点与圆的位置关系

合集下载

27.2.1点与圆的位置关系 (共12张PPT)

27.2.1点与圆的位置关系 (共12张PPT)
60 AC 5,对C点为圆心, 为半径的圆与点 13
A、B、D的位置关系是怎样的?
实践与探索
2:不在一条直线上的三点确定一个圆
问题与思考:平面上有一点A,经过A点的圆有几个? 圆心在哪里?平面上有两点A、B,经过A、B点的圆 有几个?圆心在哪里?平面上有三点A、B、C,经过 A、B、C三点的圆有几个? 圆心在哪里?
实践与探索
思考:如果A、B、C三点在一条直线上,能画出经过 三点的圆吗?为什么? 即有:不在同一条直线上的三个点确定一个圆 也就是说,经过三角形三个顶点可以画一个圆,并且 只能画一个.经过三角形三个顶点的圆叫做三角形的 外接圆.三角形外接圆的圆心叫做这个三角形的外心. 这个三角形叫做这个圆的内接三角形.三角形的外心 就是三角形三条边的垂直平分线的交点,它到三角形 三个顶点的距离相等. 思考:随意画出四点,其中任何三点都不在同一条直线上, 是否一定可以画一个圆经过这四点?请举例说明.
若点A在⊙O内 若点A在⊙O上 若点A在⊙O外
OA r OA r OA r
图 27.2.1
思考与练习 1、⊙O的半径 r 5cm ,圆心O到直线的AB距离 d OD 3cm。在直线AB上有P、Q、R三点, 且有 PD 4cm,QD 4cm, RD 4cm .P、Q、 R三点对于⊙O的位置各是怎么样的? 2、Rt ABC 中, C 90, CD AB ,AB 13,
课堂练习
判断题:
1、过三点一定可以作圆 (错) 2、三角形有且只有一个外接圆 (对) 3、任意一个圆有一个内接三角形,并且只有 一个内接三角形 (错 ) 4、三角形的外心就是这个三角形任意两边垂 直平分线的交点 (对 ) 5、三角形的外心到三边的距离相等 ( 错 )

点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系
知识点一、平面内点和圆的位置关系
平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内
当点在圆外时,d>r;反过来,当d>r时,点在圆外。
当点在圆上时,d=r;反过来,当d=r时,点在圆上。
当点在圆内时,d<r;反过来,当d<r时,点在圆内。
例1.如图1,已知矩形ABCD的边AB=4cm,AD=3cm。
(1)△ABC的形状是______,理由是______。
(2)求证:BC平分∠ABE;
(3)若∠A=60°,OA=2,求CE的长.
(3)若将图10-1中的半径OB所在直线向上平行移动到⊙O外的CF处,点E是DA的延长线与CF的交点,其他条件不变,如图10-3,那么上述结论CD=CE还成立吗?为什么?
题型四、切线长定理的运用
15.如图11,在△ABC中,O是△ABC的内心,若∠A=50°,则∠BOC=______。
16.如图12,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是______。
题型二、切线的判定
12.如图8,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。求证:AE与⊙O相切。
题型三、切线性质的应用及拓展
13.如图9,点P为⊙O外一点,PA为⊙O的切线,A为切点,OP交⊙O于点B,点C为优弧AMB上一点,若∠P=28°,求∠ACB的度数。
外离 d>R+r
外切 d=R+r
相交 R-r<d<R+r
内切 d=R-r
内含 0≤d<R-r(其中d=0,两圆同心)

与圆有关的位置关系

与圆有关的位置关系

一、点和圆的位置关系1、如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.(1)d>r点在圆外;(2)d=r点在圆上;(3)d<r点在圆内.2、确定圆的条件不在同一直线上的三个点确定一个圆.3、三角形的外接圆(1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.(2)三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.锐角三角形的外心在三角形内直角三角形的外心在斜边的中点钝角三角形的外心在三角形外4、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.直角三角形的内心公式:r=(a+b-c)/2(a、b为直角三角形的两条直角边,c为斜边)三角形的内心公式:r=2s/l(s为三角形的面积,l为三角形的周长5、反证法(1)定义:从命题结论的反面出发,经过推理论证,得出矛盾,从而证明命题成立,这种方法叫做反证法.(2)反证法证明命题的一般步骤①反设:作出与结论相反的假设;②归谬:由假设出发,利用学过的公理、定理推出矛盾;③作结论:由矛盾判定假设不正确,从而肯定命题的结论正确.二、直线和圆的位置关系(1)直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.(2)用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线L的距离为d,那么:(1)直线l和⊙O相交d<r(如图(1)所示);(2)直线l和⊙O相切d=r(如图(2)所示);(3)直线l和⊙O相离d>r(如图(3)所示).3、切线切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.切线的性质:圆的切线垂直于过切点的半径.切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.三、圆和圆的位置关系1)图示定义法(交点数)①相离:如果两个圆没有公共点,那么就说这两个圆相离,如上图(1)、(5)、(6)所示,其中(1)又叫做外离,(5)(6)叫做内含;②相切:如果两个圆只有一个公共点,那么就说这两个圆相切,如图(2)、(3)所示,其中(2)叫外切,(3)叫内切;③相交:如果两个圆有两个公共点,那么就说这两个圆相交,如图(4)所示.注意:圆与圆的位置关系按公共点的个数可分为0,1,2三大类即:(Ⅰ)没有公共点:(Ⅱ)有惟一公共点:(Ⅲ)有两个公共点:相交(2)用数量关系判断两圆的位置关系当两圆的半径一定时,两圆的位置关系与两圆圆心的距离(圆心距)的大小有关,设两圆半径分别为R和r(R>r),圆心距为d,则:(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r.二、重难点知识归纳与圆有关的位置关系的判断是重点,切线的判定和性质是重点也是难点.三、典型例题剖析例1、如图,已知矩形ABCD中,AB=3cm AD=4cm.若以A为圆心作圆,使B、C、D三点中至少有一点在圆外,且至少有一点在圆内,求⊙A的半径r的取值范围.解:∵矩形ABCD中,∠B=90°,AB=3cm,BC=AD=4cm,∴AC=5cm,其中点B到点A的距离最小,点C到点A的距离最大.若以AB为半径作圆,则没有点在⊙A内;若以AC为半径作圆,则没有点在⊙A外.故⊙A的半径r的取值范围是3cm<r<5cm.点拨:这里是由点与圆的位置确定半径r的大小.本例还要注意“至少”一词的理解.例2、阅读下列文字:在Rt△ABC中,∠C=90°,若∠A≠45°,则AC≠BC.证明:假设AC=BC.∵∠A≠45°,∠C=90°,∴∠A≠∠B.∴AC≠BC,这与题设矛盾,∴AC≠BC.上面的证明有没有错误,若没有错误,指出其证明方法是什么?若有错误,请给予指正.解:有错误.改正如下:假设AC=BC,则∠A=∠B,又∠C=90°,∴∠B=∠A=45°,这与∠A≠45°矛盾.∴AC=BC不成立.∴AC≠BC.点拨:运用反证法证题应从“假设”出发,即把假设当作已知条件,一步步有根据地推出与定义、定理、公理或已知矛盾的结论,从而判定“假设”不成立,进一步肯定命题的结论.例3、如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?解:以AB为直径的圆与CD是相切关系.理由如下:如图,过E作EF⊥CD,垂足为F.∵∠A=∠B=90°,∴EA⊥AD,EB⊥BC.∵DE平分∠ADC,CE平分∠BCD,∴.∴以AB为直径的圆的圆心为E,且,∴以AB为直径的圆与边CD相切.点拨:在证明直线与圆的位置关系时,常过圆心向直线作垂线段,再比较垂线段与半径的大小即可.例4、已知:AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD(如图).求证:DC是⊙O的切线.证明:连结OD...∵BC是⊙O的切线,∴∠OBC=90°.∴∠ODC=90°.∴OD⊥DC.∴DC是⊙O的切线.点拨:已知点B是切点,连结OB得OB⊥BC,要证CD是切线,也要连结OD,证OD ⊥CD,再沟通已知与未知的联系即可.例5、如图,AB是⊙O的直径,AD、BC、CD是⊙O的切线,切点分别是A、B、E,DO、AE相交于点F,CO、BE相交于点G.求证:(1)CO⊥DO;(2)四边形EFOG是矩形.分析:(1)欲证CO⊥DO,只需证明∠ODC+∠OCD=90°.根据切线长定理,得.再由切线的性质定理,不难得AD∥BC,从而∠ADC+∠BCD=180°,(1)获证.(2)仍由切线长定理,可证AE⊥DO,BE⊥CO.而∠AEB=90°,(2)获证.证明:(1) ∵AB是⊙O的直径,AD、BC是⊙O的切线,∴AD⊥AB,BC⊥AB.∴AD∥BC.∴∠ADC+∠BCD=180°.又由切线长定理,得.∴∠ODC+∠OCD=90°,即∠DOC=90°.故CO⊥DO.(2)∵DA、DE与⊙O相切于点A、E,∴DA=DE.∴AE⊥DO.∴∠EFO=90°.同理,∠EGO=90°.又∠DOC=90°,∴四边形EFOG是矩形.点评:在有关圆的问题,切线长定理与切线的性质定理的综合应用往往是证明线段相等、角相等、弧相等、垂直关系的重要依据.例6、已知⊙O1与⊙O2的半径分别为R,r,且R≥r,r是方程x2-6x+3=0的两根.设O1O2=d,那么:①若d=7,试判定⊙O1与⊙O2的位置关系;②若,试判定⊙O1与⊙O2的位置关系;③若d=5,试判定⊙O1与⊙O2的位置关系;④若两圆相切,求d的值.解:∵R、r是方程x2-6x+3=0的两根,∴R+r=6,R·r=3.∴.(1)∵d=7,即d>R+r,∴两圆外离.(2)∵,即d<R-r,∴两圆内含.(3)∵d=5,即R-r<d<R+r,∴两圆相交.(4)要使⊙O1与⊙O2相切,则d=R+r或d=R-r,∴d=6或时,两圆相切.点拨:由两圆的位置与两圆的半径、圆心距之间的数量关系知,应先分别求出R+r、R-r,然后再比较d与R+r、R-r的大小从而作出判断.例7、已知⊙O1与⊙O2相交于A、B两点,且O2点在⊙O1上.(1)如图(1),AD是⊙O2的直径,连结DB,并延长交⊙O1于C.求证:CO2⊥AD.(2)如图(2),如果AD是⊙O2的一条弦,连结DB并延长交⊙O1于C,那么CO2所在的直线是否与AD垂直?证明你的结论.证明:(1)连结AB,则有∠AO2C=∠ABC=180°-∠ABD=90°,∴CO2⊥AD.(2)作直径AD1交⊙O2于D1,连结D1B并延长交⊙O1于C1.由第(1)问知:∠AO2C1=90°,∴∠AD1B+∠BC1O2=90°.在⊙O2中,∠AD1B=∠ADB;在⊙O1中,∠BC1O2=∠BCO2.∴∠ADB+∠BCO2=90°.∴CE⊥AD.点拨:解决此类问题,关键是要找出一般与特殊的关系,在图形变换中,要找出不变量四、圆内接多边形内接多边形:多边形的所有定点都在圆上内接四边形:在同圆内,四边形的四个顶点均在同一个圆上的四边形1、圆内接四边形的对角互补2、圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)。

点与圆的位置关系

点与圆的位置关系
这种证明方法叫做反证法.
试试看!
用反证法证明(填空):在三角形的内角中, 至少有一个角大于或等于60° 已知:如图, ∠A,∠B,∠C是△ABC的内角
求证: ∠A,∠B,∠C中至少有一个角大 于或等于60度
假设所求证的结论不成立,即 B 证明 ∠A__60°, ∠B__60°,∠C__60° < < < 则 ∠A+∠B+∠C < 180度
圆外的点
圆上的点
圆内的点
平面上的一个圆,把平面上的点分成三类:圆上的 点,圆内的点和圆外的点。 圆的内部可以看成是到圆心的距离小于半径的的点的集 合 ; 圆 的 外 部 可 以 看 成 是 到圆心的距离大于半径的点的集合 。
典型例题
例:如图已知矩形ABCD的边AB=3厘米,AD=4厘 米
(1)以点A为圆心,3厘米为半径作 圆A,则点B、C、D与圆A的位置关系 如何? (B在圆上,D在圆外,C在圆外)
问:⊙O的半径6cm,当OP=6时, 点P在圆上 ;当OP <6 时点P 在圆内;当OP ≤6 时,点P不在 圆外。
画出由所有到已知点O的距离大于 或等于2CM并且小于或等于3CM的 点组成的图形。
O
O
问题:多少个点可以确定一个圆呢? 解决: 步骤1:过一点,可以画多少个圆?
步骤2:过两点,可以画多少个圆? 步骤3:过三个点,可以做多少个圆?
A
D
(2)以点A为圆心,4厘米为半径作圆A, 则点B、C、D与圆A的位置关系如何?
(B在圆内,D在圆上,C在圆外)
B
C
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、 D与圆A的位置关系如何? (B在圆内,D在圆内,C在圆上)
问1:⊙O的半径10cm,A、B、C三点 到圆心的距离分别为8cm、10cm、 12cm,则点A、B、C与⊙O的位置关 系是: 点A在 圆内 ∵OA=8<10 ∴点A在圆内 点B在 圆上 ∵OB=10=10 ∴点B在圆上 点C在 圆外 ∵OC=12>10 ∴点C在圆外

点与圆的位置关系

点与圆的位置关系

点与圆有关的位置关系一、点与圆的位置关系:点P与⊙O的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔;rd>点P在圆上⇔;rd=点P在圆内⇔.rd<注意:OP长是两个点之间距离,不是点到直线距离,P点到圆心距离与半径大小关系决定P点与圆的位置关系.过已知点画圆:(1)过已知一点画圆→可画无数个圆→圆心无规律可循;(2)过已知两点画圆→可画无数个圆→圆心在连接两点的线段垂直平分线上;(3)过不在同一直线上的三点画圆→只可画一个圆→圆心是连接两点的线段垂直平分线的交点. 三角形的外接圆:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,这个三角形叫做这个圆的内接三角形.三角形的外心:三角形三条边垂直平分线的交点.(1)三角形的外心到三角形三个顶点的距离相等.(2)锐角三角形的外心在三角形的内部,直角三角形的外心是三角形的斜边中点,钝角三角形的外心在三角形的外部,反之成立.任何一个三角形都有唯一的外接圆反证法定义:不是直接从原题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.反证法的一般步骤:(1)假设命题的结论不成立;(2)推理得出矛盾;(3)得出结论.类型1. 点与圆的位置关系例1.如图,在ABCRt∆中,∠C=900,BC=3cm,AC=4cm,以B为圆心,以BC为半径作⊙B,问点A,C及AB、AC的中点D、E与⊙B有怎样的位置关系?变式题:如图,在矩形ABCD中,AB=3,AD=4,以A为圆心,使B、C、D三点中至少有一个点在圆内,至少有一个点在圆外,求此圆半径R的取值范围.例3. 如图⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是多少?例4. 如图是某平原地区的三个村庄A 、B 、C ,现计划新建一个电站,为了使变电站到三个村庄的距离相等,请你帮助规划者确定变电站P 的位置.例5. 在等腰三角形ABC 中B,C 为定点,且AC=AB ,D 是BC 的中点,以BC 为直径作⊙D ,回答下列问题:(1)∠A 等于多少度时,点A 在⊙D 上? (2)∠A 等于多少度时,点A 在⊙D 内?(3)∠A 等于多少度时,点A 在⊙D 外?类型2. 证明几个点在同一个圆上例1. 如图,已知菱形ABCD 的对角线为AC 和BD ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,求证:E 、F 、G 、H 四个点在同一个圆上.例2. 如图,∠A=∠C=∠D =900,求证:A 、B 、C 、D 、E 在同一个圆上.类型3. 不在同一直线上的三点确定一个圆例1. (1)已知一个三角形的三边长分别为6cm 、8cm 、10cm ,则这个三角形外接圆面积等于 2cm .(2) 下列说法正确的是( )A. 经过三个点一定可以作圆B. 任意一个圆一定有内接三角形,并且只有一个内接三角形C. 任意一个三角形一定有一个外接圆,并且只有一个外接D. 三角形的外心到三角形各边距离相A B C D O H E G F A E B C D . A . B . C例2. 如图,∆ABC 中AB=AC=10,BC=12,求∆ABC 的外接圆半径.类型4. 反证法例1. 求证:经过同一直线上的三个点不能作出一个圆.例2. 求证:在一个三角形中,至少有一个内角小于或等于600.例3. 用反证法证明:圆内不是直径的两条弦不能互相平分.例4. 用反证法证明:已知,如图AB ∥CD ,CD ⊥EF ,垂足是N ,求证:AB ⊥EF.作业:填空题: 1.若⊙O 的半径为r ,点A 到圆心O 的距离为d ,当点A 在圆外时,d ______r ;当点A 在圆上时,d ______r ;当点A 在圆内时,d ______r .2.在△ABC 中,∠C =90°,AC =2cm ,BC =4cm ,CM 是中线,以C 为圆心,以cm 5长为半径画圆,则A 、B 、C 、M 四点在圆外的有点______,在圆上的有点______,在圆内的有点______.3.已知⊙O 的半径为1,点P 与O 的距离为d ,且方程x 2-2x +d =0有实数根,则P 在 ⊙O 的______.4.过一点A 可作______个圆,过两点A 、B 可作______个圆,且圆心在线段AB 的______上,过三点A 、B 、C ,当这三点______时能且只能作一个圆,且圆心在______上.5.等边三角形的边长为6cm ,则它的外接圆的面积为______.6.在Rt △ABC 中,已知两直角边的长分别为6cm 和8cm ,那么Rt △ABC 的外接圆的面积是7.锐角三角形的外心在______,直角三角形的外心在______,钝角三角形的外心在______. 选择题:8.两个圆的圆心都是O ,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( )(A)⊙r 1内 (B)⊙r 2外EF AC9.⊙O的半径r=10cm,圆心到直线L的距离OM=8cm,在直线L上有一点P,且PM=6,则点P( )(A)在⊙O内(B)在⊙O上(C)在⊙O外(D)可能在⊙O内也可能在⊙O外10.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是( )(A)点P在⊙O内(B)点P在⊙O上(C)点P在⊙O外(B)点P在⊙O上或在⊙O外11.三角形的外心是( )(A)三条中线的交点(B)三条中垂线的交点(C)三条高的交点(D)三条角平分线的交点解答题:12.如图1,使用直尺和圆规确定如图所示的破残轮片的圆心位置.图113.点P到⊙O上的点的最大距离是6cm,最小距离是2cm,求⊙O的半径.14.某商场有三个销量较大的柜台,经理想修建一个收银台,使得三个柜台到收银台的距离相等.如果三个柜台的位置如图2所示,那么如何确定收银台的位置?图2问题探究:15.已知:如图3,三个边长为2a个单位长度的正方形如图所示方式摆放.图①图②图③∴______为所求作的圆.∴______为所求作的圆.(1)画出覆盖图①的最小圆;(2)将图①中上面的正方形向右平移a个单位长度,得到图②,请用尺规作出覆盖新图形的最小圆(不写作法,保留作图痕迹);(3)可以利用图③,比较(1)和(2)中的两个圆的大小,通过计算简要说明理由.。

圆与圆的位置关系

圆与圆的位置关系

题型三: 与两圆相切有关的问题 例2:求与圆x2+y2-2x=0外切且与直线 x 3 y 0 相切于点 (3, 3) 的圆的方程. 分析:先设出圆的方程(x-a) 2+(y-b) 2=r2 (r>0),利用 题设条件,得到关于a、b、r的三个方程,解方程组 求得a,b,r即可.
分析:因两圆的交点坐标同时满足两个圆的方程,联立方程组消去x2项、y2项,即 得两圆的两个交点所在的直线方程.利用勾股定理可求出两圆公共弦长.
解:(1) 联立方程得
2 2 ① x y 4 0 2 2 x y 4 x 4 y 12 0 ②
① - ② 得: x y 2 0 ③
2 方程④根的判别式 =(-2) -4 1 ( 3)
16 0
所以,方程④有两个不相等的实数根,则方程组有两组不同的实数 解,因此圆C1与圆C2相交。
2 2 2 2 例2:已知圆C1: x y 2 x 8 y 8 0 圆C2: x y 4 x 4 y 2 0


解:设所求圆的方程为 (x-a)2+(y-b) 2=r2 (r>0), 将x2+y2-2x=0化为标准形式(x-1) 2+y2=1,由题意可得
规律技巧:本题利用了待定系数法,设出所求圆的方程,根 据圆与圆相切,圆与直线相切的条件列出关于a,b,r的 方程组求解.
变式训练2:以(3,-4)为圆心,且与圆x2+y2=64内切的圆的 方程. 解:设所求圆的半径为r, 2 2 3 ( 4) | 8 r |, 则 ∴r=3或r=13, 故所求圆的方程为 (x-3) 2+(y+4) 2=9或(x-3) 2+(y+4) 2=169.

点和圆的位置关系

点和圆的位置关系

24.2.1 点和圆的位置关系教学内容1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.难点:讲授反证法的证明思路.关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆.教学过程一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图知,圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.二、探索新知1、由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外⇒d>r点P在圆上⇒d=r点P在圆内⇒d<r反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外⇔d>r点P在圆上⇔d=r点P在圆内⇔d<r这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.2、研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.AlBACDOGF(1) (2) (3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C•三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.即:也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.3、经过同一条直线上的三个点能作出一个圆吗?如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆l1P的圆心为P ,那么点P 既在线段AB 的垂直平分线L 1,又在线段BC 的垂直平分线L 2,•即点P 为L 1与L 2点,而L 1⊥L ,L 2⊥L ,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.4、总结反证法的定义步骤在某些情景下,反证法是很有效的证明方法.例如:92页我们要证明AB ∥CD ,那么∠1=∠2.5、例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心. 作法:三、巩固练习教材P93 练习1、2、3、4.四、归纳总结(学生总结,老师点评) 本节课应掌握:1、点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,则;;.P d r P d r P d r ⇔>⎧⎪⇔=⎨⎪⇔<⎩点在圆外点在圆上点在圆内 2.不在同一直线上的三个点确定一个圆. 3.三角形外接圆和三角形外心的概念. 4.反证法的证明思想. 5.以上内容的应用. 五、布置作业1.教材P101 复习巩固 1、2、3.课题检测一、选择题.1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;•③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(• )A.1 B.2 C.3 D.42.如图,Rt△ABC,∠C=90°,AC=3cm,BC=4cm,则它的外心与顶点C的距离为().A.2.5 B.2.5cm C.3cm D.4cmB ACACDO3.如图,△ABC内接于⊙O,AB是直径,BC=4,AC=3,CD平分∠ACB,则弦AD长为()A.522 B.52C2 D.3二、填空题.1.经过一点P可以作_______个圆;经过两点P、Q可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.2.边长为a的等边三角形外接圆半径为_______,圆心到边的距离为________.3.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.三、综合提高题.1.如图,⊙O是△ABC的外接圆,D是AB上一点,连结BD,并延长至E,连结AD,•若AB=AC,∠ADE=65°,试求∠BOC的度数.B CO2.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图24-49所示,A、B、C•为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.。

点与圆的位置关系判断方法 几何法 代数法

点与圆的位置关系判断方法 几何法 代数法

点与圆的位置关系判断方法几何法代数法以点与圆的位置关系判断方法:几何法与代数法引言:在几何学中,点与圆的位置关系是一个重要的研究方向。

几何法和代数法是两种常用的方法,用于判断点与圆之间的位置关系。

本文将介绍这两种方法,并分析它们的优缺点。

一、几何法:几何法是通过几何性质和图形关系来判断点与圆的位置关系的方法。

下面将介绍几种常见的几何法判断方法。

1. 切线法:如果一个点在圆上,则通过该点的切线与圆相切。

因此,我们可以通过判断点到圆心的距离与圆的半径之间的关系,来确定点与圆的位置关系。

具体而言,如果点到圆心的距离等于圆的半径,则点在圆上;如果点到圆心的距离小于圆的半径,则点在圆内;如果点到圆心的距离大于圆的半径,则点在圆外。

2. 弦法:如果一个点在圆的内部,则通过该点的弦必定在圆的内部。

因此,我们可以通过判断点与圆心的距离与弦的长度之间的关系,来确定点与圆的位置关系。

具体而言,如果点到圆心的距离小于弦的长度的一半,则点在圆内;如果点到圆心的距离等于弦的长度的一半,则点在圆上;如果点到圆心的距离大于弦的长度的一半,则点在圆外。

3. 弧度法:如果一个点在圆的外部,则通过该点的弧度必定在圆的外部。

因此,我们可以通过计算点与圆心所在直线与圆的交点的弧度,来确定点与圆的位置关系。

具体而言,如果点与圆心所在直线的交点在圆的内部,则点在圆内;如果点与圆心所在直线的交点在圆上,则点在圆上;如果点与圆心所在直线的交点在圆的外部,则点在圆外。

二、代数法:代数法是通过代数方程来判断点与圆的位置关系的方法。

下面将介绍几种常见的代数法判断方法。

1. 坐标代入法:我们可以将点的坐标代入圆的方程,得到一个代数方程。

通过判断代数方程的解的情况,来确定点与圆的位置关系。

具体而言,如果代数方程有两个不相等的实数解,则点在圆的外部;如果代数方程有两个相等的实数解,则点在圆上;如果代数方程没有实数解,则点在圆的内部。

2. 距离公式法:我们可以利用点与圆心之间的距离公式,得到一个代数方程。

点与圆的位置关系

点与圆的位置关系

D
提升:已知菱形A BCD的对角线为 AC和 BD,E、F、 G、H分别是AB、 A BC、CD、DA的 中点,求证E、F、 G、H四个点在同 一个圆上。
H
G
C
O
F
E
B
思路:要证明几个点在同一圆上,就是证明这几个点 到某一个定点的距离相等
回顾与思考
• 这节课你学到了哪些知识?
注意:点与圆的位置关系和点到圆 心的距离的数关系是互相对应的,即 知道位置关系可以确定数量关系,知 道数量关系可以确定位置关系.
D C
A 45° B 400 东

∴ A市会受到沙尘暴影响.
点与圆的位置关系 设⊙O 的半径为r,点P到圆心的距离OP=d, 则有: p
点P在⊙O内
点P在⊙O上 点P在⊙O外
读作“等价于”, 它表示从符号左端 可以得到右端,也 可以从右端得到左 端。
d<r
d
r d p
d=r
d>r
r
P d r
1、平面上有一点A,经过已知A点的圆有 几个?圆心在哪里?
经过三角形三个顶点可以画一个圆,并且只能画一个. 经过三角形三个顶点的圆叫做三 角形的外接圆。 三角形外接圆的圆心叫做这个 三角形的外心。 B 这个三角形叫做这个圆的内 接三角形。
A

O
C
三角形的外心就是三角形三条边的垂直平分 线的交点,它到三角形三个顶点的距离相等。
一个三角形的外接圆有几个? 一个圆的内接三角形有几个?
A
思考:点与圆有几种不同的位置关系? 点与圆的三种位置关系: 点在圆内、点在圆上、点在圆外。
语言描述 图形表示 点在圆内
圆心到点的距离d 与半径r的关系
点在圆内:r>d;

圆与点的位置关系

圆与点的位置关系

圆和点之间有三种不同的位置关系:
1.点在圆内:当一个点位于圆的内部时,它与圆心的距离小于圆的半径。

2.点在圆上:当一个点位于圆的边界上时,它与圆心的距离等于圆的半径。

3.点在圆外:当一个点位于圆的外部时,它与圆心的距离大于圆的半径。

这些位置关系可以用来解决圆和点之间的几何问题,例如圆的内切圆,外接圆,圆的直径等等。

另外在判断圆和点之间位置关系时,我们还可以使用圆方程来判断。

圆方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)是圆心坐标,r是圆的半径。

如果给定点(x0,y0) 满足这个方程,则说明该点在圆内,如果点到圆心的距离小于半径,则说明该点在圆上。

如果点到圆心的距离大于半径,则说明该点在圆外。

这种方法可以适用于所有的圆,不管圆的半径是否为0,也不管圆的半径是否为正。

点、直线、圆与圆的位置关系(教师版)

点、直线、圆与圆的位置关系(教师版)

点、直线、圆与圆的位置关系知识梳理要点一、点和圆的位置关系1.点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有2.三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等.要点诠释:(1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系;(2)不在同一直线上的三个点确定一个圆.要点二、直线和圆的位置关系1.直线和圆的三种位置关系:(1) 相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2) 相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3) 相离:直线和圆没有公共点时,叫做直线和圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.如果⊙O的半径为r,圆心O到直线的距离为d,那么要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点三、切线的判定定理、性质定理和切线长定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可.2.切线的性质定理:圆的切线垂直于过切点的半径.3.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.4.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.5.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.6.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).要点四、圆和圆的位置关系1.圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.两圆相交:两个圆有两个公共点时,叫做这两圆相交.两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系:例题解析设⊙O 1的半径为r 1,⊙O 2半径为r 2, 两圆心O 1O 2的距离为d ,则:两圆外离 d >r 1+r 2 两圆外切 d=r 1+r 2 两圆相交 r 1-r 2<d <r 1+r 2 (r 1≥r 2) 两圆内切 d=r 1-r 2 (r 1>r 2) 两圆内含 d <r 1-r 2 (r 1>r 2) 要点诠释:(1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数 分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交; (2) 内切、外切统称为相切,唯一的公共点叫作切点;(3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.类型一、点与圆的位置关系1.已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.【答案与解析】(1)当d=4 cm 时,∵d <r ,∴点P 在圆内; (2)当d=5 cm 时,∵d=r ,∴点P 在圆上; (3)当d=6 cm 时,∵d >r ,∴点P 在圆外.【总结升华】利用点与圆的位置关系,由点到圆心的距离与半径的大小比较.举一反三:【变式】点A 在以O 为圆心,3 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是________.【答案】0≤d <3.2.知⊙O 的半径r =5cm ,圆心O 到直线的距离d =OD =3cm ,在直线上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点与⊙O 位置关系各是怎样的? 【答案与解析】依题意画出图形(如图所示),计算出P 、Q 、R 三点到圆心的距离与圆的半径比较大小. 连接PO ,QO ,RO .∵ PD =4cm ,OD =3cm ,∴ PO =. l l 2222435PD OD r +=+==∴ 点P 在⊙O 上.,∴ 点Q 在⊙O 外.,∴ 点R 在⊙O 内.【总结升华】判断点与圆的位置关系,关键是计算出点与圆心的距离,再与圆的半径比较大小,即可得出结论.类型二、直线与圆的位置关系3在Rt △ABC 中,∠C=90°,AC=3厘米,BC=4厘米,以C 为圆心,r 为半径的圆与AB 有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】过C 点作CD ⊥AB 于D ,在Rt △ABC 中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB ·CD=AC ·BC ,∴(cm), (1)当r =2cm 时 CD >r ,∴圆C 与AB 相离; (2)当r= 2.4cm 时,CD=r ,∴圆C 与AB 相切; (3)当r=3cm 时,CD <r ,∴圆C 与AB 相交.【总结升华】欲判定⊙C 与直线AB 的关系,只需先求出圆心C 到直线AB 的距离CD 的长,然后再与r 比较即可.举一反三:【变式】如图,P 点是∠AOB 的平分线OC 上一点,PE ⊥OA 于E ,以P 为圆心,PE 为半径作⊙P .求证:⊙P 与OB 相切。

点与圆的位置关系

点与圆的位置关系
,、
为 它 是 R AB C. t B t E R a DC斜 边
中点 .
圆 卜.

经过 已知点作圜( 确定圆有两个条件 : ①圆心 , ②半径)
1 过 一个 已知 点 可 以作 无 数个 圆 , 。 圆心 、 径 可 以随便 定. 半 2 过 两个 已知 点 可 以作 无数 个 圆 ,圆心在 此 两点线 段 的垂直 . 平分 线上 , 图 ( , 0 ) 如 0。 , ,. D 3 过 三个 已知 点作 圆 : . 没有 .当三点 共线 时 , ( 找不 到 圆心 , 不 出圆 ) 作


















1 9
我 从 不 认 为 安 逸 和 享 受 就 是 生 活 本 身 的 目的 。— — 阿尔 伯 特 ・ 因 斯 坦 爱
●一

V 册

例5 如图 , 0是 △4 C的外 心 , C 2 H, B B = 4C ]0到 B C的距 离
为 5c 求 △A日 的外 接 圆 的 半 径 . m. C
关 系 比较 .
反之 . 已知 点与 圆心 的距 离与半 径 r的大小关 系 , 可知点 与 圆 的位 置关 系. 点 在 圆内. Ⅳ 点 ? 在 圆上. 0 = 、 , D 点 J在 圆外. p 综 上 , 点 到 圆心距 离为 d 圆半 径为 r 可得 设 , ,
@d r A在O0外 ; =cA在o0上 ; < > ̄ c @d r  ̄ ③d怍 在O0内.
A = / 3 = . B 、 4+ 5

C A

点与圆、直线和圆的位置关系

点与圆、直线和圆的位置关系

பைடு நூலகம்D. 150∘
3. 已知 ⊙ ������ 的半径为 4 cm,如果圆心 ������ 到直线 ������ 的距离为 3.5 cm,那么直线 ������ 与 ⊙ ������ 的位置关系是 ( A. 相交 4. 若点 ������ ������, 0 为( ) B. ������ < 4 D. ������ > 4 或 ������ < −2 ) B. 相切 在以点 ������ 1,0 C. 相离 D. 不确定
d>R. d=R. d<R.
4、切线 (1)切线的判定: ①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离 d 等于圆的半径的直线是圆的切线. (2)切线长: 从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线 长. (3)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆 心的连线平分两条切线的夹角. 一、 选择题 1、1. ⊙ ������ 的半径为 5,圆心 ������ 到直线的距离为 3,则直线 ������ 与 ⊙ ������ 的位置关系
A. 点 ������ 在 ⊙ ������ 上 C. 点 ������ 在 ⊙ ������ 外
7. 如图,已知直线 ������������ 切 ⊙ ������ 于点 ������,������������ 为 ⊙ ������ 的直径,若 ∠������������������ = 123∘ ,则 ������������ 所对的圆心角的度数为 ( )
A. 点 ������ 在 ⊙ ������ 上 C. 点 ������ 在 ⊙ ������ 外
6. 已知 ⊙ ������ 的半径为 8,点 ������ 到圆心 ������ 的距离为 3,那么点 ������ 与 ⊙ ������ 的位置关 系是 ( ) B. 点 ������ 在 ⊙ ������ 内 D. 无法确定

点与圆位置关系

点与圆位置关系

点与圆位置关系点和圆的位置关系有三种:点在圆外,点在圆上,点在圆内,设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点在圆内⇔d<r.直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r;切线的判定和性质1、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理圆的切线垂直于经过切点的半径。

切线长定理1、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

三角形的内切圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

过三点的圆不在同一直线上的三点确定一个圆、三角形的外接圆、1.若三角形的三边长是3、4、5,则其外接圆的半径是____________;2.经过三角形各顶点的圆叫做这个三角形的圆;3.如图9,已知△ABC,AC=3,BC=4,∠C=90°,以点C为圆心作⊙C,半径为r.(1)当r取什么值时,点A、B在⊙C外.(2)当r在什么范围时,点A在⊙C内,点B在⊙C外.ABC4. △ABC 内接于⊙O ,∠ACB =36°,那么∠AOB 的度数为( )A .36°B .54°C .72°D .108°5. 点A 到圆O 的最近点的距离为10厘米,点A 到圆上最远点的距离为6厘米,则圆O 的半径是(A )8厘米 (B )2厘米 (C )8厘米或2厘米 (D )以上答案都不对6. ABC 内接于⊙O ,∠ACB =36°,那么∠AOB 的度数为( )A .36°B .54°C .72°D .108°直线与圆的位置关系:(1)直线l 和⊙O 相交⇔d>r (2)直线l 与⊙O 相切⇔d=r (3)直线l 和⊙O 相离⇔d<r ,其中r 为⊙O 的半径,d 为圆心O 到直线l 的距离。

点与圆的位置关系

点与圆的位置关系

学法提炼1、解题方法1、判断一个点与圆的位置关系,只需求出这个点到圆心的距离,然后和半径的长度比较大小即可得解。

2、判断多点共圆只需要证明这些点到同一个定点的距离相等即可。

2、注意事项1、圆是指“圆周”,而非“圆面”。

知识点一:圆的概念圆的定义有以下两种:(1)用点的集合观点给圆下定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为圆心,定长称为半径的长(通常也称为半径).以点为圆心O的圆记作O,读作“圆O".(2)描述性定义:如图所示,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A所形成的图形叫做圆.固定端点O叫做圆心.线段OA叫做半径.注意:(1)圆上各点到定点(圆心O)的距离都等于定长(半径r).(2)到定点O的距离等于定长r的所有点都在同一个圆上.(3)确定一个圆需要两个要素:一是圆心,二是半径,二者缺一不可,圆心确定其位置,半径确定其大小.1、下面关于圆的叙述正确的是( )A.圆是一个面B.圆是一条封闭曲线C.圆是由圆心唯一确定的D.圆是到定点的距离等于或小于定长的点的集合2、如图,一根长2a的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行,请判断木棍在滑动过程中点P的运动规律,并说明理由,3、下列说法:①经过点P 的圆有无数个;②以点P 为圆心的圆有无数个;③半径为3cm 且经过点P 的圆有无数个;④以点P 为圆心,3cm 为半径的圆有无数个.其中正确的有()个.A .1B .2C .3D .4一、专题精讲题型一:有关多点共圆问题的证明例1、如图,菱形ABCD 的对角线AC 和BD 相交于点O 、E 、F 、C 、H 分别为边AB 、BC 、CD 、DA 的中点,那么点E 、F 、G 、H 是否在同一个圆上?分析:只需说明E 、F ,、G 、H 四点到点O 的距离相等即可,故可连接OE 、OF 、OG 、OH ,并证明OE =OF =OG =OH 即可,解:E 、F 、G 、H 在以点O 为圆心的圆上,理由如下:连接OE 、OF 、OG 、OH . ∵四边形ABCD 是菱形,∴AB =BC =CD =DA .AC ⊥BD .又∵在Rt △AOB 中,点E 为AB 边的中点,.21AB OE =∴ 同理: 111,,.222OF BC OG CD OH DA === ∴OE =OF =OG =OH .∴E 、F 、G 、H 四点在以D 为圆心,OE 为半径的圆上,点拨:判断多点共圆只需要证明这些点到同一个定点的距离相等即可.题型二:利用点与圆的位置关系确定半径的取值范围例2、如图所示,已知矩形ABCD的边AB=3cm,AD=4cm.(1)以点A为圆心,4cm长为半径作OA,则点B、C、D与OA的位置关系如何?(2)若以点A为圆心作OA,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则OA的半径r的取值范围是多少?题型三:利用点与圆的位置关系解决实际问题例4、如图所示,海军部队在灯塔A的周围进行爆破作业,A的周围3km的水域为危险水域,有一渔船误入离灯塔A2km的B处,为了尽快驶离危险区域,该船应按哪条射线方向航行?请给予说明,夯实基础1.下列条件中,能确定圆的是( ).A.以点O为圆心B.以2cm为半径C.以点O为圆心,以5cm长为半径D.经过已知点A2.已知OO的半径为4cm,点A为线段OP的中点,且OP=8cm,则点A与OO的位置关系是( ).A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定3. OO的半径为5,圆心D的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是( ).A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外4.如果一个直角三角形的两条直角边AB=8cm,BC=6cm,以点B为圆心,以某一直角边长为半径画圆,则( ).A.若点A在OB上,则点C在⊙B外B.若点C在OB上,则点A在⊙B外C.若点A在OB上,则点C在⊙B上D.以上都不正确5.如图所示,已知AB=2cm.到点A距离小于1cm,且到点B的距离大于1.5cm的所有点组成的图形大致是( )中的阴影部分(选项中各图阴影部分均不包含边界).6.如图所示,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,以CB长为半径的圆恰好经过AB的中点D,则AC的长等于( ).A.5DB.C.67.在△ABC中,∠C=90°,∠B=60°,AC=3,以点C为圆心,以r为半径作OC,如果点B在圆内,而点A在圆外,那么r的取值范围是____8.已知⊙O的半径为1,点P到圆心的距离为m,且关于X的一元二次方程x2-2x+m=0有两个不相等的实数根,则点P与⊙O的位置关系是____9. 如图,A、B城是两座现代城市,C城是一个古城遗址,C城在A城的北偏东30度,在B城的北偏西45度,且C城与A城相距120km,B城在A城的正东方向.以点C为圆心,60km为半径的圆形区域内有古迹和地下文物.现要在A、B两城市间修建一条笔直的高速公路.(1)请你计算公路的长度;(结果保留根号)(2)请你分析这条公路有没有可能对文物古迹造成损毁.10.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.参考答案1.C2.B 提示:OA =r =4cm .3.A 提示:5OP ==即d <r4.B 提示:按题中的数量关系作图观察.5.A 提示:到点A 距离小于1cm ,且到点B 距离大于1.5cm 的所有点组成的图形是OA 的内部与OB 的外部的公共部分(不包含边界).6.A 提示:连接CD 。

点和圆的三种位置关系

点和圆的三种位置关系

特殊三角形外接圆、内切圆半径的求法: B 直角三角形外接圆、 内切圆半径的求法 c O a+b-c c
R= — 2
r = ————
2
a
等边三角形外接圆、 内切圆半径的求法
A
I A b C
基本思路:
构造三角形BOD,BO为外接 圆半径,DO为内切圆半径。
C
R B
O r
D
如图,在ΔABC中,AC=6,BC=8,AB=10, 求ΔABC内切圆的半径.
6、(2011湖北武汉)如图,PA为⊙O的切线,A为 切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B. 延长BO与⊙O交于点D,与PA的延长线交于点E. (1)求证:PB为⊙O的切线; (2)若tan∠ABE=,求sinE的值.
7、(2011浙江舟山)如图,△ABC中,以BC为直径 的圆交AB于点D,∠ACD=∠ABC. (1)求证:CA是圆的切线; (2)若点E是BC上一点,已知BE=6,
点和圆的三种位置关系
图形

点与圆的位置关 系
点在圆外 点在圆上
圆心到点的距离d 与半径r的关系
d>r d=r
A A • •o A •• o
•o
点在圆内
d<r
直线和圆的位置关系
•o
l
•o
M
l
•o
l
直线和圆有两个公共点时,叫做 直线和圆相交。这时直线叫做圆 的割线 直线和圆有唯一公共点时,叫做 直线和圆相切。这时直线叫做圆 的切线。唯一的公共点叫切点。 直线和圆没有公共点时,叫 做直线和圆相离。
小结:直线和圆的位置关系
直线和圆的位置 图形 相交 r d •O 相切 •O r d 相离 r • d

点与圆直线与圆的位置关系一篇文章全学会

点与圆直线与圆的位置关系一篇文章全学会

点与圆、直线与圆的位置关系,一篇文章全学会!参考答案点与圆的位置关系1.点与圆的位置关系设☉O的半径为r,点P到圆心的距离OP=d,则有:2.圆的确定易错警示理解“不在同一条直线上的三个点确定一个圆”需要注意两点:①“不在同一条直线上”是必不可少的条件;②“确定一个圆”应理解为“有且仅有一个圆”。

3.三角形的外接圆①概念:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆。

②外心:三角形三条边的垂直平分线的交点,叫做这个三角形的外心。

③性质:a.三角形的外心到三个顶点的距离相等;b. 如图,☉O为△ABC的外接圆,∠BOC = 2∠BAC,∠AOC = 2∠ABC,∠AOB= 2∠ACB。

直线与圆的位置关系1.直线与圆的位置关系①相交:直线与圆有两个公共点,这时我们说这条直线与圆相交,这条直线叫做圆的割线;②相切:直线与圆有一个公共点,这时我们说这条直线与圆相切,这条直线叫做圆的切线,这个点叫做切点;③相离:直线与圆没有公共点,这时我们说这条直线与圆相离。

如下表,r为圆的半径,d为圆心到直线的距离,则有:2.切线①切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

例如:如图,若AB是☉O的切线,点C是切点,则OC⊥AB。

①切线的判定方法:a. 和圆只有一个公共点的直线是圆的切线.b. 到圆心的距离等于半径的直线是圆的切线.②切线的性质定理:圆的切线垂直于过切点的半径。

例如:如上图,若OC是☉O的半径,直线AB⊥OC于点C,则直线AB是☉O 的切线。

3.切线长(1) 切线长的概念:经过圆外一点的切线,这点与切点之间的线段的长,叫做这点到圆的切线长。

例如:如图,过圆外一点P有两条直线PA,PB分别与☉O相切,PA,PB 两条线段的长为点P到☉O的切线长。

②切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

例如:如上图,PA,PB分别切☉O于A,B两点,则PA=PB,∠OPA=∠OPB= ½∠APB。

点与圆的位置关系、直线与圆的位置关系

点与圆的位置关系、直线与圆的位置关系

点与圆的位置关系、直线与圆的位置关系知识梳理:考点一点与圆的位置关系1.点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.如果圆的半径是r,点到圆心的距离为d,那么:(1)点在圆上⇔d=r;(2)点在圆内⇔d<r;(3)点在圆外⇔d>r.2.过三点的圆(1)经过三点作圆:①经过在同一直线上的三点不能作圆;②经过不在同一直线上的三点,有且只有一个圆.(2)三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆;外接圆的圆心叫做三角形的外心;这个三角形叫做这个圆的内接三角形.(3)三角形外接圆的作法:①确定外心:作任意两边的中垂线,交点即为外心;②确定半径:两边中垂线的交点到三角形任一个顶点的距离作为半径.考点二直线与圆的位置关系1.直线与圆的位置关系的有关概念(1)直线和圆有两个公共点时,叫做直线和圆相交,这时的直线叫做圆的割线;(2)直线和圆有唯一公共点时,叫做直线和圆相切,唯一的公共点叫做切点,这时的直线叫圆的切线;(3)直线和圆没有公共点时,叫做直线和圆相离.2.直线和圆的位置关系的性质与判定如果⊙O的半径为r,圆心O到直线l的距离为d,那么:(1)直线l和⊙O相交⇔d<r;(2)直线l和⊙O相切⇔d=r;(3)直线l和⊙O相离⇔d>r.考点三切线的判定和性质1.切线的判定方法(1)和圆只有一个公共点的直线是圆的切线;(2)到圆心的距离等于半径的直线是圆的切线;(3)过半径外端点且和这条半径垂直的直线是圆的切线.2.切线的性质(1)切线的性质定理:圆的切线垂直于经过切点的半径;(2)推论1:经过切点且垂直于切线的直线必经过圆心;(3)推论2:经过圆心且垂直于切线的直线必经过切点.考点四切线长定理1.切线长:在经过圆外一点的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.2.切线长定理.....:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分这两条切线的夹角.【典型例题分析】【例1】(1)(2009·江西)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确...的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外(2)(2010·青岛)如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是()A.相离B.相切C.相交D.相切或相交(3)(2010·门头沟)如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x 的取值范围是()A.-1≤x≤1 B.-2≤x≤ 2C.0≤x≤ 2 D.x> 2【点拨】解答本组题时注重数形结合思想.【解答】(1)通过画图和点与圆位置关系的判定条件,A不正确.故选A.(2)过点C作CD⊥AB于D.∵∠B=30°,BC=4 cm∴CD=2 cm,即点C到AB的距离等于⊙C的半径.故⊙C与AB相切,故选B.(3)当P与O重合时,PO=0.当过点P 且与OA 平行的直线与⊙有唯一公共点时,PO =2,即0≤x ≤ 2.故选C.【例2】 (2010·聊城)如图,已知Rt △ABC ,∠ABC =90°,以直角边AB 为直径作⊙O ,交斜边AC 于点D ,连结BD.(1)若AD =3,BD =4,求边BC 的长;(2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.【点拨】本题综合考查相似三角形的判定性质以及切线的判定.【解答】(1)由AB 为⊙O 的直径 ∴∠ADB =90°在Rt △ADB 中,AD =3,BD =4,∴AB =5在Rt △ADB 和Rt △ABC 中,∵∠ADB =∠ABC =90°,∠DAB =∠BAC ,∴Rt △ADB ∽Rt △ABC.∴AD BD =AB BC ,即34=5BC .∴BC =203.(2)如图,连结OD.∵OB =OD ,∴∠OBD =∠ODB.在Rt △BDC 中,点E 为斜边BC 的中点,∴EB =ED.∴∠EBD =∠EDB.∴∠OBD +∠EBD =∠ODB +∠EDB =90°.∴OD ⊥DE ,又OD 为⊙O 的半径,∴ED 与⊙O 相切.【例3】 (2010·陕西)如图,在Rt △ABC 中,∠ABC =90°,斜边AC 的垂直平分线交BC 于点D ,交AC 于点E ,连结BE.(1)若BE 是△DEC 外接圆的切线,求∠C 的大小;(2)若AB =1,BC =2时,求△DEC 外接圆的半径.【点拨】(1)连结过切点的半径,构造直角三角形是常用的辅助线.(2)通过证明三角形相似,利用相似三角形对应边成比例求线段的长度.【解答】(1)∵DE 垂直平分AC ,∴∠DEC =90°,∴DC 为△DEC 外接圆的直径.∴DC 的中点O 即为圆心,如图,连结OE.又知BE 是⊙O 的切线,∴∠EBD +∠BOE =90°.在Rt △ABC 中,E 是斜边AC 的中点,∴BE =EC.∴∠EBC =∠C.又∵∠BOE =2∠C ,∴∠C +2∠C =90°,∴∠C =30°.(2)在Rt △ABC 中,AC =AB 2+BC 2=5,∴EC =12AC =52.∵∠ABC =∠DEC =90°,∴△ABC ∽△DEC. ∴AC DC =BC EC ,∴DC =5×52÷2=54. ∴△DEC 外接圆的半径为58. 【巩固练习】1.如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP =5,PA =4,则sin ∠APO 等于( B ) A.45 B.35 C.43 D.34(第1题) (第2题)2.如图,从⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别为A 、B ,如果∠APB =60°,PA =8,那么弦AB 的长是( B )A .4B .8C .4 3D .8 33.⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( A )A .相交B .相切C .相离D .无法确定4.如图,CD 切⊙O 于点B ,CO 的延长线交⊙O 于点A.若∠C =36°,则∠ABD 的度数是( B )A .72°B .63°C .54°D .36°(第4题) (第5题)5.如图,⊙O 的半径OA =10 cm ,弦AB =16 cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为6cm.6.△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,以点B 为圆心、6 cm 为半径作⊙B ,则边AC 所在的直线与⊙B 的位置关系是相切.【考点训练】一、选择题(每小题4分,共48分)1.(2011中考预测题)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A =25°,则∠D 等于( )A .40°B .50°C .60°D .70°【解析】连结OC ,则OC ⊥DC ,∴∠DOC =2∠A =50°.【答案】A2.(2009中考变式题)如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1.5C .1D .0.5【解析】连结OD ,则OD ⊥AD ,又BC ⊥AD ,∴BC ∥OD.∵AB =OB =2,∴BC =12OD =12×2=1. 【答案】C3.(2009中考变式题)如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M 、N 两点.若点M 的坐标是(2,-1),则点N 的坐标是( )A .(2,-4)B .(2,-4.5)C .(2,-5)D .(2,-5.5)【解析】过点P 作PA ⊥MN 于点A ,设NA =x ,连结PN ,则MA =x.∴⊙P 半径为x +1,在Rt △PNA 中,∵PN 2=NA 2+PA 2,∴(x +1)2=x 2+22,解得x =1.5,∴N(2,-4).【答案】A4.(2011中考预测题)如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 是⊙O 的切线,C 是切点,连结AC ,若∠CAB =30°,则BD 的长为( )A .2R B.3R C .R D.32R 【解析】连结OC ,则OC ⊥OD.∵∠CAB =30°,∴∠COD =60°,∴∠D =30°,则OD =2R.∴BD =OD -OB =2R -R =R.【答案】C5.(2009中考变式题)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连结BC 交⊙O 于点D ,连结AD ,若∠ABC =45°,则下列结论正确的是( )A .AD =12BCB .AD =12AC C .AC>AB D .AD>DC 【解析】易证△ABC 为等腰直角三角形,AD 为斜边上的中线,∴AD =12BC. 【答案】A6.(2011中考预测题)在Rt △ABC 中,∠C =90°,AC =3 cm ,BC =4 cm ,以C 为圆心、3 cm 长为半径的圆与AB 的关系为( )A .相切B .相离C .相交D .无法判断【解析】易求C 到AB 的距离为125<3,∴⊙C 与AB 相交. 【答案】C7.(2010·眉山)下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直【解析】本题考查切线的性质.【答案】C8.(2009中考变式题)如图,PA 、PB 分别是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,已知∠BAC =35°,则∠P 的度数为( )A .35°B .45°C .60°D .70°【解析】∵∠BAC =35°,∠OAP =90°,∴∠PAB =55°.由切线长定理得PA =PB ,∴∠PAB =∠PBA =55°,∴∠P =70°.【答案】D9.(2009中考变式题)下列四个命题:①与圆有公共点的直线是该圆的切线;②到圆心的距离等于该圆半径的直线是该圆的切线;③垂直于圆的半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线,其中正确的是( )A .①②B .①④C .②④D .③④【解析】利用圆的切线的判定方法和定义,②④是正确的.【答案】C10.(2011中考预测题)如图,已知⊙O 的直径AB 与弦AC 的夹角为35°,过C 点的切线与AB 的延长线交于点P ,则∠P 等于( )A .15°B .20°C .25°D .30°【解析】∵OA =OC ,∠A =35°,∴∠A =∠ACO =35°,∴∠COP =70°.又OC ⊥PC ,∴∠P =90°-∠COP =20°.【答案】B11.(2009中考变式题)如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( )A. 3B. 5 C .2 3 D .2 5【解析】过O 作OE ⊥BC 于点E ,连结OB ,在Rt △OBE 中,OB =2,∠OBE =30°,∴BE =3,∴BC =2BE =2 3.【答案】C12.(2010·武汉)如图,⊙O 的直径AB 的长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( )A .7B .7 2C .8 2D .9【解析】连结BD 、AD ,作BE ⊥CD 于E ,∵AB 是直径,∴∠ACB =90°.∵AC =6,AB =10,根据勾股定理得BC =8.∵CD 平分∠ACB ,∴∠BCD =45°.∵BE ⊥CD ,∴CE =BE.∵BC =8,根据勾股定理得CE =BE =4 2.∵AD =BD ,AB 是直径,∴BD =5 2.在Rt △BDE 中,BD =52,BE =42,∴DE =32,∴CD =CE +DE =72,故选B.【答案】B二、填空题(每小题4分,共16分)13.(2009·河北)如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC.若∠A =36°,则∠C =________.【解析】连结OB ,则OB ⊥AB ,又∠A =36°,∴∠AOB =54°.又OB =OC ,∠C =∠OBC =12∠AOB =27°. 【答案】27°14.(2010·河南)如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是OMA 上异于点C 、A 的一点.若∠ABO =32°,则∠ADC 的度数是________.【解析】∵AB 切⊙O 于点A ,∴OA ⊥AB.∵∠ABO =32°,∴∠AOB =90°-32°=58°,则∠ADC =12∠AOB =29°. 【答案】29°15.(2011中考预测题)如图,从⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,若PA =8 cm ,C 是AB 上的一个动点(点C 与A 、B 两点不重合),过点C 作⊙O 的切线,分别交PA 、PB 于点D 、E ,则△PED 的周长是________.【解析】由切线长定理得DC =DA ,CE =BE ,∴DE =DA +EB ,∴△PED 的周长=PA +PB =2PA =16 cm.【答案】16 cm16.(2010·杭州)如图,已知△ABC ,AC =BC =6,∠C =90°.O 是AB 的中点,⊙O 与AC 、BC 分别相切于点D 与点E.点F 是⊙O 与AB 的一个交点,连结DF 并延长交CB 的延长线于点G ,则CG =________.【解析】连结DO ,∵⊙O 与AC 相切于点D ,则DO ⊥AC.∵∠C =90°,∴DO ∥CG ,由DO =OF ,可推得BF =BG.由AC =BC =6,∠C =90°,得AB =62,∴AO =3 2.在Rt △ADO 中,∠A =45°,∴DO =3,BF =AB -AO -OF =32-3,∴CG =BC +GB =6+32-3=3+3 2.【答案】3+3 2三、解答题(共36分)17.(12分)(2010·广东)如图,PA 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O相交于D 点.已知OA =2,OP =4.(1)求∠POA 的度数;(2)计算弦AB 的长.解:(1)因为PA 与⊙O 相切于A 点,所以OA ⊥AP.在Rt △PAO 中,cos ∠POA =OA OP =24=12,所以∠POA =60°. (2)因为AB ⊥OP ,所AC =BC =12AB. 在Rt △ACO 中,sin ∠COA =AC OA, 所以AC =OA·sin ∠COA =2×sin60°=2×32= 3. 所以AB =2AC =2 3.18.(12分)(2010·北京)已知:如图,在△ABC 中,D 是AB 边上的一点,⊙O 过D 、B 、C 三点,∠DOC =2∠ACD =90°.(1)求证:直线AC 是⊙O 的切线;(2)如果∠ACB =75°,⊙O 的半径为2,求BD 的长.(1)证明:∵OD =OC ,∠DOC =90°,∴∠ODC =∠OCD =45°.∵∠DOC =2∠ACD =90°.∴∠ACD =45°.∴∠ACD +∠OCD =∠OCA =90°.∵点C 在⊙O 上,∴直线AC 是⊙O 的切线.(2)解:∵OD =OC =2,∠DOC =90°,可求CD =2 2.∵∠ACB =75°,∠ACD =45°,∴∠BCD =30°.作DE ⊥BC 于点E ,∴∠DEC =90°,∴DE =DC·sin30°= 2.∵∠B =45°,∴BD =2.19.(12分)(2010·襄樊)如图,已知:AC 是⊙O 的直径,PA ⊥AC ,连结OP ,弦CB ∥OP ,直线PB 交直线AC 于D ,BD =2PA.(1)证明:直线PB 是⊙O 的切线;(2)探究线段PO 与线段BC 之间的数量关系,并予以证明;(3)求sin ∠OPA 的值.(1)证明:连结OB ,∵BC ∥OP ,∴∠BCO =∠POA ,∠CBO =∠POB.又∵OC =OB ,∴∠BCO =∠CBO ,∴∠POB =∠POA.又∵PO =PO ,OB =OA ,∴△POB ≌△POA(SAS).∴∠PBO =∠PAO =90°,∴PB 是⊙O 的切线.(2)2PO =3BC(或PO =32BC 亦可). 证明:∵△POB ≌△POA ,∴PB =PA.∵BD =2PA ,∴BD =2PB.∵BC ∥PO ,∴△DBC ∽△DPO.∴BC PO =BD PD =23.∴2PO =3BC. (3)解:∵△DBC ∽△DPO ,∴DC DO =BD PD =23. 即DC =23OD ,∴DC =2OC. 设OA =x ,PA =y ,则OD =3x ,OB =x ,BD =2y.在Rt △OBD 中,由勾股定理,得(3x)2=x 2+(2y)2.即2x 2=y 2.∵x>0,y>0,∴y =2x ,OP =x 2+y 2=3x.∴sin ∠OPA =OA OP =x 3x =13=33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


关 点P在圆外

d<r d=r d>r
等价于 P
P P

r
A
例.Rt△ABC中,∠C=90°,CD⊥AB,AB=10, AC=6,以C点为圆心,6为半径画圆,则点A, B,D与圆的位置关系是怎样的?
A . .D 10 6 4.8
C.

.B
8
1、已知⊙O的半径为10cm,点P到圆心O
的距离为d,则
的位置关系?
问题2:设⊙O半径为r, 说出点A,点B, 点C与圆心O 的距离与半径的关系:
点A在圆内 点B在圆上 点C在圆外
OA < r OB = r OC > r
AC O· r
B
问题3:反过来,已知点P到圆心O的距离 d 和圆的半径r,能否判断点和圆的位置关系?
点 与
点P在圆内

的 点P在圆上

(1)当d=7cm时,点P在⊙O内 ; (2)当d=10cm时,点P在⊙O上 ; (3)当d=13cm时,点P在⊙O外 .
2、画出由所有到已知点的距离大于或等于 2cm并且小于或等于3cm的点组成的图形.
· 2cm
O
如何求圆环的面积?S 3 2 2 2 5
1,如图所示,已知矩形ABCD的边AB=3cm,AD=4cm. (1)以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A的位 置关系如何? 2)若以点A为圆心作⊙A,使B、C、D三点至少有一点在圆内,且 至少有一点在圆外,则⊙A的半径r的取值范围是什么?
A
D
B
C
2、一个点到圆上的最小距离是4cm,最
大距离是9cm,则圆的半径为
.
P P
我国射击运动员在奥运会上屡获金牌,为我 国赢得荣誉,右图是射击靶的示意图,它是由 许多同心圆(圆心相同,半径不等的圆)构成 的,你知道击中靶上不同位置的成绩是如何计 算的吗?
我们不妨取其中的一个圆来 研究:如图
点在圆外
请说出点与圆有 几种位置关系?
点在圆内
点在圆 上
问题1:观察图中点A,点B,点C与圆
相关文档
最新文档