的矩阵除特殊说明外,都指12n n nn a a a ⎥⎦不是方阵没有主对角线。

在方阵中,00nn a ⎥⎦11212212000n n nn a a a a a a ⎤⎥⎥⎥⎥⎦(主对角线以上均为零)1122000000nn a aa ⎡⎤⎢⎥⎢⎥⎥⎥⎦(既}nn a .对角元素为1的对角矩阵,记作E 或001⎡⎢⎥⎦()11a ,此时矩阵退化为一个数矩阵的引进为许多实际的问题研究提供方便。

a x +)1(+⨯n 矩阵:12m m mnm a b a a a b ⎥⎦任何一个方程组都可以用这样一个矩阵来描述;反之,一个矩阵也完全刻划了一个方122m m m mn mn b a b a b ⎥+++⎦⎥⎦⎤⎢⎣⎡-=4012B ,计算 B A +。

122m m m mn mn b a b a b ⎥---⎦与矩阵n m ij a A ⨯=}{的乘积(称之为数乘),12m m mn a a a λλ⎥⎦以上运算称为矩阵的线性运算,它满足下列运算法则:n b ⎪⎭上述几个例子显示,当有意义时,不一定有意义(例6),即便有相同的阶数,也不一定相等(例A = O 或Ba x +12m m mn a a a ⎥⎦为系数矩阵; m b ⎥⎦,称b 为常数项矩阵;12n x x x ⎡⎢⎢=⎥⎦X = b 。

四、矩阵的转置 5 (转置矩阵12m m mn a a a ⎥⎦12nnmn a a a ⎢⎥⎣⎦矩阵,称它为A 的转置矩阵,记作TA 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们知道它的解取决于它的系数aij (i, j 1,2,, n)
以及它的常数项 bi (i 1,2,, n) 。
线性方程组的系数与常数项按原位置可排为
线性方程组可由这张 表唯一确定,则对线 性方程组的研究可转 化为对这张表的研究.
2. 某航空公司在A,B,C,D四 城市之间开辟了若干航线 , 如图所示表示了四城市间的 A 航班图,如果从A到B有航班, 则用带箭头的线连接 A 与B.
⒈ 矩阵的加法
设有两个同型矩阵 A aij
与B的和记作A B,规定为
,B
mn
bij
,那末矩阵A
mn
A B (aij bij )mn
a11 b11
a21 b21
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n a2n b2n
amn bmn
对于矩阵 A (aij )mn
⒈ aij 称为矩阵A的第i行第j列的元素;
⒉ 若aij R ,则称A为实矩阵;
若aij C ,则称A为复矩阵;
例如
1 3
0 6
2 7
5 0
24
实矩阵
13 6 2i i 0 5 2 2 2
复矩阵
⒊ 若m = n,则称A为方阵;
⒋ m 1, n 1称A为行矩阵;m 1, n 1称A为列矩阵 一般用小写字母或希腊字母表示;
排成的 m行 n列的数表
aa1211
a12 a22
aa12nn
am1 am2 amn
称为 m n矩阵.
aij 称为这个矩阵的第i行第j列的元素;
通常用大写字母A,B等表示矩阵。上面的矩阵可
简记为 A (aij )mn 或 A (aij ),无需指明元素时,
也可以记做 Amn 。
➢ 有关矩阵的几个概念及特殊矩阵
a11 a12
Τ
一一对应
A
a
21
a 22
a m1 a m2
a1n
a2n
a mn
因此,可以利用矩阵来研究线性变换。如
y1 x1,
y2 x2 ,
yn xn
对应
1 0
0 1
0
0
单位阵
0 0 1
我们把这样的线性变换称之为恒等变换。
§2.2 矩阵的基本运算
B
C D
四城市间的航班图情况常用表格来表示: 到站
A
B
C
D
A
发站 B C
D
其中 表示有航班.
为了便于计算,把表中的 0,就得到一个数表:
改成1,空白地方填上
A
B
C
D
A B
C D
0
1
1
0
1
0
1
0
1
0
0
1
0
1
0
0
这个数表反映了四城市间交通联接情况.
二、矩阵的定义
由 m n 个数 aij i 1,2,,m; j 1,2,,n
A的每一个元素,即
A 等(a于ij )m用nk乘以矩阵
ka11
kA
Ak
(kaij )mn
k a21
k a12
k a22
ka1n
k a2 n
.
kam1 kam1 kamn
注意:要与行列式的乘法区分。 ⒊ 负矩阵 A的负矩阵记做-A
A (1) A (aij )mn
⒋ 减法 A B A (B) (aij bij ) ⒌ 运算规律
前提: 同型矩阵 规则: 对应元素分别相加
例如
12 3 5 1 8 9
1 9 0 6 5 4
3 6 8 3 2 1
12 1 3 8 5 9 13 11 4 1 6 9 5 0 4 7 4 4.
3 3 6 2 8 1 6 8 9
⒉ 数乘 用数字k乘以矩阵
x1 a11 y1 a12 y2 a1n yn ,
x2
a21 y1
a22 y2
a2n yn ,
xm am1 y1 am2 y2 amn yn.
称之为从变量 y1, y2 ,, yn到变量 x1, x2 ,, xm 的线性 变换,其中 A (aij )称为系数矩阵。
注意:线性变换由系数矩阵唯一确定,即
记做
ห้องสมุดไป่ตู้
1
En
1
1
8. 1阶方阵和1阶行列式与一个数等同。
三 、矩阵和行列式的区别和联系
矩阵 数表 行数未必等于列数 无行列式性质
行列式 数值 行数等于列数
5个性质
联系:对于n阶矩阵,可以求它的行列式。
四、线性变换
y y
P
⒈ 平面旋转变换
x
坐标系 xoy ,绕原点O 逆时针旋转,得 xoy
坐标系
例如 α 2 3 5 9 是一个 1 4 行矩阵,
1 y 2 是一个 3 1 列矩阵,
4
4 是一个 11 矩阵.
⒌ 若 aij 0 ,则称A为零矩阵,记做 Omn或 O 。
⒍ 对角矩阵:主对角线元素不全为0,其余元素都为0;
记做
1
Λ diag 1,2 ,
,n
2
n
⒎ 单位矩阵:主对角元素都为1,其余元素都为0。
本章共有四节内容: §1 矩阵的概念 §2 矩阵的基本运算 §3 逆矩阵 §4 分块矩阵
§2.1 矩阵概念
一、矩阵概念的引入
⒈ 对于线性方程组
a11x1 a12 x2 a21x1 a22 x2
a1n xn b1 a2n xn b2
an1x1 an2 x2 ann xn bn
x
O
设点P在 xoy中坐标为(x, y),在 xoy中坐标为
(x, y),设旋转角为 ,逆时针方向为正,则坐标
变换公式为
x xcos ysin y xsin ycos
旋转矩阵为 ⒉ 线性变换
T
cos sin
sin cos
定义2.2 已知 m n个数 aij (i 1,2,, m; j 1,2,, n) 若变量 x1, x2 ,, xm能用变量 y1, y2 ,, yn线性的表示, 即
线



第二章
矩阵及其运算
矩阵是线性代数一个最基本的概念,其内容贯穿 于线性代数始终。矩阵把一组数用一张表的形式联系 到一起,视为一个整体,当作一个“量”来进行运算。 它可以使大量的相似的运算得到简化,使问题的叙述 更加简捷,更容易把握问题的整体和实质,而且适合 用计算机来处理。在数学、工程技术及生产实践中, 有很多问题都可以归结为矩阵的运算,可以用矩阵的 理论来解决。
一、矩阵的相等
同型矩阵:两个矩阵行数和列数都相等
矩阵相等:设两个矩阵 Am和n 是Bm同n 型矩阵, 且对应元素相等,即 aij bij (i 1,2,, m; j 1,2,, n)
则称矩阵A和B相等,记做 A 。B
例如:
x 0
1 y
48
3 0
1 2
4z
可得
x 3 y 2 z 8
二、矩阵的线性运算
相关文档
最新文档